10,081 research outputs found

    Exit time asymptotics for small noise stochastic delay differential equations

    Full text link
    Dynamical system models with delayed dynamics and small noise arise in a variety of applications in science and engineering. In many applications, stable equilibrium or periodic behavior is critical to a well functioning system. Sufficient conditions for the stability of equilibrium points or periodic orbits of certain deterministic dynamical systems with delayed dynamics are known and it is of interest to understand the sample path behavior of such systems under the addition of small noise. We consider a small noise stochastic delay differential equation (SDDE) with coefficients that depend on the history of the process over a finite delay interval. We obtain asymptotic estimates, as the noise vanishes, on the time it takes a solution of the stochastic equation to exit a bounded domain that is attracted to a stable equilibrium point or periodic orbit of the corresponding deterministic equation. To obtain these asymptotics, we prove a sample path large deviation principle (LDP) for the SDDE that is uniform over initial conditions in bounded sets. The proof of the uniform sample path LDP uses a variational representation for exponential functionals of strong solutions of the SDDE. We anticipate that the overall approach may be useful in proving uniform sample path LDPs for a broad class of infinite-dimensional small noise stochastic equations.Comment: 39 page

    Relaxation oscillations, pulses, and travelling waves in the diffusive Volterra delay-differential equation

    Get PDF
    The diffusive Volterra equation with discrete or continuous delay is studied in the limit of long delays using matched asymptotic expansions. In the case of continuous delay, the procedure was explicitly carried out for general normalized kernels of the form Sigma/sub n=p//sup N/ g/sub n/(t/sup n//T/sup n+1/)e/sup -t/T/, pges2, in the limit in which the strength of the delayed regulation is much greater than that of the instantaneous one, and also for g/sub n/=delta/sub n2/ and any strength ratio. Solutions include homogeneous relaxation oscillations and travelling waves such as pulses, periodic wavetrains, pacemakers and leading centers, so that the diffusive Volterra equation presents the main features of excitable media

    Mean-field equations for stochastic firing-rate neural fields with delays: Derivation and noise-induced transitions

    Full text link
    In this manuscript we analyze the collective behavior of mean-field limits of large-scale, spatially extended stochastic neuronal networks with delays. Rigorously, the asymptotic regime of such systems is characterized by a very intricate stochastic delayed integro-differential McKean-Vlasov equation that remain impenetrable, leaving the stochastic collective dynamics of such networks poorly understood. In order to study these macroscopic dynamics, we analyze networks of firing-rate neurons, i.e. with linear intrinsic dynamics and sigmoidal interactions. In that case, we prove that the solution of the mean-field equation is Gaussian, hence characterized by its two first moments, and that these two quantities satisfy a set of coupled delayed integro-differential equations. These equations are similar to usual neural field equations, and incorporate noise levels as a parameter, allowing analysis of noise-induced transitions. We identify through bifurcation analysis several qualitative transitions due to noise in the mean-field limit. In particular, stabilization of spatially homogeneous solutions, synchronized oscillations, bumps, chaotic dynamics, wave or bump splitting are exhibited and arise from static or dynamic Turing-Hopf bifurcations. These surprising phenomena allow further exploring the role of noise in the nervous system.Comment: Updated to the latest version published, and clarified the dependence in space of Brownian motion
    • …
    corecore