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RELAXATION OSCILLATIONS, PULSES, AND TRAVELLING WAVES IN 
THE DIFFUSIVE VOLTERRA DELAY-DIFFERENTIAL EQUATION* 

LUIS L. BONILLAt A N D AMABLE L I N A N * 

Abstract. The diffusive Volterra equation with discrete or continuous delay is studied in the limit of 
long delays using matched asymptotic expansions. In the case of continuous delay, the procedure was 
explicitly carried out for general normalized kernels of the form X n = p gn(tn/Tn+1) e~t/T, p ^ 2, in the limit 
in which the strength of the delayed regulation is much greater than that of the instantaneous one, and 
also for gn=Sn2 and any strength ratio. 

Solutions include homogeneous relaxation oscillations and travelling waves such as pulses, periodic 
wavetrains, pacemakers and leading centers, so that the diffusive Volterra equation presents the main 
features of excitable media. 

1. Introduction. The aim of the present work is to study the solutions of the 
diffusive Volterra delay-differential equation for long time lags. 

The following equation was proposed in the thirties by Volterra to describe the 
evolution in the laboratory of small organism species with short generation times: 

(1.1) dN/dt = rNll-N/K-Q-1 J N(r)G(t-r) dr\ (f>0), 

(1.2) N(t) = ®(t)^0 (f^O), 

(1.3) f G(r)dr = l, G(T)>0 fo r r>( ) , 
Jo 

(1.4) r , Q , ^ a r e > 0 . 

Here, N is the population density of the species, whose birth rate is r, K is the 
carrying capacity of the environment in the absence of delay and the integral term 
accounts for environmental pollution due to waste products and dead organisms [13]. 

We shall consider weight functions G(t) that decay exponentially like tre~t/T as 
r->oo ( r > 0 ) , so that it is possible to write 

(1.5) G(t)= I gnG
in\t), 

n = 0 

for an appropriate integer N. Here, 

(1.6) GM(t) = ^ e - ' / T , 

and therefore, 

(1.7) Gin\t)dt = l, I g„ = l. 
JO n = 0 
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In the limit of infinitely spiked kernels, (1.1) is reduced to the discrete form 

(1.8) ^ = rN{l -N/K -N(t - T)/Q}. 
at 

Equations (1.1) or (1.8) can also describe the evolution of a herbivorous species 
population subject to the (instantaneous) action of a predator (the -N/K term) and 
whose nutrient regenerates itself after a time T (the delayed regulatory term) [15], 
[16], [19]. 

If we now assume that the movement of the species obeys the random diffusion 
hypothesis, the population density will evolve according to the following diffusive 
Volterra equation on an infinitely extended one-dimensional support (for the s'ake of 
the simplicity) [17]: 

(1.9) d^=D^4+rN{l-N/K-Q-1^ G(r)N(x, t-r) </r}, 

where, if we put G(r) = 8(r - T), we recover the discrete delay N(x, t - T) as in (1.8). 
In the absence of delays, (1.9) has an unstable homogeneous steady solution, 

Af = 0, the extinction state, and a stable one N0 = KQ/(K + Q). The main effect of 
the time lag, T, is to destabilize the homogeneous steady state N0 in (1.9), thereby 
generating a time periodic solution of increasing amplitude as T increases. The various 
dissipative structures that can be found near the bifurcation point were described in 
a number of papers [1], [2], [12], [21]. In this paper, we shall study the solutions of 
(1.1)—(1.9) in the limit of very long delays using matched asymptotic expansions. 

Defining the following dimensionless parameters and variables in (1.9): 

x =x(DTy1/2, f = t/T, u=N/K, 
(1.10) 

a=rT, P = Q/K, G(t) = T-G(t) 
gives the resultant dimensionless equation 

(1.11) — = — \ + au 1 - W - / T 1 G(r)u(x,t-r)dr , 
dt dx I Jo J 

in which we have suppressed the tildes to simplify the writing. 
Near the bifurcation point, a = a0, the smallness of the parameter e ~ |a - a 0 | 1 / 2 

can be exploited to study the bifurcating time-periodic solutions of (1.11) by means 
of the method of multiple scales [1], [2], [12], [21]. On the other hand, if the 
dimensionless delay a in (1.11) is very large (a ->oo), as it shall be assumed in this 
paper, the time periodic solutions of (1.11) can again be described by asymptotic 
methods, in this case, by the method of matched asymptotic expansions. The asymptoti­
cally stable solutions of (1.11) without diffusion are either the steady state ue=f3/(l+f3) 
or a relaxation-like limit cycle, depending on the value of (3. If the diffusion is included, 
we can have periodic wave-trains and pulses depending on the initial condition. 

The rest of this paper is organized as follows. 
In § 2, we shall study transient stages and homogeneous limit cycles when the 

delay in the regulatory term of (1.11) is of the simple form G(r) = r2e~T/2 (g„ =Sn2 

in (1.5)). 
In § 3, we will consider the effect of the diffusion on the above described situation. 

New solutions include travelling waves that advance with the velocity of the wavefront 
solutions of the Fisher equation. The general kernel (1.5) will be considered in § 4 
where explicit results will be obtained in the limit f3 -*0. 
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In § 5, the case of discrete delays (G(r) = S(r-1), the Dirac delta function), with 
or without diffusion, is studied, and, finally, a discussion of our results and a comparison 
with other results in the literature constitutes § 6. 

2. Homogeneous relaxation-like limit cycles and transitory stages for continuous 
delay g„=8 n 2 . The steady solution ue=@/(l+P) of the homogeneous Volterra 
equation 

(2.1) Y = au{1~u-P~1 j G(r)u(t-T)dr]9 

is, in the case gn = Snp, asymptotically stable (A.S.) for large values of a, if /? >/?0 with 

(2.2) /?o = cosp+1(7r/(p + l)), p = 0 , 1 , • • • , 

and unstable if 0^/3 ^ / ? 0 . For p = 0, 1, the solution ue is A.S. for all positive values 
of j8, if a » 1 . Therefore, only if p ^ 2 is it possible to get an unstable ue for a ->oo. 
As the qualitative behavior of (2.1) should be the same for any p ^ 2 , we shall study 
the simpler case p = 2 . In this case, the steady solution is unstable if 0^/3 <l and 
A.S. if g</3, f o r a » l . 

In the general case, the characteristic equation which determines the linear 
stability of ue can be solved easily in the limit /31 / ( p + 1 )« 1, p being the smallest integer 
such that gn ?* 0; then (gp//?)1/(p+1) cos (ir/ip +1)) is the largest real part of the charac­
teristic roots, and again only for p ^ 2 it is possible to have an unstable ue. We shall 
go back to the limit /?1/(p+1)->0 in the general case in § 4, where the procedure here 
illustrated for gn = 8n2 will be extended. 

Using the Volterra change of variables (linear chain trick) [13] 

(2.3a) 

(2.3b) 

(2.3c) 

(2.1) can 

(2.4a) 

(2.4b-d) 

be put in the form 

du 
~dt~ 

dv 
dt 

r°° 
v= G(0)(r)u(t-

Jo 
r°° 

w= Ga\r)u(t-
Jo 

r°° 
z= G{2\r)u{t-

Jo 

au(\-u -z/ j8) , 

dw 
•u—v, —r = v — w, 

dt 

-r)dr, 

-r)dr, 

-r)dr, 

dz 
— = w 
dt 

The change (2.3) transforms the initial condition of (2.1), 

(2.5) M(T) = 0 ( T ) , - O O ^ T ^ O , 

into the following initial condition for (2.4), 

(2.6) u(to) = 4>(h), v(t0)=\ G(0)(r)cf>(to-T)dT, etc. 
Jo 

Let us suppose that the initial condition (2.6) is very close to the extinction state 
u =v = w = z =0 ; for example, u(to) = a0/a, v(t0) = ai/a, w(t0) = a2/a, z(t0) = a3/a, 
with a, of the order of unity. As the zero solution is unstable, in a first stage of duration 
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0(l/a), u(t) quickly increases to u = 1 while t>, vv, z remain 0(1/a). In this stage, the 
solution of (2.4) and (2.6) takes the form 

(2.7a) u (t) = u0(a) + a~1u1(a) + 0(a ~2), a = a (t - f0), 

(2.7b) i;(0 = a - 1^i(o-)4-O(a"2), 

(2.7c) wU) = a_1w1(o-) + 0 ( a _ 2 ) , 

(2.7d) z(t) = a~1z1(cr) + 0(a~2). 

Inserting (2.7) into (2.4), we obtain as a first approximation, 

(2.8a) —— =w0(l-Wo), 
acr 

(2.8b-d) ^ = W o , ^ = 0, dz1/da = 0. 
da da 

The solution of (2.8) is 

(2.9a-d) wo = e ° y ( l + 0 > t>i = fli + ln (l + O , wi = a2, Zi = a3, 

provided that the origin of time is chosen so that 

(2.9e) t0 = a'1 In (a0/a) (t0^0~ asa^oo) . 

When a —a, u0 and f, w and z become O(l) , we therefore have a new stage 
described by the independent variable t, with 0<t~ 1, in which the solution of (2.1) 
is described by the following expansion, 

(2.10a) u=u1o(t) + a~1u\(t) + 0(a~2), 

(2.10b-d) v =vl(t) + a~lv\(t) + 0(a~2), etc. 

Hence, as long as au remains » 1 , the first approximation obeys the system 

(2.11a) l-u-z/P=0, 

,~ in ix dv dw dz 
(2.11b-d) —- = u-v, —- = v-w, —=w-z, 

dt dt dt 
where we have suppressed sub- and superindices in order not to complicate the writing 
of the equations. The initial conditions for (2.11) 

(2.12) u-l = v = w=z=0 aW = 0 

are obtained from the matching conditions with the previous stage. 
The solution of (2.11)-(2.12) is a good approximation to the true solution up to 

terms of order \/a so long as z is smaller than p. System (2.11a-d) is a linear system 
with constant coefficients, and thus can be solved exactly. This solution shows that if 
P >Pci- 0.383, z is always less than (3 and that u approaches ue in an oscillatory 
fashion as r->op. 

lip <pci the solution of (2.ll)-(2.12) takes the value u = 0 , v =vi, w = wu z =@ 
when t = tii/3). Clearly, as t -> fi(/3), u becomes small so au » 1 is no longer true. After 
t = ti(/3), u « 1 so that we can approximate (2.4a) by du/dt = au(\-z/P). This leads 
to 

(2.13a) u/C = exp\a\ (l-z//3)dt W>-; 
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/« ^ i tx dv dw dz 
(2.13b-d) — =-t>, — = v-w, — =w-z. 

dt dt dt 
The constant C = C\a~l/2 can be evaluated by introducing an intermediate stage 
between (2.11)-(2.12) and (2.13), which is described by the equation 

(2.14) ~=-au{u^(w1/p-l)(t-h)}. 
at 

At this stage, u(t) = w(r)a - 1 / 2 , v{t) = v(r), W ( 0 = VV(T), z(t) = /3 +z{r)a~l/1, r = 
a 1/2(t - h), and after the scaling £/ = (wi/j8 - l) -1 /2w, 0 = (wi/j8 - l)1 /2r, we may write 
(2.14) in the following parameter-free form, 

(2.15) ^=-U(U + 6\ 
ad 

that must be solved with the initial condition 

(2.16) lim U/0 = -l, 

insuring that the solution of (2.15)-(2.16) matches the solution of (2.11)-(2.12). The 
solution of (2.15)-(2.16) is 

(2.17a) U{6) = (2/TT) 1 / 2 e~02/2{l +erf (0/21 / 2)}~\ 

and the constant d in (2.13a) is therefore 

(2.17b) C^w^/3 -1)~1/2 = C2= lim eey2U(6) = (2TT)~1/2. 

According to (2.13), u again takes the value C at t = t2 given by 

(2.18a) f * (l-z/(3)dt = 0, 

in which 

(2.18b-d) v(t2) = v2, w(t2) = w2, z(t2) = z2<f3. 

After t = t2, the exponent in (2.13a) becomes positive and u increases quickly, in a 
time t-t2 = 0(l/a), up to the value ( l - z 2 / j3 ) during a stage described by the 
equations 

(2.19a-d) — =au(l-u -z2 / j3) , v=v2, w = vv2, z=z2, 
at 

so that 

M / ( l -z 2 / j8 ) = e 7 ( l + 0 

with 

(2.19e) c7 = a ( l - z 2 / / 3 ) U - r 2 ) 4 - l n { C 1 a " 1 / 2 ( l - z 2 / i 8 - C 1 a " 1 / 2 r 1 } . 

After this fast increment of w around t = t2, comes a new stage, of duration O(l) in 
t, in which the evolution of w, as long as u is positive, is again described by (2.11) 
with the initial conditions (2.18b-d). There is another value of /?, pci<Pcu such that 
when PC2<P <Pcu u decays to ue in an oscillatory manner, without vanishing, as 
r->oo; whereas, if f3 <f3c2, there is another time interval (f3, t4) in which u behaves 
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as in (fi, t2). After t4, u again rises to a value (1 -z4//3) and another cycles begins. If 
P <Po Pc =0.154, the solution becomes periodic after a sufficiently long time, and 
every period is formed by two intervals I\ and I2 in which the behavior of u is 
very different. During Iu u = l-z/@ decreases from a certain value (l-zfc//3) to 
zero (up to 0(l/a) terms) obeying (2.11); whereas, during the interval I2 given by 
J/2 (1 -z//3) dt = 0,u is approximately zero. 

As can be seen from our construction, the relaxation-like limit cycle analyzed so 
far is phase A.S. and coexists with the A.S. steady solution u = ue for /30 = 0.125 </3 < 
(3C = 0.154, thus displaying hysteretic phenomena as (3 is varied. At /? = 0.125, there 
is a Hopf bifurcation from ue which is analyzed in Appendix 1. The situation is 
described in Fig. 1 where the hysteresis cycle is explicitly shown. 

max u ( t ) 

FIG. 1. Bifurcation diagram for the homogeneous Volterra equation with gn = 8n2. Heavy lines represent 
stable solutions whereas thin lines represent unstable solutions 

Notice that in the asymptotic limit a -> oo, the solution can be described for t > 0 
by the system of linear equations (2.11)y in the intervals when u >0, and by the linear 
equations (2.13b-d) supplemented by the following equation (2.13e) in the intervals 
where u = 0, with the condition / = 0 at the beginning and at the end of those intervals. 

(2.13e) j t = l-z/(3. 

The solutions of the above mentioned linear equations can be easily written in 
explicit form, and the integrating constants associated with the different intervals can 
be determined by requiring continuity for all t of the variables v, w and z. As this 
procedure leads to transcendental equations for the duration of the time intervals 
(i.e., for the numbers tu t2, etc.), which should be solved numerically, we have preferred 
to proceed stage by stage numerically integrating the linear equations (2.11) and 
(2.13b-e) alternately, together with the continuity requirement for t>, w and z. 

The results of the asymptotic analysis that we have performed in this section are 
summarized in Fig. 2, where u{t) is depicted, in the limiting case a-»oo, for two 
different values of (3. For /3</3c, the asymptotic solution shows abrupt transitions 
involving jumps in u or its time derivative, bounding intervals where u = 0. 
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FIG. 2a. Periodic solution for (3 =0.1. After three pulses from y =0 , the distance between successive 
maxima becomes equal to the period except for an error smaller than 0.1%. An estimation of the period using 
the simple formula {see §4): T = T]1(3

1/3+Wl(3 2 / 3 {homogeneous) or T = i71jS 1/3 + (8^J)1 /2i3-1 /3 

{diffusive) gives us T = 7.25 or T = 8.01, respectively, which are of the same order as the true period depicted 
in the figure {error smaller than 13%). Heavy lines correspond to relaxation oscillations and thin lines to 
travelling wavetrains. 
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FIG. 2b. Solution for (3 = 0.3. The steady state ue = 0.23 is A.S. 

For 0 </3c, u becomes periodic in t, with a sawtooth shape, after a transitory 
stage of similar shape. 

3. The diffusive Volterra equation with continuous delay (g„ = 6n2). In this sec­
tion, we shall study wave-like solutions of the following problem 

(3.1) 
du d U 
dt dx2 ll-u-p-'l Gi2\r)u(x,t-r)dr\9 
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or, equivalently, of the following system, 

(3.2a) — = —2 + a i < ( l - K - z / 0 ) , 

dt dx 

i* ^i ix dv dw dz 

(3.2b-d) — = u—v, — — v — w, — = w—z, 
dt dt dt 

according to the Volterra change of variable (2.3). 
We shall show that (3.1) or (3.2) has travelling wave solutions of the form 

u(x, t) = u(y), y = t +x/c, and will comment on the problem of the appropriate initial 
conditions later, in § 6. 

For travelling wave solutions, the system (3.2) can be written as 

(3.3a) - — c ' 2 —~2 = au(l-u -z/B), 
ay ay 
dv dw dz 

(3.3b-d) — = u-v, — = v-w, —=w-z, 
dy dy dy 

(3.3e) y=t+x/c, 

and the boundary conditions that correspond are 

(3.4a) u=v = w = z =0 a ty-»-oo, 

associated with the unstable steady state solution of (3.1), and the condition 

(3.4b) u =v = w=z =w e =/?/ ( l+/3) a t y ^ o o 

associated with the stable steady state solution of (3.1), if (5 is larger than a critical 
value (3C, to be determined later. For smaller values of /?, the downstream boundary 
conditions (3.4b) must be replaced by the condition that the solution should become 
periodic in y for large positive values of y. In the first case the travelling wave solutions 
are pulses, while in the second case they lead to periodic wave trains. 

The wavespeed c is determined by the initial condition u(x, t) at t = 0. We shall 
discuss the initial value problem in § 6. Here, we shall determine the asymptotic shape 
of the travelling waves and the admissible values of the speed c (the travelling wave 
problem) for large values of a. 

For large a, the structure of the travelling wave is similar to that corresponding 
to the homogeneous case. There is a first region of length 1/a in y where u rises 
from 0 to 1, as described by the following boundary value problem 

,* c x du x d
2u ,. . 

(3.5a) -—AT-2 = « ( 1 - M ) , 
aj] aj] 

(3.5b) w(-oo) = 0, w(oo) = l, 

(3.5c) 7] =ay =a(t+x/c), 

(3.5d) \=a/c2, 

while v, w and z are small, of order a - 1 , a~2, and a~3 respectively. Notice that the 
problem (3.5a-d) corresponds to the initial-boundary value problem for the Fisher 
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equation 
2 

/ i s \ du d U ,. . .. . 
(3.6a) — = a—2 + u{l-u), W = W ( £ , T ) , 

or dt; 

(3.6b) w(-oo, 0) = 0, w(oo, 0) = 1, 

(3.6c) T = at, € = ax. 
It is well known that (3.5) has a travelling wavefront solution that moves with 

asymptotic velocity c =2a1/2 and that is an A.S. solution of (3.6). Actually there is 
a travelling wavefront solution of (3.5) that moves with velocity c for each A =a/c , 
if AE[0, 4]. The wavefront with speed c is an asymptotically stablesolution of (3.6) 
in the sense that if w(£ 0) satisfies (3.7a-c) below for some c ^2Va, W(JC, t) evolves 
into the travelling wave with speed c (except for a constant phase shift). 

(3.7a) u(£,0) = a({)exp{K(c)m + O(l)l £ ^ - 0 0 , 

(3.7b) aK(c) = c/2-(c2/4-a)1/2, 

(3.7c) a ( f ) > 0 , a(£ + £0)~a(£) as|f|->ao, 
for constant £0 [18]. If u (£, 0) = 0 for £ < £c, the A.S. wavefront is the one with minimum 
velocity, A = i i.e., c = 2a1/2 [10]. 

From now on, we shall study only the case in which the solution of (3.5) is the 
Fisher wavefront that advances with asymptotic velocity 2a1/2. Wavefronts with larger 
velocities can be described in the same way and give rise to faster periodic wavetrains. 
In the limit c -> 00 (A -> 0), the homogeneous periodic solution of § 2 is to be obtained. 

The solution u(r)) of (3.5) ceases to be a good approximation to (3.3)-(3.4) when 
7] » 1 so that y = t+x/c = 0(1) ; in this region v, w, and z become or order 1. For the 
description of this second region, we use y as independent variable and rewrite (3.3a) 
in the form 

(3.8) (au)-1^-(4a2u)-1^A=l-u-z/p. 
ay ay 

Equation (3.8) takes for a ^00 the limiting form 

(3.9a) l-u-z/0=O, 

as long as au » 1 . This equation together with (3.3b-d) and the initial conditions 

(3.9b-d) v = w=z=0 a t y = 0 , 

obtained from the matching conditions with the solution for the previous region, 
determine w, v, w and z as functions of y, in the first approximation for large a. This 
approximation breaks down at y =y i , such that w(yi) = 0. The system of equations 
(3.3b-d), (3.9a-d), is exactly the system (2.11)-(2.12) for the homogeneous Volterra 
equation, so that, as it was found in § 2, the solution of (3.3b-d), (3.9a-d) is an 
oscillatory decay toward the homogeneous steady solution ue for y ->oo if /? >(3Cl = 
0.383. Only for (3 </?Cl, it is possible to find a yx (equal to the h(fi) of § 2) such that 
«(yi) = 0. 

For y >y i , u is so small that it is not possible to neglect the left-hand side of 
(3.8); however, we can neglect u « 1 in the right-hand sides of (3.8) and (3.3b-d). In 
order to follow the evolution of u for y >y i , we introduce the variable U = In w, in 
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(3.8), that becomes 
J2TT , J T T K ^ -tdU 

a •^-•[&(%)h-'>>-
or defining 

(3.10a) p = a 

dy L dy \ dy 

xdU 

dy' 

(3.10b) p - p 2 / 4 - ( 4 « r 1 ^ = l - 2 / / 3 . 
dy 

As a » 1 , we can neglect the 0 ( l / a ) - t e r m in (3.10b) and thus the solution of 
the resulting equation, such that u begins to decrease for y > y i , is 

(3.10c) p = 2-2(z/ /?) 1 / 2 . 

Coming back to u, the solution at this stage is 

(3.11) M(y)/C = exp(2a \ \ \ - J z {y) / p dy\ 

where the constant C = 0(a~1/2) is to be calculated by coupling (3.8)-(3.9) and (3.11) 
through an intermediate transition stage analogous to the one described in § 2. 

Together with (3.11), we must solve the equations 

/„ ^ x dv dw dz 
(3.12a-c) —=—v, —— = v-w, —=w-z, 

dy dy dy 

with the initial conditions 

(3.12d-f) v=v\, W = H>I, z=@, a t y = y i , 
vu wi being the values taken by the corresponding solutions of (3.8b-c) at y =y i . 
The equation (3.11) determines u(y) for y >y1 ? while the argument of the exponential 
is negative. This is the case for y < y2, given by 

(3.13) f2{l-(2(y)//?)1 / 2}</y = 0; 

otherwise it is not true that u« 1. In a third thin transition region, the solution of 
(3.3) will be described in terms of the variables fj =a(y —y2), and it can be approxi­
mated by means of the solution of the following equations: 

(3.14a) — - 4 1—2 = u(l-u-z/(3), 
ar] ar] 

(3.14b-d) v=v2, w = w2, z=z2, 

(3.14e-f) W(-oo) = 0, W(oo) = 1 -z2/0 > 0 . 

Injact, let t2 and x2 be time and length corresponding to the phase y2 = t2 + x2/c, 
c = 2va. u obeys 

2 
/-» -t A \ du d U . . . m . \ z / \ 

(3.14g) TZ = <XTj5+u(l-z/p-u), r = a(t-t2), £ = a(x-x2), 

while dv/df = dw/dr = dz/dr = 0 and therefore z =z2 in (3.14g). As £->-oo, (3.11) 
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and (3.13) show that u (£ 0) ~ C exp {a 1/2[1 - (z2/0)1/2]£}, so that, according to (3.7), 
u(i,f) evolves into the wavefront solution of (3.14g) with speed c =2Va, as estab­
lished in (3.14a-f). (For the Fisher equation (3.14g), the constant K(c) of (3.7b) is 
given by K(c) = {c/2-(c2/4-a +az2/P)1/2}a~1 [18]. Notice that c=2-Ja is larger 
than the minimum allowed velocity 2{a(l -z2/P)}1/2 for (3.14g).) 

We havethus shown that the speed of the second Fisher wavefront is that of the 
first one, 2^1 a. After the second wavefront passes, we can again use (3.3b-d) and 
(3.9) to describe the solution of (3.3) until another value of y = y3, such that u (y3) = 0, 
is reached (if (5 </3C2</3ci)- In a similar way to the homogeneous case, if /3 is smaller 
than a certain (5C = 0.150, the solution is a sawtooth type wavetrain moving with the 
velocity 2a1/2 of the first Fisher front that becomes periodic for large values of y. 

For the description of the solution for all values of /3, in the limit a -> oo, we can 
proceed in the same form as in the homogeneous case; no detailed description is 
necessary, in this limit, of the transition regions, that now become discontinuities of 
u or of du/dy. _ 

_ For speeds 2Va, a wave number k = (3a~1/4)1/2 corresponds to the frequency 
V3 of the bifurcating time periodic solutions of the diffusive Volterra equation on 
an unbounded one-dimensional support and, therefore, the bifurcation diagram is 
similar to the one depicted in Fig. 1 for the homogeneous case (the diffusion term 
gives vanishingly small contributions of order a~2, as shown in Appendix 1). In this 
case the stability of the wavetrain solution remains an open problem as discussed in § 6. 

4. The Volterra equation for continuous delay and small p. In this section, we 
shall extend the results of previous sections to the case 

(4.1a) G(T)= I gnG
in\r), g p > 0 , 

n=p 

f °° N 

(4.1b) Gin\r)dr= I g„ = 1, p § 2 , 
JO n=p 

and j8 small (in a sense to be made precise later). As we saw at the beginning of § 2, 
only for p ^ 2, ue is unstable as a -> oo and (5 -> 0. 

Defining the variables 
- o o 

(4.2) Vn(x, t) = Gin\r)u(x, t-r)dr9 n = 0, 1, • • •, N, 
h 

the Volterra equation with kernel (4.1) becomes 

(4.3a) — = au[\-u-p 1 gn^n +7-3, 
dt \ n=p J dX 

(4.3b) 

(4.3c) 1zr = vn-1-vn, n = l,- — ,N> 
dt 

We will solve (4.3) with the initial conditions u(t0) = b/a, vn(t0) = an/a in the 
homogeneous case and with the boundary conditions (3.4) for the travelling wave 
problem in the diffusive case. 

As in §§ 2 and 3 there is a thin initial region of duration 0(a~l) in t (homogeneous 
case) or in y =t+x/c (diffusive case) where u rises from 0 to 1. In this region, (4.3) 
can be described by means of (2.8a) or (3.5a) as in previous sections. 

dv0_ 

dt " 

dVn_ 

dt 

-u-

~-vn-

-Vo, 

- 1 - 1 
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When y or t are of the order of 1, (4.3) becomes 

(4.4a) 

(4.4b) 

\-u 

dv0 

dy~ 

dvn 

dy~ 

- ^ 

-VQ-

Vn-1 

z 
n=p 

-P~ 

-vm 

gnVn 

1 I 
n=p 

= 0, 

gnVr 

n = 

. + i , 

1,2, (4.4c) 

with the initial conditions 

(4.5) l-u=vn = 09 n=0,l,--,N a ty=0 . 

In these equations, y = f in the homogeneous case and y =t+x/c when diffusion is 
present. 

Let us suppose now that 

(4.6a) 0 1 / ( ' + 1 ) « l , 

so that, with the scaling 

(4.6b) T, = /?-1/<p+1>y, 

(4.6c) vn = pln+mp+1>Wn, 

equations (4.4)-(4.5) become 

(4.7a) u = l-gpWp, 

(4.7b) ^=l~gpWp, 
ar\ 

dW 
(4.7c) —^=Wn-U n = l," 

dr\ 

(4.7d) Wn(0) = 0, n=0, 1, •• 

-,N, 

-,N. 

The solution of the linear system (4.7) shows that u = 0 for a certain value r/i 
such that 

(4.8) I ( r W = 0, ^ = g ^ P + 1 ) e x p { ^ ^ ] , 

/=0 I p + 1 J 

where (C^ij is the inverse matrix of £y = (£)', /, / = 0, 1, • • •, p. If gn = 8n2, (4.8) gives 

(4.9) W„(TU)=W1, 7/1 = 1.851, Wj= 1.377, Wl = 1.536. 
Clearly, as y ->yi = rj1/3

1/ip+1\ u becomes small so that au » 1 is no longer true. 
After yi, u « 1 and therefore we can approximate the Volterra equation by 

(4.10a) ^ = au(l-(3-1 lgnVn), 

in the homogeneous case, or by 

(4.10b) ^ = 2 a « [ l - ( j 8 " 1 J g-»n)1/2], 
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in the diffusive case (cf. § 3), while the vn's evolve in both cases according to the 
equations 

ay ay 

The initial conditions are 

(4.12) vn(yi) = W^ln+1Wp+1\ n = 0, • • •, AT. 

As /31/<p+1)->0, the solution of the linear ODE system (4.11)-(4.12) approaches 

(4.13) vn{y)=Wl
0(S

lKp+% -yx)
ne-^Xn\T\ 

and therefore u{y) will be 

(4.14a) H(y) = GT a J < v~y i ) 

where 

(4.14b) I(s)= f S j | 8 - p / < p + 1 ) ^ I gn-.e-s}ds-s, 
Jo l n=p n\ ) 

in the homogeneous case, or 

(4.14c) M = / 3 - ( P / < P + i » / 2 y ^ r N £ gn?l -sV/2
ds_^ 

^ J o ln=p n\ J 

in the diffusive case. The constant C must be calculated through an intermediate stage 
analogous to the one described in § 2 and the result is 

(4.15a) C = ( ^ ) 1 / 2 r ( a / ? 1 / < p + V / 2 , 

where 

(4.15b-c) r = gl/2 (homogeneous), r = (gP/Wl)1/4 (diffusive). 

Consistency requires C -> 0 as a -> oo, and therefore it must be 

(4.16) a _ 1 « / 3 1 / ( p + 1 ) « l . 

Equation (4.14) is a good approximation to u while 7 > 0 , and therefore after a 
certain y2 such that / (y2 _ y i ) - 0, u « 1 is no longer true and we should describe u 
by (4.4a-c) with initial conditions given by vn(y2) of (4.13). As /3->0, it may be 
expected that y2 corresponds to a large s in (4.14), and therefore we can approximate 
(4.14b-c) by taking the upper limit of the integrals equal to oo: 

(4.17a) I(s) = (3~p/ip+1)W1o-s (homogeneous), 

r°° 
(4.17b) I(s) = 2/3~ip/ip+1))/2(Wo)1/2 {G(s)}1/2ds-s (diffusive). 

Jo 

After y2 = 0(/3 - p ( p + 1 )"V ( 2 )) , (where (2) is 1 in the homogeneous case and 2 in the 
diffusive case), a stage described by (4.4a-c) begins. If the vn(y2)'s in (4.13) are 
0(/? ( n + 1 ) / ( p + 1 )), this new stage coincides with the one described by (4.7a-d) and u is 
periodic with period 0 ( / r p ( p + 1 ) 1 / ( 2 ) ) . After some algebra, it is possible to see that 
this consistency requirement is not true for integers in a neighborhood of 

(4.18a) n # = p ( p + i r 1 i 8 - ( p / ( p + 1 ) ) / 2 , 
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and therefore our kernel G(r) should fulfill 

(4.18b) g n ^ 0 only if | w - w j » l . 

In particular, condition (4.18b) is satisfied if N is finite and 

(4.18c) p«l/N. 

5. Volterra equation with discrete delay. 
5.1. Homogeneous oscillations. As we shall show in this section, the 

homogeneous limit cycle of the Volterra equation with discrete delay has a square 
form and is reached after a short transient stage, in contradistinction with the sawtooth­
like limit cycle in the case of continuous delay. The same difference exists between 
the wavetrains when diffusion is included. 

Since the method of solution is the same as in previous sections, we shall only 
outline the results. 

The steady solution ue of the homogeneous equation 

(5.1) ^ = au{l-u-0~1u(t-l)} 
at 

is A.S. if a <a0, a0 running from IT/2 when f3 = 0 to infinity when 0 = 1. For 0 > 1, 
ue is always an A.S. solution of (5.1), whereas for 0 < 1 a phase A.S. limit cycle 
bifurcates from a =a0. See reference [2]. The analysis given here corresponds to 
a » 1 and /3>0 . 

Let us assume that u « 1 if - l ^ f ^ O . In this case, we can neglect the delayed 
term in (5.1) when 0 < £ < 1 and, if 0 < £ « 1, we can also neglect the instantaneous 
regulatory term, -au2. As a result, u will grow exponentially and will reach the value 
\ at a time t0 that depends on w(0). To fix ideas, if u(t) is an increasing function 
of t in the interval [ -1 ,0] and w(0) = 0(e~a), ro = 0 ( l ) ; if w(0) = 0(a~p)p > 0 , t0 = 
0(a~ In a ) ; and if w(O) = 0 ( l ) , t0 = O(l/a). In any case, we can translate the origin 
of time in such a way that w(0) = 5, and u ~ eat as at^> -00; then the reduced equation 

(5.2a) — = au(l-u), w(0) = 2, 
at 

holds valid in a certain interval around t = 0 whose lower extreme is -t0 and whose 
higher extreme is to be determined. The solution of (5.2a) is 

(5.2b) u(t) = eat/(l+eat). 

After a certain instant ^ £ ( 0 , 1 ) , u(t-l) given by (5.2b) is no longer small and we 
have to add the term -u(t-l)/(3 given also by (5.2b) to (5.2a). The result is that 
u{t) = u{r) satisfies 

(5.3a) — « { l - 5 - 0 - V / ( l + * T ) } , 
dr 

(5.3b) r = a(t-l). 

Equation (5.3a) must be solved with the condition 

(5.3c) lim u(r) = 1, 
T - > - 0 0 

so that the solution matches with the one given by (5.2b). 
In the overlap domain between the approximations given by (5.2) and (5.3), the 

maximum of the oscillation is reached. A simple linearization of (5.3a) around u - 1 
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gives us the approximated location of the maximum t = tmax, 

(5.4a) r m a x - i + (2ar 1 ln (2 j 8) , 

an also an approximation to the solution of (5.3a) around it 

(5.4b) uif) = l-e'^-e^Kip). 

According to (5.3a), the asymptotic behavior of u(r) is given by 

(5.5) fi(T)~CiG8)exp{(l-/3~1>r} f o r r ^ o o . 

If $ < 1, u will tend to zero as r -> +oo, but, near t = t\ + 1 , (5.2b) ceases to be a 
good approximation to u(t-l)//39 that must be substituted by u{r-a)\ instead we 
have another stage at which the solution of (5.1) can be described by u (t) = w*(cr), with 

(5.6a) ^- = u*(l-u(a)/(3), 
acr 

(5.6b) tr = a(t-2). 

The matching condition at this stage is 

(5.6c) lim M*(o-) = ci(|8)exp{(l-/3"1)(o- + a)}. 
cr-*—oo 

If we define a new variable v (a) as 

(5.7) v(a) = In {K*(CT)/[CIG8) e'1'*3^]}, 

(5.6) can be written as 

(5.8a) 7 = l - M W / f t 
acr 

(5.8b) lim v((r) = (l-l3'~l)a. 

In this stage, the minimum of the oscillation, vmin((3), is attained and u increases 
afterwards so that 

(5.9) v(o-) = o- + \nc2(P) as cr^oo. 

Equation (5.9) corresponds to 

(5.10) u*~ea[t-Ti(3)] 

with 

(5.11) T(P) = l + l/p-a-1\n[c1((3)c2(t3)l 

«* in (5.10) has the same asymptotic form as u ~eat in (5.2b) when t« 1. Therefore, 
we can consider that, after this first relaxation oscillation, a periodic solution of (5.1) 
with period T(f3) has been reached. 

Inserting (5.8a) into (5.3a) and performing the integration we obtain a relation 
between u and v, 

\nu=o-+P(v -a)-p~l In (1 + 0 + const. 

The constant of integration can be evaluated using (5.3c) and (5.8b) and is equal to 
zero. If we now take the limit a ->oo in that expression and use (5.5) and (5.9), we 
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arrive at 

(5.12a) ci = cf 

with 

(5.12b) c 2(0)=Hm { [ [l-u(<r)/p]da-o\, 

being the constant in (5.9). 
In the limit a -»oo, the periodic solution of (5.1) thus obtained has an asymptotic 

square form and each period is composed of two very different parts joined by abrupt 
transitions. During a unit of time, u is very close to 1, and after this stage, it suddenly 
falls to zero and remains so during a time 1/0. From our construction it is clear that 
the limit cycle is phase A.S. The numerical values of T I ( 0 ) , vmin((3), Ci(0), and c2(ft) 
are gathered in Table 1 calculated by direct numerical integration of (5.3) and (5.8), 

T A B L E 1 

p 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

TlO) 

1.40847 
1.11537 
0.807008 
0.443183 
1.907 xlO"6 

-0.54944 
-1.25036 
-2.20492 
-3.74772 

t>min(0) 

1.75741 
1.66206 
1.58380 
1.49564 
1.38628 
1.24754 
1.0708 
0.843181 
0.536887 

CliP) 

3.489 xlO10 

5120 
56.17 
6.889 
2 

0.8479 
0.4258 
0.2216 
0.9681 

c2(P) 

0.999491 
0.999916 
0.999992 
1.000000 
0.999992 
1.000002 
1.0001 
1.00378 
1.00112 

so that an excellent correlation of the results can be obtained by writing c2 = 1. The 
constants Ci(/3) and c2(J3) in Table 1 are related to Ci(0), c2(P) by the formulas 

(5.12c) c108) = c108)[i8/(l-i8)]1-^1 , 

(5.12d) c2{p) = c2(fi)[fi/a-p)]p-\ 

Inserting (5.12) with c2=l into (5.11), we arrive at the following result: 

(5.13) T(P) = 1 + 1/0 -a~\l + 1/0) In {(1 - 0 ) / 0 } . 

In the case 0 > 1 , the solution of (4.3a) gives u -> 1 - 1 / 0 for large r ; so that for 
large a, u jumps from 0 to 1 at t = 0 and then it retains the value 1 in the interval 
(0, 1), and jumps to 1 - 1 / 0 at t = 1. A similar analysis to the one given above shows 
that u retains the value 1 - 1 / 0 in the interval (1,2), jumping at t = 2 to the value 
1 - 1 / 0 + 1//32, that is kept in the interval (2, 3), and so on, until, after an infinite 
number of jumps, the steady state value 1 - 1 / 0 + 1 /0 2 - - •• = ue = 0 / ( 1 +0) , is 
reached (Fig. 3). 

5.2. Nonhomogeneous oscillations. Let us now find the travelling wave solutions 
of the diffusive Volterra equation. As in (3.7a) the first Fisher wavefront satisfies 

(5.14a) u(j]) = -a0r]c2ri for ry^-oo , 

(5.14b) u(r\) = 1 - a i ^ ) ^ 2 1 7 2 " 1 ^ for v -> oo, 
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FIG. 3a. Periodic solution for (3 = 0.2 and discrete delay. 
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FIG. 3b. Solution of the nondiffusive equation for (3 = 1.4, arcd discrete delay. The steady state ue = 0.59 
w A.S. 

a 0 > 0 being a constant characteristic of the Fisher wavefront (see [25, Thm. 2.2]) 
and ai(/3) being an integration constant such that (5.14a) holds true. For y = t+x/c ~ 1, 
we have to add the delay term as we did in the homogeneous case. Since the process 
is the same as used in the case without diffusion we shall only provide the results. It 
is necessary to simultaneously solve the following system of equations: 

(5.15a) 

(5.15b) 

- A — ^ = w ( l - w ) , 
CtJ] 

d2v 

du 
dr\ 

dv ~v ^ 
- — \ — z = v(l-v-u/P), 
arj arj 

A — 4 , 

dw d w 
-—\—^=w(l-v/(3)9 ar] ar) 

(5.15c) 

with the initial conditions 

(5.16a-c) u(v) = -a07]e2ri, v = l, w = e x p { - 2 ( / r 1 / 2 - l ) r j } fo r r j ^ -oo . 

For j] -»oo, the asymptotic form of the solutions of (5.15)—(5.16) is 

(5.17a-c) u = l-a1((3)e-2i2U2-1)ri, v =a1(0)a2(P) e'
2{fi~in'1H

9 w=a^)y1e
2y]. 
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The solution of the diffusive Volterra equation with discrete delay is u =u(ay) 
if y e(0, 1), u =v(ay -a) in the second stage around y = 1, and u = w(ay -2a) around 
y = 2 in the last stage of a period. The period of the wavetrain is then 

(5.18) T{p)=\+p-l/2-(2ayl\n{ama2(P)a3m. 

As a first approximation, the wavetrain has a square form. Each period has a part in 
which u = 1 of duration t = 1, followed by another part in which u = 0 during a longer 
time/? - 1 7 2 . 

6. Discussion. Hitherto, most of the results concerning delay-diffusional 
equations were local (i.e., they issued from studies of the influence of diffusion on 
steady states or limit cycles that are stable solutions of the corresponding non-
diffusional equations [1], [2], [3], [12], [21], [22]), and extended well-known results 
for reaction-diffusion equations [4]. In this paper, we have taken advantage of the 
large magnitude of the dimensionless delay a to construct the homogeneous limit 
cycle and a variety of wave-like solutions using the method of matched asymptotic 
expansions. We have checked the method for the nondiffusive Volterra equation 
without predators (Hutchinson delayed logistic equation, K = oo, or more precisely, 
f3ea~1« 1, in (1.2), [15], [16]) and comparison with Jones' paper [8] proves that the 
solution obtained by matched asymptotic expansions is a higher bound to the true 
solution and an increasingly precise approximation as a increases. In this fashion, 
more accurate approximations could be constructed following Fowler's method [5] 
(i.e., using e a ( as a fast-varying time variable), but the results would have remained 
basically unchanged. 

Concerning the stability of the homogeneous limit cycle as a solution of the 
diffusive Volterra equation, a theorem by Maginu can be of some help [14]. In fact, 
the limit cycle solution of §§ 2, 4 and 5 is a phase A.S. solution of the homogeneous 
equation as can be seen from our construction. All the corresponding Floquet 
exponents of the homogeneous limit cycle therefore have negative real parts except 
a single one that is zero (there are four of such exponents if the delay is continuous 
with gn=Sn2 and an infinite number if the delay is discrete). Using the Floquet theory 
for equations with delay [6] and following step by step Maginu's proof, it is possible 
to demonstrate a similar statement, namely: 

"If u(t) is a phase A.S. time periodic solution (in the absence of diffusion), of 
period T, of the following equation, 

(6.1) — = ~4+/(w r ) , ut(d) = u(t + 0), - r ^ t f ^ O , - o o < x < o o , 
dt dx 

where r = 1 for discrete delay and r = oo for continuous delay, u(t) will be an unstable 
solution of (6.1) if T"(0) < 0, and will be lineally stable to large wavelength disturbances 
if T"(0)>0; T(y) being the period of the time periodic solution of the following 
equation 

(6.2) (l + * 0 ^ = /(tfr( •,*)), * > 0 , 
dt 

that satisfies i//(t, 0) = u(t), T(0) = T\ and T\v) = dT/dv". Applying this result to the 
homogeneous oscillation of § 5, we obtain 

(6.3) T(v) = 1 + 1 / 0 - (1 + „)(1 + 1/P)a-1 In {(1 -jS)/jS}, 

and therefore have 

(6.4) r ( 0 ) = -a-\l + 1/jS) In {(1 -jS)/jS}. 
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Hence, the homogeneous limit cycle is unstable to inhomogeneous disturbances if 
0< j3<2 , and lineally stable to large wavelength disturbances if \<(5<\. The 
same result was obtained near the bifurcation point using multiscale techniques [2]. 
Maginu's theorem is also applicable to the homogeneous limit cycle of § 2 (continuous 
delay) but it would require determination of the following order of approximation in 
the expansions to calculate o{\) terms in the period. 

In relation to the stability of the periodic wavetrain solutions of §§ 3 to 5, we 
have not been able to find out a similar criterion; even though, our asymptotic analysis, 
together with the asymptotic stability properties of Fisher wavefronts, suggests that 
these wavetrains should be stable. 

For the Volterra equation, with a sufficient initial stimulus, one (or many) pulse 
can be initiated which propagates throughout the medium, so that the medium on 
which the Volterra equation holds valid is excitable (for sufficiently small /?) [9]. 

We shall see now that the Volterra equation may give rise to pacemaker and 
leading center appearance, thus presenting the main features of excitable media. 

Pacemakers and leading centers are spatial regions in which travelling wavetrains 
are originated and from which the wavetrains spread out through the medium. The 
difference is that a pacemaker is a spatial inhomogeneity in which the governing 
equations are different from the equations in the rest of the space, while in a leading 
center the governing equations are the same as in the rest and the waves are created 
by a special initial condition [7], [20], [24]. 

Let us consider the simple situation in which a virgin space (where the Volterra 
equation holds true) is encroached from a reservoir where food is superabundant (so 
that there is no delay term in the Volterra equation: (5~l = 0, u = 1 for all t on x > 0): 

(6.5a) u(x,t) = 0 forf^O if JC < 0 

(6.5b) u(x,t) = l forallf ifjc>0. 

The first wavefront is initiated in a region of width 0(a~1/2) around x = 0; there 
u abruptly grows from 0 to 1 in a time 0{a~x). As a first approximation the solution 
of (1.11) and (6.5) satisfies (3.6) (no matter the kind of delay we consider) and a 
Fisher wavefront advances toward the left with velocity 2a1/2. The region J C > 0 

therefore behaves like a pacemaker emitting a finite number of wavefronts if (3 >(3C 

or a periodic wavetrain if (3 <f3c ((3C = 1 for discrete delay and (3C = 0.150 for continuous 
delay with gn=Sn2). 

With respect to the leading center phenomenon, let us assume the following initial 
condition: 

(6.6a) u(x,t) = 0 for al l* for all f<0 , 

(6.6b) u(x,t) = \ 
two1 

0 for|jc|^jc0o: 1 /2 at t = 0, 
,(*) e Cx[0, 1] for \x\<x0a~1/2 at t = 0, 

with0<jc0 = 0 ( l ) . 
Irrespective of the kind of delay considered, u obeys Fisher's equation 

,, * \ du d U 
(6.7a) — = -T2 + w( l -w) , 

dr dx 

(6.7b) u(x,0) = \ M 

(6.7c) r = at, x=a JC, 
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and as r -» oo, u evolves into a pair of diverging wavefronts (moving at the Fisher 
wavespeed c = 2): for f > 0 u tends (uniformly in x) to a Fisher wavefront moving 
toward the right and for x < 0 u uniformly approaches a Fisher wavefront moving 
toward the left ([25], Theorem 8.1). Therefore, for f > 0 , the analysis given in §§ 3, 
4 and 5 shows that there exists a wavetrain (with wavespeed 2va in the original 
variables JC, t) moving toward the right and, for x < 0, another Fisher wavetrain 
advances toward the left. The point x = 0 is therefore a leading center if (3 <(3C9 and 
only emits a finite number of pulses if (3>(3C.1 

It is interesting to compare the wave-like solutions of the Volterra equation 
(wavetrains, pacemakers and leading center) with the corresponding solutions of 
reaction-diffusion models of excitable media [9], [7], [20], [24]. As in reaction-diffusion 
equations, the velocity of the successive wavefronts depends only on reaction and 
diffusion (the velocity is proportional to the square root of the birth rate, r, multiplied 
by the diffusivity, £>, in dimensional units), and it does not depend on the delay, 
although the delay is responsible for the creation of wavefronts that follow the first 
one, solution of Fisher's equation. On the other hand, if we have, for example, the 
pacemaker initial condition (6.5), the first wavefront keeps the velocity of the following 
ones equal to its own velocity, 2a1/2, that is larger than the minimum allowed velocity 
for the successive fronts, as was pointed out in §§3, 4 and 5. Using the terminology 
of Tyson and Fife's paper [24], the first wavefront emitted by a pacemaker is a 
"trigger" one whereas the successive fronts are "phase" waves. For reaction-diffusion 
two-components models, [9], [24], the velocity of the resulting wavetrain emitted by 
a pacemaker is different (usually smaller) from the velocity of the first front, and at 
least the first, third, etc. wavefronts are "trigger" waves, whereas the second, fourth, 
etc. fronts may [24] or may not [9] be "phase" waves. 

Finally, it should be noted that the spruce budworm equation 

(6.8) — = - 4 + aw 1 - Q " 1 G ( r ) w ( x , f - T ) r f T - / ? " V ( l + w2) 
dt dX I J0 J 

with realistic values of the dimensionless parameters, i.e., R = 0.994, Q = 302, a ~ 10 
(see [22] and references quoted therein), is reduced to the Volterra equation with 
(3 -> 0, because the saturation term w2/(l 4- u2) is uniformly small, of the order 0 ( Q _ 1 ) , 
when the change of variable u/Q = v is carried out in (6.8). In this fashion, wave-like 
phenomena like the ones described in this paper should be expected, with relatively 
short outbreak periods (in which u/Q~0), followed by long endemic periods (in 
which u/Q ~ 0). This situation resembles the one reported in the literature before the 
extensive insecticide management policy, even though quantitative agreement is far 
from being satisfactory [23]. 

Appendix 1. Hopf bifurcation in the limit a->oo. As a->oo, the homogeneous 
Volterra equation (for gn =8n2) has a bifurcating branch of time-periodic solutions 
at /80 = 0.125(l + 27a ) + 0 ( a ) as can be seen from the linear stability analysis 
around «e =/3/(l+/3). The pair of simple eigenvalues, ±iv0 = \(l3o1), v0 = 
V3-hO(a~1), crosses the imaginary axis with speed d\(8)/dl3~l = 
- 8 ( 1 + /73) /3 + 0(a~x) (we will use j8 l as our bifurcation parameter). The inclusion 
of the diffusive term does not change this picture because it only adds terms propor­
tional to k2a~x =\a~2 (A in the bifurcation problem of periodic wavetrains travelling 
with the Fisher wavespeed 2v'a) in the formulas for (30 and v0. 

If wecallA = j8~ - j 3 o \ U = (u —ue9 v0-ue, v\-ue, v2-ue), a standard Lyapunov-
Schmidt procedure [28] tells us that there is a unique branch of periodic solutions 
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bifurcating from ue of the form 

(A.l) (A, U) = (A, JC!<£o+ W(A, *i<M, 

where A is a locally convergent series parametrized by x\ e U, <£0 = Re [*lfe~lVot], <A is 
the eigenvector associated to iv0, and W is the solution of the original equation 
projected onto the complementary subspace of span [<£0]. *i is a solution of the 
following reduced bifurcation equation, 

(A.2) I CyiAyjci=0, Coo = 0. 
7,1 = 0 

In (A.2), Cy0 = Re (dX (8)/df3~1) = - 8 / 3 if C10 = • • • = Cy_if0 = 0 and Q> ^ 0. It is poss­
ible to calculate the coefficients C/i using the recursion formulas given by Kielhofer 
[28] with the result that Q2/+1 = 0, Q21 = 0(a_1) and therefore, as a -> 00, the branch 
of periodic solutions bifurcates vertically and a local calculation does not make sense. 

As (3 crosses the bifurcation point, only a single pair of simple complex conjugate 
eigenvalues crosses to the complex right half plane. Hence, the global Hopf bifurcation 
theorem [26] tells us that the branch of periodic solutions k = {(T, a, /?)} (T being 
period and a an initial condition such that U(T, a, (3) = a) that bifurcates from ue at 
Po is connected and that either: 

(1) k contains a point (T, a , /3)^ (27r/^0, 0,0O), where T>0 and (a, (3) is a steady 
state of the ODE system; or 

(2) k contains points (T,a,(3) with T + \a14-|j81 arbitrarily large. 
The Volterra equation has only two steady states: u = vn = 0 (which has eigen­

values - 1 (of multiplicity 3) and a ) and u =vn = ue (which only has a Hopf bifurcation 
point at j80 = i as a^oo) . For these steady states, we can disregard the possibility (1) 
as no Hopf point different from (27r/r0, 0, /30) exists. 

The branch k cannot obviously exist for (3 -> 00 where the delay term disappears. 
On the other hand, our construction in § 2 shows that 0 ^ u ^ 1, vn bounded, after a 
time 0{a~l) for any initial condition u > 0 , vn > 0 as a -»oo. For finite a{u > 0 , vn >0} 
is an invariant region and no solution can become unbounded in finite time ([27, Lemma 
5]). As a consequence, the branch k must contain points with \a\ and f3 bounded and 
T arbitrarily large. Let us prove now that only the periodic solution described in § 2 
has these properties and therefore the relaxation oscillation is part of k as shown in 
Fig. 1. 

With \a\ and (3 bounded, the only possibility for branch k to have T^oo is 
forming a saddle loop. The steady state u=vn = ue cannot have a saddle loop (for 
(3>(30 it is stable and for (3 <(30 no nonconstant solution of the Volterra equation 
tends to ue in the invariant region according to [27, Lemma 12]). If we assume that 
u = vn = 0 has a saddle loop and take initial conditions on the outgoing part of the 
loop very close to u = vn = 0, the construction of § 2 shows us that, for (3 < j8c, we 
reach the relaxation oscillation with period T and that T -> 00 as (3 -> 0. QED 

Notice that the existence of a periodic solution for, at least, 0 < (3 < (30 was proven 
in [27] for any a > 0 . 

1 More precisely, the phase shift x* in the Fisher wavefronts depends on the initial condition u0(x) 
so that x* = 0 ( l / c ) = 0 (a~ 1 / 2 ) ([25, Thm. 9.4]) and therefore for each u0{x) the center of the pattern, 
i.e., the point equidistant from both Fisher wavefronts will be a certain JCI = 2^right +*i*ft)> \xi\<Xoa~l/2 

for all t. The same should be true for a more general initial condition (6.6) with JC0 = O ( 1 ) instead of 
x0a~l/2. As a ->oo the point x = 0 would be the leading center. 
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