17 research outputs found

    On the Complexity of Grid Coloring

    Get PDF
    This thesis studies problems at the intersection of Ramsey-theoretic mathematics, computational complexity, and communication complexity. The prototypical example of such a problem is Monochromatic-Rectangle-Free Grid Coloring. In an instance of Monochromatic-Rectangle-Free Grid Coloring, we are given a chessboard-like grid graph of dimensions n and m, where the vertices of the graph correspond to squares in the chessboard, and a number of allowed colors, c. The goal is to assign one of the allowed colors to each vertex of the grid graph so that no four vertices arranged in an axis-parallel rectangle are colored monochromatically. Our results include: 1. A conditional, graph-theoretic proof that deciding Monochromatic-Rectangle-Free Grid Coloring requires time superpolynomial in the input size. 2. A natural interpretation of Monochromatic-Rectangle-Free Grid Coloring as a lower bound on the communication complexity of a cluster of related predicates. 3. Original, best-yet, monochromatic-square-free grid colorings: a 2-coloring of the 13 x 13 grid, and a 3-coloring of the 39 x 39 grid. 4. An empirically-validated computational plan to decide a particular instance of Monochromatic-Rectangle-Free Grid Coloring that has been heavily studied by the broader theory community, but remains unsolved: whether the 17 x 17 grid can be 4-colored without monochromatic rectangles. Our plan is based in high-performance computing and is expected to take one year to complete

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness and randomness extraction. Many of the developments are related to diverse mathematical fields such as algebraic geometry, combinatorial number theory, probability theory, representation theory, and the theory of error-correcting codes

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    On Computational Shortcuts for Information-Theoretic PIR

    Get PDF
    Information-theoretic private information retrieval (PIR) schemes have attractive concrete efficiency features. However, in the standard PIR model, the computational complexity of the servers must scale linearly with the database size. We study the possibility of bypassing this limitation in the case where the database is a truth table of a simple function, such as a union of (multi-dimensional) intervals or convex shapes, a decision tree, or a DNF formula. This question is motivated by the goal of obtaining lightweight homomorphic secret sharing (HSS) schemes and secure multiparty computation (MPC) protocols for the corresponding families. We obtain both positive and negative results. For first-generation PIR schemes based on Reed-Muller codes, we obtain computational shortcuts for the above function families, with the exception of DNF formulas for which we show a (conditional) hardness result. For third-generation PIR schemes based on matching vectors, we obtain stronger hardness results that apply to all of the above families. Our positive results yield new information-theoretic HSS schemes and MPC protocols with attractive efficiency features for simple but useful function families. Our negative results establish new connections between information-theoretic cryptography and fine-grained complexity

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore