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Abstract
Information-theoretic private information retrieval (PIR) schemes have attractive concrete efficiency

features. However, in the standard PIR model, the computational complexity of the servers must scale
linearly with the database size.

We study the possibility of bypassing this limitation in the case where the database is a truth table of
a “simple” function, such as a union of (multi-dimensional) intervals or convex shapes, a decision tree, or a
DNF formula. This question is motivated by the goal of obtaining lightweight homomorphic secret sharing
(HSS) schemes and secure multiparty computation (MPC) protocols for the corresponding families.

We obtain both positive and negative results. For “first-generation” PIR schemes based on Reed-Muller
codes, we obtain computational shortcuts for the above function families, with the exception of DNF
formulas for which we show a (conditional) hardness result. For “third-generation” PIR schemes based
on matching vectors, we obtain stronger hardness results that apply to all of the above families. Our
positive results yield new information-theoretic HSS schemes and MPC protocols with attractive efficiency
features for simple but useful function families. Our negative results establish new connections between
information-theoretic cryptography and fine-grained complexity.
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1 Introduction
Secure multiparty computation (MPC) [68, 55, 17, 29] allows two or more parties to compute a function of
their secret inputs while only revealing the output. Much of the large body of research on MPC is focused
on minimizing communication complexity, which often forms an efficiency bottleneck. In the setting of
computational security, fully homomorphic encryption (FHE) essentially settles the main questions about
asymptotic communication complexity of MPC [51, 26, 52, 25]. However, the information-theoretic (IT)
analog of the question, i.e., how communication-efficient IT MPC protocols can be, remains wide open, with
very limited negative results [49, 59, 41, 40, 4, 38, 7]. These imply superlinear lower bounds only when the
number of parties grows with the total input length. Here we will mostly restrict our attention to the simple
case of a constant number of parties with security against a single, passively corrupted, party.

On the upper bounds front, the communication complexity of classical IT MPC protocols from [17, 29]
scales linearly with the circuit size of the function f being computed. With few exceptions, the circuit size
remains a barrier even today. One kind of exceptions includes functions f whose (probabilistic) degree is
smaller than the number of parties [11, 8]. Another exception includes protocols that have access to a trusted
source of correlated randomness [59, 39, 34, 22]. Finally, a very broad class of exceptions that applies in the
standard model includes “complex” functions, whose circuit size is super-polynomial in the input length. For
instance, the minimal circuit size of most Boolean functions f : {0, 1}n → {0, 1} is 2Ω̃(n). However, all such
functions admit a 3-party IT MPC protocol with only 2Õ(

√
n) bits of communication [47, 12]. This means

that for most functions, communication is super-polynomially smaller than the circuit size. Curiously, the
computational complexity of such protocols is bigger than 2n even if f has circuits of size 2o(n). These kind of
gaps between communication and computation will be in the center of the present work.

Beyond the theoretical interest in the asymptotic complexity of IT MPC protocols, they also have appealing
concrete efficiency features. Indeed, typical implementations of IT MPC protocols in the honest-majority
setting are faster by orders of magnitude than those of similar computationally secure protocols for the
setting of dishonest majority.1 Even when considering communication complexity alone, where powerful tools
such as FHE asymptotically dominate existing IT MPC techniques, the latter can still have better concrete
communication costs when the inputs are relatively short. These potential advantages of IT MPC techniques
serve to further motivate this work.

1.1 Homomorphic Secret Sharing and Private Information Retrieval
We focus on low-communication MPC in a simple client-server setting, which is captured by the notion of
homomorphic secret sharing (HSS) [18, 20, 23]. HSS can be viewed as a relaxation of FHE which, unlike FHE,
exists in the IT setting. In an HSS scheme, a client shares a secret input x ∈ {0, 1}n between k servers. The
servers, given a function f from some family F , can locally apply an evaluation function on their input shares,
and send the resulting output shares to the client. Given the k output shares, the client should recover f(x).
In the process, the servers should learn nothing about x, as long as at most t of them collude.

As in the case of MPC, we assume by default that t = 1 and consider a constant number of servers
k ≥ 2. A crucial feature of HSS schemes is compactness of output shares, typically requiring their size to
scale linearly with the output size of f and independently of the complexity of f . This makes HSS a good
building block for low-communication MPC. Indeed, HSS schemes can be converted into MPC protocols with
comparable efficiency by distributing the input generation and output reconstruction [20].

An important special case of HSS is (multi-server) private information retrieval (PIR) [31]. A PIR scheme
allows a client to retrieve a single bit from an N -bit database, which is replicated among k ≥ 2 servers, such
that no server (more generally, no t servers) learns the identity of the retrieved bit. A PIR scheme with
database size N = 2n can be seen as an HSS scheme for the family F of all functions f : {0, 1}n → {0, 1}.

PIR in the IT setting has been the subject of a large body of work; see [70] for a partial survey. Known IT
PIR schemes can be roughly classified into three generations. The first-generation schemes, originating from

1It is often useful to combine an IT protocol with a lightweight use of symmetric cryptography in order to reduce communication
costs (see, e.g.,[53, 35, 5]); we will use such a hybrid approach in the context of optimizing concrete efficiency.
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the work of Chor et al. [31], are based on Reed-Muller codes. In these schemes the communication complexity
is N1/Θ(k). In the second-generation schemes [15], the exponent vanishes super-linearly with k, but is still
constant for any fixed k. Finally, the third-generation schemes, originating the works of Yekhanin [69] and
Efremenko [47], have sub-polynomial communication complexity of No(1) with only k = 3 servers or even
k = 2 servers [45]. (An advantage of the 3-server schemes is that the server answer size is constant.) These
schemes are based on a nontrivial combinatorial object called a matching vectors (MV) family.

As noted above, a PIR scheme with database size N = 2n can be viewed as an HSS scheme for the
family F of all functions f (in truth-table representation). Our work is motivated by the goal of extending
this to more expressive (and succinct) function representations. While a lot of recent progress has been
made on the computational variant of the problem for functions represented by circuits or branching
programs [19, 20, 42, 48, 60, 24], almost no progress has been made for IT HSS. Known constructions are
limited to the following restricted types: (1) HSS for general truth tables, corresponding to PIR, and (2)
HSS for low-degree polynomials, which follow from the multiplicative property of Shamir’s secret-sharing
scheme [64, 17, 29, 36]. Almost nothing is known about the existence of non-trivial IT HSS schemes for other
useful function families, which we aim to explore in this work.

1.2 HSS via Computational Shortcuts for PIR
Viewing PIR as HSS for truth tables, HSS schemes for more succinct function representations can be
equivalently viewed as a computationally efficient PIR schemes for structured databases, which encode the
truth tables of succinctly described functions. While PIR schemes for general databases require linear
computation in N [16], there are no apparent barriers that prevent computational shortcuts for structured
databases. In this work we study the possibility of designing useful HSS schemes by applying such shortcuts
to existing IT PIR schemes. Namely, by exploiting the structure of truth tables that encode simple functions,
the hope is that the servers can answer PIR queries with o(N) computation.

We focus on the two main families of IT PIR constructions: (1) first-generation “Reed-Muller based”
schemes, or RM PIR for short; and (2) third-generation “matching-vector based” schemes, or MV PIR for
short. RM PIR schemes are motivated by their simplicity and their good concrete communication complexity
on small to medium size databases, whereas MV PIR schemes are motivated by their superior asymptotic
efficiency. Another advantage of RM PIR schemes is that they naturally scale to bigger security thresholds
t > 1, increasing the number of servers by roughly a factor of t but maintaining the per-server communication
complexity. For MV PIR schemes, the comparable t-private variants require at least 2t servers [9].

1.3 Our Contribution
We obtain the following main results. See Section 2 for a more detailed and more technical overview.

Positive results for RM PIR. We show that for some natural function families, such as unions of multi-
dimensional intervals or other convex shapes (capturing, e.g., geographical databases), decision trees, and
DNF formulas with disjoint terms, RM PIR schemes do admit computational shortcuts. In some of these cases
the shortcut is essentially optimal, in the sense that the computational complexity of the servers is equal to the
size of the PIR queries plus the size of the function representation (up to polylogarithmic factors). In terms
of concrete efficiency, the resulting HSS schemes can in some cases be competitive with alternative techniques
from the literature, including lightweight computational HSS schemes based on symmetric cryptography [21],
even for large domain sizes such as N = 240. This may come at the cost of either using more servers (k ≥ 3
or even k ≥ 4, compared to k = 2 in [21]) or alternatively applying communication balancing techniques
from [31, 13, 67] that are only efficient for short outputs.

Negative results for RM PIR. The above positive result may suggest that “simple” functions admit
shortcuts. We show that this can only be true to a limited extent. Assuming the Strong Exponential Time
Hypothesis (SETH) assumption [28], a conjecture commonly used in fine-grained complexity [66], we show
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that there is no computational shortcuts for general DNF formulas. More broadly, there are no shortcuts for
function families that contain hard counting problems.

Negative results for MV PIR. Somewhat unexpectedly, for MV PIR schemes, the situation appears to
be significantly worse. Here we can show conditional hardness results even for the all-1 database. Of course,
one can trivially realize an HSS scheme for the constant function f(x) = 1. However, our results effectively
rule out obtaining efficient HSS for richer function families via the MV PIR route, even for the simple but
useful families to which our positive results for RM PIR apply. This shows a qualitative separation between
RM PIR and MV PIR. Our negative results are obtained by exploiting a connection between shortcuts in MV
PIR and counting problems in graphs that we prove to be ETH-hard. While this only rules out a specific
type of HSS constructions, it can still be viewed as a necessary step towards broader impossibility results.
For instance, proving that (computationally efficient) HSS for simple function families cannot have No(1)

share size inevitably requires proving computational hardness of the counting problems we study, simply
because if these problems were easy then such HSS schemes would exist. We stress that good computational
shortcuts for MV PIR schemes, matching our shortcuts for RM PIR schemes, is a desirable goal. From a
theoretical perspective, they would give rise to better information-theoretic HSS schemes for natural function
classes. From an applied perspective, they could give concretely efficient HSS schemes and secure computation
protocols (for the same natural classes) that outperform all competing protocols on moderate-sized input
domains. (See Table 7 for communication break-even points.) Unfortunately, our negative results give strong
evidence that, contrary to prior expectations, such shortcuts for MV PIR do not exist.

Positive results for tensored and parallel MV PIR. Finally, we show how to bypass our negative
result for MV PIR via a “tensoring” operator and parallel composition. The former allows us to obtain the
same shortcuts we get for RM PIR while maintaining the low communication cost of MV PIR, but at the cost
of increasing the number of servers. This is done by introducing an exploitable structure similar to that in RM
PIR through an operation that we called tensoring. In fact, tensoring can be applied to any PIR schemes with
certain natural structural properties to obtain new PIR with shortcuts. The parallel composition approach is
restricted to specific function classes and has a significant concrete overhead. Applying either transformation
to an MV PIR scheme yields schemes that no longer conform to the baseline template of MV PIR, and thus
the previous negative result does not apply.

2 Overview of Results and Techniques
Recall that the main objective of this work is to study the possibility of obtaining non-trivial IT HSS schemes
via computational shortcuts for IT PIR schemes. In this section we give a more detailed overview of our
positive and negative results and the underlying techniques.

From here on, we let N = 2n be the size of the (possibly structured) database, which in our case will be a
truth table encoding a function f : {0, 1}n → {0, 1} represented by a bit-string f̂ of length ℓ = |f̂ | ≤ N . We
are mostly interested in the case where ℓ≪ N . We will sometimes use ℓ to denote a natural size parameter
which is upper bounded by |f̂ |. For instance, f̂ can be a DNF formula with ℓ terms over n input variables.
We denote by F the function family associating each f̂ with a function f and a size parameter ℓ, where
ℓ = |f̂ | by default.

For both HSS and PIR, we consider the following efficiency measures:

• Input share size α(N): Number of bits that the client sends to each server.

• Output share size β(N): Number of bits that each server sends to the client.

• Evaluation time τ(N, ℓ): Running time of server algorithm, mapping an input share in {0, 1}α(N) and
function representation f̂ ∈ {0, 1}ℓ to output share in {0, 1}β(N).
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When considering PIR (rather than HSS) schemes, we may also refer to α(N) and β(N) as query size and
answer size respectively. The computational model we use for measuring the running time τ(N, ℓ) is the
standard RAM model by default; however, both our positive and negative results apply (up to polylogarithmic
factors) also to other standard complexity measures, such as circuit size.

Any PIR scheme PIR can be viewed as an HSS scheme for a truth-table representation, where the
PIR database is the truth-table f̂ of f . For this representation, the corresponding evaluation time τ must
grow linearly with N . If a function family F with more succinctly described functions supports faster
evaluation time, we say that PIR admits a computational shortcut for F . It will be useful to classify
computational shortcuts as strong or weak. A strong shortcut is one in which the evaluation time is optimal
up to polylogarithmic factors, namely τ = Õ(α+ β + ℓ). (Note that α+ β + ℓ is the total length of input and
output.) Weak shortcuts have evaluation time of the form τ = O(ℓ ·Nδ), for some constant 0 < δ < 1. A
weak shortcut gives a meaningful speedup whenever ℓ = No(1).

2.1 Shortcuts in Reed-Muller PIR
The first generation of PIR schemes, originating from the work of Chor et al. [31], represent the database as
a low-degree multivariate polynomial, which the servers evaluate on each of the client’s queries. We refer to
PIR schemes of this type as Reed-Muller PIR (or RM PIR for short) since the answers to all possible queries
form a Reed-Muller encoding of the database. While there are several variations of RM PIR in the literature,
the results we describe next are insensitive to the differences. In the following focus on a slight variation of
the original k-server RM PIR scheme from [31] (see [13]) that has answer size β = 1, which we denote by
PIRkRM. For the purpose of this section we will mainly focus on the computation performed by the servers, for
the simplest case of k = 3 (PIR3

RM), as this is the aspect we aim to optimize. For a full description of the
more general case we refer the reader to Section 4.

Let F = F4 be the Galois field of size 4. In the PIR3
RM scheme, the client views its input i ∈ [N ] as a pair

of indices i = (i1, i2) ∈ [
√
N ] × [

√
N ] and computes two vectors qj1, q

j
2 ∈ F

√
N for each server j ∈ {1, 2, 3},

such that {qj1} depend on i1 and {qj2} depend on i2. Note that this implies that α(N) = O(
√
N). Next,

each server j, which holds a description of a function f : [
√
N ] × [

√
N ] → {0, 1}, computes an answer

aj =
∑
i′1,i

′
2∈[

√
N ] f(i′1, i′2)qj1[i′1]qj2[i′2] with arithmetic over F and sends the client a single bit which depends

on aj (so β(N) = 1). The client reconstructs f(i1, i2) by taking the exclusive-or of the 3 answer bits.

2.1.1 Positive Results for RM PIR

The computation of each server j, aj =
∑
i′1,i

′
2∈[

√
N ] f(i′1, i′2)qj1[i′1]qj2[i′2], can be viewed as an evaluation of

a multivariate degree-2 polynomial, where {f(i′1, i′1)} are the coefficients, and the entries of qj1, q
j
2 are the

variables. Therefore, to obtain a computational shortcut, one should look for structured polynomials that
can be evaluated in time o(N). A simple but useful observation is that computational shortcuts exist for
functions f which are combinatorial rectangles, that is, f(i1, i2) = 1 if and only if i1 ∈ I1 and i2 ∈ I2, where
I1, I2 ⊆ [

√
N ]. Indeed, we may write

aj =
∑

i′1,i
′
2∈[

√
N ]

f(i′1, i′2)qj1[i′1]qj2[i′2] =
∑

(i′1,i′2)∈(I1,I2)

qj1[i′1]qj2[i′2] (1)

=

∑
i′1∈I1

qj1[i′1]

∑
i′2∈I2

qj2[i′2]

 . (2)

Note that if a server evaluates the expression using Equation (1) the time is O(N), but if it instead uses
Equation (2) the time is just O(

√
N) = O(α(N)). Following this direction, we obtain non-trivial IT HSS

schemes for some natural function classes such as disjoint unions of intervals and decision trees.

4



Theorem 1 (Decision trees, formal version Corollary 2). PIRkRM admits a weak shortcut for decision trees
(more generally, disjoint DNF formulas). Concretely, for n variables and ℓ leaves (or terms), we have
τ(N, ℓ) = O(ℓ ·N1/(k−1)), where N = 2n.

Intervals and convex shapes. We turn to consider “geometric” function families that may come up,
for example, in geographical searches. We start with the case where f̂ represents a union of ℓ disjoint
2-dimensional intervals in [

√
N ]× [

√
N ]. For this function family, we can obtain a strong shortcut as follows.

Suppose we compute the following for every i ∈ [
√
N ] and t = 1, 2:

St(i) :=
i∑

i′=1
qjt [i′],

which overall takes O(
√
N) time, since this is a prefix sum. Consider the Boolean function f(i) that outputs

1 if and only if i = (i1, i2) is in the union of ℓ disjoint intervals,
⋃ℓ
r=1[b1

r, c
1
r]× [b2

r, c
2
r]. Then the answers aj

for PIR3
RM on database f can be written as

aj =
∑

i′1,i
′
2∈[

√
N ]

f(i′1, i′2)qj1[i′1]qj2[i′2] =
ℓ∑

r=1

∑
(i′1,i′2)∈[b1

r,c
1
r]×[b2

r,c
2
r]

qj1[i′1]qj2[i′2] (3)

=
ℓ∑

r=1

[
S1(c1

r)− S1(b1
r − 1)

] [
S2(c2

r)− S2(b2
r − 1)

]
, (4)

and can be computed in O(
√
N + ℓ) = O(α(N) + ℓ) time (via Equation (4)). Generalizing to k ≥ 3 and to

dimensions d ≥ 1, we obtain the following.

Theorem 2 (Union of disjoint intervals, formal version Theorems 16 and 17). For every positive integers
d ≥ 1 and k ≥ 3 such that d | k − 1, PIRkRM admits a strong shortcut for unions of ℓ disjoint d-dimensional
intervals in

(
[N1/d]

)d. Concretely, τ(N, ℓ) = O(N1/(k−1) + ℓ).

Curiously, we are only able to obtain strong shortcuts when d|k − 1. It is an interesting question whether
strong shortcuts exist otherwise, the simplest open case being d = 3 and k = 3.

We turn to the more general case of union of (discretized) convex shapes. By expressing each convex
shape as a disjoint union of intervals, we obtain two results. First, we show that it is possible to obtain a
weak shortcut for any convex shape (hence also to union of such shapes) via a “Riemann-sum-style” splitting
method, requiring O(ℓ ·

√
N) time for a union of ℓ arbitrary convex shapes. Then, we show that by utilizing

the geometry of natural convex shapes, it is possible to do better. Specifically, we show that for k = 3
there is a strong shortcut for the union of ℓ 2-dimensional ϵ-approximated disks,2 which can be useful for
privacy-preserving geographical queries. Both approaches are illustrated in Figure 1. These shortcuts are
captured by the following two theorems.

Theorem 3 (Convex shapes, formal version Lemma 6). PIRkRM admits a weak shortcut for unions of ℓ disjoint
(k − 1)-dimensional convex shapes. Concretely, τ(N, ℓ) = Õ(ℓ ·N (k−2)/(k−1)).

Theorem 4 (Disk approximation, formal version Theorem 18). For any ϵ > 0, PIR3
RM admits a strong

shortcut for unions of ℓ disjoint 2-dimensional ϵ-approximated disks. Concretely, τ(N, ℓ) = Õ(N1/2 + ℓ/ϵ).

Improved shortcut for decision trees. Next, we obtain a quantitative improvement over Theorem 1 by
using a suitable data structure to amortize the cost of handling the ℓ terms in a DNF formula. As in the
case of intervals, we obtain the new shortcuts by efficiently retrieving each of the the sums in the product

2That is, the shape is contained in a (1 + ϵ)r-radius disk and contains a concentric r-radius disk.
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(a) (b)

Figure 1: Illustration of covering convex shapes with two dimensional intervals. In (a) an arbitrary convex
shape is covered with O(

√
N) rectangles via a “Riemann-sum-style” splitting method, while in (b) a disk is

approximated with relatively few rectangles.

of Equation (4). While, unlike intervals, for decision trees there is no natural notion of dimension, it will
be sufficient for us to arbitrarily assign variables to dimensions such that each dimension has the same
number of variables. Thus, when restricted to a single dimension, we can model the computational task
as the following data structure problem (denoted by PM-SUMM ): given M = 2m (M =

√
N for PIR3

RM)
elements q0, . . . , qM−1 ∈ F, the goal is to efficiently answer ℓ summation queries, each specified by a DNF
term: ϕ1, . . . , ϕℓ. Formally, a single query in the problem is associated with a DNF term ϕ (for example,
ϕ = x1 ∧ ¬x3) and asks for the value ∑

x∈{0,1}m:ϕ(x)=1

qi(x),

where i(x) ∈ {0, . . . ,M − 1} is the number represented by the bit string x. An algorithm solving PM-SUMM

with offline time π(M) and online time ζ(M) works by first performing a preprocessing stage on the elements
q0, . . . , qM−1 in time π(M), then answering each of the ℓ queries in time ζ(M) by using the precomputed
values, having O(π(M) + ℓ · ζ(M)) total computation time. By utilizing dynamic programming, we obtain a
suitable data structure that implies the following.

Lemma 1. There is an algorithm for PM-SUMM with offline time Õ(M) and online time Õ(M1/3).

Lemma 2. Given an algorithm for PM-SUMM with offline time π(M) and online time ζ(M), PIRkRM admits
a shortcut for decision trees with n variables and ℓ leaves with τ(N, ℓ) = O(π(N1/(k−1)) + ℓ · ζ(N1/(k−1))).

Lemmas 8 and 9 together imply the following quantitative improvement over Theorem 1.

Theorem 5 (Decision trees revisited, formal version Theorem 19). PIRkRM admits a weak shortcut for
decision trees (or disjoint DNF formulas). Concretely, for n variables and ℓ leaves (or terms), we have
τ(N, ℓ) = Õ(N1/(k−1) + ℓ ·N1/3(k−1)), where N = 2n.

Compressing input shares. The scheme PIR3
RM described above can be strictly improved by using a more

dense encoding of the input. This results in a modified scheme PIR3
RM′ with α′(N) =

√
2 ·N1/2, a factor

√
2

improvement over PIR3
RM. This is the best known 3-server PIR scheme with β = 1 (up to lower-order additive

terms [13]).3 PIR schemes with 1-bit answers are useful for optimizing the “download rate” in applications
where the same queries are reused many times; see, e.g., [57] for a practical application of such schemes.

We show that with some extra effort, similar shortcuts apply also to the optimized PIR3
RM′ . In more detail,

in PIR3
RM′ each query is a vector qj ∈ Fh such that

(
h
2
)
≥ N . The computation each server j performs in this

3The so-called “third generation” PIR schemes based on matching vectors [69, 47, 14] are asymptotically better; however,
other than their poor concrete efficiency, it is open whether such schemes can have 1-bit answers.
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


− − − − − −
0 − − − − −
0 0 − − − −
0 0 1 − − −
1 1 1 1 − −
1 1 1 0 0 −



=




− − − − − −
1 − − − − −
1 1 − − − −
1 1 1 − − −
1 1 1 1 − −
1 1 1 1 1 −



−




− − − − − −
1 − − − − −
1 1 − − − −
0 0 0 − − −
0 0 0 0 − −
0 0 0 0 0 −



−




− − − − − −
0 − − − − −
0 0 − − − −
1 1 0 − − −
0 0 0 0 − −
0 0 0 0 0 −



−




− − − − − −
0 − − − − −
0 0 − − − −
0 0 0 − − −
0 0 0 0 − −
0 0 0 1 1 −




Figure 2: The first matrix is the table for the segment that outputs 1 on [6, 13], over the domain N = 15 =
(6

2
)
.

Columns and rows are labelled by q1, . . . , q6. Unrelated entries are filled with −. The right hand side show a
decomposition into two triangles and two rectangles. Rows are indexed by i1 while columns are indexed by i2.

case is of the form

aj =
h∑

i′1=1

i′1−1∑
i′2=1

f((i′1 − 2)(i′1 − 1)/2 + i′2)qj [i′1]qj [i′2] =: (qj)TMfq
j ,

where Mf is a lower triangular matrix with entries (Mf )i1,i2 = f((i1 − 2)(i1 − 1)/2 + i2). For a single one
dimensional interval [b, c], the nonzero coefficients in Mf correspond to a “ladder shape”. For illustration,
consider Figure 2. Such a ladder shape can always be decomposed into a linear combination of two rectangle
shapes and two triangle shapes. Hence if, after preprocessing, we can compute the quadratic form (qj)TMfq

j

for all Mg of such shapes g (triangles or rectangles) in constant time, we can support the evaluation of any
single one dimensional interval in constant time. It turns out that this is indeed possible. We divide into
cases:

Rectangles Rectangular shapes such as [b1, c1]× [b2, c2], corresponding to a summation∑
(i′1,i′2)∈[b1,c1]×[b2,c2]

qj [i′1]qj [i′2],

can be computed in constant time by simply precomputing prefix sums Si = qj [1] + . . .+ qj [i] for every
i in time α = O(

√
N) and multiplying the corresponding sums, similar to Equation (4).

Triangles Let Ti (2 ≤ i ≤ n) denotes the triangle that occupies the 2nd to i-th row in the lower half of
matrix, corresponding to a sum

Ti :=
i∑

i′1=1

i′1−1∑
i′2=1

qj [i′1]qj [i′2].

We can compute the values Ti by the recursion Ti+1 = Ti +Ri+1, where Ri+1 is a single rectangular
shape that fills the (i+ 1)-th row of the lower half matrix, corresponding to a sum

Ri+1 :=
i∑

i′2=1

qj [i+ 1]qj [i′2].

Since, from the previous item, we can compute the value Ri+1 in constant time, we can compute all Ti
in a single pass that takes α = O(

√
N) time.

Theorem 6 (Intervals revisited, formal version Theorem 21). PIR3
RM′ admits a strong shortcut for the union

of ℓ one-dimensional intervals. Concretely, τ(N, ℓ) = O(
√
N + ℓ).
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2.1.2 Negative Results for RM PIR

All of the previous positive results apply to function families F for which there is an efficient counting
algorithm that given f̂ ∈ F returns the number of satisfying assignments of f . We show that this is not
a coincidence: efficient counting can be reduced to finding a shortcut for f̂ in PIRkRM. This implies that
computational shortcuts are impossible for function representations for which the counting problem is hard.
Concretely, following a similar idea from [58], we show that a careful choice of PIR query can be used to obtain
the parity of all evaluations of f as the PIR answer. The latter is hard to compute even for DNF formulas,
let alone stronger representation models, assuming standard conjectures from fine-grained complexity: either
the Strong Exponential Time Hypothesis (SETH) or, with weaker parameters, even the standard Exponential
Time Hypothesis (ETH) [28, 27]. Similar negative results hold for the more efficient variant PIR3

RM′ .

Theorem 7 (No shortcuts for DNF under ETH, formal version Corollaries 3 and 4). Assuming (standard)
ETH, PIRkRM does not admit a strong shortcut for DNF formulas for sufficiently large k. Moreover, assuming
SETH, for any k ≥ 3, PIRkRM does not admit a weak shortcut for DNF formulas.

Finally, we comment that it is still possible to obtain HSS for DNF (or non-disjoint disjunctions in general)
if we are willing to either (1) multiply the input and output share size by a factor of O(log ℓ), or (2) make
the HSS only ϵ-correct4, thus multiplying the output share size by O(log(1/ϵ)). See Remark 1 for more
details. Note that this does not contradict the lower bound for DNF, since our proof heavily relies on the fact
that we work over a small field (which has several efficiency benefits) and that the shortcut is deterministic.
Furthermore, this approach for non-disjoint disjunctions also works for the “balanced” RM PIR variants
discussed in Section 2.4.

2.2 Hardness of Shortcuts for Matching-Vector PIR
The 3-server RM PIR scheme considered in the previous section has query length α(N) = O(N1/2) and
minimal answer length β(N) = 1. In contrast, the so-called “third generation” of 3-server PIR schemes have
much better asymptotic communication: sub-polynomial query length α(N) = No(1) and constant answer
length β(N) = O(1) [69, 47, 14].

We refer to the latter family of PIR schemes as matching-vector PIR schemes (or MV PIR for short),
alluding to the underlying combinatorial object. For such MV PIR schemes, we present strong hardness
results that apply even to simple function families for which we have positive results for RM PIR. This
establishes a qualitative separation between the two types of PIR schemes with respect to computational
shortcuts.

Recall that MV PIR schemes are the only known PIR schemes achieving sub-polynomial communication
(that is, No(1)) with a constant number of servers. We give strong evidence for hardness of computational
shortcuts for MV PIR. We start with a brief technical overview of MV PIR.

We consider here a representative instance of MV PIR from [47, 14], which we denote by PIR3
MV,SC. This

MV PIR scheme is based on two crucial combinatorial ingredients: a family of matching vectors and a share
conversion scheme, respectively. We describe each of these ingredients separately.

A family of matching vectors MV consists of N pairs of vectors {ux, vx} such that each matching inner
product ⟨ux, vx⟩ is 0, and each non-matching inner product ⟨ux, vx′⟩ is nonzero. More precisely, such a family
is parameterized by integers m,h,N and a subset S ⊂ Zm such that 0 ̸∈ S. A matching vector family is
defined by two sequences of N vectors {ux}x∈[N ] and {vx}x∈[N ], where ux, vx ∈ Zhm, such that for all x ∈ [N ]
we have ⟨ux, vx⟩ = 0, and for all x, x′ ∈ [N ] such that x ̸= x′ we have ⟨ux, vx′⟩ ∈ S. We refer to this as the
S-matching requirement. Typical choices of parameters are m = 6 or m = 511 (products of two primes),
|S| = 3 (taking the values (0, 1), (1, 0), (1, 1) in Chinese remainder notation), and h = No(1) (corresponding
to the PIR query length).

A share conversion scheme SC is a local mapping (without interaction) of shares of a secret y to shares
of a related secret y′, where y ∈ Zm and y′ is in some other Abelian group G. Useful choices of G include

4That is, the HSS produces the correct result with probability 1 − ϵ.
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F2
2 and F9

2 corresponding to m = 6 and m = 511 respectively. The shares of y and y′ are distributed using
linear secret-sharing schemes L and L′ respectively, where L′ is typically additive secret sharing over G.
The relation between y and y′ that SC should comply with is defined by S as follows: if y ∈ S then y′ = 0
and if y = 0 then y′ ̸= 0. More concretely, if (y1, . . . , yk) are L-shares of y, then each server j can run the
share conversion scheme on (j, yj) and obtain y′

j = SC(j, yj) such that (y′
1, . . . , y

′
k) are L′-shares of some y′

satisfying the above relation. What makes share conversion nontrivial is the requirement that the relation
between y and y′ hold regardless of the randomness used by L for sharing y.

Suppose MV and SC are compatible in the sense that they share the same set S. Moreover, suppose
that SC applies to a 3-party linear secret-sharing scheme L over Zm. Then we can define a 3-server PIR
scheme PIR3

MV,SC in the following natural way. Let f : [N ] → {0, 1} be the servers’ database and x ∈ [N ]
be the client’s input. The queries are obtained by applying L to independently share each entry of ux.
Since L is linear, the servers can locally compute, for each x′ ∈ [N ], L-shares of yx,x′ = ⟨ux, vx′⟩. Note that
yx,x = 0 ∈ Zm and yx,x′ ∈ S (hence yx,x′ ̸= 0) for x ̸= x′. Letting yj,x,x′ denote the share of yx,x′ known
to server j, each server can now apply share conversion to obtain a L′-share y′

j,x,x′ = SC(j, yj,x,x′) of y′
x,x′ ,

where y′
x,x′ = 0 if x ̸= x′ and y′

x,x′ ̸= 0 if x = x′. Finally, using the linearity of L′, the servers can locally
compute L′-shares ỹj of ỹ =

∑
x′∈[N ] f(x′) · y′

x,x′ , which they send as their answers to the client. Note that
ỹ = 0 if and only if f(x) = 0. Hence, the client can recover f(x) by applying the reconstruction of L′ to the
answers and comparing ỹ to 0. When L′ is additive over G, each answer consists of a single element of G.

2.2.1 Shortcuts for MV PIR Imply Subgraph Counting

The question we ask in this work is whether the server computation in the above scheme can be sped up when
f is a “simple” function, say one for which our positive results for RM PIR apply. Somewhat unexpectedly, we
obtain strong evidence against this by establishing a connection between computational shortcuts for PIR3

MV,SC
for useful choices of (MV,SC) and the problem of counting induced subgraphs. Concretely, computing a
server’s answer on the all-1 database and query xj requires computing the parity of the number of subgraphs
with certain properties in a graph defined by xj . By applying results and techniques from parameterized
complexity [30, 46], we prove ETH-hardness of computational shortcuts for variants of the MV PIR schemes
from [47, 14]. In contrast to the case of RM PIR, these hardness results apply even for functions as simple as
the constant function f(x) = 1.

The variants of MV PIR schemes to which our ETH-hardness results apply differ from the original PIR
schemes from [47, 14] only in the parameters of the matching vectors, which are worse asymptotically, but still
achieve No(1) communication complexity. The obstacle which prevents us from proving a similar hardness
result for the original schemes from [47, 14] seems to be an artifact of the proof, instead of an inherent
limitation. This obstacle is described briefly after Theorem 11 and in more detail in Appendix A. We therefore
formulate a clean hardness-of-counting conjecture (Conjecture 1) that would imply a similar hardness result
for the original constructions from [47, 14].

We now outline the ideas behind the negative results, deferring the technical details to Section 5. Recall
that the computation of each server j in PIR3

MV,SC takes the form∑
x′∈[N ]

f(x′) · SC(j, yj,x,x′),

where yj,x,x′ is the j-th share of ⟨ux, vx′⟩. Therefore, for the all-1 database (f = 1), for every S-matching
vector family MV and share conversion scheme SC from L to L′ we can define the (MV,SC)-counting problem
#(MV,SC).

Definition 1 (Server computation problem). For a Matching Vector family MV and share conversion SC,
the problem #(MV,SC) is defined as follows.

• Input: a valid L-share yj of some ux ∈ Zhm (element-wise),

• Output:
∑
x′∈[N ] SC(j, yj,x,x′), where yj,x,x′ is the share of ⟨ux, vx′⟩.
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Essentially, the server computes N shares of an inner product of the secret (which is a vector) and a
single matching vector from the matching vector family using the homomorphic property of the linear sharing,
maps the results using the share conversion and adds the result to obtain the final output.

Let MVwGrol be a matching vectors family due to Grolmusz [56, 44], which is used in all third-generation
PIR schemes (see Section 5, Fact 3). For presentation, we focus on the special case #(MVwGrol,SCEfr), where
SCEfr is a share conversion due to Efremenko [47], which we present in Section 3.3. Note that all the results
that follow also hold for the share conversion of [14], denoted by SCBIKO. The family we consider, MVwGrol,
is associated with the parameters r ∈ N and w : N → N, such that the size of the matching vector family
is
(

r
w(r)

)
, and the length of each vector is h =

( r

≤Θ
(√

w(r)
)). By choosing w(r) = Θ(

√
r) and r such that

N ≤
(

r
w(r)

)
, the communication complexity of PIRkMVw

Grol,SCEfr
is h = 2O(

√
n logn), where N = 2n, which is the

best asymptotically among known PIR schemes.
Next, we relate #(MVwGrol,SCEfr) to ⊕IndSub(Φ, w), the problem of deciding the parity of the number of

w-node subgraphs of a graph G that satisfy graph property Φ. Here we consider the parameter w to be a
function of the number of nodes of G. We will be specifically interested in graph properties Φ = Φm,∆ that
include graphs whose number of edges modulo m is equal to ∆. Formally:

Definition 2 (Subgraph counting problem). For a graph property Φ and parameter w : N→ N (function of
the number of nodes), the problem ⊕IndSub(Φ, w) is defined as follows.

• Input: Graph G with r nodes.

• Output: The parity of the number of induced subgraphs H of G such that: (1) H has w(r) nodes; (2)
H ∈ Φ.

We let Φm,∆ denote the set of graphs H such that |E(H)| ≡ ∆ mod m.

The following main technical lemma for this section relates obtaining computational shortcuts for PIRkMV,SC
to counting induced subgraphs.

Lemma 3 (From MV PIR to subgraph counting). If #(MVwGrol,SCEfr) can be computed in No(1) (= ro(w))
time, then ⊕IndSub(Φ511,0, w) can be decided in ro(w) time, for any nondecreasing function w : N→ N.

2.2.2 The Hardness of Subgraph Counting

The problem ⊕IndSub(Φ511,0, w) is studied in parameterized complexity theory [46] and falls into the
framework of motif counting problems described as follows in [63]: Given a large structure and a small pattern
called the motif, compute the number of occurrences of the motif in the structure. In particular, the following
result can be derived from Döfer et al. [46].

Theorem 8. [46, Corollary of Theorem 22] ⊕IndSub(Φ511,0, w) cannot be solved in time ro(w) unless ETH
fails.

Theorem 8 is insufficient for our purposes since it essentially states that no machine running in time
ro(w) can successfully decide ⊕IndSub(Φ511,0, w) for any pair (r, w). It other words, it implies hardness of
counting for some weight parameter w, while in our case, we would like to know the how hard the problem
#(MVwGrol,SCEfr) is, and hence we care about the specific choice of w, and in particular, the range of w.

Fortunately, in [30] it was shown the counting of cliques, a very central motif, is hard for cliques of any
size as long as it is bounded from above by O(rc) for an arbitrary constant c < 1 (

√
r, log r, log∗ r, etc.),

assuming ETH. Indeed, after borrowing results from [30] and via a more careful analysis of the proof of [46,
Theorem 22], we can prove the following stronger statement about its hardness.

Theorem 9. For some efficiently computable function w = Θ(log r/ log log r), ⊕IndSub(Φ511,0, w) cannot
be solved in time ro(w), unless ETH fails.
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Denote by MV∗ the family MVwGrol with w(r) = Θ(log r/ log log r) as in Theorem 9. Lemma 3 and The-
orem 9 imply the impossibility result for strong shortcuts for PIR schemes instantiated with MV∗. Note
that such an instantiation of MVwGrol yields PIR schemes with subpolynomial communication 2O(n3/4polylog n),
while schemes instantiated with the best MV (with w(r) = Θ(

√
r)) achieve communication 2O(n1/2polylog n).

Moreover, ruling out weak shortcuts for MV PIR under SETH seems challenging. This is in contrast to RM
PIR where we are able to rule out weak shortcuts for some F under SETH.

Theorem 10. [No shortcuts in Efremenko MV PIR, formal version Theorem 23] #(MV∗,SCEfr) cannot be
computed in No(1) (= ro(w)) time, unless ETH fails. Consequently, there are no strong shortcuts for the all-1
database for PIR3

MV∗,SCEfr
.

A similar result holds for SCBIKO.

Theorem 11. [No shortcuts in BIKO MV PIR, formal version Theorem 23] #(MV∗,SCBIKO) cannot be
computed in No(1) (= ro(w)) time, unless ETH fails. Consequently, there are no strong shortcuts for the all-1
database for PIR3

MV∗,SCBIKO
.

Finally, we give a brief description of the obstacle we encountered when trying to prove stronger versions
of Theorems 10 and 11 for optimal MVwGrol with w(r) = Θ(

√
r) in the context of hardness of motif counting

problems.
Various motif counting problems are related in a sense that counting one motif is equivalent to computing

a linear combination of the counts of other related motifs. This property was utilized in a recent breakthrough
result for subgraph counting problems [37].

Roughly speaking, since the count of one motif equals a linear combination of counts of other motifs, this
can be viewed as a single linear constraint. The authors in [46] utilize a graph tensoring operation to count
the same motif on several related graphs, which yields enough linear constraints that can be shown to be
independent. Therefore one performs Gaussian elimination to obtain the count of a specific motif, from which
it is possible to deduce the number of cliques in the original graph. Owing to the ETH-hardness of counting
cliques [30], the original problem of counting motifs is also ETH-hard.

Unfortunately, the reduction works only when the size of the motifs is not too large, since otherwise
the linear system would be too large and the reduction cannot be performed in the desired sub-polynomial
time. Specifically, w = o(log r) is necessary for the reduction to run in the time limit, and we pick
w(r) = Θ(log r/ log log r) in our reduction.

It is natural to ask whether hardness for other ranges of parameters such as w = Θ(
√
r) holds for

⊕IndSub(Φ511,0, w) in the spirit of Theorem 9. This is also of practical concern because the best known
MVw

Grol constructions fall within such ranges. In particular, if we can show ⊕IndSub(Φ511,0,Θ(
√
r)) cannot

be decided in ro(
√
r) time, it will imply that PIRkP,C for P = MVΘ(

√
r)

Grol and C = SCEfr does not admit strong
shortcuts for the all-1 database, since α(N) = No(1) but τ(N, ℓ) = NΩ(1).

In fact, the problem ⊕IndSub(Φ511,0, w) is plausibly hard, and can be viewed as a variant of the
fine-grained-hard Exact-k-clique problem [66]. Consequently, we make the following conjecture.

Conjecture 1 (Hardness of counting induced subgraphs). ⊕IndSub(Φm,∆, w) cannot be decided in ro(w)

time, for any integers m ≥ 2, 0 ≤ ∆ < m, and for every function w(r) = O(rc), 0 ≤ c < 1.

In order to get more general impossibility results for MV PIRs, we are only concerned with w(r) = Θ(
√
r),

and (m,∆) = (511, 0) or (m,∆) = (6, 4).

2.3 HSS from Generic Compositions of PIRs
Our central technique for obtaining shortcuts in PIR schemes is by exploiting the structure of the database.
For certain PIR schemes where the structure is not exploitable, such as those based on matching vectors, we
propose to introduce exploitable structures artificially by composing several PIR schemes. Concretely, we
present two generic ways, tensoring and parallel PIR composition, to obtain a PIR which admits shortcuts
for some function families by composing PIRs which satisfy certain natural properties.
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Tensoring introduces an RM-like structrue and allows us to obtain the same shortcuts we get for RM PIR
while maintaining the low asymptotic communication cost MV PIR, but comes at the price of increasing the
number of servers to at least 9.

Parallel composition yields computationally more efficient 3-server HSS only for intervals (we argue
later why this does not apply to decision trees), running in time O(ℓα(N)), compared to O(NO(1) + ℓα(N))
obtained from tensoring, but which only achieves statistical correctness and has a multiplicative overhead of
polylog N in communication, which is undesirable in terms of communication efficiency.

Note that the results we present in this section yield HSS schemes that no longer conform to the baseline
template of MV PIR from the previous section, and thus the lower bound we obtained does not apply.
However, due to the concrete inefficiency of these constructions, they have mainly asymptotic significance.
Indeed, the tensoring construction is concretely less efficient than the Reed-Muller based PIRs for the same
number of servers, and the parallel composition approach introduces a multiplicative overhead of O(polylogN)
in communication, which is too prohibitive from a concrete efficiency standpoint.

2.3.1 Tensoring

First we define a tensoring operation on PIR schemes, which generically yields PIRs with shortcuts, at
the price of increasing the number of servers. We will demonstrate this idea on the scheme PIR3

MV,SC from
Section 2.2. For this, further assume that L′ is a linear secret sharing scheme over a field F. Now, instead of
3 servers, the new scheme, denoted by

(
PIR3

MV,SC
)⊗2, will have 32 = 9 servers. A query to server j = (j1, j2),

j1, j2 ∈ {1, 2, 3}, for the position x = (x1, x2), x1, x2 ∈ {0, 1}n/2, is the j1-th L-share xj1
1 of ux1 and j2-th

L-share xj2
2 of ux2 . Upon receiving its share, server j homomorphically computes its L-share yj1,x1,x′

1
of

yx1,x′
1

= ⟨ux1 , vx′
1
⟩, and similarly for yj2,x2,x′

2
. Server j then applies a share conversion scheme over its L-share

of yx1,x′
1

(yx2,x′
2
) and obtain a L′-share, SC(j1, yj1,x1,x′

1
) (SC(j2, yj2,x2,x′

2
)), of y′

x1,x′
1

(y′
x2,x′

2
), which is nonzero

if and only if x1 = x′
1 (x2 = x′

2). The answer of each server j = (j1, j2) is (compare to the scheme PIR3
MV,SC

from Section 2.2):

a(j1,j2) =
∑

x′
1,x

′
2∈{0,1}n/2

f(x′
1, x

′
2)SC(j1, yj1,x1,x′

1
)SC(j2, yj2,x2,x′

2
).

To reconstruct the result, the client then computes ỹ =
∑3
j1,j2=1 λj1λj2a(j1,j2), where {λj} are coefficients

given by the linear reconstruction algorithm of L′. ỹ should be nonzero if and only if f(x1, x2) = 1.
The privacy of

(
PIR3

MV,SC
)⊗2 follows from the privacy of PIR3

MV,SC, simply because each server (j1, j2)
obtains a single query corresponding to x1 and a single query corresponding to x2, where the queries were
generated independently. Correctness also follows from that of PIR3

MV,SC because we have that

3∑
j1,j2=1

λj1λj2a(j1,j2) =
3∑

j1,j2=1
λj1λj2

∑
x′

1,x
′
2∈{0,1}n/2

f(x′
1, x

′
2)SC(j1, yj1,x1,x′

1
)SC(j2, yj2,x2,x′

2
)

=
∑

x′
1,x

′
2∈{0,1}n/2

f(x′
1, x

′
2)

 3∑
j1=1

λj1SC(j1, yj1,x1,x′
1
)

 3∑
j2=1

λj2SC(j2, yj2,x2,x′
2
)


=

∑
x′

1,x
′
2∈{0,1}n/2

f(x′
1, x

′
2)y′

x1,x′
1
y′
x2,x′

2

and y′
x1,x′

1
y′
x2,x′

2
is nonzero if and only if x′

1 = x1 and x′
2 = x2, since the product of nonzero elements in F is

nonzero. Moreover, the computation a(j1,j2) performed by the servers lends itself to the same computational
shortcuts as in Equation (2), if f has special structure. Generalizing to higher order of tensoring, we obtain
the following.
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Theorem 12 (Tensoring, informal). Let PIR be a k-server PIR scheme satisfying some natural properties.
Then there exists a kd-server PIR scheme PIR⊗d with the same (per server) communication complexity that
admits the same computational shortcuts as PIRd+1

RM does.

When PIR is indeed instantiated with a matching-vector PIR, Theorem 12 gives HSS schemes for disjoint
DNF formulas or decision trees with the best asymptotic efficiency out of the ones we considered.

Corollary 1 (Decision trees from tensoring, informal). There is a perfectly-correct 3d-server HSS for
decision trees, or generally disjoint DNF formulas, with α(N) = Õ

(
26
√
n logn

)
, β(N) = O(1) and τ(N, ℓ) =

Õ
(
N1/d+o(1) + ℓ ·N1/3d), where n is the number of variables and ℓ is the number of leaves in the decision

tree.

Note that the term o(1) appears in the exponent since evaluating SC(j, yj,x,x′) in MV PIR requires O(α(n))
computation, and there are O(N1/d) such evaluations.

The exponential growth in d in the number of servers in Theorem 12 may prove too prohibitive. By
exploiting the algebraic structure of PIR3

Efr, there is a non-black-box tensoring, PIR⊗d
Efr, which reduces the

number of servers to just (d+ 1)2. Lastly, we comment that such tensored schemes are implicit among the
first PIRs in the literature. For example, PIRkRM can be obtained via tensoring a certain scheme, PIR2

Hadarmard,
(see [31, Section 3.1]) with itself (k − 1) times in a non-black-box way. Hence, PIR2

Hadarmard seems to have an
even more beneficial algebraic structure compared to PIR3

Efr.

Theorem 13. There exists a protcol PIR⊗d
Efr = (Share⊗d

Efr,Eval⊗dEfr,Dec⊗d
Efr) which is a (d+ 1)2-PIR with share

size O
(

28
√
dn logn

)
, and output share size O(d2), that admits the same computational shortcuts as PIRd+1

RM
does.

2.3.2 Parallel PIR Composition

By invoking multiple PIR schemes in parallel, one can homomorphically evaluate sparsely-supported DNF
formula function families. Roughly speaking, a DNF formula function family is sparsely supported if, by
assigning to each DNF term the set of variables it depends on, all the terms of all the formulas in the function
family depend on a small (≪ 2n) number of variable sets. We will demonstrate how we utilize this property
for the function family consisting of a single formula {ψ = x1 ∨ (¬x1 ∧ x2) ∨ . . . ∨ (¬x1 ∧ . . . ∧ xn)}. Indeed,
while the term ¬x1 ∧ . . . ∧ xn is a point function and so can easily be homomorphically computed by any
PIR scheme, the term x1 has 2n−1 ones in the truth table, naïvely requiring O(N) computation for any
PIR scheme. The observation is that it is possible to significantly reduce the computation of the servers by
having the client also provide a PIR query restricted to the domain consisting of only {x1} (as opposed to the
full domain {x1, . . . , xn}). More generally, for evaluating the above ψ we will provide the servers with PIR
queries for the partial domains {x1}, {x1, x2}, . . . , {x1, . . . , xn}. Therefore, by increasing the communication
complexity it is possible to reduce the computation in a generic way.

Next, we argue that unions of intervals can be expressed as DNF formulas belonging to a sparsely
supported DNF formula function family. In fact, this yields an HSS for union of intervals with the best
asymptotic complexity among our constructions. Indeed, let c = (c1, . . . , cm) be an m-bit number in binary
representation. Then, we can express a DNF formula for the special interval [0, c] as

ψ[0,c](x1, . . . , xm) :=
m∨
i=1
¬xi ∧ ci ∧

 m∧
j=i+1

(xj ∧ cj) ∨ (¬xj ∧ ¬cj)

 .
Therefore the family {ψ[0,c]}c is sparsely supported on m variable sets {x1, . . . , xm}, {x2, . . . , xm}, . . . , {xm}.
Similarly, the DNF formula function family {ψ[b,2m−1]}b for the intervals [b, 2m−1] is also sparsely supported on
the same variable sets. Therefore, the DNF formula function family for the intervals [b, c], {ψ[b,2m−1]∧ψ[0,c] =:
ψ[b,c]}b,c, is sparsely supported on at most m2 variable sets. Note, importantly, that even for a union of
disjoint intervals, the DNF formula obtained by this process is not disjoint, which necessitates having only
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ϵ-correctness. Consequently, if we consider d-dimensional intervals and choose m = n/d, we obtain an HSS
scheme with a (n/d)2d = polylog N multiplicative overhead in communication. The computation in this case
is asymptotically more efficient compared to the previous section, and the HSS requires only 3 servers.

Theorem 14 (Intervals from parallel composition, informal). For any integer d | n, there is an ϵ-correct
3-server HSS for unions of ℓ d-dimensional intervals with α(N) = Õ

(
26
√
n logn

)
, β(N) = O(log( 1

ϵ )) and

τ(N, ℓ) = Õ
(

log( 1
ϵ )ℓ · 26

√
n logn

)
.

Applying this approach even to decision trees with O(n) leaves (or even to single term DNF formulas)
does not work simply because there are 2n possible variable sets to choose from, which would yield an
O(N) multiplicative blowup in communication. However, one could try a generalized approach where the
DNF terms only partially cover the variable sets. For example, if we prepare a PIR query restricted to the
domain {x1, x3, x11, x17}, then the term ψ = x1 ∧¬x17 has 22 = 4 ones in the truth table. We show that this
generalized approach, unfortunately, does not work, due to lower bounds for asymmetric covering codes [32].

2.4 Concrete Efficiency
Motivated by a variety of real-world applications, the concrete efficiency of PIR has been extensively studied
in the applied cryptography and computer security communities; see, e.g., [33, 57, 61, 65, 3] and references
therein. Many of the application scenarios of PIR can pontentially benefit from the more general HSS
functionality we study in this work. To give a sense of the concrete efficiency benefits we can get, consider
following MPC task: The client holds a secret input x and wishes to know if x falls in a union of a set of
2-dimensional intervals held by k servers, where at most t servers may collude (t = 1 by default). This can
be generalized to return a payload associated with the interval to which x belongs. HSS for this “union of
rectangles” function family can be useful for securely querying a geographical database.

We focus here on HSS obtained from the PIRkRM scheme, which admits strong shortcuts for multi-
dimensional intervals and at the same time offers attractive concrete communication complexity. For the
database sizes we consider, the concrete communication and computation costs are much better than those of
(computational) single-server schemes based on fully homomorphic encryption. Classical secure computation
techniques are not suitable at all for our purposes, since their communication cost would scale linearly with
the number of intervals. The closest competing solutions are obtained via symmetric-key-based function
secret sharing (FSS) schemes for intervals [19, 21]; see Section 7.2 for more details.

We instantiate the FSS-based constructions with k = 2 servers, since the communication complexity in
this case is only O(λn2) for a security parameter λ [21]. For k ≥ 3 (and t = k − 1), the best known FSS
schemes require O(λ

√
N) communication [19]. Our comparison focuses on communication complexity which

is easier to measure analytically. Our shortcuts make the computational cost scale linearly with the server
input size, with small concrete constants. Below we give a few data points to compare the IT-PIR and the
FSS-based approaches.

For a 2-dimensional database of size 230 = 215 × 215 (which is sufficient to encode a 300 × 300 km2

area with 10× 10 m2 precision), the HSS based on PIRkRM with shortcuts requires 16.1, 1.3, and 0.6 KB of
communication for k = 3, 4 and 5 respectively, whereas FSS with k = 2 requires roughly 28 KB5. For these
parameters, we expect the concrete computational cost of the PIR-based HSS to be smaller as well.

We note that in PIRkRM the payload size contributes additively to the communication complexity. If
the payload size is small (a few bits), it might be beneficial to base the HSS on a “balanced” variant of
PIRkRM proposed by Woodruff and Yekhanin [67]. Using the Baur-Strassen algorithm [10], we can get the
same shortcuts as for PIRkRM with rougly half as many servers, at the cost of longer output shares that have
comparable size to the input shares. Such balanced schemes are more attractive for short payloads than for
long ones. For a 2-dimensional database of size 230 = 215 × 215, the HSS based on balanced PIRkRM with 1-bit
payload requires 1.5 and 0.2 KB communication for k = 2 and 3 respectively.

5This FSS with k = 2 and t = 1 is the best scheme known even for the setting k ≥ 3 and t = 1.
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Our approach is even more competitive in the case of a higher corruption threshold t ≥ 2, since (as
discussed above) known FSS schemes perform more poorly in this setting, whereas the cost of PIRkRM scales
linearly with t. Finally, PIRkRM is more “MPC-friendly” than the FSS-based alternative in the sense that its
share generation is non-cryptographic and thus is easier to distribute via an MPC protocol.

3 Preliminaries
Let m,n ∈ N with m ≤ n. We use {0, 1}n to denote the set of bit strings of length n, [n] to denote the set
{1, . . . , n}, and [m,n] to denote the set {m,m+ 1, . . . , n}. The set of all finite-length bit strings is denoted
by {0, 1}∗. Let v = (v1, . . . , vn) be a vector. We denote by v[i] or vi the i-th entry v. Let S,X be sets with
S ⊆ X. The set membership indicator χS,X : X → {0, 1} is a function which outputs 1 on input x ∈ S, and
outputs 0 otherwise. When X is clear from the context, we omit X from the subscript and simply write χS .

3.1 Function Families
To rigorously talk about a function and its description as separate objects, we define function families in a
fashion similar to that in [19].

Definition 3 (Function Families). A function family F is a collection of function descriptions f̂ ∈ {0, 1}∗,
each specifying a function f : Xf → Yf , together with a polynomial-time evaluation algorithm E such that
E(f̂ , x) = f(x) for every f̂ ∈ F and x ∈ Xf . We assume by default that Xf is {0, 1}n for some input length
n specified in f̂ , and that Yf = {0, 1}, which is typically viewed as the finite field F2. We will also associate
with each f̂ a size parameter ℓ, defined by default as ℓ = |f̂ |, and measure complexity in terms of n and ℓ.

We will use Fℓn to denote F restricted to functions of input length n and size parameter ℓ. Moreover,
the size of the input domain |Xn| is denoted by N , which is by default 2n. We use the notations f and f̂
interchangeably when there is no ambiguity.

Definition 4 (Useful function families). We will consider the following function families:

• Truth tables (denoted TT): Here each f : {0, 1}n → {0, 1} is represented by its truth table f̂ ∈ {0, 1}N
where N = 2n;

• d-dimensional combinatorial rectangles (denoted CRd): A function f : X 1 × · · · × X d → F2 in
this family outputs 1 if its input is in a combinatorial rectangle S1 × · · · × Sd and outputs 0 otherwise.
Here we assume that the input length n satisfies d | n, and X i = {0, 1}n′ for n′ = n/d. The description
f̂ of f is the (d · 2n′)-bit string obtained by concatenating the characteristic vectors of the d sets Si.

• d-dimensional intervals (denoted INTd): Each function f in this family is a combinatorial rectangle
in which each set Si is an interval [ai, bi], where here we associate the domain X i with the set of integers
{0, 1, . . . , 2n′ − 1}. The description f̂ consists of the binary representations of the 2d endpoints ai, bi.

• Sum of d-dimensional intervals (denoted SUM− INTd): A function in this class is obtained by
summing ℓ functions in INTd of the same input length n (where summation is over F2). It is described
by the concatenation of the descriptions of the ℓ intervals. Note that here the same f can have multiple
descriptions f̂ of different sizes ℓ. More generally, for any function family F in which the output domain
Y is an Abelian group, we denote by SUM−F the family obtained by summing functions from F .

• Terms (denoted TERM): A function f : {0, 1}n → {0, 1} in this family is a conjunction of literals
(e.g., x̄2 ∧ x4 ∧ x5), naturally described by f̂ ∈ {0, 1}2n.

• DNF formulas (denoted DNF): A function f : {0, 1}n → {0, 1} in this family is a disjunction of ℓ
terms in TERM over the same number of variables n. It is described by concatenating the descriptions
of the ℓ terms. Here too, the same f can have multiple descriptions f̂ of different sizes ℓ. Generally,
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for any function family F in which the output domain Y = {0, 1}, we denote by OR − F the family
obtained by taking disjunction of functions from F . Thus DNF is exactly the family OR − TERM. A
subcollection of DNF, D− TERM, contains DNF formulas with disjoint terms (i.e. at most one of
the terms in the DNF outputs 1 on any input). More generally, for any function family F in which
the output domain Y = 0, 1, we denote by D − F the set of family obtained by taking disjunction of
functions from F , subject to the restriction that at most one of the functions in the disjunction outputs
1 on any input.

• Decision trees A function f : {0, 1}n → {0, 1} in this family is computed by a decision tree, which is
a rooted tree where each internal node is labelled with an input variable and a transition rule, and each
leaf is labelled 0 or 1. The computation starts at the root of the tree and transition to another node
according to the transition rule and the value of the input variable on the current node. The computation
terminates with the value on the leaf that it reaches.

Definitions for additional function families are given in the corresponding sections.

3.2 Secret sharing
A secret sharing scheme is a defined by pair of algorithms L = (Share,Dec), where Share is randomized and
Dec is deterministic. The algorithm Share randomly splits a secret message s ∈ S into a k-tuple of shares,
(s1, . . . , sk), where we envision each share as being sent to a different server. The algorithm Dec reconstructs
s from an authorized subset of the shares. We say that L is t-private if each t shares jointly reveal no
information about s. Here we will typically consider 1-private schemes.

We say that L is linear if the secret-domain S is a finite field F, and each share si is obtained by applying
a linear function over F to the vector (s, r1, . . . , rℓ) ∈ Fℓ+1, where r1, . . . , rℓ are random and independent
field elements. Here each share si can consist of one or more field elements. We will sometimes use this term
more broadly, replacing F by a finite ring of the form Zm = Z/mZ.

We will use the following 3 types of standard linear secret sharing schemes:

• Additive secret sharing: Share splits s ∈ F into k random field elements that add up to s and Dec
reconstructs the secret from all shares by adding them up. This scheme is (k − 1)-private.

• CNF sharing: Share first uses additive secret sharing to split s ∈ F into
(
k
t

)
additive shares sT , each

labeled by a distinct set T ∈
([k]
t

)
, and then lets each si be the concatenation of all sT with i ̸∈ T . This

scheme is t-private and allows Dec to reconstruct the secret from each set of t+ 1 shares.

• Shamir sharing: Here s ∈ F where |F| > k and each share index i is identified with a distinct nonzero
field element γi. Share(s) first picks a random polynomial p(X) = s + r1X + r2X

2 + . . . + rtX
t (of

degree ≤ t) and lets si = p(γi). This scheme too is t-private and allows reconstruction from any t+ 1
shares. We will also use an alternative variant where the secret s is the leading coefficient of p; see [14].

3.3 HSS and PIR
Definition 5 (Information-Theoretic HSS). An information-theoretic k-server homomorphic secret sharing
scheme for a function family F , or k-HSS for short, is a tuple of algorithms (Share,Eval,Dec) with the
following syntax:

• Share(x): On input x ∈ Xn, the sharing algorithm Share outputs k input shares, (x1, . . . , xk), where
xi ∈ {0, 1}α(N), and some decoding information η.

• Eval(ρ, j, f̂ , xj): On input ρ ∈ {0, 1}γ(n), j ∈ [k], f̂ ∈ Fn, and the share xj, the evaluation algorithm
Eval outputs yj ∈ {0, 1}β(N), corresponding to server j’s share of f(x). Here ρ are public random coins
common to the servers and j is the label of the server.
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• Dec(η, y1, . . . , yk): On input the decoding information η and (y1, . . . , yk), the decoding algorithm Dec
computes a final output y ∈ Yn.

We require the tuple (Share,Eval,Dec) to satisfy correctness and security.

Correctness Let 0 ≤ ϵ < 1. We say that the HSS scheme is ϵ-correct if for any n, any f̂ ∈ Fn and x ∈ Xn

Pr

Dec
(
η, y1, . . . , yk

)
= f(x) :

ρ ∈R {0, 1}γ(n)(
x1, . . . , xk, η

)
← Share(x)

∀j ∈ [k] yj ← Eval(ρ, j, f̂ , xj)

 ≥ 1− ϵ.

If the HSS scheme is 0-correct, then we say the scheme is perfectly correct.

Security Let x, x′ ∈ Xn be such that x ̸= x′. We require that for any j ∈ [k] the following distributions are
identical

{xj : (x1, . . . , xk, η)← Share(x)} ≡ {x′j : (x′1, . . . , x′k, η′)← Share(x′)}.

This is identical to requiring a security threshold t = 1. Larger security thresholds can also be considered.
For perfectly correct HSS we may assume without loss of generality that Eval uses no randomness and so

γ(n) = 0. In general, we will omit the randomness parameter ρ from Eval for perfectly correct HSS and PIR.
Similarly, whenever Dec does not depend on η we omit this parameter from Share and Dec as well.

An HSS is said to be additive [23] if Dec simply computes the sum of the output shares over some additive
group. This property is useful for composing HSS for simple functions into ones for more complex functions.
We will also be interested in the following weaker notion which we term quasiadditive HSS.

Definition 6 (Quasiadditive HSS). Let HSS = (Share,Eval,Dec) be an HSS for a function family F such
that Yn = F2. We say that HSS is quasiadditive if there exists an Abelian group G such that Eval outputs
elements of G, and Dec(y1, . . . , yk) computes an addition ỹ = y1 + . . .+ yk ∈ G and outputs 1 if and only if
ỹ ̸= 0.

Definition 7 (PIR). If the tuple HSS = (Share,Eval,Dec) is a perfectly correct k-HSS for the function family
TT, we say that HSS is a k-server private information retrieval scheme, or k-PIR for short.

Finally, the local computation Eval is modelled by a RAM program.

Definition 8 (Computational shortcut in PIR). Let PIR = (Share,Eval,Dec) be a PIR with share length
α(N), and F be a function family. We say that PIR admits a strong shortcut for Fℓn if there is an algorithm
for Eval which runs in quasilinear time τ(N, ℓ) = Õ(α(N) + β(N) + ℓ) for every function f ∈ F . In similar
fashion, we say that PIR admits a (weak) shortcut for F if there is an algorithm for Eval which runs in time
τ(N, ℓ) = O(ℓ ·Nδ), for some constant 0 < δ < 1.

4 Shortcuts for Reed-Muller PIR
Let 3 ≤ k ∈ N and d = k − 1 be constants. The k-server Reed-Muller based PIR scheme PIRkRM =
(ShareRM,EvalRM,DecRM) is presented in Figure 3.

We observe that, in k-server Reed-Muller PIR PIRkRM, the sum of products

∑
(x′

1,...,x
′
d

)∈{0,1}n

f(x′
1, . . . , x

′
d)

d∏
i=1

(qji )[x′
i]

can be written as a product of sums if f is a combinatorial rectangle function. Consequently PIRkRM admits a
computational shortcut for d-dimensional combinatorial rectangles, which gives rise to shortcuts for intervals
and DNFs as they can be encoded as combinatorial rectangles.
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ShareRM(x):

1. Let d = k − 1. Divide x ∈ {0, 1}n into d pieces x = (x1, . . . , xd) ∈
(
{0, 1}n/d

)d.

2. For every i ∈ [d] compute a unit vector ei ∈ FN1/d

2 as ei[z] =
{

1, z = xi

0, z ̸= xi

.

3. Let F = F2κ be a field with 2κ > k elements. Let α1, . . . , αk ∈ F be distinct nonzero field elements. Draw
random vectors r1, . . . , rd ∈R FN1/d

and compute qj
i := ei + riαj for i ∈ [d] and j ∈ [k].

4. The share of each server j ∈ [k] is xj := (qj
1, . . . , qj

d). Output (x1, . . . , xk).

EvalRM(j, f̂ , xj = (qj
1, . . . , qj

d)):
1. Let λj :=

∏
ℓ ̸=j

αℓ/(αℓ − αj) be the j’th Lagrange coefficient. Compute

ỹj = λj

∑
(x′

1,...,x′
d

)∈{0,1}n

f(x′
1, . . . , x′

d)
d∏

i=1

(qj
i )[x′

i]

2. Output yj = σ(ỹj), where σ : F→ F2 is a homomorphism with respect to addition such that σ(z) = z for
z ∈ F2.

DecRM(y1, . . . , yk): Output y = y1 + . . . + yk.

HSS Parameters: Input share size α(N) = O(N1/d), output share size β(N) = 1.

Figure 3: The scheme PIRkRM.

Lemma 4. PIRkRM admits a strong shortcut for the function family of single d-dimensional combinatorial
rectangle, i.e., CRd

n. More concretely, τ(N, ℓ) = O(α(N)) = O(N1/d).

Proof. Naturally, the client and server associate x = (x1, . . . , xd) as the input to the funcions f from
SUM− CR1,d

n . Let f̂ = ĉr = {S1, . . . ,Sd} be the combinatorial rectangle representing f . Given f̂ , the
computation carried out by server j is

EvalRM(j, f̂ , xj = (qj1, . . . , q
j
d)) = σ

λj ∑
(x′

1,...,x
′
d

)∈S1×...×Sd

d∏
i=1

qji [x′
i]

 (5)

= σ

λj d∏
i=1

∑
x′

i
∈Si

qji [x′
i]

 (6)

If the server evaluates the expression using Equation (5) the time is O(N), but if it instead uses Equation (6)
the time is O(dmaxi{|Si|}) = O(2 n

d ) = O(α(N)).

Theorem 15. PIRkRM admits a weak shortcut for SUM− CRℓ,d
N . More concretely, τ(N, ℓ) = O(ℓα(N)) =

O(ℓN1/d).

Proof. This is implied by Lemma 4, by noting that f = cr1 + . . . crℓ over the common input x. In particular,
the final Eval algorithm makes ℓ calls to the additive HSS given by Lemma 4, so the running time is
O(ℓα(N)) = O(ℓ2 n

d ).

Generally, let PIR be any additive PIR scheme that admits a shortcut for a function family F , with
time complexity T . Then PIR admits a weak shortcut for the summed function family SUM−Fℓ with time
complexity ℓ · T . Therefore any shortcuts would imply a weak shortcut for the summed family, but a strong
shortcut does not necessarily imply a strong shortcut (as demonstrated in Theorem 15).
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Remark 1 (Shortcuts for summation and disjunction). Any shortcuts for summed function families can
be applied to disjoint disjunctions as well because a disjoint disjunction can be carried out as a summation.
However, general disjunction over functions where the outputs could interfere with each other is more
challenging. It is possible to perform general disjunction by (1) turning to summations over Zm for a large
enough m ( m > ℓ) and interpreting nonzero values to 1 upon decoding, which blows up the input and output
share size by a factor of O(log ℓ); or by (2) compromising correctness (getting only ϵ-correctness), such as
via taking random linear combinations on the outputs, thus multiplying the output share size by O(log(1/ϵ)).
Note that this only works for disjunctions and not for more complex predicates. For instance, for depth-3
circuits we don’t have a similar technique.

4.1 Intervals and Convex Shapes
Any function in SUM− INTℓ,dn can be encoded as a function in SUM− CRℓ,d

n . Consequently, one obtains
weak shortcuts for d-dimensional intervals. Furthermore, one can obtain strong shortcuts by the standard
technique of precomputing the prefix sums in the summation Equation (6).

Theorem 16. PIRkRM admits a strong shortcut for SUM− INTℓ,dn and D− INTℓ,dn . More concretely, τ(N, ℓ) =
O(α(N) + ℓ) = O(N1/d + ℓ).

Proof. We will show it is possible a computational shortcut for the function f(x) =
∑ℓ
t=1 χ

∏d

i=1
[ai

t,b
i
t](x),

which is an ℓ-sum of d-dimensional intervals. Suppose we compute the following for every x ∈ [N1/d] and
i ∈ [d]:

Si(x) :=
x∑

x′=1
qji [x′],

which overall takes O(N1/d) time, since this is a prefix sum. Then, the computation carried out by server j is

EvalRM(j, f̂ , xj = (qj1, . . . , q
j
d)) = σ

λj ℓ∑
t=1

∑
(x′

1,...,x
′
d

)∈
∏d

i=1
[ai

t,b
i
t]

d∏
i=1

qji [x′
i]


= σ

(
ℓ∑
t=1

d∏
i=1

[
S1(bit)− S1(ait − 1)

])

in O(N1/d + ℓ) = O(α(N) + ℓ) time. This concludes the result for SUM− INTℓ,dn . By Remark 1,

ℓ∑
t=1

χ∏d

i=1
[ai

t,b
i
t](x) =

ℓ∨
t=1

χ∏d

i=1
[ai

t,b
i
t](x)

for disjoint intervals, and so the result follows for D− INTℓ,dn .

4.1.1 Segments and Low-Dimensional Intervals

The function family SEGℓ
n := D− INTℓ,1n corresponds to a disjoint union of one-dimensional intervals.

From Equation (6) the computation performed by server j can be viewed as summation of shapes in a
d-dimensional grid, where the summand

∏d
i=1 q

j
i [x′

i] is included whenever f(x′
1, . . . , x

′
d) = 1. Therefore, to

obtain strong shortcuts for segments (one dimensional intervals), we should look for a way to embed a segment
in d dimensions (possibly into several d-dimensional intervals). In the following lemma, we show that given
the natural embedding of one dimension into d dimensions, where we serialize the d-dimensional grid into a
long vector, it is possible to cover a segment [a, b] by at most (2d− 1) disjoint d-dimensional intervals. In
Figure 4 we provide an illustration for d = 2. The covering works by comparing the input x ∈ {0, 1}n with
the endpoints a, b ∈ ({0, 1}n/d)d in a block-wise manner.
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Figure 4: Illustration of a covering of a segment embedded in 2 dimensions with 3 2-dimensional intervals.

Lemma 5. Given the natural embedding of one dimension into d dimensions, it is possible to cover a segment
with at most (2d− 1) disjoint d-dimensional intervals.

Proof. In this proof it will be convenient to denote by [P (x)] the set of points satisfying the predicate P ,
that is, [P (x)] := {x ∈ Xn : P (x)}. Consider a single segment defined over Xn = {0, 1}n by the condition
[a ≤ x ≤ b]. Let x = (x1, . . . , xd) ∈ {0, 1}n/d × · · · × {0, 1}n/d and let a = (a1, . . . , ad), b = (b1, . . . , bd) be the
decompositions of the two indices in the same manner.

Now we can write χ[a≤x≤b] in terms of the smaller components:

χ[a≤x≤b] = χ[a1<x1<b1−1] (7)

+
(
χ[a1=x1∧a2<x2] + χ[a1=x1∧a2=x2∧a3<x3]

+ . . .+ χ[∧d

k=1
ak=xk

]) (8)

+
(
χ[x1=b1∧x2<b2] + χ[x1=b1∧x2=b2∧x3<b3]

+ . . .+ χ[∧d

k=1
xk=bk

]), (9)

where the sum is over F2. Each of the above indicators correspond to exactly one d-dimensional intervals.

Part 7 [a1 < x1 < b1 − 1] is the interval [a0 + 1, b0 − 1]×
∏d
i=2[0, N1/d − 1].

Part 8 [
∧j
k=1 ak = xk ∧ aj+1 < xj+1] is the interval

j∏
k=1

[ak, ak]× [aj+1 + 1, N1/d − 1]×
d∏

i=j+2
[0, N1/d − 1].

Part 9 Similar to Part 8.

Therefore any segment can be partitioned into at most 2d− 1 disjoint intervals.

The idea of embedding segments into d-dimensional intervals can be generalized, such that we can embed
d′-dimensional intervals into d-dimensional intervals whenever d′ | d.

Theorem 17. PIRkRM admits a strong shortcut for SEGℓ
n. Generally, for every integer d′ | d, PIRkRM admits

a strong shortcut for SUM− INTd
′,ℓ
n and D− INTd

′,ℓ
n . More concretely, τ(N, ℓ) = O(N1/d + ℓ).

20



Proof. Lemma 5 and Theorem 16 together imply that PIRkRM admits a strong shortcut for SEGℓ
n. However,

we can further prove a strong shortcut exists for D− INTd
′,ℓ
n (or SUM− INTd

′,ℓ
n ). Indeed, let d = r · d′ for

some integer r. Then, by naturally embedding every consecutive r dimensions into a single dimension and
employing Lemma 5, the claim follows.

Remark 2. While we were able to obtain strong shortcuts when d′ | d, it is not clear if such shortcuts are
possible whenever d′ > d or more generally d′ ∤ d. To obtain a shortcut one possibly should find an appropriate
embedding which allows for a computational shortcut. The simplest open case is d′ = 3 and d = k − 1 = 2.

4.1.2 Shortcut for Convex Shapes

In this section we discuss how to achieve shortcuts for (discretized) convex shapes. To this end, we will
consider convex shapes S ⊆ Rd over the reals, assuming further that S can be described by a string Ŝ ∈ {0, 1}∗,
and that membership in S for points from [0, 2n/d− 1]d can be checked in polylog (N) time (S ∩ [0, 2n/d− 1]d
being called the discretization of S). We will naturally associate elements of {0, 1}n/d with elements in
[0, 2n/d − 1].

Definition 9 (Geometric function families). Three additional geometric function families that we consider
are the following:

• d-dimensional convex shapes (denoted CONVEXd
n) A function f : ({0, 1}n/d)d → {0, 1} in this

family corresponds to a convex shape S in Rd which outputs 1 for points x ∈ [0, 2n/d − 1]d if and only if
x ∈ S. The description of f̂ is Ŝ.

• Disk functions (denoted DISKn) Functions in this family are convex shape functions in the plane
(CONVEX2

n) whose corresponding shape is a disk of some radius r ∈ R.

• ϵ-approximated disk functions (denoted DISKn(ϵ)) A function f : ({0, 1}n/d)d → {0, 1} in this
family corresponds to a disk S of radius r such that

– f outputs 1 for points x ∈ [0, 2n/d − 1]d that satisfy x ∈ S;
– f outputs 0 for points outside the (1 + ϵ)r-radius disk S′, which is concentric to S;
– f outputs arbitrary values for points inside S′ but outside S.

Note that the function family DISKn(ϵ) is not defined uniquely. We will show our results for some
function family DISKn(ϵ) that satisfies this definition.

Lemma 6 (Covering convex shapes by intervals). Let S ⊆ Rd be a convex shape. It is possible to cover
S ∩ [0, 2n/d − 1]d by at most 2(d−1)·n/d disjoint d-dimensional intervals. Moreover, PIRkRM admits a shortcut
for SUM−CONVEXℓ,d

n with τ(N, ℓ) = Õ(ℓ ·N (d−1)/d).

Proof. We first describe how to cover a single shape S by at most 2(d−1)·n/d intervals, as in Figure 1. For
i = 1, . . . , 2(d−1)·n/d, let (i1, . . . , id−1) ∈ ({0, 1}n/d)d−1 be the 2n/d-ary representation of i. We find the
boundary values ai and bi (e.g. by binary search) so that

(i1, . . . , id−1, ai), (i1, . . . , id−1, bi) ∈ S,
(i1, . . . , id−1, ai − 1), (i1, . . . , id−1, bi + 1) /∈ S.

The d-dimensional interval Ii is then defined as Ii :=
∏d−1
j=1 [ij , ij ]× [ai, bi]. Since we have shown how to cover

a single shape by at most 2(d−1)·n/d intervals, and the shapes are disjoint, we can cover all ℓ shapes with at
most ℓ · 2(d−1)·n/d intervals. Applying Theorem 16 completes the proof.
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If we wish to exactly cover convex shapes by intervals, it can be shown that the above bound is optimal
for d = 2. To see this, consider the (discretization of the) right triangle defined by {(x1, x2) : x1, x2 ≥
0, x1 + x2 ≤ 2n/2}, for which covering the points on the “hypotenuse” requires 2n/2 two dimensional intervals.
Consequently, there is no hope to obtain strong shortcuts with this approach if we require the covering to be
exact. In the next section, we show that for d = 2 it is possible to obtain a strong shortcut for ϵ-approximated
disk functions.

4.1.3 Strong Shortcuts for Approximations of Disks

Disk functions, which evaluate to 1 if the input falls into the given disk, are important convex shape functions
as they can be given a geographical meaning. For example, consider where a client wishes to privately learn
whether a given location is within radius r of a point of interest on the map marked by the servers.

Unfortunately, similarly to the argument in the previous section for arbitrary convex shapes, it is possible
to show that exactly covering a disk of radius r requires Ω(r) two dimensional intervals, which prevents us
from obtaining strong shortcuts for SUM−DISKℓ

n via covering, as the radii can be as large as Θ(
√
N).

Indeed, to see this, consider the a disk of radius r centered at the origin. Let us focus on the arc between
the topmost point (0, r) and the point π

4 from it, namely the point
(
r√
2 ,

r√
2

)
. For every height h ∈ [0, 2n/d−1]

between r√
2 and r, let (wh, h) be the rightmost point belonging to the discretized disk. We claim that the

widths {wh} are strictly decreasing when h increases. This implies that an exact cover requires a total of
|{(h,wh)}| ≈ (1− 1√

2 )r = Θ(r) 2-dimension intervals, since otherwise some pair of points (wh, h) and (wh′ , h′)
are covered by the same interval (without loss of generality, assume h < h′ and so wh > wh′). Then the point
(wh, h′) is also covered by the interval, but it lies outside the disk by the maximality of wh′ .

Therefore we only need to show that {wh} is decreasing. In fact, for any h > r√
2 , we can shown that

(wh + 1, h− 1) lies inside the disk and thus wh−1 ≥ wh + 1 > wh. Since otherwise, when going from (wh, h)
to (wh + 1, h − 1) we encounter the boundary of the disk somewhere in between. But in such a case the
tangent line of this boundary has to make an angle larger than π

4 with the horizontal line. Such tangent lines
do not exist in the region of concern.

Nevertheless, if we settle for approximations of disks, that is, SUM−DISKℓ
n(ϵ) for ϵ > 0, strong shortcuts

are possible.

Lemma 7. For any r ∈ R and any ϵ > 0 , (the discretization of) a disk S of radius r centered at the origin
can be covered by 4m− 3 = O(1/ϵ) disjoint 2-dimensional intervals which are contained in a disk S′ of radius
(1 + ϵ) r centered at the origin, where m =

⌊√
2−1
ϵ

⌋
.

Proof. First we consider only the upper-right quadrant and show how it can be covered. An example is shown
in Figure 5. The other three quadrants can be covered by symmetry.

The idea is that a coarse-grained covering of rectangles is good enough to achieve an ϵ−approximation.
Specifically, let P0 = (w0, h0) = ( r√

2 ,
r√
2 ) be the upper-right corner of the squares that is inscribed by the

disk C, and Pm = (0, r) be the top of the disk. We divide the height difference r − h0 = r(
√

2−1√
2 ) into

m =
⌊√

2−1
ϵ

⌋
steps, each of length ℓ = ϵ√

2r. Then we define hi = h0 + iℓ = 1+iϵ√
2 r for i = 1, . . . ,m− 1.

The first rectangle R1 has its lower-left corner placed at (0, 0) and its upper-right corner placed at
S1 = (w1, h1). For every i = 2, . . . ,m, the upper right corner Si = (wi, hi) of the rectangle Ri is chosen in
such a way that Ri is just wide enough to cover the part of the disk right above Ri−1. This is given by
wi :=

√
r2 − h2

i−1. Then we discretize the rectangles to the two dimensional intervals R′
i = Ri ∩ [0, 2n/d − 1]2

for i ∈ [m]. Note that we need to avoid double counting the integral points by having a rule on which intervals
a point should be assigned to when it falls into a pair of adjacent rectangles.

By construction, the union of the disjoint R′
i’s contains all integral points in the upper half of the first

quadrant. We can apply the same procedure to the lower half of the quadrant, and also to the other
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Pm

( r√
2 ,

r√
2 )
P0

(w1, h1)
(w2, h2)

(w3, h3)

S1

Figure 5: Example of covering the first quadrant of a disk with r = 20.5 and m = 3

three quadrants. At the end we merge intervals to form larger ones whenever possible, obtaining a total of
4(m− 1) + 1 = 4m− 3 two dimensional intervals.

Now we prove that all the above integral points do fall in the disk of radius r̂ = (1 + ϵ)r centered at
(0, 0). This can be done by showing the inequality r2

i := w2
i + h2

i < r̂2 for every i = 1, . . . ,m because Si is the
farthest point in Ri from (0, 0).

r2
i = w2

i + h2
i =

(√
r2 − h2

i−1

)2
+ h2

i

=r2 + h2
i − h2

i−1

=r2 + (h0 + iℓ)2 − [h0 + (i− 1)ℓ]2

=r2 + (2i− 1)ℓ2 + 2ℓh0

=r2 + 1
2(2i− 1)ϵ2r2 + ϵr2

≤r2 + 1
2(2m− 1)ϵ2r2 + ϵr2

=r2 + (mϵ+ 1)ϵr2 − 1
2ϵ

2r2

≤r2 + (
√

2− 1 + 1)ϵr2 − 1
2ϵ

2r2

=(1 +
√

2ϵ− 1
2ϵ

2)r2 < (1 + ϵ)2r2 = r̂2.

Note that when ϵ is very small (specifically, when ϵr <
√

2), some rectangles (Ri’s) defined in the
above proof may contain no integral points at all. In such a case, one may opt for the exact covering from
Lemma 6 since it now requires only O(r) = O( 1

ϵ ) intervals. Therefore, an immediate corollary of Theorem 16
and Lemmas 6 and 7 is the following.

Theorem 18. PIR3
RM admits a strong shortcut for SUM−DISKℓ

n(ϵ). Concretely, τ(N, ℓ) = Õ(α(N) + 1
ϵ ℓ).

4.2 Improved Shortcut for Disjoint DNF Formulas
While the dimension d is not part of the description of DNF formulas over n boolean variables x1, . . . , xn, by
introducing an intermediate “dimension” parameter d and partitioning the n variables into d parts, we can
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represent the DNF formula as a d-dimensional truth table. More concretely, every dimension corresponds to
the evaluations of n

d variables, and each term in the DNF is mapped to a combinatorial rectangle in which
each set Si (i ∈ [d]) contains the evaluations on the n

d variables that do not falsify the term.
Therefore, for any dimension d ∈ [n], the family SUM− TERMℓ

n can be encoded as a function in
SUM− CRℓ,d

n , so combining Remark 1 we have the following corollary.

Corollary 2. PIRkRM admits a weak shortcut for SUM− TERMℓ
n and D− TERMℓ

n. Concretely, τ(N, ℓ) =
O(ℓα(N)) = O(ℓN1/d).

Functions computed by decision trees of ℓ leaves can also be computed by ℓ-term disjoint DNF formulas
because every accepting path on the tree can be translated to a term in a disjoint DNF formula. Therefore
the shortcuts we obtain for disjoint DNFs apply to decision trees as well.

We obtain a series of quantitative improvements over Corollary 2 in this section. As in the case of intervals,
we obtain the new shortcuts by efficiently retrieving each of the the sums in the product of Equation (4).
When restricted to a single dimension, we can model the computational task as the following data structure
problem (denoted by PM-SUMM ): given M = 2m (M =

√
N for PIR3

RM) elements q0, . . . , qM−1 ∈ F, the
goal is to efficiently answer ℓ summation queries, each specified by a DNF term: ϕ1, . . . , ϕℓ. Formally, a single
query in the problem is associated with a DNF term ϕ (for example, ϕ = x1 ∧ ¬x3) and asks for the value

bϕ :=
∑

x∈{0,1}m:ϕ(x)=1

qi(x), (10)

where i(x) ∈ {0, . . . ,M − 1} is the number represented by the bit string x. An algorithm solving PM-SUMM

with offline time π(M) and online time ζ(M)) works by first performing a preprocessing stage on the elements
q0, . . . , qM−1 in time π(M), then answering each of the ℓ queries in time ζ(M) by using the precomputed
values, having O(π(M) + ℓ · ζ(M) total computation time. By utilizing dynamic programming, we obtain a
solution to the data structure problem, thus proving the following.

Lemma 8. There is an algorithm for PM-SUMM with offline time Õ(M) and online time Õ(M1/3).

Proof. In the proof it will be convenient to associate with a DNF term ϕ defined over an m bit domain
a partial match query σ ∈ {0, 1, ∗}m. For example, the DNF term ϕ = x1 ∧ ¬x3 over m = 3 bits can be
represented as the partial match query 1 ∗ 0, as ϕ evaluates to 1 on the strings 100, 110. Therefore, we will
abuse notation and write ϕ, ψ ∈ {0, 1, ∗}m for DNF terms ϕ, ψ defined over an m bit domain. Furthermore,
when writing ϕψ we will refer to string concatenation.

We will divide the proof into a preprocessing stage and answering the DNF term queries stage.
Preprocessing: The inputs q0, . . . , qM−1 are exactly the responses to the queries from {0, 1}m, since

these queries have only a single string for which they evaluate to 1, and so Equation (10) has only a single
summand. We organize these numbers in a table T ∗. We want to precompute the responses to any of the
queries from {0, ∗}m and store them in a table T 1 in time Õ(M) and similarly compute the responses to any
queries from {1, ∗}m in the table T 0.

We show how to precompute T 0 in time O(m2m) using dynamic programming. For 0 ≤ i < m, define T 0
i

to be the table of all responses to query of the form {0, 1}i ∗ {1, ∗}m−i−1, and for i = m, denote T 0
m as the

responses to {0, 1}m. Note that T 0 ⊂
⋃m
i=0 T

0
i .

To compute the entries of T 0
i , we will fill them in for i = m− 1, . . . , 0, in that order. For the base case,

T 0
m = {0, 1}m is already given by the inputs q0, . . . , qM−1. For the recursion, assume T 0

k for m ≥ k > i are all
computed, we show how to compute the response bϕ to some ϕ ∈ T 0

i . By definition we can write ϕ = ψ ∗ η
for some ψ ∈ {0, 1}i and η ∈ {1, ∗}m−i−1. Then we make use of the following recursion

bψ∗η = bψ0η + bψ1η

Note that both the responses to ψ0η and ψ1η are already stored in
⋃m
j=i T

0
i because they are both of the

form {0, 1}i+1{1, ∗}m−i−1. Therefore filling in every entry in T 0
i takes constant time.
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Consequently, we can compute all the entries in the tables T 0
i (0 ≤ i ≤ m) using time O(m2m), which is

an upper bound on the number of total entries. Similarly we can precompute T 1.
The total time for the preprocessing is thus π(M) = Õ(M).
Answering the queries: Given any partial match query ϕ ∈ {0, 1, ∗}m, by the pigeonhole principle

some Symbol Sym ∈ {0, 1, ∗} occurs at most m
3 times in ϕ. We select the corresponding table T Sym and

combine the stored values in T Sym by subtractions and additions, which takes O(2m/3) time per query. For
illustration, suppose we need to answer the query 0011 ∗ ∗1. Since 0 is the least-frequent Symbol, we use
values stored in T 0. Specifically,

b0011∗∗1 = b∗∗11∗∗1 − b1∗11∗∗1 − b∗111∗∗1 + b1111∗∗1

And in general, if there are r (r ≤ m/3) Sym, we need to combine 2r terms with the correct sign (if Sym is ∗
then we only do addition, otherwise the sign is + when the parity of asterisks in place of Sym is even). This
give rise to a bound of ζ(M) = O(2m/3) per query.

Lemma 9. Given an algorithm for PM-SUMM with offline time π(M) and online time ζ(M), PIRkRM admits
a shortcut for D− TERMℓ

n that runs in time O(π(N1/d) + ℓ · ζ(N1/d)).

Proof. After receiving the share xj = (qj1, . . . , q
j
d) in the scheme, the server parses the share in every dimension

and interprets the numbers as the numbers q0, . . . , qM−1, M = N1/d. Then it applies the preprocessing
algorithm for PM-SUMM . This runs in time O(π(N1/d)). Next, let ψ be a DNF term. Suppose we decompose
ψ(x1, . . . , xd) = ψ1(x1) ∧ . . . ∧ ψd(xd). It is possible to compute the sum associated with ψ as

∑
(x′

1,...,x
′
d

)∈{0,1}n:ψ(x′
1,...,x

′
d

)=1

d∏
i=1

qji [x′
i] =

d∏
i=1

∑
x′

i
∈{0,1}n/d:ψi(x′

i
)=1

qji [x′
i],

where the latter expression can be computed, by assumption, with only O(ζ(N1/d)) time. Involving all ℓ
terms brings the total running time to O(π(N1/d) + ℓ · ζ(N1/d)).

Lemmas 8 and 9 together imply the following quantitative improvement over Theorem 1.

Theorem 19. PIRkRM admits a weak shortcut for SUM− TERMℓ
n and D− TERMℓ

n. Concretely, τ(N, ℓ) =
Õ(N1/d + ℓ ·N1/3d).

We can also obtain the following incomparable result by a simple full-fledged dynamic programming that
has preprocessing time O(3m).

Lemma 10. There is an algorithm for PM-SUMM with offline time O(M log2(3)) and online time O(1).

Proof. Using the language of the proof of Lemma 8, we will compute a table T containing answers bϕ to all
queries ϕ ∈ {0, 1, ∗}m, therefore making ζ(M) = O(1). First, we fill T with bϕ for all ϕ ∈ {0, 1}m. As in the
proof of Lemma 8 because each such bϕ corresponds to a single element from the set {qi}M−1

i=0 . We proceed
by induction on the number of ∗ symbols appearing in ϕ ∈ {0, 1, ∗}m. To this end, let ϕ be a string with r
∗-symbols so we may write ϕ = ψ∗η. Since ψ0η and ψ1η have strictly less than r ∗-symbols, by the induction
assumption, bψ0η and bψ1η have been already computed in T . From the relation bϕ = bψ∗η = bψ0η + bψ1η we
can compute bϕ in O(1) time. Consequently, since there are 3m elements in {0, 1, ∗}m and we have proven
each takes O(1) time to compute, the overall preprocessing time is π(M) = O(3m).

Theorem 20. PIRkRM admits a weak shortcut for SUM− TERMℓ
n and D− TERMℓ

n. Concretely, τ(N, ℓ) =
O(N log2(3)/d + ℓ).

Finally, constructions with even better performances can be obtained by making hybrids of Lemmas 8
and 10, but they are omitted since the complexity expressions we obtain are complicated. In particular,
we do not achieve the supposedly optimal complexity of (Õ(M), O(1)) for PM-SUMM , which would have
yielded strong shortcuts for D− TERMℓ

n or SUM− TERMℓ
n.
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ShareRM′ (x):
1. Let h be the smallest integer such that

(
h
2

)
≥ N . Let φ(x1, x2) = (x1− 2)(x1− 1)/2 + x2 be an (invertible)

mapping defined on the domain X := {(x1, x2) : h ≥ x1 > x2 ≥ 1}. Moreover let φ−1
1 , φ−1

2 be mappings
such that φ(φ−1

1 (x′), φ−1
2 (x′)) = x′ for every x′ ∈ [

(
h
2

)
]. Compute ex ∈ {0, 1}h as

ex[z] =
{

1, z ∈ {φ−1
1 (x), φ−1

2 (x)},
0, otherwise.

2. Let F = F4 be a field with 4 elements. Let α1, α2, α3 ∈ F be distinct nonzero field elements. Draw random
vectors r1, r2, r3 ∈R Fh and compute qj := ex + rjαj for j ∈ [3].

3. The share of each server j ∈ [3] is xj := qj . Output (x1, x2, x3).
EvalRM′ (j, f̂ , xj = qj):

1. Let λj :=
∏

ℓ̸=j
αℓ/(αℓ − αj) be the j’th Lagrange coefficient. Compute

ỹj = λj

∑
(x′

1,x′
2)∈X

f(φ(x′
1, x′

2))qj [x′
1]qj [x′

2]

2. Output yj = σ(ỹj), where σ : F→ F2 is a homomorphism with respect to addition such that σ(z) = z for
z ∈ F2.

DecRM′ (y1, y2, y3): Output y = y1 + y2 + y3.

HSS Parameters: Input share size α(N) = O(
√

N), output share size β(N) = 1.

Figure 6: The scheme PIR3
RM′ .

4.3 Compressing Input Shares
The scheme PIR3

RM described above can be strictly improved by using a more dense encoding of the input.
This results in a modified scheme PIR3

RM′ with α′(N) =
√

2 · N1/2, a factor
√

2 improvement over PIR3
RM.

This is the best known 3-server PIR scheme with β = 1 (up to lower-order additive terms [13]).
We show that with some extra effort, similar shortcuts apply also to the optimized PIR3

RM′ . We therefore
obtain the following result. We refer the reader to Figure 2 for intuition.

Theorem 21. PIR3
RM′ admits a strong shortcut for SEGℓ

n. Concretely, τ(N, ℓ) = O(α(N) + ℓ) = O(
√
N + ℓ).

Proof. We will show it is possible a computational shortcut for the function f(x) =
∑ℓ
t=1 χ[at,bt](x), which

is an ℓ-sum of one-dimensional intervals. For this we will need to precompute several quantities, similar
to the proof of Theorem 16. First, consider the quantity (rectangles) for every 2-dimensional interval
[a1, b1]× [a2, b2] ⊆ X .

R[a1,b1]×[a2,b2] :=
∑

(x′
1,x

′
2)∈[a1,b1]×[a2,b2]

qj [x′
1]qj [x′

2].

Similar to the proof of Theorem 16, we can precompute these quantities in O(
√
N) time, such that every

R[a1,b1]×[a2,b2] can be obtained in O(1) time. Next, for every i ∈ [h], we will also need to precompute the
following quantity (triangles):

Ti :=
i∑

x′
1=1

x′
1−1∑
x′

2=1

qj [x′
1]qj [x′

2]

= Ti−1 +R[i,i]×[1,i−1],
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which from the second equality we see that can be precomputed, such that any Ti can be obtained in O(1)
time.

Next, we have to show that we may represent the sum of terms qj [x′
1]qj [x′

2] associated with a segment
[a, b] as a linear combination of O(1) of rectangles and triangles. For this, consider embedding of the one
dimensional line [N ] into X , as given by φ from Figure 6. Therefore, the computation performed by server j
to evaluate χ[a,b] takes the form∑

x∈[N ]

χ[a,b](x)qj [φ−1
1 (x)]qj [φ−1

2 (x)] =
∑

(x′
1,x

′
2):φ(x′

1,x
′
2)∈[a,b]

qj [x′
1]qj [x′

2]

= Tφ−1
1 (b) −R[φ−1

1 (b),φ−1
1 (b)]×[φ−1

2 (b),φ−1
1 (b)−1] −R[φ−1

1 (a),φ−1
1 (a)]×[1,φ−1

2 (a)] − Tφ−1
1 (a)−1,

where the last equality follows because Tφ−1
1 (b) corresponds to the interval

[
1, φ

−1
1 (b)(φ−1

1 (b)+1)
2

]
, Tφ−1

1 (a)−1

corresponds to the interval
[
1, (φ−1

1 (a)−1)φ−1
1 (a)

2

]
, R[φ−1

1 (b),φ−1
1 (b)]×[φ−1

2 (b),φ−1
1 (b)−1] corresponds to the interval[

b+ 1, φ
−1
1 (b)(φ−1

1 (b)+1)
2

]
andR[φ−1

1 (a),φ−1
1 (a)]×[1,φ−1

2 (a)] corresponds to the interval
[

(φ−1
1 (a)−1)φ−1

1 (a)
2 + 1, a− 1

]
,

which implies we sum over the points[
1, φ

−1
1 (b)(φ−1

1 (b) + 1)
2

]
\
(

[1, a− 1] ∪
[
b+ 1, φ

−1
1 (b)(φ−1

1 (b) + 1)
2

])
= [a, b].

Consequently, a server j can evaluate f in O(ℓ) time, given O(
√
N) precomputation time.

Similar to Remark 2, obtaining here a strong shortcut for two dimensional intervals is open.

4.4 Negative Results for RM PIR
Although we have shortcuts for disjoint DNF formulas, similar shortcut for more expressive families with
counting hardness is unlikely. The idea is similar in spirit to [58, Claim 5.4].

Theorem 22. Let F be a function family for which PIRkRM admits a weak shortcut with τ(N, ℓ) = T . Then,
there exists an algorithm Count2 : Fn → F2 running in time O(T +

∣∣∣f̂ ∣∣∣), that when given f̂ ∈ Fn, computes
the parity of |{x ∈ Xn : f(x) = 1}|.

Proof. Recall that the server computes the following expression in PIRkRM:

σ

λj ∑
(x′

1,...,x
′
k−1)∈X n

f(x′
1, . . . , x

′
k−1)

k−1∏
i=1

(qji )[x′
i]

 .

To compute the required parity, instead of using e1, . . . , en in the original ShareRM in step 3 (see Figure 3),
we use the vectors 1N1/d

, . . . , 1N1/d , i.e., the all-one vectors. After calling Eval on all the respective shares
and decoding the output, one obtains∑

(x′
1,...,x

′
k−1)∈{0,1}n

f(x′
1, . . . , x

′
k−1) = |{x ∈ Xn : f(x) = 1}| (mod 2).

The total time of the algorithm is O(T +
∣∣∣f̂ ∣∣∣).

We recall the following conjecture commonly used in complexity theory.

Conjecture 2 (Strong Exponential Time Hypothesis (SETH)). SAT cannot be decided with high probability
in time O(2(1−ϵ)n) for any ϵ > 0.
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By the isolation lemma from [27], SETH is known to imply that ⊕SAT, which is similar to SAT except
that one need to compute the parity of the number of satisfying assignments, cannot by solved in time
O(2(1−ϵ)n). The number of satifying assignemnts to a CNF formula equals 2n − r, where r is the number of
satisfying assignments to its negation. Since the negation of a CNF formula is a DNF formula, the language
consisting of DNF formulas with an even number of satisfying assignments, ⊕DNF, cannot be decided in
O(2(1−ϵ)n) as well. Therefore we have the following corollary.

Corollary 3. For any k, there exists a polynomially bounded ℓ such that PIRkRM does not admit a weak
shortcut for DNFℓn, unless SETH fails.

Proof. By Theorem 22, if there is a weak shortcut for any polynomially bounded ℓ, i.e., an algorithm
computing Eval for any function in DNFℓn in time O(N1−ϵ), then one can decide ⊕DNF in time O(N1−ϵ).

Note that the hardness for DNFℓn is not contradictory to the fact that larger field size or random linear
combinations help evaluating general DNFs (see Remark 1) because our proof heavily relies on the fact that
we work over a small field (which has several efficiency benefits) and that the shortcut is deterministic.

Conjecture 3 (Exponential Time Hypothesis (ETH)). SAT requires time O(2δn), for some δ > 0, to be
decided with high probability.

In a similar fashion, assuming the ETH, we can obtain the weaker result that only strong shortcuts are
impossible given k is large, namely when k > 1

δ .

Corollary 4. For some large enough k and some polynomially bounded ℓ, PIRkRM does not admit a strong
shortcut for DNFℓn, unless ETH fails.

Similar lower bounds exist for PIR3
RM′ .

5 On Shortcuts for Matching Vector PIR
Matching vectors (MV) based PIR schemes in the literature can be cast into a template due to [14]. As
described in the introduction, this template has two ingredients: (1) a matching vector family; (2) a share
conversion for a specific relation that conditionally inverts the input secret.

Matching vectors We begin by defining the former.

Definition 10 (Matching vectors). Let m,h be integers and let S ⊆ Zm \ {0} be a set. We say that the
vectors MV = {ux, vx ∈ Zhm}x∈[N ] form an S-matching vector family of size N = 2n if the following conditions
hold:

1. ⟨ux, vx⟩ = 0 for every x ∈ [N ];

2. ⟨ux, vx′⟩ ∈ S for every x ̸= x′.

Share conversion The following share conversion is a component used implicitly or explicitly in the MV
PIR schemes we consider.

Definition 11 (Share conversion [14]). Let L and L′ be two secret-sharing schemes over the domains of secrets
K1 and K2, respectively, We say that L is locally convertible to L′ with respect to the relation R ⊂ K1 ×K2
if there exists a local conversion function SC such that:

• If s1, . . . , sk is a valid sharing for some secret s in L, then SC(1, s1), . . . ,SC(k, sk) is a valid sharing
for some secret s′ ∈ L′ such that (s, s′) ∈ R.
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Notation: Let MV = {ux, vx ∈ Zh
m}x∈[N ] be an S-matching vector family, and let LS = (ShareS , DecS) be a

linear secret sharing scheme along with a compatible SC = SCS that converts shares given by LS to valid shares
of the additive secret sharing Ladd (see Section 3.2) according to the relation RS .

SharePIR(x):
1. For every coordinate i ∈ [h] of the vector ux, compute the shares (q1

i , . . . , qk
i ) = ShareS(ux[i]).

2. The share to each server j ∈ [k] is the vector of shares xj = (qj
i )i∈[h].

3. Output (x1, . . . , xk).
EvalPIR(j, f̂ , xj = (qj

i )i∈[h]):
1. For every x′ ∈ [N ], obtain a share cx′ (under the same format of output of ShareS) of ⟨ux, vx′⟩ from xj

and x′, by utilizing the additive homomorphism of LS .
2. Compute and output

yj =
∑

x′∈[N ]

f(x′)SCS(j, cx′ ).

DecPIR(y1, y2, y3):
1. Compute ỹ = y1 + y2 + y3 over G, and output y = 1 if and only if ỹ ̸= 0.

Figure 7: The Matching Vectors based PIR scheme template, PIRkMV,SC.

Negation with restricted domain The relation RS is defined using the same S ⊆ Zm \ {0} associated
with the matching vector family. Specifically, relation RS ⊆ Zm × Yn is defined as

RS := {(s, 0) : s ∈ S} ∪ {(0, s′) : s′ ∈ Yn \ {0}} ∪ {(s, s′) : s /∈ S ∪ {0}, s′ ∈ Yn}.

Note that this relation essentially requires the conversion to negate the input with restricted domain {0} ∪ S
(how the conversion behaves on other input can be arbitrary).

The MV PIR scheme template PIRkMV,SC = (SharePIR,EvalPIR,DecPIR) is described in Figure 7.

Concrete instantiations Two representative share conversoin are the ones due to Efremenko (implicit
in [47]) and Beimel et al. [14]. Both schemes instantiates the MV family MVwGrol due to Grolmusz [56, 44]
which exhibits h = 2O(n1/2polylog n) (introduced formally in Fact 3).

Efremenko’s conversion is based on the following S-decoding polynomial over finite fields.

Definition 12. A polynomial P ∈ F[x] is called an S-decoding polynomial with respect to γ ∈ F if

1. P (γs) = 0 for every s ∈ S;

2. P (γ0) = P (1) = 1.

Fact 1. Choose p1 = 7, p2 = 73, m = 511 = 7 · 73, and let γ ∈ F29 be an element of multiplicative order
m. Then, there exists an S511-decoding polynomial P ∈ F29 [x] with respect to γ with only 3 monomials
P (x) = a1x

b1 + a2x
b2 + a3x

b3 . Specifically, P (x) = γ423x65 + γ257x12 + γ342.

Using this, Efremenko’s share conversion for the relation RS is given by

• ShareS(x) = ShareEfr(x):

1. Draw uniformly w ∈ Zm.
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2. The share of each server j ∈ [3] is xj = w + bjx. Output (x1, x2, x3).

• SCS(j, xj) = SCEfr(j, xj): Compute and output

yj = ajγ
xj

.

PIR Parameters: Share size α(N) = O
(

2146
√
n logn

)
, output share size β(N) = O(1).

BIKO’s approach takes m = 6 and so Zm = Z6. The computation utilizes the finite look-up table of
size 6× 6 (see [14, Appendix]), which computes the function TBIKO : Z2

6 → F2
2. See also [62] in this regard.

Fact 2 ([14, Theorem 4.1,Example 4.2]). There exists an explicit share conversion from CNF sharing over Z6
to additive sharing over F2

2 with respect to the relation RS, in which every server has the same computation
given by a lookup table of constant size, given in Table 1.

TBIKO(a, b) b = 0 b = 1 b = 2 b = 3 b = 4 b = 5
a = 0 (1, 1) (0, 0) (1, 1) (0, 0) (0, 0) (1, 1)
a = 1 (1, 1) (0, 0) (0, 0) (1, 1) (0, 1) (1, 0)
a = 2 (0, 0) (0, 0) (1, 1) (1, 0) (1, 0) (0, 0)
a = 3 (1, 1) (1, 1) (0, 1) (0, 0) (1, 1) (0, 1)
a = 4 (1, 1) (1, 0) (0, 1) (1, 1) (1, 1) (1, 1)
a = 5 (1, 1) (1, 0) (1, 1) (0, 1) (0, 0) (0, 0)

Table 1: Converting the sharing defined by ShareBIKO to additive sharing over F2
2 with respect to RS . Each

party which holds the share (a, b) converts it to the share appearing in entry (a, b) in the array.

Using the table, BIKO’s share conversion for the relation RS is given by

• ShareS(x) = ShareBIKO(x):

1. Draw uniformly w1, w2 ∈ Z6.
2. The share of server 1 is x1 = (w2, x− w1 − w2). The share of server 2 is x2 = (w1, x− w1 − w2),

The share of server 3 is x3 = (w1, w2).
3. Output (x1, x2, x3).

• SCS(j, xj = (a, b)) = SCBIKO(j, xj = (a, b)): Compute and output

yj = TBIKO(a, b).

PIR Parameters: Share size α(N) = O
(

26
√
n logn

)
, output share size β(N) = O(1).

5.1 Server Computation and Matching Vectors Structure
We describe the server computation in more detail, in particular, we present the structure of the matching
vector family on which MV PIR is based. In PIRkMV,SC each server j is given as input xj ∈ Zhm which is a
secret share of ux. Then, for every x′ ∈ [N ], the server j homomorphically obtains yj,x,x′ which is the j-th
share of ⟨ux, vx′⟩. Next, each server j computes a response∑

x′∈[N ]

f(x′)SC(j, yj,x,x′).
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Therefore, for the all-1 database (f(x) = 1), for every S-matching vector family MV and share conversion
scheme SC from L to L′ we can define the (MV,SC)-counting problem, #(MV,SC), see Definition 1.

We consider #(MVwGrol,SC), with MVwGrol, a matching vectors family due to Grolmusz [44] that is used in
all third-generation PIR schemes (Fact 3), and SC ∈ {SCEfr,SCBIKO}.

#(MV,SC) displays a summation of converted shares of inner products. The actual computation carried
out is determined by the structure of vx′ and hence the instance of the MV used. Therefore we have to look at
the matching vectors in more detail. The following matching vector family, which we termed hypergraph-based,
was first given in [44].

Instantiation of Grolmusz’s family There is an explicitly constructable S-Matching Vector family for
m = p1p2 with α(N) = No(1) based on the intersecting set family in [56] for the canonical set S = Sm =
{(0, 1), (1, 0), (1, 1)} ⊆ Zp1 × Zp2 (in Chinese remainder notation). Here we give a more detailed description
of their structure in the language of hypergraphs.

Fact 3 (The parameterized MVwGrol, modified from [44]). Let m = p1p2 where p1 < p2 are distinct primes. For
any integer r and parameter function w(r), one can construct an S-matching vector family {ux, vx ∈ Zhm}x∈[N ]

where N =
(

r
w(r)

)
and h =

(
r

≤d
)

for d ≤ p2
√
w(r). Moreover, the construction is hypergraph-based in the

following sense:
Let [r] be the set of vertices. Every index x ∈ [N ] corresponds to a set Tx ⊂ [r] of w(r) nodes. The vector

vx has entires in {0, 1} and its coordinates are labelled with ζ ⊂ [r] which are hyperedges of size at most d
nodes. Moreover, vx[ζ] = 1 iff the vertices of the hyperedge ζ are all inside Tx. Therefore for any vector q,
and any x ∈ [N ], the inner product can be evaluated as

⟨q, vx⟩ =
∑

ζ⊆Tx,|ζ|≤d

v[ζ].

In other words, the inner product is carried out by a summation over all the hyperedges lying within a
given vertex subset Tx. Under this view, we will call |Tx| = w(r) the clique size parameter.

By setting MVwGrol with w = Θ(
√
r), we obtain from Fact 3 and the definition of PIRkMVw

Grol,SC, a PIR scheme
with α(N) = 2O(2p2

√
n logn), which is state of the art in terms of asymptotic communication complexity.

To prove Fact 3, we follow the presentation given in [12], which is in turn based on [44]. We invoke
without proof the following theorem.

Fact 4 ([44, Corollary 41]). Let m =
∏t
i=1 pi be a product of primes. Let w be a positive integer. Suppose

integers {ei}i∈[t] are such that for all i, we have pei
i > ω1/t. Let d = maxi pei

i , and r ≥ w be arbitrary. Let S be
the canonical set modulo m. There is an explicit multilinear polynomial f(z1, ..., zr) ∈ Zm[z1, . . . , zr],deg(f) ≤
maxi∈[t](pei

i − 1) such that for all z ∈ {0, 1}r,

f(z) =
{

0 mod m if
∑h
ℓ=1 zℓ = w,

s mod m, for some s ∈ S if
∑h
ℓ=1 zℓ < w.

where coordinates of z are summed as integers.

Proof of Fact 3. An S-matching vector family that satisfies the hypergraph-based view is given as follows.
For every T ⊆ [r] of size w, define the polynomial fT to be the polynomial f with zj set to 0 for j /∈ T .
For any T ′ ⊆ [r], define zT ′ ∈ {0, 1}r to be the indicator of the set T ′. It is easy to check that for all
T, T ′ ⊆ [r], fT (zT ′) = f(zT∩T ′). Therefore by Fact 4,

• For all T ⊆ [r], where |T | = w, fT (zT ) = f(zT ) = 0 mod m.

• For all T ̸= T ′ ⊆ [r], where |T | = |T ′| = w, fT (zT ′) = f(zT∩T ′) ∈ S mod m.
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For x ∈ [N ] with N =
(
r
w

)
, let Tx denote the x-th subset of [r] of size w. Let ux be the vector of coefficients

of fTx . Let vx be the evaluation of monomials of f at the point zTx . Now note that any monomial over
{z1, . . . , zr} corresponds to an hyperedge ζ over [r] and thus if we associate ζ with a coordinate, we get
vx[ζ] = 1 iff ζ ⊂ Tx. Note |ux| = |vx| =

(
r

≤d
)

and that for x, x′ ∈ [N ], we have ⟨ux, vx′⟩ = fTx
(zTx′ ). It is easy

to see that {ux}x∈[N ] and {vx}x∈[N ] form
(
r
w

)
-sized family of S-matching vectors in Zhm where h =

(
r

≤d
)
. Now

we set t = 2. For any w = w(r), Choose e1, e2 to be the smallest integers satisfying pe1
1 >

√
w and pe2

2 >
√
w.

Clearly, d = max(pe1
1 , p

e2
2 ) ≤ p2

√
w = O(

√
w). Therefore we have that N =

(
r
w

)
and h ≤

(
r

≤p2
√
w

)
.

5.2 A Reduction From a Subgraph Counting Problem for SCEfr

In this section we relate the server computation to a subgraph counting problem. For this we rely on the
hypergraph-based structure of the matching vector family, in combination with the share conversion SCEfr.
More concretely, we relate #(MVwGrol,SCEfr) to the problem ⊕IndSub(Φ511,0, w), see Definition 2 and the
preceding discussion.

We prove the following which relates obtaining computational shortcuts for PIRkMV,SC to counting induced
subgraphs.

Lemma 11 (Hardness of (MVwGrol,SCEfr)-counting). If #(MVwGrol,SCEfr) can be computed in No(1) (= ro(w))
time, then ⊕IndSub(Φ511,0, w) can be decided in ro(w) time, for any nondecreasing function w : N→ N.

In particular, if we can show ⊕IndSub(Φ511,0,Θ(
√
r)) cannot be decided in ro(

√
r) time under some

complexity assumption, it will imply that PIRk
MVΘ(

√
r)

Grol ,SCEfr
does not admit strong shortcuts for the all-1

database under the same assumption, as α(N) = No(1) holds and τ(N, ℓ) = No(1) is impossible.

Proof of Lemma 11. Let m = 511. Recall that N =
(
r
w

)
and h =

(
r

≤d
)

where d ≤ p2
√
w. Suppose A is an

algorithm solving #(MVwGrol,SCEfr) with these parameters that runs in time No(1) = ro(w). By definition of
ShareEfr, the input to A is a vector xj ∈ Zhm. To homomorphically obtain a share of ⟨ux, vx′⟩, where x is the
client’s input, the server first computes ⟨xj , vx′⟩. For any instance G in ⊕IndSub(Φm,0, w) with |V (G)| = r,
we define the following vector q ∈ Zhm: for every hyperedge ζ where |ζ| ≤ d,

q[ζ] =
{

0 if ζ /∈ E(G)
1 if ζ ∈ E(G).

(11)

Note that for any |ζ| ≠ 2 we have q[ζ] = 0. By Fact 3 and how q is constructed, for every x′ ∈ [N ],

⟨q, vx′⟩ =
∑

ζ⊂Tx′ ,|ζ|≤d

q[ζ] =
∑

ζ⊂Tx′ ,ζ∈E(G)

1.

Therefore the value of the inner product is the number of edges in the subgraph induced by the nodes in Tx′ .
For ℓ = 1, . . . , (m− 1), we feed ℓ · q into the algorithm A. The output will be∑

x′∈[N ]

SCEfr(j, ⟨ℓ · q, vx′⟩) =
∑
x′∈[N ]

ajγ
⟨ℓ·q,vx′ ⟩ = aj

∑
x′∈[N ]

γℓ⟨q,vx′ ⟩

= aj
∑

b∈{0,...,m−1}

∑
x′:⟨q,vx′ ⟩=b

γbℓ

= aj
∑

b∈{0,...,m−1}

cb(γℓ)b,

where cb ∈ {0, 1} (recall that the field F29 has characteristic 2) is the parity of the number of induced
w-subgraphs, whose number of edges is congruent to b modulo m. This is because cb counts the number of
elements in the set {x′ ∈ [N ] : ⟨q, x′⟩ = b} = {x′ ∈ [N ] :

∑
ζ⊂Tx′ ,ζ∈E(G) 1 = b}. Consequently, the bit c0 is
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the answer bit to the problem ⊕IndSub(Φm,0, w). Note that after each call to A, we obtain evaluation of the
degree-(m− 1) polynomial Q(Γ) = aj

∑
b∈{0,...,m−1} cbΓb at Γ = γℓ. Since the points {γℓ}m−1

ℓ=0 are distinct,
we can perform interpolation to recover cb for any b ∈ {0, . . . ,m − 1}. In particular, we can compute the
desired bit c0. The overall running time is O(m2) +mro(w) = ro(w).

5.3 A Reduction From a Subgraph Counting Problem for SCBIKO

A similar reduction holds for SCBIKO as well, except that now the predicate in subgraph counting is Φ6,4
instead of Φ511,0.

Lemma 12 (Hardness of (MVwGrol,SCBIKO)-counting). If #(MVwGrol,SCBIKO) can be computed in No(1) (= ro(w))
time, then ⊕IndSub(Φ6,4, w) can be decided in ro(w) time.

Proof. Let A be an oracle solving #(MVwGrol,SCBIKO) and that it runs in time No(1) = ro(w). By definition
of ShareBIKO, the input to A is a pair of vectors xj = (a, b) ∈ Zh6 × Zh6 . To homomorphically obtain a share
of ⟨ux, vx′⟩, where x is the client’s input, the server computes (⟨a, vx′⟩, ⟨b, vx′⟩). The crucial observation (see
Table 1) is

∀s ∈ Z6,SCBIKO(j, xj = (s, 0))[1] = TBIKO(s, 0)[1] = 1⇔ s ̸= 2.

This allows us to recover the parity of the number of times the input to SCBIKO(j, xj = (·, 0)) is not 2, which
we will show allows us to compute ⊕IndSub(Φ6,4, w). We design our input vector a, b such that

1. ⟨a, vx′⟩ =
∑
ζ⊂Tx′ ,ζ∈E(G) 5 for any x′. This can be done by setting a = 5q from Equation (11).

2. ⟨b, vx′⟩ = 0 for any x′. This can be done by setting b as the all-0 vector.

Then

SCBIKO(j, xj = (⟨a, vx′⟩, ⟨b, vx′⟩))[1] = 1

iff SCBIKO

j, xj =

 ∑
ζ⊂Tx′ ,ζ∈E(G)

5, 0

 [1] = 1

iff
∑

ζ⊂Tx′ ,ζ∈E(G)

5 ̸= 2 (mod 6)

iff
∑

ζ⊂Tx′ ,ζ∈E(G)

1 ̸= 4 (mod 6).

As x′ ∈ [N ], the set Tx′ loops over every subset of [r] with w(r) elements, and the summation of terms
SCBIKO(j, ·) is done over F2

2. So the bit A(a, b)[1] is exactly N − ⊕IndSub(Φ6,4, w) (mod 2), because we
don’t count subsets Tx′ whose number of intersecting edges with E(G) is 4 (mod 6). Thus, it holds that

⊕IndSub(Φ6,4, w) = N −A(a, b)[1] (mod 2).

Note that the reduction runs in time O(r2) + ro(w) = ro(w).

5.4 Hardness of Subgraph Counting
As described in Section 2.2, we have the following plausible conjecture, and it turns out that its hardness can
be based on ETH for a suitable choice of parameter.

Conjecture 4 (Hardness of counting induced subgraphs). ⊕IndSub(Φm,∆, w) cannot be decided in ro(w)

time, for any integers m ≥ 2, 0 ≤ ∆ < m, and for every function w(r) = O(rc), 0 ≤ c < 1.
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Note that Conjecture 4 does not rule out weak shortcuts. However, it seems that even weak shortcuts
would be difficult to find when instantiated with matching vectors from Fact 3. Indeed, for the related
problem of hyperclique counting, algorithms which are faster than the naïve one are known only for the
special case when hyperedges are edges (e.g.[6]).

Basing on ETH. Proving Conjecture 4 is difficult as it is a fine-grained lower bound. However, by assuming
ETH, we can prove Conjecture 4 partially, in the sense that for a specific choice of w(r), the lower bound
does hold.

Lemma 13. There is an efficiently computable function w(r) = Θ(log r/ log log r), such that if ⊕IndSub(Φ, w)
can be decided in ro(w(r)) time, then ETH fails, where Φ ∈ {Φ511,0,Φ6,4}.

Proof. This follows from ETH
Lemma 14
≤ Clique(k(r))

Lemma 15
≤ ⊕IndSub(Φ, w), where the last reduction

applies for Φ ∈ {Φ511,0,Φ6,4}.

Next, we sketch how to perform the steps of the reduction in the proof of Lemma 13.

Reducing clique decision to ETH. Let Clique(k(r)) be the problem that, given a graph G with r nodes,
decide whether a clique of size k(r) exists in G. As a direct corollary of [30, Theorem 5.7], we have the
following lemma.

Lemma 14. There is an efficiently computable function k(r) = Θ(log r/ log log r), such that if Clique(k(r))
can be solved in ro(k(r)) time, then ETH fails.

Reducing induced subgraph counting to clique decision By reproducing the reduction in [46], we
have the following (proofs deferred to Appendix A).

Lemma 15. Let k(r) = Θ(log r/ log log r) as in Lemma 14. Then, there is an efficiently computable size
parameter w(r) = Θ(log r/ log log r) such that if ⊕IndSub(Φ, w) can be decided in ro(w(r)) time, then one
can decide Clique(k(r)) in ro(k(r)) time, where Φ ∈ {Φ511,0,Φ6,4}.

While Lemma 14 could be proven to hold for k(r) = Θ(
√
r) as well, as discussed in Section 2.2, by

reproducing the reduction in [46], Lemma 15 only holds for k(r) = o(log r), due to a technical difficulty
described in Appendix A, Remark 4.

Hardness of subgraph counting Finally, our main theorem follows from Conjecture 4 and Lemmas 11
to 13. To this end, denote by MV∗ the family MVwGrol obtained by instantiating w(r) with this specific
parameter.

Theorem 23. #(MV∗,SC), SC ∈ {SCEfr,SCBIKO}, cannot be computed in No(1) (= ro(w)) time, unless ETH
fails. Moreover, assuming Conjecture 4, the same holds for MVwGrol with w = Θ(

√
r).

6 HSS from Generic Compositions of PIRs
In this section we show alternative routes for obtaining HSS schemes for simple families by using any PIR
scheme that satisfies some natural structural properties in a black-box way.

6.1 Tensoring
We define a natural tensoring operation on PIR schemes that allows us to obtain (weak) shortcuts in a generic
way. In particular, we can apply this operation to the MV PIR schemes to which our previous negative results
apply. This allows us to obtain similar shortcuts as in Section 4, at the cost of additional servers. However,
the communication with each server stays the same. This technique bears resemblance to the approach in [9],
where the servers are arranged in a d-dimensional tensor. We begin with the following definition.
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Share⊗d(x):
1. Divide x into d pieces x = (x1, . . . , xd) of length n/d each.
2. For i ∈ [d] compute (x1

i , . . . , xk
i ) = Share(xi).

3. The share of each server j = (j1, . . . , jd) ∈ [k]d is xj = (xj1
1 , . . . , x

jd
d ).

4. Output (x1, . . . , xkd

).

Eval⊗d(j, f̂ , xj): Compute and output

∑
x′

1,...,x′
d

∈{0,1}n/d

f(x′
1, . . . , x′

d)
d∏

i=1

SC(j, xji
i , x′

i)

Dec⊗d(y1, . . . , yk): Compute ỹ =
∑kd

j=1 yj over F. Output y = 1 if ỹ ̸= 0.

Figure 8: The tensoring operation for PIR.

Definition 13 (Evaluation linear PIR). Let PIR = (Share,Eval,Dec) be a PIR scheme. Denote by f̂ :
{0, 1}n → {0, 1} the database held by the servers. We say that PIR is evaluation linear if for some function6

SC : [k]× {0, 1}α(N) × {0, 1}n → F, where F is a finite field, Eval performs the following computation

Eval(j, f̂ , xj) =
∑

x′∈{0,1}n

f(x′)SC(j, xj , x′).

Theorem 24. Let PIR = (Share,Eval,Dec) be a quasiadditive and evaluation linear k-PIR, whose share size
and output share size are α(N) and β(N) respectively. Then, for every d ≥ 2, PIR⊗d, as defined in Figure 8,
is a kd-PIR with share size d · α(n/d) and output share size β(n/d).

Proof. The number of servers used, share size and output share size follow from the definition of PIR⊗d.
Moreover, the security of Share⊗d follows from the security of Share, since server j = (j1, . . . , jd) obtains a
single share xji

i corresponding to each ji. Thus, we need to show that for any f ∈ TTn and x ∈ {0, 1}n

Pr
[

Dec⊗d
(
y1, . . . , yk

d
)

= f(x) :
(
x1, . . . , xk

d
)
← Share⊗d(x1, . . . , xd)

∀j ∈ [kd] yj ← Eval⊗d(j, f̂ , xj)

]
= 1.

The statement above holds if ỹ =
∑kd

j=1 y
j ̸= 0 in the algorithm Dec⊗d whenever f(x1, . . . , xd) = 1. Indeed,

by expanding we get that

kd∑
j=1

yj =
kd∑
j=1

∑
x′

1,...,x
′
d

∈{0,1}n/d

f(x′
1, . . . , x

′
d)

d∏
i=1

SC(j, xji

i , x
′
i)

=
∑

x′
1,...,x

′
d

∈{0,1}n/d

f(x′
1, . . . , x

′
d)

kd∑
j=1

d∏
i=1

SC(j, xji

i , x
′
i)

=
∑

x′
1,...,x

′
d

∈{0,1}n/d

f(x′
1, . . . , x

′
d)

d∏
i=1

k∑
ji=1

SC(j, xji

i , x
′
i)

6For our purposes SC will be a share conversion so we will reuse notation.

35



By the correctness of PIR it must be the case that
k∑

ji=1
SC(j, xji

i , x
′
i)
{
∈ F \ {0}, xi = x′

i

= 0, xi ̸= x′
i

Due to the fact that the product of nonzero elements is nonzero in F we may therefore obtain that ỹ =
f(x1, . . . , xd) · η for some nonzero element η ∈ F. Thus ỹ ̸= 0 if and only if f(x1, . . . , xd) = 1 and the result
follows.

Such tensored schemes are implicit among the first PIRs in the literature. For example, PIRkRM can be
obtained via tensoring PIR2

Hadarmard (see [31, Section 3.1]) (k − 1) times with itself in a non-black-box way.
Now we may transfer all the results in Section 4 because Eval⊗d essentially computes a degree d polynomial

in the same form as EvalRM does, over the variables qji [x′
i] := SC(j, xji

i , x
′
i) (c.f. Equation (5)).

Proposition 1. PIR3
Efr and PIR3

BIKO are quasiadditive and evaluation linear. The latter is evaluation linear
when the output shares are viewed over F4 via an additive homomorphism F2

2 7→ F4.

When PIR is indeed instantiated with a matching-vector PIR, such as PIR3
Efr or PIR3

BIKO, Theorem 24,
with the shortcuts from Section 4, gives HSS schemes for disjoint DNF formulas or decision trees with the
best asymptotic efficiency out of the ones we considered.

Corollary 5. There is a perfectly-correct 3d-server HSS for D− TERMℓ
n, with α(N) = Õ

(
26
√
n logn

)
,

β(N) = O(1) and τ(N, ℓ) = Õ
(
N1/d+o(1) + ℓ ·N1/3d).

Again note that the term o(1) appears in the exponent since evaluating yji,xi,x′
i
, the share of ⟨uxi

, vx′
i
⟩, in

MV PIR requires O(α(n)) computation, and there are O(N1/d) such evaluations.

Remark 3. It is worth noting that, although the shortcuts from RM transfer directly into the tensored
MV schemes, strong shortcuts become weak shortcuts, because while the communication α(N) = No(1) is
subpolynomial, on the other hand the relevant shortcuts all run in NΩ(1) time.

6.1.1 Tensoring MV PIR with fewer servers.

The exponential growth in d in the number of servers in Theorem 24 may prove too prohibitive. Here we
present a non-black-box tensoring PIR⊗d

Efr, which exploits the algebraic structure of PIR3
Efr, and reduces the

number of servers to just (d+ 1)2. For this, recall Definition 12 on decoding polynomials. To obtain this
scheme we need the following facts.

Fact 5 ([47, Fact 2.4]). For every odd integer m there exists a finite field F = F2t , where t < m, and an
element γ ∈ F such that γm = 1 and γi ̸= 1 for i = 1, 2, . . . ,m− 1.

Lemma 16 ([47, Claim 3.1]). For any S such that 0 /∈ S and any γ ∈ F there exists an S-decoding polynomial
in F[x] with respect to γ with at most |S|+ 1 monomials.

Theorem 25. The tensored Efremenko PIR scheme PIR⊗d
Efr = (Share⊗d

Efr,Eval⊗dEfr,Dec⊗d
Efr), specified in Figure 9,

is a (d+ 1)2-PIR with share size O
(

28
√
dn logn

)
, and output share size O(d2).

Proof. The security and complexity parameters of the construction are apparent. We analyze the correctness
of the construction. We want to prove that

ỹ =
(d+1)2∑
j=1

aj
∑

(x′
1,...,x

′
d

)∈{0,1}n

f(x′
1, . . . , x

′
d)

d∏
i=1

γ
⟨qj

i
,vx′

i
⟩

= γ
−
∑d

i=1
⟨wi,vx′

i
⟩ ∑

(x′
1,...,x

′
d

)∈{0,1}n

f(x′
1, . . . , x

′
d)P

(
γ

∑d

i=1
⟨uxi

,vx′
i
⟩
)
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Notation:
1. Let p1 < p2 be two primes such that p1, p2 > d ≥ 2, and let m = p1p2.

2. Use Fact 3 to obtain an Sm-matching vector family in Zh
m of size 2n/d, where h = O

(
22p2
√

(n/d) log n
)

and |Sm| = 3.
3. Use Fact 5 to obtain a finite field F = F2t , where t < m, and an element γ ∈ F such that γm = 1 and

γi ̸= 1 for i = 1, 2, . . . , m− 1.
4. For S = Sm, define dS := {s1 + . . . + sd mod m|s1, . . . , sd ∈ S ∪ {0}} \ {0}. Use Lemma 16 to obtain

a dS-decoding polynomial P (x) with respect to γ in F[x] with |dS|+ 1 = (d + 1)2 monomials. Denote
P (x) = a1xb1 + a2xb2 + . . . + a(d+1)2 x

b(d+1)2 .

Share⊗d
Efr(x):

1. Divide x into d pieces x = (x1, . . . , xd) of length n/d each.
2. Draw uniformly w1, . . . , wd ∈ Zh

m.
3. For every i ∈ [d] and j ∈ [(d + 1)2] compute qj

i = wi + bjuxi .

4. The share of each server j ∈ [(d + 1)2] is xj = (qj
1, . . . , qj

d). Output (x1, . . . , x(d+1)2
).

Eval⊗d
Efr(j, f̂ , xj = (qj

1, . . . , qj
d)):

1. Compute and output

yj = aj

∑
(x′

1,...,x′
d

)∈{0,1}n

f(x′
1, . . . , x′

d)
d∏

i=1

γ
⟨q

j
i

,vx′
i

⟩

Dec⊗d
Efr(y

1, y2, . . . , y(d+1)2
):

1. Compute ỹ =
∑(d+1)2

j=1 yj over F, and output y = 1 if and only if ỹ ̸= 0.

Figure 9: The tensored Efremenko PIR scheme with (d+ 1)2 servers.
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is nonzero if and only if f(x1, . . . , xd) = 1. It holds that

γ
−
∑d

i=1
⟨wi,vx′

i
⟩ ∑

(x′
1,...,x

′
d

)∈{0,1}n

f(x′
1, . . . , x

′
d)P

(
γ

∑d

i=1
⟨uxi

,vx′
i
⟩
)

= γ
−
∑d

i=1
⟨wi,vx′

i
⟩
f(x1, . . . , xd)

because P is dS decoding and the only combination of elements s1, . . . , sd ∈ S such that s1 + . . .+ sd = 0 is
s1 = . . . = sd = 0 (since we chose p1, p2 > d). Therefore ỹ is nonzero if and only if f(x1, . . . , xd) = 1.

Note that the dependence of share size and output share size on d is different from Theorem 24. This is
due to the fact that we have modify PIR3

Efr to work in a ring Zp1p2 where min{p1, p2} > d for the technique
to work.

6.2 Parallel PIR Composition
Definition 14 (Size, term, conjunction and disjunction of DNF formulas). Let φ and ψ be DNF formulas.
We denote by |φ| the number of terms in φ. If c is a term in φ, we write c ∈ φ. We denote by φ ∧ ψ and
φ ∨ ψ the (expanded) DNF formulas obtained by taking their conjunction and disjunction, respectively.

Definition 15 (Supports). Let φ = φ(X1, . . . , Xn) be a DNF formula with Boolean variables X1, . . . , Xn.
The support of φ, denoted as S(φ) ⊆ 2[n], contains a set s ∈ S(φ) if there exists a term in φ which depends
exactly on the variables indexed by s. If Φ is a set of DNF formulas then we define S(Φ) :=

⋃
φ∈Φ S(φ).

For example, for φ = X3 ∨ (X5 ∧ ¬X17) ∨ (¬X5 ∧X17), we have S(φ) = {{3}, {5, 17}}.
Then, we need the following notion of covering families. Intuitively, a covering family provides an efficient

approximation of another collection of sets.

Definition 16 (Covering families). Let S, S′ be families of sets. We say that S′ d-covers S if for every s ∈ S
there is s′ ∈ S′ such that s ⊆ s′ and |s′| − |s| ≤ d.

A d-covering family S′ of S is usually accompanied by an efficient (i.e. poly(n) time) algorithm
FindCoverS,S′ : S → S′, which, given input s ∈ S, outputs the covering set s′ ∈ S′ such that s ⊆ s′

and |s′| − |s| ≤ d. For example, if d = 0 such an algorithm can simply check if s ∈ S′. A more general
implementation of FindCover is to use a lookup table. However, that is only efficient if the family is of
moderate size. In order to obtain generic algorithmic results for HSS, we always assume an efficient FindCover
for the covering families in what follows, which is given with oracle access.

Finally, we define the family DNF[Φ] which contains the DNF formulas given by a set Φ.

Definition 17 (Function family of sparsely-supported DNF formulas). Let Φ be a set of DNF formulas. We
define the function family of Φ as DNF[Φ] := {{0, 1}n, {0, 1},Φ, E}, where E(φ, x) outputs 1 if ψ(x) = 1.
Moreover, DNF[Φ] is sparsely supported if it comes with a d-covering family S for S(Φ) satisfying

• |S| = 2o(n), and

• d = o(n).

Covering families for DNF formulas satisfy the following straightforward properties (proof omitted).

Lemma 17. For i = 1, 2 let Φi be a set of DNF formulas, where formulas φ = c1∨ . . .∨ cℓi ∈ Φi have at most
ℓi terms, and let Si ⊆ 2[n] be a family that di-covers the support S(Φi). Then, the following statements hold:

1. There exists a set S̃∨ of size |S̃∨| ≤ |S1|+ |S2| which (max{d1, d2})-covers S(Φ1∨Φ2), where Φ1∨Φ2 :=
{φ1 ∨ φ2 : φ1 ∈ Φ1, φ2 ∈ Φ2}. Note that formulas in Φ1 ∨ Φ2 have at most ℓ1 + ℓ2 terms.

2. There exists a set S̃∧ of size |S̃∧| ≤ |S1| · |S2| which (d1 + d2)-covers S(Φ1 ∧ Φ2), where Φ1 ∧ Φ2 :=
{φ1 ∧ φ2 : φ1 ∈ Φ1, φ2 ∈ Φ2}. Note that formulas in Φ1 ∧ Φ2 have at most ℓ1ℓ2 terms.
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Share(x):
1. For each s ∈ S, run (x1

s, . . . , xk
s ) ← SharePIR(x|s), where we denote by x|s the vector x restricted to the

indices in the set s ⊆ [n].
2. Output (x1, . . . , xk) where xj = {xj

s : s ∈ S}.

EvalFindCover(ρ, j, f̂ = ϕ, xj):
1. Parse the input DNF formula ϕ as c1 ∨ . . . ∨ c|ϕ|.
2. Parse the randomness as ρ as (ρ1, . . . , ρℓ).
3. For each p ∈ [|ϕ|]:

(a) Run sp = FindCover(S(cp)).
(b) Let {i1, . . . , id′} = sp \ S(cp).

(c) Let ϕp = cp(X|S(cp)) ∧
(∨

(bi1 ,...,bi
d′ )∈{0,1}d′

(
(¬)bi1 Xi1 ∧ . . . ∧ (¬)bi

d′ Xid′

))
and parse ϕp = cp

1 ∨

. . . ∨ cp
|ϕp|, where |ϕp| ≤ 2d.

(d) Note that for each η = 1, . . . , |ϕp|, cp
η is a point function over X|sp . Run yj

p ←
∑|ϕp|

η=1 EvalPIR(j, cp
η, xj

sp
).

4. Output yj =
∑|ϕ|

p=1 ρpyj
p.

Dec(y1, . . . , yk): Output y = DecPIR(y1, . . . , yk).

Figure 10: Parallel composition of HSS for point functions.

Definition 18. Let PIR = (SharePIR,EvalPIR,DecPIR) be a PIR. We say that PIR has point evaluation time
R(N), if, for every f ∈ TTn, the running time of EvalPIR is

τ(N, ℓ) = O(|{x ∈ Xn : f(x) = 1}| ·R(N)).

Naturally, PIRkRM has point evaluation time R(N) = O(1), while PIR3
MV,SC considered in Section 5 have

point evaluation time R(N) = O(α(N)).
Theorem 26 (Parallel composition). Let PIR = (SharePIR,EvalPIR,DecPIR) be a quasiadditive k-PIR with
share size α(N), output share size β(N), and point evaluation time R(N). Moreover, let Φ be a set of
ℓ-term DNF formulas, and let S be a d-cover of S(Φ) whose FindCover runs in time T (n). Then, there
exists an ϵ-correct k-HSS for DNF[Φ], HSS = (Share,EvalFindCover,Dec), where EvalFindCover has oracle access
to FindCover, with

• input share size O(
∑
s∈S α(|s|)) = O(|S|α(N)),

• output share size O(log( 1
ϵ )β(N)), and

• evaluation time O(ℓ(T (n) + 2d ·R(N))).
Furthermore, if the terms in each DNF formula φ ∈ Φ are disjoint, then the resulting k-HSS for DNF[Φ] can
be made perfectly correct, without dependence on ϵ.

Proof. We construct an HSS HSS = (Share,EvalFindCover,Dec) in Figure 10 via a parallel composition of PIR.
The security of the construction is apparent. We analyze the correctness of the construction. Since PIR is
quasiadditive, the decoding algorithm computes

y1 + . . .+ yk =
k∑
j=1

∑
p∈[|ϕ|]

ρpy
j
p =

∑
p∈[|ϕ|]

ρp

k∑
j=1

yjp =
∑
p∈[|ϕ|]

ρpyp
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where yp =
∑k
j=1 y

j
p. Using the quasiadditive property of PIR again, we have that if cp(x1, . . . , xn) = 0 then

yp = 0, else yp ̸= 0. Therefore unless c(x1, . . . , xn) = 0 for all c ∈ ϕ, the probability that y = 0 is upper
bounded by 1

|G| ≤
1
2 . The error rate can be further reduced by repetition. To achieve an error rate ϵ, we

repeat the construction log( 1
ϵ ) times, and take the maximum over the outputs of all trials.

The formulas for input share size and output share size are clear from the specification. The evaluation
time is that of running log( 1

ϵ ) instances of at most 2d point evaluation of EvalPIR for each of the (at most) ℓ
terms of ϕ, each of which takes time O(2d ·R(N)).

6.3 Union of Intervals
Theorem 27 (Intervals from Parallel Composition). Let d be a constant and N = 2n. There exists an
ϵ-correct 3-HSS for INTℓ,dn , for every n ≥ d and ℓ ≥ 0, with

• input share size Õ
(

26
√
n logn

)
,

• output share size O(log( 1
ϵ )), and

• evaluation time Õ
(

log( 1
ϵ ) · ℓ · 26

√
n logn

)
.

Proof. Let GEa : {0, 1}nd → F2 be the function which takes the value 1 whenever x ≥ a and let LEa :
{0, 1}nd → F2 be the function which takes the value 1 whenever x ≤ a. We write down the DNF formulas
φ≥a and φ≤a computing GEa and LEa, respectively.

φ≥a(X1, . . . , Xnd
) :=

nd∨
i=1

Xi ∧ ¬ai ∧

 nd∧
j=i+1

(Xj ∧ aj) ∨ (¬Xj ∧ ¬aj)


φ≤a(X1, . . . , Xnd

) :=
nd∨
i=1
¬Xi ∧ ai ∧

 nd∧
j=i+1

(Xj ∧ aj) ∨ (¬Xj ∧ ¬aj)


Next, let ΦGE := {φ≥a : a ∈ {0, 1}nd} and ΦLE := {φ≤a : a ∈ {0, 1}nd}. It is clear that S(ΦGE) = S(ΦLE) =
{{nd}, {nd, nd− 1}, . . . , {nd, nd− 1, . . . , 1}} and thus |S(ΦGE)| = |S(ΦLE)| = nd. Consider the 1-dimensional
interval function INT[a,b](x) = GEa(x) ∧ LEb(x) which takes the value 1 whenever a ≤ x ≤ b. Clearly the
DNF formula φ[a,b] = φ≥a ∧ φ≤b computes INT[a,b].

Let I = ([a1, b1], . . . , [ad, bd]) be any d-dimensional intervals with ai, bi ∈ {0, 1}nd and i ∈ [d]. The d-
dimensional interval function INTI(x) can be written as the conjunction of d 1-dimensional interval functions,
i.e., INTI(x) = INT[a1,b1](x1) ∧ . . . ∧ INT[ad,bd](xd). Clearly, the DNF formula φI := φ[a1,b1] ∧ . . . ∧ φ[ad,bd]

computes INTI . Let ΦINT,1 :=
∧d
i=1 (ΦGE ∧ ΦLE). We have φI ∈ ΦINT for any d-dimensional intervals I.

Let S = {{nd}, {nd, nd − 1}, . . . , {nd, nd − 1, . . . , 1}} be a set of |S| = nd supports. Note that S(ΦGE) =
S(ΦLE) = S. Therefore S 0-covers both S(ΦGE) and S(ΦLE). By Lemma 17, there exists a set S1 of size
|S1| = n2d which 0-covers ΦINT,1.

Generalizing, I1, . . . , Iℓ be ℓ d-dimensional intervals, and let INT{Ii}ℓ
i=1

(x) = INTI1(x) ∨ . . . ∨ INTIℓ
(x).

Let φ{Ii}ℓ
i=1

= φI1 ∨ . . . ∨ φIℓ
be a DNF computing INT{Ii}ℓ

i=1
, and let ΦINT,ℓ :=

∨ℓ
i=1 ΦINT,1. Clearly

φ{Ii}ℓ
i=1
∈ ΦINT,ℓ for all d-dimensional intervals I1, . . . , Iℓ. By Lemma 17, there exists a set Sℓ of size

|Sℓ| = ℓ · n2d
d which 0-covers ΦINT,ℓ. Finally, by Theorem 26 and instantiating the HSS with PIR3

BIKO we
conclude the result.

6.4 DNF Formulas
Applying the same approach as in Theorem 26 to DNF formulas boils down to a positive answer to Question 1,
as there are 2n possible variable sets when considering (even single term) DNF formulas. Indeed, a positive
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answer to Question 1 is a necessary condition for the existence of an HSS for (disjoint) DNF formulas with
2o(n) share size and evaluation time if one were to generalize the approach.
Question 1. Is there a collection S ⊆ 2[n] which d-covers the entire power set 2[n] such that

1. |S| = 2o(n), for example, |S| = 2
√
n; and

2. d = o(n), for example, d =
√
n?

As it turns out, since we wish to cover the entire power set 2[n], Question 1 is asking for an asymmetric
covering code [32] with covering radius d and size |S|. This observation yields a negative answer to Question 1,
which we prove based on the sphere packing lower bound [32, Theorem 2].
Proposition 2. For a collection S ⊆ 2[n] which d-covers the entire power set 2[n], if d = o(n) then
|S| = 2n−o(n) and if d = αn for some constant α then |S| = 2Ω(n). In particular, the answer to Question 1 is
negative.
Proof. By applying the sphere-covering lower bound [32, Theorem 2] we have that

|S| ≥
n∑
ℓ=0

( (
n
ℓ

)∑d
j=0

(min{n,ℓ+d}
j

)) .
Since d, ℓ ≤ n, we have min{n, ℓ+ d} ≤ min{n, n+ d} = n. Using the inequality

d∑
j=0

(
n

j

)
≤

d∑
j=0

nj

j! =
d∑
j=0

dj

j! (n/d)j ≤
d∑
j=0

dj

j! (n/d)d ≤ ed(n/d)d

we may bound the denominator term as follow:
d∑
j=0

(
min{n, ℓ+ d}

j

)
≤

d∑
j=0

(
n

j

)
≤ (en/d)d = 2d log(en/d).

We thus obtain
|S| ≥

n∑
ℓ=0

(
n
ℓ

)
2d log(en/d) = 2n−d log(en/d) = 2n−o(n)

where the last equality is due to log(en/d) = o(n/d).
Furthermore, if d = αn for some constant α, then

|S| ≥ 2n−d log(en/d) = 2n−αn log(e/α) = 2(1−α log(e/α))n = 2Ω(n)

Nevertheless, we may use Theorem 26 in conjunction with [32, Corollary 15] to construct a 3-HSS for
D− TERMℓ,d

n . First, we present [32, Corollary 15] in our nomenclature.
Theorem 28 ([32, Corollary 15]). For every 0 ≤ λ < 1 there is a collection S ⊆ 2[n] which d-covers the
entire power set 2[n] such that

1. |S| ≤
(

2
1−λ

)⌈n(1−λ)2/(1+λ)⌉
≤ 2(1−λ)n; and

2. d = λn.
Denote U := 2[n], and for S as in Theorem 28 fix an algorithm FindCoverU,S running in time T (n).

Corollary 6. Fix 0 ≤ λ < 1. Suppose FindCoverU,S runs in time T (n). Then, there is a perfectly correct
3-HSS for the family D− TERMℓ

n with

• input share size O(2log2[2/(1−λ)]⌈n(1−λ)2/(1+λ)⌉+o(1)),

• output share size O(1), and

• evaluation time O(ℓ(T (n) + 2λn+o(1))).
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Domain size Reed-Muller[31]
(k = 3)

Frankl+BIKO[50, 14]
(k = 3)

FSS[21]
(k = 2)

210 0.05 KB 0.1 KB 0.3 KB
212 0.09 KB 0.2 KB 0.4 KB
216 0.2 KB 0.2 KB 0.7 KB
218 0.3 KB 0.2 KB 0.8 KB
220 0.6 KB 0.3 KB 0.9 KB
221 0.8 KB 0.3 KB 1.0 KB
223 1.5 KB 0.4 KB 1.1 KB
224 2.1 KB 0.5 KB 1.2 KB
226 4.1 KB 0.6 KB 1.3 KB
227 5.7 KB 0.7 KB 1.4 KB
230 16.1 KB 1.1 KB 1.6 KB
235 90.6 KB 2.3 KB 1.9 KB
240 512.1 KB 5.1 KB 2.2 KB
270 16.0 GB 835.9 KB 4.1 KB
2100 512.0 TB 146.6 MB 6.0 KB

Table 2: Total communication complexity for the task where the client holds a secret index x in [N ] and
it wishes to privately learn (with security threshold t = 1) if x contained in a set of ℓ points D ⊆ [N ] held
by k servers. Data for FSS is taken from [21, Table 1]. Share compression (see Section 7.1) was applied to
Reed-Muller and Frankl+BIKO.

7 Concrete Efficiency
For the task of PIR, it was already observed in [21] that the PIR scheme of [14] is competitive with FSS for
databases with up to tens of millions of records. The scheme of [14] is practically competitive with FSS due
to utilization of matching vectors due to Frankl [50], which is not the case for the scheme of [47]. Indeed, in
[47] having 3 servers necessiates matching vectors due to Grolmusz [56, 44], which are not practical, despite
having the currently best known asymptotic complexity. We compare the communication of the different PIR
schemes in Table 2, with query compression performed when applicable. We did not include PIR schemes
involving Grolmusz’s matching vectors, since they have communication complexity of 16 KB for databases
with 214 records and 73 KB for databases with 220 records, which is much higher than alternative approaches.
In addition, we compare to the FSS scheme with k = 2 and t = 1 since it is the best scheme known even for
the setting k ≥ 3 and t = 1.

The comparison in Table 2 applies to the function family of multipoint functions, which has a strong
shortcut in all mentioned PIR schemes. We are unable to make the same comparison in the context of more
expressive function families with strong shortcuts as we moreover conjecture there are none in the context of
existing matching vectors-based PIRs, with partial evidence to support it (see Section 5). Thus we make our
comparisons considering the shortcuts we described for Reed-Muller-based PIRs. While this paper deals with
computational shortcuts, in this section we will make comparisons exclusively with respect to communication.
The main reason we compare communication is that for our main positive results, computation scales at
most quasi-linearly with the size of the inputs, and thus is essentially the best one can hope for. Moreover,
it is hard to make exact “apples to apples” comparisons for computation (what are the units?) Perhaps
most importantly, for the problems to which our positive results apply (e.g., unions of convex shapes), the
(asymptotic and concrete) computational efficiency of our schemes dominate those of competing approaches
(FHE, brute-force PIR, garbled circuits, GMW-style protocols).

Furthermore, although we have presented alternative HSS constructions in Section 6, these results have
mainly asymptotic significance. Indeed, the construction in Section 6.1 is concretely less efficient than the Reed-
Muller based PIRs for the same number of servers, and the approach in Section 6.2 introduces a multiplicative
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Notation: Let G : Fλ
2 → FN1/k−1

2 be a PRG, and let η : FN1/k−1
2 → FN1/k−1

2κ be a function which maps
elementwise {0, 1} = F2 into the corresponding elements in {0, 1} ⊆ F2κ .

Share′(x):
1. Divide x into k − 1 pieces x = (x1, . . . , xk−1) of length n/(k − 1) each.

2. For every i ∈ [k − 1] compute a unit vector ei ∈ FN1/(k−1)
2 as

ei[z] =
{

1, z = xi

0, z ̸= xi

3. For every i ∈ [k − 1] choose ρi
1, . . . , ρi

k−1 ∈ Fλ
2 at random and find ri

k ∈ FN1/(k−1)
2 such that ei =

G(ρi
1) + . . . + G(ρi

k−1) + ri
k. Also, denote ρi

k := ri
k.

4. The share of each server j ∈ [k] is xj = ({ρi
1, . . . , ρi

k} \ {ρi
j})i∈[k−1]. Output (x1, . . . , xk).

Eval′(j, f̂ , xj = ({ρi
1, . . . , ρi

k} \ {ρi
j})i∈[k−1]):

1. If j ̸= k, compute ri
j = G(ρi

j). Otherwise, recall that ri
k = ρi

k.
2. Let κ > ⌈log2 k⌉. For every ri

j compute r̃i
j = η(ri

j). Consequently, the servers hold a replicated sharing of
η(ei), for every i ∈ [k − 1].

3. Let F = F2κ and let α1, . . . , αk ∈ F be distinct nonzero field elements. Each server j computes yi
j =∑

ν∈[k]\{j} r̃i
ν ·

αj −αν

αν
. It is not difficult to see that yi

j are Shamir shares of the vector polynomial

fi(x) =
∑
ν∈[k]

r̃i
ν

x− αν

αν

which satisfies fi(0) = η(ei) and fi(αj) = yi
j .

4. Output Eval(j, f̂ , (y1
j , . . . , yk−1

j )), performing the computation with the same set of points α1, . . . , αk.

Figure 11: Cryptographic share compression applied to PIRkRM.

overhead of O(polylog N) in communication, which is too prohibitive in our setting. Consequently, the
constructions from Section 6 will not be considered in this section, and we will focus exclusively on the
efficiency of PIRkRM.

7.1 Cryptographic Share Compression
We begin by describing a simple method to compress the queries of PIRkRM = (Share,Eval,Dec), at the cost
of making the scheme only computationally secure, utilizing share conversion from Shamir secret sharing
to CNF secret sharing (c.f. [14] for relevant definitions). This is done via modified algorithms, Share′ and
Eval′, which we will demonstrate for PIR3

RM. First, in PIR3
RM it is possible to compress Shamir shares over F4

by a fraction of 1/3 in a straightforward way, by making one share correspond to an expanded PRG seed,
thus compressing it. However, CNF sharing over F2 has essentially the same communication complexity and
allows for compression by a factor of 2/3, by compressing two of the three shares. Next, it is possible to lift
the CNF shares into F4 locally and convert them into Shamir shares via [35]. For k servers this approach
saves roughly a factor of ⌈log2 k⌉·k

k−1 in communication. Formally, this is done via modified algorithms, Share′

and Eval′, as described in Figure 11.
The compression above utilizes a technique from [35] to convert 1-private CNF shares to 1-private Shamir

shares. We note that the same could be applied for larger security threshold. As particular case of [35,
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Theorem 1] we deduce the following.

Theorem 29. t-private CNF shares are locally convertible to t-private Shamir shares.

7.2 An equivalence of FSS and HSS for Intervals
Function secret sharing (FSS) schemes [54, 19, 21] can be considered as a dual notion of HSS. In FSS, the
client has a secret function f which is secret-shared to a set of k servers, each of which knows an input
x ∈ {0, 1}n. Each server then locally evaluates its share of f on the common input x and sends the resulting
output share to the client. With the output shares the client should recover f(x). While HSS and FSS are
generally incomparable, their existence is equivalent for certain function families such as the family of interval
functions.

In this section we present the syntax of FSS, modified from [19]. Then, we will state a known result
regarding FSS for a single interval [21]. Finally, we show how to obtain an HSS for unions of intervals from
the FSS in consideration.

Definition 19 (FSS: Syntax [19]). A k-server function secret sharing scheme for a function family Fn is a
tuple of PPT algorithms (Share,Eval,Dec) with the following syntax:

• Share(1λ, f̂): On input the security parameter 1λ and function description f̂ ∈ Fn, the sharing algorithm
Share outputs k function shares, (f̂1, . . . , f̂k), where f̂ i ∈ {0, 1}α(N).

• Eval(j, x, f̂ j): On input j ∈ [k], x ∈ Xn, and the share f̂ j, the evaluation algorithm Eval outputs
yj ∈ {0, 1}, corresponding to server j’s share of f(x). Here j is the label of the server.

• Dec(y1, . . . , yk): On input (y1, . . . , yk), the decoding algorithm Dec computes y = y1 ⊕ . . .⊕ yk.

The correctness requirement is similar to HSS, while for security we say that the FSS is t-secure if any t
corrupted parties are unable to distinguish which f ∈ F is shared among them. In [21, Corollary 3.20] the
following was obtained.

Theorem 30 (Single interval FSS [21]). For d ∈ N there exists a 1-secure 2-server FSS for the function
family of 1-unions of d-dimensional intervals with α(N) = O(λnd), β(N) = 1, and where the running time of
Eval is Õ(α(N)).

Note that Theorem 30 gives the best FSS scheme known also for the setting k ≥ 3 and t = 1. Next, it is
possible to alter Definition 5 to the setting of computational security and higher security threshold t > 1 to
obtain a notion of t-secure k-server homomorphic secret sharing. Employing Theorem 30 yields the following.

Corollary 7. For d ∈ N there exists a 1-secure 2-server HSS for the function family of ℓ-unions of
d-dimensional intervals with α(N) = O(λnd), β(N) = 1, and where the running time of Eval is Õ(α(N)ℓ).

We sketch here how to prove Corollary 7 for the case of one dimensional intervals, as the multidimensional
case is similar. In the HSS view the client holds a point x ∈ [N ], and the database is a union of ℓ disjoint
intervals, [a1, b1], . . . , [aℓ, bℓ]. The client should learn whether x ∈

⋃ℓ
i=1[ai, bi]. FSS for a single interval allows

a client to secret share an interval function f[c,d] : [N ]→ {0, 1} such that f(x) = 1 only when x ∈ [c, d]. We
implement an HSS for the function family above as follows. The client secret shares the the interval function
f[1,x] via FSS, and the servers homomorphically compute

∑
y∈{b1,...,bℓ} f[1,x](y)−

∑
y∈{a1,...,aℓ} f[1,x](y), which

equals 1 if and only if x ∈
⋃ℓ
i=1[ai, bi].

7.3 Communication Complexity
In Table 3 we compare the communication complexity for unions of disjoint two dimensional intervals. For
two dimensional intervals, FSS requires queries of length O(λ(logN)2) [21].

44



Domain size Reed-Muller[31]
(k = 3)

Reed-Muller[31]
(k = 4)

Reed-Muller[31]
(k = 5)

FSS[21]
(k = 2)

210 0.05 KB 0.05 KB 0.06 KB 3.1 KB
215 0.1 KB 0.1 KB 0.1 KB 7.0 KB
220 0.6 KB 0.2 KB 0.3 KB 12.5 KB
225 2.9 KB 0.5 KB 0.4 KB 19.5 KB
230 16.1 KB 1.3 KB 0.6 KB 28.1 KB
235 90.6 KB 3.7 KB 1.1 KB 38.3 KB
240 512.1 KB 11.5 KB 2.2 KB 50.0 KB
270 16.0 GB 11.3 MB 362.3 KB 153.1 KB

Table 3: Total communication complexity for the task where the client holds a secret index x in a grid
[
√
N ]× [

√
N ] and it wishes to privately learn (with security threshold t = 1) if it is contained in a collection of ℓ

two dimensional intervals held by k servers. The computational cost for FSS and Reed-Muller is Õ(comm + ℓ),
where comm is the communication complexity. The latter is obtained via our shortcuts. Note that for
k = 4 the aforementioned computational cost is obtainable only when considering grids with dimensions
[N1/3]× [N2/3]. For grids with dimensions [

√
N ]× [

√
N ] the computational cost becomes Õ(comm+ℓ

√
comm).

See [21, Corollary 3.20] for how the numbers in last column were computed. Share compression was applied
to Reed-Muller.

It is worth mentioning that such private geographical queries were already considered in [65]. However,
there the two dimensional plane is tesselated with overlapping shapes of the same size, which reduces the
problem to the task of evaluating multipoint functions. Therefore, this approach can be seen as a simply
reducing the size of the problem. In contrast, here we allow for a better tradeoff between precision and
computation. Our solution is more expressive, as it allows for shapes of high and low precision simultaneously.

7.4 Larger Security Threshold
In this section we consider the applicability of our PIR-based HSS to security models with larger security
threshold. Specifically, we will consider the case where we allow at most two (t = 2) colluding servers.
However, lending to its PIR backbone, our HSS constructions scale well for higher security thresholds.

Indeed, there is an analogue of PIRkRM with 2 security threshold, such that for O(
√
N) and O(N1/3) total

communication, the number of required servers is 5 and 7, respectively. Moreover, this PIR scheme retains
all the computational shortcuts of PIRkRM and its shares can be compressed as well. Alternatively, employing
multiparty FSS [19] (for multipoint functions) requires only 3 servers. However, in stark contrast to two
party FSS, multiparty FSS requires O(λ

√
N) total communication. Moreover, it is not clear how to obtain

an FSS for one dimensional intervals in this setting, let alone two dimensional intervals.
In Table 4 we compare the communication complexity of FSS with our HSS for the simple task of PIR, as

more expressive function families are unavailabe for higher security thresholds for FSS. We conclude our HSS
wins by two orders of magnitude.

Finally, another approach to increase the security threshold of FSS, without the communication overhead,
is via the generic tensoring technique of [9]. Nevertheless, this scales worse with larger security threshold
t, requiring 2t servers, compared to 2t+ 1 servers via Reed-Muller PIR. Furthermore, this approach is not
computationally efficient, requiring O(N) computation. We describe in Figure 12 the approach of [9] for
obtaining a 4-server 2-private PIR from FSS for multipoint functions (which is more efficient than the FSS
for two dimensional intervals). One can observe that in the second line of Eval2−FSS there is a computation
of a database D̂ where each entry is the output of EvalFSS, and thus not necessarily sparse. Hence, while
useful in increasing the security threshold of FSS without the O(λ

√
N) communication cost, this approach

might potentially require O(N) computation, making this approach too prohibitive.
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Domain size Reed-Muller[31]
(t = 2, k = 5)

FSS[21]
(t = 2, k = 3)

210 0.2 KB 3.0 KB
215 0.6 KB 17.0 KB
220 1.2 KB 96.0 KB
225 4.7 KB 543.1 KB
230 24.4 KB 3.0 MB
235 136.2 KB 17.0 MB
240 768.4 KB 96.0 MB
270 24.0 GB 3.0 TB

Table 4: Total communication complexity for the task where the client holds a secret index x in [N ] and
it wishes to privately learn (with security threshold t = 2) if its contained in a collection of ℓ points in [N ]
held by k servers. The computational cost for FSS and Reed-Muller is Õ(comm + ℓ), where comm is the
communication complexity. Data for FSS was obtained from [19, Theorem 7]. Share compression was applied
to Reed-Muller.

Share2−FSS(x):
1. Let x1, x2 ∈ [N ] be two randomly chosen indices such that x1 + x2 = x mod N .
2. Compute (a1, a2) = ShareFSS(x1), (b1, b2) = ShareFSS(x2), and (c1, c2) = ShareFSS(x2)
3. The shares of the servers are, respectively, x1 = x(1,1) = (a1, b1), x2 = x(1,2) = (a1, b2), x3 = x(2,1) =

(a2, c1), x4 = x(2,2) = (a2, c2).
4. Output (x1, x2, x3, x4).

Eval2−FSS(j = (j1, j2), f̂ , xj = (α, β)):
1. Interpret f̂ as the truth table of f and denote by f̂ ≪ z the cyclic shift of f̂ by z positions.
2. Compute a table D̂ such that for every z ∈ [N ], D̂z = EvalFSS(j1, f̂ ≪ z, α).
3. Compute and output EvalFSS(j2, D̂, β).

Dec2−FSS(y1, y2, y3, y4):
1. Compute and output DecFSS(DecFSS(y1, y2), DecFSS(y3, y4)).

Figure 12: The tensoring of [9] applied to FSS to obtain a 4-server 2-private PIR scheme PIR2−FSS =
(Share2−FSS,Eval2−FSS,Dec2−FSS) from a 2-server 1-private PIR scheme PIRFSS = (ShareFSS,EvalFSS,DecFSS).
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Domain size
Bln. RM[67]

(k = 2,
pld = 1)

Bln. RM[67]
(k = 3,
pld = 1)

Bln. RM[67]
(k = 2,

pld = 1024)

Bln. RM[67]
(k = 3,

pld = 1024)

FSS[21]
(k = 2)

210 0.01 KB 0.01 KB 7.8 KB 7.5 KB 3.1 KB
215 0.05 KB 0.03 KB 24.0 KB 15.0 KB 7.0 KB
220 0.1 KB 0.06 KB 76.3 KB 30.0 KB 12.5 KB
225 0.5 KB 0.1 KB 242.2 KB 60.1 KB 19.5 KB
230 1.5 KB 0.2 KB 768.8 KB 120.1 KB 28.1 KB
235 4.8 KB 0.5 KB 2.4 MB 240.2 KB 38.3 KB
240 15.1 KB 0.9 KB 7.6 MB 480.5 KB 50.0 KB
270 15.1 MB 60.0 KB 7.6 GB 30.0 MB 153.1 KB

Table 5: The table refers to the balanced RM PIR schemes from [67]. Total communication complexity for
the task where the client holds a secret index x in a grid [

√
N ]× [

√
N ] and it wishes to privately learn (with

security threshold t = 1) if its contained in a collection of ℓ two dimensional intervals (with payloads) held
by k servers. The client should also learn the payload of the interval, which is a string of length pld. The
computational cost for FSS and Balanced Reed-Muller is Õ(comm + ℓ), where comm is the communication
complexity. The latter is obtained via our shortcuts. Note that for Balanced Reed-Muller with k = 2 and
k = 3 the aforementioned computational cost is obtainable only when considering grids with dimensions
[N1/3]× [N2/3] and [N2/5]× [N3/5] respectively. For grids with dimensions [

√
N ]× [

√
N ] the computational

cost becomes Õ(comm+ℓ
√

comm). See [21, Corollary 3.20] for how the numbers in last column were computed.

7.5 HSS from Balanced PIR
In this section we propose to employ balanced PIR schemes to reduce the total communication complexity.
Viewing the output of the Eval algorithm in PIRkRM as evaluating a polynomial over a finite field F, the
PIR scheme proposed in [67] extends this viewpoint in that the servers also evaluate a formal gradient of
said polynomial. Roughly speaking, in this way the servers provide two datapoints instead of one, and
thus we obtain a PIR scheme with half as many servers as before. Crucially, in the PIR scheme of [67] the
servers return O(N1/(2k−1)) bit answers for 1 bit of payload, therefore the communication complexity grows
multiplicatively with the payload, instead of additively as in the previous subsections. Therefore, this approach
is feasible when the payload consists of a few bits. This approach also combines well with Section 7.4.

The main observation in this subsection is that given a polynomial that we can evaluate in time T , by
utilizing the Baur-Strassen algorithm [10], we can also evaluate its gradient in O(T ) time. Therefore, all
shortcuts we have for PIRkRM translate directly to the scheme of [67] to give an HSS with long output shares
for the respective function families. In Table 5 we compare the communication complexity of our HSS (with
long output shares) and the FSS for two dimensional intervals with various payload lengths.

7.6 Distributed Query Generation
We consider the distributed client setting, where the input is shared among several parties, and the queries
to the servers are generated via an MPC protocol. In this setting, generating FSS queries either requires a
non-black-box use of a PRG, which is a theoretical downside and concretely expensive, or alternatively many
rounds of interaction and O(N) computation, via the Doerner-shelat protocol [43]. In contrast, the information-
theoretic protocols underlying our HSS schemes have query generation that is either information-theoretic or
makes black-box use of cryptography, making it MPC friendly.

In PIRkRM this involves a small number of AND and NOT gates, and black-box use of PRGs, in case one
employs share compression. Indeed, the queries of PIR3

RM require 4 · 2n/2 AND gates. Furthermore, since
the query generation is low depth, to implement it via MPC we can use BGW/GMW, which multiplies the
number of gates by 4. In contrast, the circuit which generates the FSS queries requires ∼ 2n PRG invocations.
The PRG can either be implemented by AES, which necessitates ∼ 6000 AND gates [1] per invocation, or
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by a dedicated MPC-friendly cipher such as LowMC [2], which require ∼ 1000 AND gates per invocation.
Furthermore, in both cases we need to use garbled circuits to avoid round complexity which multiply the
number of AND gates by an additional 256. Consequently, our query generation is more attractive for
domains of size up to ∼ 240. For domains of size ∼ 230, PIR3

RM is favored by a factor of ∼ 30.
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A On the Hardness of Subgraph Counting
For completeness, we present a careful analysis of the reduction in [46]. Here we shall import several technical
lemmas and definitions along the way, sometimes verbatim.

Peliminaries and outline of the reduction in [46]

Various motif counting problems are related in a sense that counting one motif is equivalent to computing a
linear combination of the counts of other related motifs. This property was utilized in a recent breakthrough
result for subgraph counting problems [37].

Roughly speaking, since the count of one motif equals a linear combination of counts of other motifs, this
can be viewed as a single linear constraint. The authors in [46] utilize a graph tensoring operation to count
the same motif on several related graphs, which yields enough linear constraints that can be shown to be
independent. Therefore one performs Gaussian elimination to obtain the count of a specific motif, from which
it is possible to deduce the number of cliques in the original graph. Owing to the ETH-hardness of counting
cliques [30], the original problem of counting motifs is also ETH-hard.

Unfortunately, the reduction works only when the size of the motifs is not too large, since otherwise
the linear system would be too large and the reduction cannot be performed in required time. Specifically,
w = o(log r) is necessary for the following reduction to hold, and we pick w(r) = Θ(log r/ log log r) in our
reduction.

Here, when writing Φ we will either refer to Φ511,0 (associated with SCEfr) or Φ6,4 (associated with
SCBIKO).
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Lemma 18 (Lemma 15 restated). Let k(r) = Θ(log r/ log log r) be given by Lemma 14. There is an efficiently
computable size parameter w(r) = Θ(log r/ log log r) such that if ⊕IndSub(Φ, w) can be decided in ro(w(r))

time, then one can decide Clique(k(r)) in time no(k(r)) time, where Φ ∈ {Φ511,0,Φ6,4}.

Proof. By the chain of reduction:

Clique(k)
Proposition 3

≤ ⊕Clique(k)
Proposition 4

≤ ⊕cp-Hom(Kℓ,ℓ → G)
Proposition 5

≤ ⊕cp-IndSub(Φ→ G)
Proposition 6

≤ ⊕IndSub(Φ, w).

For an instance (G, k) in Clique(k) where |V (G)| = r, it will be transformed by this chain of reduction (which
runs in ro(k) time) into ro(k) many instances (G′, w) for the problem ⊕IndSub(Φ, w) where |V (G′)| ≤ 4k2r

and 2k ≤ w ≤ 4k. Therefore if the latter is solvable in time |V (G′)|o(w), Clique(k) is solvable in ro(k).

In what follows we will elaborate the intermediate problems, as well as the steps in the reduction. The
reduction is the same as the one given in [46].

Reducing decision to parity of cliques

⊕Clique(k) is the problem to compute the parity of the number of k-cliques in a graph G.

Proposition 3. If one can decide ⊕Clique(k) in time ro(k), then one can decide Clique(k) in time ro(k).

We state without proof the following result.

Fact 6 ([46, Lemma 27]). Let p ≥ 2 be an integer, G, H be undirected graphs. Let G0 be a random induced
subgraph of G such that each vertex is taken with probability 1/2, independently. If there is at least one
induced H in G, the number of induced H in G0 is not a multiple of p with probability at least 2−|H| .

Proof of Proposition 3. Suppose we are given a graph G = (V,E) and needs to decide whether a k-clique
(Kk) is a subgraph of G.

By Fact 6, let G′ = (V ′, E′) be a random induced subgraph of G such that every vertex is included with
probability 1/2, independently. If there is at least one Kk (k-clique) in G, the number of induced Kk in
G′ is an odd number with probability at least 2−k. Therefore if we repeat the above and call the oracle of
⊕Clique(k) 2k times, the probability that we detect a clique is constant. The total running time is

2kro(k) = rk/ log r+o(k) = ro(k).

Reducing parity of cliques to color-prescribed homomorphism counting

A homomorphism from a graph H to a graph G is a mapping h : V (H)→ V (G) that preserves adjacencies.
In other words, for every edge {u, v} ∈ E(H) it holds that {h(u), h(v)} ∈ E(G). We write Hom(H → G)
for the set of all homomorphisms from H to G. A homomorphism h inducing a bijection of vertices and
satisfying {u, v} ∈ E(H) if and only if {h(u), h(v)} ∈ E(G) is called an isomorphism and we say that two
graphs H and Ĥ are isomorphic if there exists an isomorphism from H to Ĥ.

Given graphs G and H, we say that G is H-colored if G comes with a homomorphism c from G to
H, called an H-coloring. Note that, in particular, every subgraph of H can be H colored by the identity
function on V (H), which is assumed to be the given coloring whenever we consider H-colored subgraphs
of H. Given a subgraph F of H and a homomorphism h from F to a H-colored graph G, we say that h is
color-prescribed if for all v ∈ V (F ) = V (H) it holds that c(h(v)) = v. We write cp-Hom(F → G) for the set
of all color-prescribed homomorphisms from F to G.

Given a family of graphs H, the problem ⊕cp-Hom(H) asks, given a graph H ∈ H and an H-colored
graph G, to compute ⊕cp-Hom(H → G) (the parity of #cp-Hom(H → G)). Denote by Kℓ,ℓ the biclique of
2ℓ nodes.

52



Proposition 4. Let k(r) = Θ(log r/ log log r) be given by Lemma 14. There is an efficiently computable size
parameter ℓ(r) = Θ(log r/ log log r), such that If one can decide ⊕cp-Hom(Kℓ,ℓ → G) in time ro(ℓ), then one
can decide ⊕Clique(k) in time ro(k).

We state without proof the following result.

Fact 7 ([46, Lemma 23]). There exists an algorithm that, given a positive integer ℓ > 1 and a graph G with r
vertices, computes in time O(ℓr) a Kℓ,ℓ-colored graph G0 with at most O(ℓr) vertices such that the number of
cliques of size ℓ in G equals #cp-Hom(Kℓ,ℓ → G0).

Proof of Proposition 4. Let (G, k) be an instance of ⊕Clique(k) where |V (G)| = r.
Define ℓ(r) to be

ℓ(r) = min{2κ|2κ ≥ k(r)}.

Then k ≤ ℓ ≤ 2k, so ℓ(r) = Θ(log r/ log log r). First, we enlarge the clique size from k to ℓ.
Specifically, we create a graph Ĝ by adding ℓ(r)− k(r) extra nodes to G and connecting

• Every pair of new vertices,

• Every new vertex with every old vertex.

It is clear that the number of Kℓ in Ĝ contains Kℓ is equal to the number of Kk in G7.
By Fact 7, one can construct in time O(ℓr) a graph G′ with at most ℓr vertices, such that the number of

Kℓ in Ĝ is equal to #cp-Hom(Kℓ,ℓ → G′), from which the parity can be deduced. So the total running time
is

O(ℓr) + (ℓr)o(ℓ) = ro(k).

Reducing color-prescribed homomorphism counting to induced subgraph counting

We write cp-IndSub(F → G) for the sets color-prescribed strong embeddings from F to G, i.e. subgraphs
of G isomorphic to F via colored homomorphisms. Elements of cp-IndSub(F → G) are referred to as color-
prescribed induced subgraphs. The problem ⊕cp-IndSub(Φ) asks, given a graph G that is H-colored for
some graph H, to compute ⊕cp-IndSub(Φ→ G), i.e. the party of the number of subgraphs of G that (1) are
color-isomophic to H; (2) satisfy Φ. Note that the H-coloring of G is in the description of G.

Proposition 5. Let w(r) = 2ℓ(r), if one can decide ⊕cp-IndSub(Φ→ G) in time ro(w), then one can decide
⊕cp-Hom(Kℓ,ℓ → G) in time ro(ℓ), where Φ ∈ {Φ511,0,Φ6,4}.

The proof of Proposition 5 is more involved and required (yet) more intermediate definitions. An
isomorphism from a graph to itself is called an automorphism. The set of automorphisms of a graph, together
with the operation of functional composition constitutes a group, called the automorphism group of a graph.
Slightly abusing notation, we will write Aut(H) for both the set of automorphisms of a graph H as well as for
the automorphism group of H. The automorphism group of a graph H induces a group action on the edges
of H, given by h{u, v} := {h(u), h(v)}. A group action is transitive if there exists only one orbit and a graph
H is called edge-transitive if the group action on the edges is transitive, that is, if for every pair of edges
{u, v} and {û, v̂} there exists an automorphism h ∈ Aut(H) such that h{u, v} = {h(u), h(v)}. If additionally
the number of edges of an edge-transitive graph is a prime power pℓ we call the graph p-edge-transitive.

For S ⊆ E(H), denote H[S] as the subgraph of H containing only edges in S. We first demonstrate how
to use the following lemma, and prove it only afterwards.

7We perform this step so that the biclique Kℓ,ℓ will be 2-edge-transitive, to be defined later (this will be needed to apply
Fact 8 in the proof of Proposition 5).
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Fact 8 (Modified from [46, Lemma 20]). Let Φ be a graph property and let H be a 2-edge-transitive graph such
that Φ(H[∅]) ̸= Φ(H). There exists an algorithm A that is given an H-colored graph G as input and has oracle
access to the function ⊕cp-IndSub(Φ → ·) and computes ⊕cp-Hom(H → G) in time 2O(|V (H)|2)|V (G)|.
Furthermore, every oracle query Ĝ is H-colored as well and satisfies

∣∣∣V (Ĝ)
∣∣∣ ≤ |V (H)||V (G)|.

Proof of Proposition 5. Let G be an instance of ⊕cp-Hom(Kℓ,ℓ → G) where |V (G)| = n. By the choice of ℓ
as a power of 2, H = Kℓ,ℓ is 2-transitive. Moreover, the empty graph has 0 edges so

Φ(H[∅]) = 1.

Recall that for SCEfr m = 511 is odd, so Φ511,0 =
(

2ℓ · 2ℓ ?= 0 mod 511
)

= 0. So Φ511,0(H[∅]) ̸= Φ511,0(H)

and we can apply Fact 8. Similarly, for SCBIKO m = 6 so Φ6,4(H)′ =
(

2ℓ · 2ℓ ?= 4 mod 6
)

= 1 but
Φ6,4(H[∅])′ = 0. Note that by ℓ = Θ(log r/ log log r) we have 2O(ℓ2) = ro(ℓ). Therefore the running time is
bounded by

2O(ℓ2) + 2O(ℓ2)(ℓr)o(w) = ro(ℓ).

Therefore what is left is to prove Fact 8. This will take some extra steps by utilizing some intermediate
results (Lemmas 19 and 22).

Proof of Fact 8. Use Lemma 19 to write ⊕cp-IndSub(Φ → ·) as a linear combination of color-prescribed
homomorphisms. Then again by Lemma 19 and that H is 2-edge-transitive and Φ(H[∅]) ̸= Φ(H), the
coefficient of ⊕cp-Hom(H → ·) is Φ(H)− Φ(H[∅]) = 1 ̸= 0 (recall that we work in F2). Hence we can use
the algorithm from Lemma 22 to compute ⊕cp-Hom(H → G).

Remark 4. Note that Fact 8 is the source of our bottleneck in proving lower bounds for computational
shortcuts in MV PIR. Indeed, this is due to the 2O(ℓ2) term which requires ℓ = o(log r) to have 2O(ℓ2) = ro(ℓ).

Lemma 19 ([46, Lemma 9, Lemma 18]). Let H be a graph, let Φ be a graph property and let G be an
H-colored graph. Then it holds that

⊕cp-IndSub(Φ→ G) =
∑

S⊆E(H)

Φ(H[S])
∑

J⊆E(H)\S

⊕cp-Hom(H[S ∪ J ]→ G).

Moreover, if H is 2-edge-transitive then the coefficient of ⊕cp-Hom(H → G) is Φ(H)− Φ(H[∅]).

The reduction is implemented by plugging in tensor product of graphs. Here we give the definition: given
two H-colored graphs G and Ĝ with colorings c and ĉ we define their color-prescribed tensor product G×H Ĝ
as the graph with vertices V = {(v, v̂) ∈ V (G)× V (Ĝ)|c(v) = ĉ(v̂)} and edges between two vertices (v, v̂) and
(u, û) if and only if (v, u) ∈ E(G) and (v̂, û) ∈ E(Ĝ). The next lemma states that ⊕cp-Hom(F → ·) is linear
with respect to ×H . Again here we state without proofs several lemmas.

Lemma 20 ([46, Lemma 15]). Let H be a graph, let F be a subgraph of H and let G and Ĝ be H-colored.
Then we have that ⊕cp-Hom(F → G×H Ĝ) = ⊕cp-Hom(F → G) · ⊕cp-Hom(F → Ĝ).

Lemma 21 ([46, Lemma 16]). Let H be a graph and let M be a matrix of size 2|E(H)| such that the rows
and columns are identified by the subsets of edges of H. Furthermore assume that the entries of M are given
by M(S, T ) := ⊕cp-Hom(H[S]→ H[T ]). Then M is non-singular. This holds true even if M is considered
as a matrix over Zp, that is, the field with p elements. In the latter case, the entries are taken modulo p.

Finally, we prove the following lemma, which gives a more fine-grained time bound on the corresponding
result in [46, Lemma 17].

54



Lemma 22 (Modified from [46, Lemma 17]). Let H be a graph and let a be a function from subgraphs of H
to F2. There exists an algorithm A that is given an H-colored graph G as input and has oracle access to the
function ∑

S⊆E(H)

a(H[S]) · ⊕cp-Hom(H[S]→ ·)

and computes ⊕cp-Hom(H[S] → ·) for any S satisfying a(H[S]) ̸= 0, with 2O(|E(H)|) oracle queries and
2O(|E(H)|) · |V (G)| additional time. Furthermore, every oracle query Ĝ satisfies |V (Ĝ)| ≤ |V (H)| · |V (G)|.

Proof. For every edge-subgrpah F of H, it holds that (by Lemma 20),∑
S⊆E(H)

a(H[S]) · ⊕cp-Hom(H[S]→ (G×H F ))

=
∑

S⊆E(H)

a(H[S]) · ⊕cp-Hom(H[S]→ G) · ⊕cp-Hom(H[S]→ F ),

which we can evaluate for all the 2O(|E(H)| choices of F = H[∅], . . . ,H[E(H)]. Note that |V (G×H F )| ≤
|V (G)| · |V (H)| as F is a subgraph of H.

Thus we acquire a system of linear equation and by Lemma 21 the system is invertible. Consequently, the
numbers a(H[S]) · ⊕cp-Hom(H[S]→ G) can be computed in time 2O(|E(H)|). Finally, as a(H[S]) ̸= 0, we
can recover ⊕cp-Hom(H[S]→ G) by multiplying with its inverse.

Reducing color-prescribed induced subgraph counting to uncolored ones

Proposition 6. If one can decide ⊕IndSub(Φ, w) in time ro(w), then one can decide ⊕cp-IndSub(Φ→ G)
in time ro(w).

We need the following lemma.

Fact 9 ([46, Lemma 21]). Let Φ be a graph property and let H be a graph with k vertices. There exists an algo-
rithm A that is given an H-colored graph G as input and has oracle access to the function ⊕IndSub(Φ, k → ·)
and computes ⊕cp-IndSub(Φ→ G) using O(2k) oracle calls and O(2k|V (G)|) additional time. Furthermore,
every oracle query Ĝ satisfies

∣∣∣V (Ĝ)
∣∣∣ ≤ |V (G)| and, in particular, Ĝ allows an H-coloring as well.

Proof of Proposition 6. Let (G,H) be an instance of⊕cp-IndSub(Φ→ G) where |V (G)| = r and |V (H)| = w.
Apply the algorithm given by Fact 9. The running time is

O(2w) + 2wro(w) = ro(w).

Proof of Fact 9. It will be convenient to assume that V (H) = [k]. We first check whether the H-coloring c
of G is surjective. If this is not the case then there exists some vertex i ∈ V (H) such that i is not in the
image of c and hence there is no color-prescribed induced subgraph of G, so A can just output 0. Otherwise,
the H-coloring of G induces a partition of V (G) in k many non-empty and pairwise disjoint subsets, each
associated with some color i ∈ V (H). This allows us to equivalently express cp-IndSub(Φ→ G) in terms of
vertex-colorful induced subgraphs:

cp-IndSub(Φ→ G) =
{
S ⊂

(
V (G)
k

)
|c(S) = [k] ∧ Φ(G[S]) = 1

}
.

By the principle of inclusion and exclusion we obtain that,

⊕cp-IndSub(Φ→ G) =
∑
J⊆[k]

⊕IndSub(Φ, k → GJ)
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where GJ is the graph obtained from G by deleting all vertices that are colored with some color in J . Hence
we can compute ⊕cp-IndSub(Φ→ G) using 2k oracle calls. Finally, we observe that H-colored graphs are
closed under the removal of vertices and therefore every oracle query GJ allows an H-coloring.
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