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Abstract

This thesis studies problems at the intersection of Ramsey-theoretic mathematics,

computational complexity, and communication complexity. The prototypical example

of such a problem is Monochromatic-Rectangle-Free Grid Coloring. In an instance of

Monochromatic-Rectangle-Free Grid Coloring, we are given a chessboard-like grid

graph of dimensions n and m, where the vertices of the graph correspond to squares

in the chessboard, and a number of allowed colors, c. The goal is to assign one of the

allowed colors to each vertex of the grid graph so that no four vertices arranged in

an axis-parallel rectangle are colored monochromatically. Our results include:

1. A conditional, graph-theoretic proof that deciding Monochromatic-Rectangle-

Free Grid Coloring requires time superpolynomial in the input size.

2. A natural interpretation of Monochromatic-Rectangle-Free Grid Coloring as a

lower bound on the communication complexity of a cluster of related predicates.

3. Original, best-yet, monochromatic-square-free grid colorings: a 2-coloring of the

13× 13 grid, and a 3-coloring of the 39× 39 grid.

4. An empirically-validated computational plan to decide a particular instance of

Monochromatic-Rectangle-Free Grid Coloring that has been heavily studied by

the broader theory community, but remains unsolved: whether the 17 × 17

grid can be 4-colored without monochromatic rectangles. Our plan is based in

high-performance computing and is expected to take one year to complete.
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Chapter 1

Introduction

1.1 Shape-Free Grid Coloring

This thesis studies the computational complexity of a family of problems, Shape-

Free Grid Coloring, and applied algorithmic approaches to solving specific instances

of problems in the family where overwhelming evidence suggests they are compu-

tationally intractable. Shape-Free Grid Coloring is a family of related problems

arising in Ramsey-theoretic mathematics that are distinguished from one another

based on a given geometric pattern. The prototypical example of such a problem

is Monochromatic-Rectangle-Free Grid Coloring. In an instance of Monochromatic-

Rectangle-Free Grid Coloring, we are given a chessboard-like grid graph of dimensions

n and m, where the vertices of the graph correspond to squares in the chessboard, and

a number of allowed colors, c. The goal is to assign a color in the set {0, 1, ..., c−1} to

each vertex (i, j) for 0 ≤ i < n and 0 ≤ j < m such that there exist no monochromatic

rectangles. A monochromatic rectangle is a set of four vertices arranged in a rectangu-

lar shape that are assigned the same color, i.e. {(i, j), (i+a, j), (i, j+b), (i+a, j+b)}

for integers a, b where

• −i ≤ a < n− i,

• −j ≤ b < m− j,

• a 6= 0, and

• b 6= 0.

We begin with a simple, concrete example of an instance of Monochromatic-

Rectangle-Free Grid 2-Coloring. As shown below (Fig. 1.1), we have two 4x4 grid
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graphs that are assigned colors out of {0, 1}, where 0 is red and 1 is blue. The left

grid is legally colored, since it contains no monochromatic rectangles. The right grid

is illegally colored; the monochromatic rectangle induced by the color assignment is

marked with ×’s.

As discussed above, an instance of Monochromatic-Rectangle-Free Grid Coloring

is specified by the input parameters n,m, and c. The output of an algorithm that

solves Monochromatic-Rectangle-Free Grid Coloring is a YES or NO answer to whether

it is possible to color such a grid without forming a monochromatic rectangle, and

the witness to the output is the coloring itself. In general however, Shape-Free Grid

Coloring is a family of closely related computational decision problems, where in

each problem description we specify the geometric structure that we disallow (e.g.,

a monochromatic rectangle) and in the problem input we specify the colorable space

(e.g., a grid’s dimensions) and the number of allowed colors (i.e., the parameter c).

In the following three sections, we give a brief background on Ramsey Theory,

discuss the motivations for studying Shape-Free Grid Coloring, and survey our results.

1.2 Ramsey Theory

An essential property of Shape-Free Grid Coloring that sets it apart from typical

graph coloring problems in computational complexity is that Ramsey’s theorem and

Figure 1.1: A legally 2-colored grid, and an illegally 2-colored grid
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generalizations thereof apply to the family of problems. Ramsey’s theorem states:

Ramsey’s Theorem (restated)([36]). For any given integer c, and any given

integers n1, ..., nc, there exists some number, R(n1, ..., nc), such that if the edges of a

complete graph of order R(n1, ..., nc) are colored with c different colors, then for some

i between 1 and c, there must exist a complete subgraph of order ni whose edges are

all color i.

To gain some intuition about how Ramsey’s theorem operates, consider the pi-

geonhole principle. That is, if n pigeons are placed inside m pigeonholes, how big

must n be before we are guaranteed that at least one pigeonhole holds at least two

pigeons? The pigeonhole principle says if n > m, this property holds by a simple

counting argument.

Ramsey’s theorem, then, is a classic generalization of the pigeonhole principle for

graph and number theory. In other words, if we have a large enough complete graph

colored with some constant number of colors, we are guaranteed that there exists

a complete monochromatic subgraph. In fact, the underlying theme of Ramsey-

theoretic mathematics asks questions of the form: “Given some mathematical struc-

ture, how large must it be to guarantee that a particular property will hold?”

In particular, the generalization of Ramsey’s theorem that directly applies to

Shape-Free Grid Coloring is Van der Waerden’s theorem:
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Van der Waerden’s Theorem (restated)([40]). For any given positive integers

r and k, there is some number N such that if the integers {1, 2, . . . , N} are colored,

each with one of r different colors, then there are at least k integers in arithmetic

progression all of the same color.

Further, an arithmetic progression is a sequence of numbers such that the difference

of any two successive members of the sequence is a constant. Implicit throughout

this thesis are projections from a sufficiently large, contiguous subset of the natural

numbers to finite, discrete geometric regions, such as grids, so that Van der Waerden’s

Theorem applies.

Thus, in the case of Shape-Free Grid Coloring, in constrast to traditional graph

coloring problems, the underlying question is often not “Can this graph be legally

colored?” but rather “How big can this graph be and still be legally colored?” In fact,

a simple observation along these lines is that any n-by-m grid graph can always be

colored without monochromatic rectangles if we are allowed at least min(n,m) colors,

by simply assigning a different color to each row (resp. column). If, however, we fix

some constant number of colors c and allow n and m to grow together linearly (or

for large enough n, we allow m to grow, and vice versa), we are guaranteed that at

some point the graph will no longer be legally colorable, for any reasonable and fixed

geometric shape. Thus, for any fixed number of colors c and beyond some threshold

of n and m, there is an infinite range of NO instances and a finite number of YES

instances. Many of these YES instances are trivially solvable, while others – right at

the boundary between YES’s and NO’s – appear to be quite difficult to resolve.

As an aside for later, the existence of a finite number of YES instances for fixed c

and sufficiently large n and m, as n and m grow, plays a key role in the difficulties

associated with classifying the complexity of Shape-Free Grid Coloring.
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1.3 Motivations

In the following section, we motivate the two main chapters of this thesis. The

first part explores a protocol problem in communication complexity from where the

question of the complexity of problems in Shape-Free Grid Coloring arises. The second

part surveys previous, related work and introduces the 17x17 4-Color Problem.

1.3.1 Communication Complexity Foundations

In this part, we introduce the communication complexity model of [29] and reproduce

an abbreviated communication protocol lower bound proof and discussion from [11],

due to its high degree of relevance and intimacy with the Shape-Free Grid Coloring

problem.

In the typical two-party communication complexity model, we are given arbitrary

finite sets X , Y , and Z and let f : X × Y → Z be an arbitrary function. There are

two players, Alice and Bob, who wish to evaluate f(x, y), for some inputs x ∈ X and

y ∈ Y . However, Alice only knows x and Bob only knows y. Thus, to evaluate the

function, Alice and Bob will communicate with one another by sending a single bit at

a time. Importantly, the communication is carried out according to some protocol P

that is fixed ahead of time and which depends only on f . At each stage of the protocol

P , the players (abiding by the protocol) determine whether the run terminates by

specifying the output f(x, y).

In particular, we are only interested in the amount of bits communicated, regard-

less of the internal computations required of Alice and Bob. Therefore, we treat Alice

and Bob as if they have unlimited computational power. The cost of a protocol P on

input (x, y) is the number of bits communicated by P on input (x, y). The cost (or

complexity) of a protocol P is the worst case, or maximal, cost of P over all inputs

(x, y). The communication complexity of f is the minimum cost over all protocols
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that compute f .

Now, we generalize this model. Assume there are k processes (or players) P0, ..., Pk−1

and k integers a0, ..., ak−1 ∈ {0, ..., n} for some positive integer n. Each process has

access to all the aj, except that Pi is denied access to ai. Finally, all bits transmitted

from one process to another are sent through a broadcast channel that all processes

can freely monitor. This model is commonly referred to as the Number-On-Forehead

(NOF) Multi-Party Communication Complexity Model.

We define a broadcast history b ∈ (0 + 1)∗ to be a record of all bits transmitted

by all processes up to a certain point in time. A k-party protocol is a deterministic

algorithm running on each process Pi that determines, from the numbers Pi knows

and the broadcast history, what bit Pi should transmit at times i, i + k, .... That

is, communication occurs in a purely cyclic fashion: at time t = 0, P0 examines the

information it has access to and broadcasts one bit; at time t = 1, P1 does the same,

and so on.

LetHn = {0, ..., n}k be a k-dimensional hypercube, where each vector 〈v0, v1, ..., vk−1〉 ∈

Hn describes a situation, or an assignment to the variables a0, ..., ak−1. Observe that

the (discrete, finite) vector space in Hn describes all possible inputs to an instance of

the NOF model. Then, let P denote a k-party protocol where each party Pi is given

inputs aj ∈ {0, ..., n}. Each of the concrete combinations of possible ai specify some

situation v̄ ∈ Hn, and for each v̄ ∈ Hn, P uniquely determines a string P(v̄) ∈ (0+1)∗

that is the complete broadcast history for the k processes in situation v̄. In general,

we will abuse terminology and use the P(·) notation interchangably to refer either

to a protocol by which the parties compute a predicate or a function that assigns

broadcast histories to Hn.

Finally, we provide a definition of protocol validity. For simplicity, we will say a

k-party protocol P is valid for a predicate Q if and only if it can be used by processes

P0, ..., Pk−1 to decide Q. By decide, we mean that the parties will communicate

6



Figure 1.2: The plane of solutions, Sn, circumscibed by the situation space, Hn

according to the protocol P , and at some prearranged time that depends on P ,

the parties must all halt with either all correctly accepting or all correctly rejecting

(that is, either all output YES or all output NO, and the joint output must match the

definition of the predicate, given the specific instance of the parties’ inputs). Note

that a sufficient and necessary condition for a protocol P to be invalid is for any

single process Pi to incorrectly accept or reject on any point v̄ ∈ Hn.

Now let the predicate Exactly-n be true for k integers a0, ..., ak−1 if and only if

a0 + · · ·+ ak−1 = n. Now we prove the following lower bound for the number of bits

that must be communicated for k parties to compute Exactly-n:

Theorem 1. Let the solution “plane” of Exactly-n be Sn = {v̄ ∈ Hn :
∑

i vi = n}.

The complexity of any k-party protocol for Exactly-n is bounded below by the loga-

rithm of the minimum number of colors required to color the points of Sn so that no

“forbidden k-patterns” are colored monochromatically.

The proof will proceed as follows. Let Hn be the set of situations. Let Sn be

the hyperplane on which the processes must “accept” the input. A three-dimensional

geometric interpretation of this set-up is shown in Fig. 1.2 above. In general, we
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say that the number of bits transmitted by a protocol determines how large a set

of potential, distinct broadcast histories may exist. We will show that if a protocol

determines too few distinct broadcast histories on the plane Sn, then it is not valid

for Exactly-n.

We define a forbidden k-pattern as a set of k distinct points v̄0, ..., v̄k−1 ∈ Hn if

there is a point w̄ ∈ Hn such that, for each i, w̄ differs from v̄i only in coordinate i.

Note that for the case k = 3 for Exactly-n, forbidden k-patterns on the plane Sn are

equilateral triangles.

Here is an explicit example for the case k = 3, n = 2. First, we enumerate all of

the triples of integers 〈v0, v1, v2〉 for vi ∈ [0, 2] that sum precisely to 2:

S3 = {〈2, 0, 0〉, 〈0, 2, 0〉, 〈0, 0, 2〉, 〈1, 1, 0〉, 〈1, 0, 1〉, 〈0, 1, 1〉}

Then we group them1 into every possible forbidden 3-pattern, generate the resulting

w̄ by the definition of a forbidden k-pattern, and observe that
∑

K vi,j,K = 2 = n and∑
j wi,j 6= 2 = n.

({v̄0,0 = 〈2, 0, 0〉, v̄0,1 = 〈0, 2, 0〉, v̄0,2 = 〈0, 0, 2〉}, w̄0 = 〈0, 0, 0〉)

({v̄1,0 = 〈2, 0, 0〉, v̄1,1 = 〈1, 1, 0〉, v̄1,2 = 〈1, 0, 1〉}, w̄1 = 〈1, 0, 0〉)

({v̄2,0 = 〈1, 1, 0〉, v̄2,1 = 〈0, 2, 0〉, v̄2,2 = 〈0, 1, 1〉}, w̄2 = 〈0, 1, 0〉)

({v̄3,0 = 〈1, 0, 1〉, v̄3,1 = 〈0, 1, 1〉, v̄3,2 = 〈0, 0, 2〉}, w̄3 = 〈0, 0, 1〉)

({v̄4,0 = 〈0, 1, 1〉, v̄4,1 = 〈1, 0, 1〉, v̄4,2 = 〈1, 1, 0〉}, w̄4 = 〈1, 1, 1〉)

1Regarding notation throughout this thesis, when specifically referring to groups
of forbidden k-patterns, we will generally use the integer i to refer to the index of a
(forbidden k-pattern, w̄) pair in the group, the integer j to refer to the index of the
vectors v̄i within a forbidden k-pattern and the indices of the coordinates of the w̄i,
and the integer K to refer to the indices of the coordinates of the v̄i,j. Take care to
avoid confusing the number of parties k and the indices K of individual coordinates
vi,j,K .

8



Lemma 1.1. Let P be a protocol for processes P0, ..., Pk−1. Let Hn = {0, ..., n}k

be the hypercube of situations, and let w̄ = 〈w0, ..., wk−1〉 be any point in Hn. If

v̄0, ..., v̄k−1 is a forbidden k-pattern for w̄ and the complete broadcast histories at the

v̄j are identical, that is

α = P(v̄0) = P(v̄1) = · · · = P(v̄k−1), (1.1)

then P(w̄) = α.

Proof. We prove the lemma by induction on the length of the broadcast history,

that for all i, the ith bit broadcast at w̄ is the same as the ith bit broadcast at v̄i(mod k).

Base step: If |α| = 0, then every process immediately halts on w̄ since it immedi-

ately halts on v̄i.

Inductive step: Assume that for all histories of length < t, the inductive hypothe-

sis is true. Consider the tth bit to be broadcast. By induction, Pt(mod k) sees the same

broadcast history at w̄ and at v̄t(mod k). Therefore, Pt(mod k) broadcasts the same bit

at time t at w̄ as it would at time t at v̄t(mod k). �

Further note that Lemma 1.1 holds in the case of invalid protocols as well as valid

ones.

Lemma 1.2. A k-party protocol P is not valid for the predicate Exactly-n if it

assigns the same broadcast history to all points of a forbidden k-pattern of Sn.

Proof. Suppose v̄0, ..., v̄k−1 is a forbidden k-pattern on Sn for the point w̄, such

that the equality relationship in Equation (1.1) holds. By geometry, w̄ is not on Sn.

By Lemma 1.1, P(w̄) = α. Therefore, P is not valid for Exactly-n. �

9



Define the integer χk(n) to be the smallest number of colors required to color the

points of Sn so that no forbidden k-pattern on Sn is colored monochromatically. Now

we can prove Theorem 1.

Proof of Theorem 1. Consider a protocol P that computes Exactly-n. Let each

distinct broadcast history P(v̄), for v̄ ∈ Hn, define a color. (Note that this colors all

the points of Sn.) If some forbidden k-pattern on Sn is colored monochromatically,

then by Lemma 1.2, P is not valid for Exactly-n, which is a contradiction. Therefore,

there must be more than χk(n) distinct broadcast histories, and hence in some situ-

ation, Ω(log(χk(n))) bits must be communicated. �

We point out that the choice of predicate in Theorem 1 (i.e. Exactly-n) is some-

what arbitrary. In fact, for any choice of predicate in the family Exactly-m for positive

integers m ∈ [0, kn], the subsequent proof will proceed exactly as above with minimal

modification. Further, the authors continue on to show that the lower bound of The-

orem 1 in optimal, up to an additive constant, by providing a matching upper bound

by developing a k-party protocol that is valid for Exactly-n that costs log(χk(n)) + k

bits and that crucially uses the value of χk(n) for the protocol (in fact, the parties

exchange information about their evaluation of χk(n)).

Finally, in [11], the exact value of χk(n) is left unknown, relying on the parties’

unbounded computational power to determine it. Indeed, the authors simply state,

“the optimal protocol can be implemented after an exhaustive search.” This begs the

question of whether an exhaustive search is computationally optimal. Put more for-

mally, one might ask, “What is the (computational) complexity of computing χk(n)?”

10



1.3.2 Previous work

The applied segment of our work primarily picks up from the paper “Rectangle Free

Coloring of Grids” by Fenner, Gasarch, Glover, and Purewal[13]. In this paper, the

question asked is “what are the exact values of m and n for which Gn,m is c-colorable?”

Gn,m denotes the n-by-m grid graph, and c-colorable refers to the existence of a

monochromatic-rectangle-free c-coloring of Gn,m. In [13], an obstruction set is de-

fined as the set of grids Gn,m such that, for a fixed c, the grids are not c-colorable

but all grids properly contained within this set of grids are c-colorable. In essence,

obstruction sets refer to the aggregate threshold of grid sizes at which the grids cease

being colorable.

Following their notation, we will formally define OBSc as the following:

Fix c. Then OBSc is the set of all grids Gn,m such that Gn,m is not c-colorable

but all grids properly contained in Gn,m are c-colorable. Such grids are also called

c-minimal.

To briefly summarize a major part of their results, they prove the following:

• OBS2 = {3x7, 5x5, 7x3},

• OBS3 = {19x4, 16x5, 13x7, 11x10, 10x11, 7x13, 5x16, 4x19},

• OBS4 ⊃ {41x5, 31x6, 29x7, 25x9, 23x10, 10x23, 9x25, 7x29, 6x31, 5x41},

• In addition, OBS4 contains exactly one of: 21x13, 21x12, and

• OBS4 contains exactly one of: 19x17, 18x17, 17x17.

• Finally, if 19x17 ⊂ OBS4, then 18x18 could be in OBS4 as well.
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A particular instance of the remaining, unknown sets in OBS4 – the 17x17 – has

received a large amount of public attention in the TCS and puzzle-solving communi-

ties. (See [15][16][26][9][23][24].) I have posed the question on the TCS StackExchange

Q&A site[6]. In fact, there has even been a web-based, HTML5 game modeled after

the problem[37].

We formally define the problem as:

The 17x17 4-Color Problem. A rectangle of G17,17 is a set of the form

{(i, j), (i+a, j), (i, j+b), (i+a, j+b)} for constants i, j, a, b such that the rectangle is

contained in G17,17. Given four colors, is there a way to color every element of G17,17

such that G17,17 does not contain a rectangle of all the same color?

Previous progress on the 17x17 4-Color Problem falls into two categories. The first

comes from an unpublished manuscript by Elizabeth Kupin from Rutgers[28]. In the

manuscript, Kupin identifies the existence of two, unique, monochromatic-rectangle-

free, partial, 1-color subsets of G17,17 by an exhaustive counting argument (that is, a

full assignment of one color, with the remaining cells left uncolored). In other words,

if G17,17 is in fact legally 4-colorable, the final coloring must contain one of Kupin’s

partial colorings (up to the permutation of rows and columns of the grid).

The second main area of progress is in approximate colorings of G17,17. Approxi-

mate colorings are defined as illegal colorings of G17,17 (i.e. those that contain at least

one monochromatic rectangle) and are ranked on how many monochromatic rectangle

constraints are violated. A leaderboard of best approximations to a solution (suppos-

ing one exists) for the 17x17 4-Color Problem is maintained online[39].
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1.4 Our results

1.4.1 Theoretical results

Our first, highlighted, theoretical result is a conditional complexity classification of

Monochromatic-Rectangle-Free Grid Coloring.

To set up the statement of the theorem, we begin with an informal version of the

Exponential Time Hypothesis (ETH)[25]:

Exponential Time Hypothesis. 3-SAT cannot be solved in subexponential time

in the worst case.

We further remark that the ETH is widely believe to hold and is equivalent to the

conjecture, FPT 6= W[1], a sister to P 6= NP in the world of parameterized complexity

theory. That is, due to [2], it is known that FPT = W[1] implies that SAT is in

DTIME(2o(n)).

Informally, a constraint satisfaction problem (CSP) is a generalization of SAT al-

lowing more than two, discrete truth values per variable; a formal definition follows

in Chapter 2. In order to defer a lengthy technical discussion to Chapter 2, we state

an informal version of the assumption we require:

The NAE is Robust for Grids Assumption. Not-All-Equal relations can

encode any CSP relation over grid-shaped hypergraphs.

The intuition for this assumption fundamentally comes from the manner in which

the NAE-SAT problem structure can be used to properly encode SAT instances. In

essence, we draw on the intuition of the SAT ≤P NAE-SAT NP-completeness reduc-

tion.
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Then in the first half of Chapter 2, we provide evidence that Monochromatic-

Rectangle-Free Grid Coloring is not tractable:

Theorem 12. (Informal) Assume the Exponential Time Hypothesis and the NAE

is Robust for Grids Assumption. Then, given a partially complete coloring of Gn,m,

it requires superpolynomial time in the worst case to decide whether that coloring can

be extended to a complete, valid monochromatic-rectangle-free coloring of Gn,m.

Another interpretation of this theorem is that it highlights another candidate-

route for classifying the complexity of Monochromatic-Rectangle-Free Grid Coloring.

That is, since efforts from across the broader theory community have been unable to

show that the problem is NP-complete (and yet it seems unlikely that the problem

is in P), it may be fruitful to look for other problems, similarly not known to be NP-

complete, that share properties with Monochromatic-Rectangle-Free Grid Coloring.

We then report on the results of a search for applications of Monochromatic-

Rectangle-Free Grid Coloring to other areas of theoretical computer science. In par-

ticular, we demonstrate that Monochromatic-Rectangle-Free Grid Coloring provides

lower bounds in multiparty communication complexity:

Main Theorem. Instances of Monochromatic-Rectangle-Free Grid Coloring that

are c-minimal provide lower bounds for the multiparty communication complexity of

the predicates Exactly-k
2
n, PlanarExactly-n, and LinearExactly-n for the 4 party case.

Finally, based on this discovery and similar evidence in the literature, cited in

Chapter 1, we conjecture that this relationship extends further. In particular, we

define Shape-Free Space Coloring as an analog of Shape-Free Grid Coloring for finite,

discrete, d-dimensional spaces for d ≥ 3 and conjecture the following:
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The Ramsey-Communication Conjecture. Fix any problem in Shape-Free

Space Coloring. Then c-minimal instances of this problem provide lower bounds on

the multiparty communication complexity of some predicate.

1.4.2 Applied results

Despite our belief that Monochromatic-Rectangle-Free Grid Coloring is inherently

intractable, in Chapter 3 we demonstrate some progress towards answering the 17x17

4-Color Problem. As a “warm up,” we show a legal, monochromatic-square-free 2-

coloring of G13,13 as well as a legal, monochromatic-square-free 3-coloring of G39,39.

While neither result is known to be optimal for square-free colorings, both are surpris-

ing. In the square-free, 2-color case, it has been believed that G10,10 was the threshold

for monochromatic-square-free 2-colorable grids[41]. In the square-free, 3-color case,

a simple calculation shows that the candidate solution space for monochromatic-

square-free 3-colorings of G39,39 massively dwarfs the candidate solution space for

monochromatic-rectangle-free 4-colorings of G17,17. In particular, 339×39 = 31521 >

10725 � 10174 > 4289 = 417×17.

We then use the intuition gained from finding monochromatic-square-free colorings

to design an algorithmic approach based in high-performance computing to answer

the 17x17 4-Color Problem. In particular, we develop a plan based on empirical

testing that is expected to solve the 17x17 4-Color Problem within one year. Key to

our approach is our hypothesis that no coloring of G17,17 results in a monochromatic-

rectangle-free 4-coloring. That is, we believe it is crucial to focus on investigating

approaches that allow the existence of a solution to the 17x17 4-Color Problem to be

falsified. Taken together with the theoretical evidence of Chapter 2, this suggests the

optimal approach will likely involve a brute-force search in some form. Indeed, our

technique has, at its core, an exhaustive, backtracking-style algorithm.
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Chapter 2

On the Complexity of Grid Coloring

2.1 Preliminaries

We assume basic familiarity with polynomial- and exponential-time algorithms, com-

putational complexity theory (e.g. Big-Oh notation), graph theory (e.g. the concepts

of vertices, edges, and graphs), and simple first-order logic (e.g. the definition of a

relation). We also assume familiarity with basic complexity classes, e.g. P and NP.

More specialized concepts used in this chapter from complexity theory (e.g. con-

straint satisfaction problems) and graph theory (e.g. hypergraphs and tree decompo-

sitions) are briefly described below. The classic computational complexity textbook

of Papadimitriou[33] or the textbook of Arora and Barak[8] cover all of the requisite

complexity concepts, with an especially excellent series of chapters devoted to first-

order logic in the former. The graph theory textbook of Gross and Yellen[21] contains

an excellent introduction to basic graph theory as well as a chapter discussing the

foundations of Ramsey Theory.

2.1.1 Definitions

A constraint satisfaction problem (CSP) is a generalization of SAT, allowing more

than two truth values. An instance of a CSP is specified by a triple I = (V,C,D)

where V is a set of variables, D is a set of values that the variables may take called the

domain, and C is a set of constraints of the form 〈(v1, . . . , vk), R〉, where k ≥ 1 and R

is a k-ary relation on D. A solution to some instance I is an assignment α : V → D

such that for all constraints 〈(v1, . . . , vk), R〉 ∈ C , we have (α(v1), . . . , α(vk)) ∈ R.

Constraints may be specified in either of the following two manners: (1) by ex-

plicitly enumerating all of the possible combinations of values of variables that are
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legal (or, illegal); that is, all of the tuples of R, (2) by implicitly representing the

set of constraints by a set of mathematical or logical properties. Examples of the

latter, which will be implicitly used throughout this thesis, include CNF formulas in

SAT instances. As an aside, we remark that this can result in an exponentially more

succinct representation of problem instances, and often, it is important to use such a

representation to avoid misrepresenting the actual size of the input problem.

For example, consider the following (very simple) CSP instance of the first form.

We let V = {x1, x2, x3}, D = {0, 1, 2}, and C = {〈(x1, x2, x3), R} whereR = {(0, 0, 1),

(0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 0, 0), (1, 0, 1), (1, 0, 2),

(1, 1, 0), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 1, 0), (2, 1, 1),

(2, 1, 2), (2, 2, 0), (2, 2, 1)}. Now, consider the situation of the same CSP in the second

form. Let NAEk be the k-ary relation such that the variables the relation is between

are not all equal. Then we write the previous CSP instance as V = {x1, x2, x3},

D = {0, 1, 2}, and C = {〈(x1, x2, x3), NAE3〉}.

An (undirected) graph, as is standard, is a pair G = (V,E), consisting of a set

V of vertices and a set of edges E of unordered pairs of v ∈ V . A hypergraph is

a pair H = (V (H), E(H)), consisting of a set V (H) of vertices and a set E(H)

of subsets of V (H), the hyperedges of H. We note that by definition all graphs

are hypergraphs, though not all hypergraphs are graphs. Here is an example of a

hypergraph on five vertices with three hyperedges: Let H0 = (V (H0), E(H0)) and

V (H0) = {x1, x2, x3, x4, x5} and E(H0) = {{x1, x2, x3}, {x2, x3, x4}, {x1, x5}}.

A tree decomposition of a hypergraph H is a tuple (T, (Bt)t∈V (T )), where T is a

tree and (Bt)t∈V (T ) is a family of subsets of V (H) such that for each e ∈ E(H) there is

a node t ∈ V (T ) such that e ⊆ Bt and for each v ∈ V (H) the set {t ∈ V (T ) : v ∈ Bt}

is connected in T . The sets Bt are called the bags of the decomposition. Finally,

the width of a tree decomposition (T, (Bt)t∈V (T )) is max {|Bt| : t ∈ V (t)} − 1. The

treewidth, tw(H), of a hypergraph H is the minimum width over all tree decomposi-
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tions of H.

Here are two (not necessarily optimal) examples of the construction of the tree

and its bags for a tree decomposition of the previous hypergraph, H0: We let the

leaves of the tree TH0 be labeled by the hyperedges of H0. That is, there are three

leaves labeled with {x1, x2, x3}, {x2, x3, x4}, and {x1, x5} respectively. We let there

be a parent bag of the bags labeled {x1, x2, x3} and {x2, x3, x4} that is labeled with

{x1, x2, x3, x4}. Finally, there is a root bag, the parent of {x1, x2, x3, x4} and {x1, x5},

that is labeled {x1}. Observe that this tree decomposition has width 3. Further,

there is a trivial, alternate tree decomposition of H0, where the tree T ′H0
has a single

bag labeled {x1, x2, x3, x4, x5}. This tree decomposition has width 4.

We say that a class H of hypergraphs has bounded treewidth if there exists an inte-

ger k such that tw(H) ≤ k for all H ∈ H; if no such integer exists, then we say H has

unbounded treewidth. For a class H of hypergraphs, we say H has bounded hyperedge

size if there exists an integer k such that for all hypergraphs H = (V (H), E(H)) ∈ H

and for all e ∈ E(H), |e| ≤ k.

For a CSP instance I = (V,D,C) and a hypergraph H, if V is the vertex set of H

and for every constraint in C, there is precisely one hyperedge in H that consists of all

variables occuring in the constraint, we say H is the hypergraph of the CSP instance I.

For a hypergraph H, we denote the set of all instances I where H is the hypergraph

of I by CSP(H). For a class of hypergraphs H, we denote by CSP(H) the union of

all CSP(H) for hypergraphs H in H. That is, we say CSP(H) =
⋃

H∈H CSP(H).

2.1.2 The relationship between CSPs and treewidth

The following series of theorems form the core basis of the main proof in the first half

of this chapter. The first, due to [19] and [18], is restated here:
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Theorem 2 (restated) ([19], [18]). Assume the ETH. Let C be a family of graphs.

Then, the class of instances CSP(C) is polynomial-time-solvable in the worst case if

and only if C has bounded treewidth.

We further remark that the Exponential Time Hypothesis (ETH)[25] is widely

believe to hold and is equivalent to the conjecture, FPT 6= W[1], a sister to P 6= NP

in the world of parameterized complexity theory. That is, due to [2], it is known that

FPT = W[1] implies that SAT is in deterministic time 2o(n).

Due to [20], the result of Theorem 2 can be generalized to CSP(H) for classes H

of hypergraphs of bounded hyperedge size. That is, we have the following powerful

theorem:

Theorem 3 (restated) ([20]). Assume the ETH. LetH be a family of hypergraphs

of bounded hyperedge size. Then we have the following implications:

CSP(H) ∈ PTIME⇐⇒ H has bounded treewidth.

2.1.3 The relationship between brambles and treewidth

We provide a few definitions required for the final graph-theoretic notion we require.

Given a graph G = (V,E), we say two subsets of V touch if (1) they have a vertex

in common, or (2) if G contains an edge between the two subsets. A family of any

number of mutually touching, connected vertex sets in G is a bramble. A subset of

V covers a bramble B if the intersection of the subset with every element of B is not

empty, respectively. The order of a bramble B is the size of the smallest subset of G

that covers B.

For example, consider the grid G17,17. Let UPPER be the set of the seventeen up-

permost vertices of G17,17, and let LEFT be the set of the seventeen leftmost vertices
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of G17,17. Since UPPER and LEFT have a vertex in common – namely, the upper

leftmost vertex in the graph – UPPER and LEFT touch. Therefore by definition, the

set UPPERLEFT = {UPPER, LEFT} is a bramble. Define the set upperleftvertex

= {v : v is the upper leftmost vertex of G17,17}. Then upperleftvertex covers UP-

PERLEFT, since upperleftvertex is a subset of the vertices of G17,17, upperleftvertex

∩ UPPER 6= ∅, and upperleftvertex ∩ LEFT 6= ∅. As |upperleftvertex| = 1, there

cannot be a smaller subset of G17,17 that covers UPPERLEFT (the only smaller set

is ∅, whose intersection with UPPER and LEFT is necessarily empty, and so cannot

cover UPPERLEFT). Therefore, the order of UPPERLEFT is 1.

Finally, we have the following theorem:

Theorem 4 ([38]). Let k ≥ 0 be an integer. A graph G has treewidth ≥ k if and

only if it contains a bramble of order > k.

2.2 A CSP view of Shape-Free Grid Coloring

In this section, we formalize the notion of Shape-Free Grid Coloring in terms of com-

putational problems, ensure that our definition is robust, and translate the resulting

problem family into the language of CSPs in an effort to classify its computational

complexity.

2.2.1 A formal notion of Grid Coloring

We begin with a relatively concrete example derived from the 17x17 4-Color Problem –

Monochromatic-Rectangle-Free Grid Coloring (MONO-RECT). Define MONO-RECT

as the following language in {0, 1}∗:

MONO-RECT = {n,m, c : Gn,m is c-colorable such that no monochromatic rect-

angles exist},
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where a rectangle is a set of four vertices arranged in a rectangular shape, i.e.

{(i, j), (i+ a, j), (i, j + b), (i+ a, j + b)} for integers a, b where

• −i ≤ a < n− i,

• −j ≤ b < m− j,

• a 6= 0, and

• b 6= 0.

and a monochromatic rectangle is a rectangle whose vertices are all assigned the same

color.

However, we immediately arrive at following observation:

Theorem 5. Either there exists a polynomial-time algorithm to decide MONO-

RECT that does not explicitly construct c-colorings of Gn,m, or MONO-RECT 6∈ NP.

The proof will proceed as follows. We show that if certificates of MONO-RECT are

in fact the natural certificate (that is, c-colorings of Gn,m), then the certificate size

of MONO-RECT is exponentially large in the input size, and therefore MONO-RECT

cannot be contained in NP.

Lemma 5.1. Encodings of c-colorings of Gn,m are exponentially large in the input

size of MONO-RECT.

Proof. An input encoding of an instance of MONO-RECT consists of the values of

n, m, and c, which requires Θ(log(n) + log(m) + log(c)) bits. WLOG, encodings of

c-colorings of Gn,m require, at a minimum, a value in [0, c− 1] for each of the n×m
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cells of Gn,m representing the color assigned to each respective cell, which gives an

encoding size of c-colorings of Gn,m of Ω(log(c) · n ·m).

However, (log(c) · n ·m) is at least exponential in (log(n) + log(m) + log(c)), and

the lemma follows. �

Now we can immediately prove Theorem 5.

Proof of Theorem 5. One of the following two possibilities must be the case:

either (1) there exists a non-constructive algorithm to decide MONO-RECT (non-

constructive in the sense that the algorithm evaluates some function of the input

(n,m, c) but does not actually construct a c-coloring of Gn,m), or (2) all algorithms

to decide MONO-RECT must construct c-colorings of Gn,m.

Suppose the latter. Then the certificates of MONO-RECT instances are c-colorings

of Gn,m for some fixed n and m. However, by Lemma 5.1, the size of these certificates

is exponential in the size of MONO-RECT’s instance input size. But by definition of

NP, problems contained in NP must have polynomially bounded certificate size, so

assuming the supposition, MONO-RECT 6∈ NP.

As a result, either there must exist some “fast” (i.e., polynomial-time), non-

constructive technique to decide instances of MONO-RECT by evaluating a function

of n,m and c without actually constructing a legal coloring, or any verifier must spend

exponential time in the input to examine a candidate-coloring, and the theorem fol-

lows. �

However (perhaps in part for aesthetic reasons), we find this situation unsatisfac-

tory. That is, we would really prefer a problem that is a natural candidate for either

being in P or being NP-complete. If we want to get a problem with purely numer-

ical inputs inside NP, we can use a standard padding trick in complexity theory of
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representing the same problem with a unary encoding. Define the following modified

version of MONO-RECT as a unary language:

U-MONO-RECT = {n,m, c : Gn,m is c-colorable such that no monochromatic rect-

angles exist},

where the input string (n,m, c) is given in unary, and the remainder of the problem

is identical. However, we then get the following:

Theorem 6. U-MONO-RECT ∈ SPARSE.

We cite the standard definition of the complexity class SPARSE from the Com-

plexity Zoo[1]: “The class of decision problems for which YES instances of size n is

upper-bounded by a polynomial in n.”

Proof of Theorem 6. All unary languages are necessarily sparse languages, since

for each input length n, a unary language contains at most one value of length n

and at most n values of length at most n. By the definition of SPARSE, the theorem

follows. �

However, by applying the following theorem of Mahaney,

Theorem 7 ([31]). If SPARSE intersects NPC, then P = NP.

we can draw the following corollary:

Corollary. Assume P 6= NP. Then by Theorems 6 and 7, U-MONO-RECT 6∈ NPC.
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2.2.2 Avoiding the class SPARSE

To have a truly robust problem definition (in other words, one that allows us to decide

whether “Grid Coloring” is “easy” or “hard” in the usual sense), we would prefer to

find an appropriate definition that allows us to classify the problem in terms of either

P or NP-hard.

Therefore, we will apply the following natural modification to U-MONO-RECT:

RECT-EXTEND = {n,m, c, f : f is a partial, proper c-coloring of Gn,m that can

be extended to a total, proper c-coloring of Gn,m},

where the first part of the input string (n,m, c) is given in binary2 and the partial

coloring function, f , is specified in binary as well. f will be given in the input as a

series of nm values each represented by precisely log(c) + 1 bits. That is, we let f be

a string of nm values, cx,y, for 0 ≤ cx,y ≤ c given in row-major order of the vertices

(x, y) with the beginning of each value padded with zeroes when required to force it

to be log(c) + 1 bits. The (implicit) values x and y will jointly uniquely specify a

vertex in Gn,m, and the value cx,y will specify the fixed, initial color assigned to vertex

(x, y). Further, a proper c-coloring is any assignment of c colors to vertices in Gn,m

such that no monochromatic rectangles exist. A partial, proper c-coloring is a proper

c-coloring that does not assign a color to at least one vertex of Gn,m, with potentially

as few as no such assignments. A total, proper c-coloring is a proper c-coloring that

assigns a color to every vertex in the grid graph.

In particular, we highlight that in order to allow the encoding scheme the satisfy

2There is no reason why (n,m, c) could not remain encoded in unary, since as will be
shown, f will always dominate the input size of RECT-EXTEND. However, as binary
encodings are generally far more common and as we do not need to retain a unary
encoding to “push” RECT-EXTEND inside NP, we revert to binary for simplicity’s
sake.
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the condition of a partial, proper c-coloring, the range of allowed values allowed for

the cx,y is [0, c], which is c + 1 distinct values, requiring log(c) + 1 bits to represent.

The first c of these values specify the c different colors allowed, whereas the values

cx,y ≥ c is interpreted as “no coloring for vertex (x, y).” Therefore, WLOG, we can

read the requirement that f be a partial, proper c-coloring as a requirement that at

least one of the cx,y be given the value c.

The definition of RECT-EXTEND (and in particular, the consequentially exponen-

tial blow-up in input size) allows us to “bypass” the class SPARSE and any restricting

consequences of Theorem 7:

Theorem 8. RECT-EXTEND 6∈ SPARSE.

The proof will proceed as follows: The goal is to identify a natural subset of

RECT-EXTEND instances that are both guaranteed to be YES instances and that is

exponential in the size of the input N , for infinitely many N . This, in turn, will guar-

antee that there can be no polynomial in the input size N that bounds the number

of YES instances of RECT-EXTEND as N grows, leading to Theorem 8.

Proof of Theorem 8. Consider the set of all grids G2,m. That is, let the dimension

n=2. Additionally, let the number of allowed colors, c, be 2, and let the partial

coloring function f be chosen later. Consider the situations that arise as m increases

to infinity.

In particular, we have grids of two columns (resp. rows), and for any fixed m, the

set of legal colorings include those where the first column is entirely colored by the

first color and the second column is entirely colored by the second color. (In fact, any

coloring where one can scan each column and only encounter two of the same color

in at most one of the two columns is legal, but we only need the above subset.)
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Then the input size is given by:

N = 2 + log(m) + 2 + (2m(1 + 1))

= Θ(m)

where in the first expression, the first term is the number of bits required to represent

an input of “n = 2,” the second term is the number of bits required to represent an

input of “m,” the third term is the number of bits required to represent “c = 2,” and

the final term is the number of bits required to represent the partial coloring function

f (i.e., nm(log(c) + 1) for n = 2, c = 2).

Finally, we allow f to arbitrarily either select (or not select) up to 2m − 1 cells

in G2,m, and if a cell in the first column is selected, f gives that cell the first color

(WLOG, “0”); if a cell in the second column is selected, f gives that cell the second

color (WLOG, “1”); and if a cell is not selected, f gives that cell no color (WLOG,

“2”). WLOG, assume the vertex (0, 0) is always not selected (in order to fit the

requirement that at least one cell is always uncolored), then there are 22m−1 = Θ(4m)

such ways to choose whether to select or not select the remaining 2m − 1 cells. By

construction, each of these choices correspond to a YES instance of RECT-EXTEND.

But since N = Θ(m), no polynomial in N bounds the number of YES instances of

RECT-EXTEND, and the theorem follows. �

2.2.3 Shape-Free Grid Coloring as a CSP

With a computational language in hand that is representative of Monochromatic-

Rectangle-Free Grid Coloring, we now generalize this definition to the family of

problems on grid graphs with arbitrary constraints (i.e., we will only consider the

structural properties of the problem). The property in common between all such

problems is the underlying grid graph structure, which we will now view in terms of

the set of constraints between different vertices.
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Figure 2.1: Overlapping hyperedges of an example hypergraph of G

We begin by defining the family of graphs Fam(Gn,m) :=
⋃

n≥2,m≥2{Gn,m}. We then

(implicitly) construct a family of hypergraphs, G, by a bijection from Fam(Gn,m). In

particular, for every Gn,m ∈ Fam(Gn,m), let there be a matching hypergraph Gn,m ∈ G

such that V (Gn,m) = V (Gn,m) and E(Gn,m) = {e : e is a rectangle in Gn,m}. Some

hyperedges of an example hypergraph of G are shown in Fig. 2.1.

Now we show the following:

Theorem 9. G has unbounded treewidth.

The proof begins with the following lemma:

Lemma 9.1. Fix some n and m. Then Gn,m contains a bramble of order

min(n,m).

Proof. Let an i-j-cross of Gn,m be the union of the vertices in the ith row and jth

column of the graph. Let B× be the union of all such i-j-crosses. Then by definin-

tion, B× is a bramble. Observe that any given row or column in Gn,m covers B×. The

lowest number of vertices across all row and columns is min(n,m). However, if any

less vertices are chosen for the cover than those in an entire row or column, at least

one row or column in an i-j-cross of B× will not be covered. Thus, to cover every
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cross in B×, at least min(n,m) vertices must be used. �

Lemma 9.2. Fix some n and m. Then the treewidth of Gn,m is Ω(min(n,m)−1).

Proof. By Theorem 4 and Lemma 9.1, the lemma follows. In particular, k of

Theorem 4 is min(n,m) by Lemma 9.1, which implies tw(Gn,m) ≥ min(n,m)− 1. �

And we have the straightfoward consequence:

Corollary. The treewidth of Fam(Gn,m) is unbounded.

Now we can prove Theorem 9 by drawing on a result of [3], which states:

Theorem 10 ([3]). The treewidth of a hypergraph H equals the maximum treewidth

of its connected components.

Remark. The definition of a path from v1 to vn in a hypergraph H is a sequence

of vertices (v1, ..., vn) such that any two consecutive vertices are contained in a com-

mon hyperedge of E(H). We say two vertices are connected if there is a path between

them. A connected component of a hypergraph H is a subgraph H ′ = (V ′, E ′) for

V ′ ⊆ V (H) and arbitrary E ′ so long as any pair of vertices (u, v) ∈ H ′ are connected

in H ′ by a path p only if (u, v) ∈ H are connected by p as well.

Proof of Theorem 9. Observe that for each Gn,m ∈ G, Gn,m has Gn,m as a con-

nected component. Each such connected component, for some fixed n and m, has

treewidth Ω(min(n,m)−1) by Lemma 9.2. Then by Theorem 10, Gn,m has treewidth

at least Ω(min(n,m) − 1) as well. Then, in the same vein as the above corollary, G
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has unbounded treewidth. �

Now we define CSP(G) per the definitions at the end of Section 2.1.1. Finally, we

prove the primary (unconditional) theorem of the CSP segment of the thesis:

Theorem 11. Assume the ETH. Then CSP(G) 6∈ PTIME.

Proof of Theorem 11. First, observe that each hyperedge in every Gn,m ∈ G

contains precisely four vertices. Clearly G has bounded hyperedge size. Then we

apply Theorem 3 and Theorem 9, and the theorem follows. �

2.2.4 The NAE is Robust for Grids Assumption

Now we formally introduce the NAE is Robust for Grids Assumption in order to relate

the computational complexities of CSP(G) and RECT-EXTEND.

NAE is Robust for Grids Assumption. Assume CSP(G) ≤p RECT-EXTEND.

We see this assumption as plausible, prima facie, due to its similarity to the

SAT ≤P NAE-SAT NP-completeness reduction. That is, we begin with an arbitrary

relation we want to satisfy, and we transform it into a relation where not every variable

can take the same value. Allow us muse momentarily about the differences between

the two in order to illuminate both why we have had difficulty proving this claim and,

consequently, why it could be true or false.

Discussion. One of the least understood and crucial differences between com-

putational problems known to be in P and those known to be NP-complete is in the

different types of implicative, logic statements they allow. By way of simple example,
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consider the different types of implications one can generate in 2-SAT and in 3-SAT.

In a typical 2-SAT instance, we are given a set of variables grouped in disjunctive

clauses of size 2, e.g. (x2 ∨ x3). Suppose we assign the variable x2 the value false.

Then, for the clause to evaluate to true, it must be the case that x3 is assigned the

value true. Abstracting this principle, we can rewrite any clause of the form (xi ∨ xj)

as (x̄i → xj); that is, we get implicative statements like “If xi is false, then xj is

true.” However, this implies a simple polynomial-time algorithm to decide 2-SAT:

Independently attempt to assign true to each variable xi,∀i, then follow the chain of

implications. If xi → x̄i and x̄i → xi for any i, then the formula is unsatisfiable; oth-

erwise, it is satisfiable. Finally, we observe that the algorithm takes polynomial-time

as a result of the simple path-like structure of implications derived from such clauses.

(Proof omitted, though examples are abundant in the literature.)

However, in the 3-SAT case, the situation is different. The clauses are now of the

form (xi∨xj∨xk), which results in the following form of implication: (xi → (xj∨xk)).

Indeed, by applying the same algorithmic logic as in 2-SAT, we see that the resulting

structure of implications forms a binary tree, and in order to rule out the possibility

that xi → x̄i (and vice versa), we must “visit” every leaf of this tree. It is a simple

matter to see that the size of this tree is exponential in the size of the corresponding

3-SAT formula, and we can conclude that if we use the generalization of the 2-SAT

algorithm for 3-SAT, then we must expend time exponential in the input size in

order to arrive at a decision. And of course, the question of whether there exists an

algorithm that can perform asymptotically better is equivalent to the Exponential

Time Hypothesis, and the question of whether there exists an algorithm that can

complete the entire task in polynomial time is equivalent to the P
?
= NP question.

Further, one can take the view that the theory of NP-completeness is a matter of

precisely embedding this implicative, tree-like structure in other computational prob-

lems. This pattern is perhaps most obvious in graph-theoretic computation problems.
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We could ask, “Why is 2-COLORABILITY in P and 3-COLORABILITY NP-complete?”

A succinct answer in turn could be that 2-COLORABILITY fundamentally demon-

strates an implicative, path-like structure, whereas 3-COLORABILITY demonstrates

an implicative, tree-like structure.

Applying this same reasoning to problems in Shape-Free Grid Coloring, specifically

RECT-EXTEND, and contrasting it with the situation for 3-SAT tells us much. As

the size of the input of an instance of 3-SAT grows, we add clauses to the formula

(and potentially increase the number of variables as well), and in particular, each

clause can be introduced essentially independently of the clauses previously found in

the formula. However with RECT-EXTEND, this is not the case. As the size of the

input of an instance of RECT-EXTEND grows, we add rows (resp. columns) to the

grid graph that must be properly colored. Each of the grid cells thus introduced must

be constrained in a very specific manner.

For example, intially consider an instance with a 2-by-2 grid graph and 2 al-

lowed colors. There are four grid cells, which we will (under some arbitrary ordering)

associate with the Boolean variables x0, x1, x2, and x3. The natural interpretation

in terms of a Satisfiability problem would be as NAE-SAT, and the single, corre-

sponding clause is therefore (x0, x1, x2, x3). Now consider the situation when we

increase the value of n from 2 to 3. Now we have a 3-by-2 grid graph and 2 al-

lowed colors, and we will associate the two new grid cells with the Boolean vari-

ables x4 and x5. The resulting NAE-SAT interpretation would be three clauses:

{(x0, x1, x2, x3), (x0, x1, x4, x5), (x2, x3, x4, x5)}. It is this apparent lack of indepen-

dence in introducing additional clauses and variables – the underlying, implicative,

grid-like structure – that is the key, outstanding difficulty in relating Shape-Free Grid

Coloring problems to known NP-complete problems.

One possibility, of course, is that the introduction of the partial coloring function

for RECT-EXTEND allows an NP-completeness reduction by “breaking” the inherent
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dependence between the coloring of grid cells. An alternate, smaller step would be to

definitively show that CSP(G) reduces to RECT-EXTEND, as the former of which is

intentionally designed to ignore every aspect of the underlying computational prob-

lem except its grid-like structure. We take the view that our work up to this point is

in pursuit of the second, hopefully simpler goal.

We use the NAE is Robust for Grids Assumption for the following theorem:

Theorem 12. Assume the ETH and NAE is Robust for Grids Assumption. Then

RECT-EXTEND 6∈ PTIME.

Proof. Suppose not. Then from Theorem 11, assuming the ETH, we have that

CSP(G) is not solvable in polynomial time in the worst case. Assuming the NAE

is Robust for Grids Assumption, we can transform any instance of CSP(G) into an

instance of RECT-EXTEND in polynomial time. Then, by supposition, we can solve

RECT-EXTEND in polynomial time. This allows us to extract a YES or NO decision

for CSP(G) in polynomial time, which is a contradiction, and the theorem follows. �

Finally, we point out that Theorem 12 does not automatically extend to a corollary

that RECT-EXTEND is NP-complete, even if we could remove its reliance on the

NAE is Robust for Grids Assumption. That is, due to [10], it is known that there

is no dichotomy between P and NP-complete for CSPs of CSP(G)’s form (for more

information, also see [7]).

2.3 Lower Bounds in Communication Complexity

In this section, we demonstrate that Monochromatic-Rectangle-Free Grid Coloring

provides lower bounds for the communication complexity of a group of similar pred-
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icates in the multi-party communcation complexity model. We begin by discussing

the notion of multi-party communication complexity, broadly defined. We then give

three explicit, different examples of such predicates and prove a lower bound for each.

We end by making explicit a possible, broader connection between Ramsey-theoretic

mathematics and lower bounds in communication complexity.

2.3.1 The Multi-Party Communication Complexity Model

In the Multi-Party Communication Complexity Model, a generalization of the earlier

NOF model, there are k ≥ 3 parties P0, ..., Pk−1 with unbounded computational power

that want to exchange information in order to compute a 0-1 predicate of k integers,

A = {a0, ..., ak−1} where ai ∈ [0, n], ∀i, whose input has been divided according to

Φ = {φ0, ..., φk−1}, a k-partition of A. The ith party, Pi, receives the value of every

aj except for those in φi. Note that in the case φi = {ai}, ∀i, that this is precisely

the NOF model. In general however, per the typical definition of a k-partition, the

sets φi ( A can be allowed to consist of any subset of A so long as each aj is assigned

to at least one φi and φi 6= A, ∀i.

We let the parties Pi exchange information by broadcasting bits according to

a round-robin ordering, P0, P1, ..., across a shared communication channel that all

parties can freely monitor. The definitions of a protocol, a broadcast history, a

situation, Sn, Hn, validity of a protocol follow from the NOF model without change.

For clarity’s sake, we make a small modification to the definition of the communication

complexity of a predicate by saying that the multiparty communication complexity

of f , where f is the predicate in question, with respect to the fixed partition Φ, is the

minimum number of bits broadcast by any protocol that correctly compute f across

all possible protocols as the range of allowed values, n, grows toward infinity. Further,

we will refer to the private inputs of party Pi by ζ(Pi) = A\φi.

We will now restrict our study, for simplicity’s sake, to the case when the number
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of parties and inputs k is even and the partitions of A symmetrically cover half of A.

Specifically, φi = {ai mod k, a(i+1) mod k, ..., a(i+ k
2
−1) mod k}. For example, let k = 4,

then A = {a0, a1, a2, a3}, and then φ0 = {a0, a1}, φ1 = {a1, a2}, φ2 = {a2, a3},

φ3 = {a3, a0}, and then ζ(P0) = {a2, a3}, ζ(P1) = {a3, a0}, ζ(P2) = {a0, a1}, and

ζ(P3) = {a1, a2}.

2.3.2 The Lower Bound

We begin with a statement of the three example predicates:

1. Let the predicate Exactly-k
2
n be true for k integers a0, ..., ak−1 if and only if

a0 + · · · + ak−1 = k
2
n. That is, we define Sn(Exactly-k

2
n) := {v̄ ∈ Hn :

∑
i vi =

k
2
n}.

2. Let the predicate PlanarExactly-n be true for k integers a0, ..., ak−1 if and only

if

a0+a k
2

= n

∧ a1+a k
2

+1 = n

...

∧ a k
2
−1+ak−1 = n.

That is, we define Sn(PlanarExactly-n) := {v̄ ∈ Hn :
∧ k

2
−1

i=0 (vi + vi+ k
2

= n)}.

3. Let the predicate LinearExactly-n be true for k integers a0, ..., ak−1 if and only

34



if

a0+a k
2

= n

∨ a1+a k
2

+1 = n

...

∨ a k
2
−1+ak−1 = n.

That is, we define Sn(LinearExactly-n) := {v̄ ∈ Hn :
∨ k

2
−1

i=0 (vi + vi+ k
2

= n)}.

Remark. The choice of name for the latter two predicates are not intended

to imply a strict geometric interpretation for their respective solution spaces, Sn.

While, as will be shown below in further detail, for k = 4 Sn(PlanarExactly-n) is a

square-shaped plane embedded in the four-dimensional hypercube of situations, for

k ≥ 6 the geometric structure of Sn(PlanarExactly-n) is not a plane. And in fact,

Sn(LinearExactly-n) is never a line, but instead takes its name from the linear con-

straints it imposes on (at least one of) the parties’ inputs.

Now we prove two lemmas about the relationships between the solution spaces,

Sn, of these predicates that we will need later.

Lemma 13.1. Sn(PlanarExactly-n) ( Sn(Exactly-k
2
n).

Proof. First we show containment, then inequality by counterexample.

Sn(PlanarExactly-n) ⊆ Sn(Exactly-k
2
n): Fix any v̄ ∈ Sn(PlanarExactly-n). Since∧ k

2
−1

i=0 (vi + vi+ k
2

= n), then
∑

i vi = k
2
n, because there are k

2
pairs of coordinates that

each sum to n, which jointly equal k
2
n.

Sn(PlanarExactly-n) 6= Sn(Exactly-k
2
n): Let k = 4, n = 4, and v̄ = 〈1, 3, 1, 3〉 ∈

Hn. Then
∑

i vi = 1 + 3 + 1 + 3 = 8 = 4
2
4 = k

2
n, so v̄ ∈ Sn(Exactly-k

2
n). But let i = 0,
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then vi + vi+ k
2

= v0 + v2 = 1 + 1 = 2 6= 4 = n, so v̄ 6∈ Sn(PlanarExactly-n). �

Lemma 13.2. Sn(PlanarExactly-n) ( Sn(LinearExactly-n).

Proof. First we show containment, then inequality by counterexample.

Sn(PlanarExactly-n) ⊆ Sn(LinearExactly-n): Fix any v̄ ∈ Sn(PlanarExactly-n).

Since
∧ k

2
−1

i=0 (vi + vi+ k
2

= n) – that is, all of the pairs of coordinates, (vi, vi+ k
2
), sum

to n – then it is also the case that at least one of the pairs of coordinates sum to n.

That is,
∨ k

2
−1

i=0 (vi + vi+ k
2

= n); just pick any pair of coordinates (vi, vi+ k
2
).

Sn(PlanarExactly-n) 6= Sn(LinearExactly-n): Let k = 4, n = 4, and v̄ = 〈1, 0, 3, 0〉 ∈

Hn. Let i = 0, then vi + vi+ k
2

= v0 + v2 = 1 + 3 = 4 = n, so v̄ ∈ Sn(LinearExactly-n).

But let i = 1, then vi+vi+ k
2

= v1+v3 = 0 + 0 6= 4 = n, so v̄ 6∈ Sn(PlanarExactly-n). �

A large portion of the following proof will closely parallel the communication

complexity-theoretic lower bound proof found in Chapter 1 for Exactly-n in the NOF

model. We begin with the following crucial definitional extension:

Define a forbidden k-rectangle (resp. a forbidden k-hyperrectangle), for even k, to

be a set of k distinct points v̄0, ..., v̄k−1 ∈ Hn if there is a point w̄ ∈ Hn such that, for

each i, w̄ differs from v̄i only in coordinates i mod k, (i + 1) mod k, ..., (i + k
2
− 1)

mod k.

Further, we define the view of Pi at v̄j at time t, written view(ζ(Pi), b)v̄j ,t, as the

total sum of information available to Pi given the parties’ global inputs (conditioned

on v̄j), Pi’s private inputs (conditioned on v̄j), and the current broadcast history

(resulting from the application of some protocol P up to time t− 1), which it can use

to decide which bit to broadcast at time t.
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Finally, we will primarily make use of the predicate PlanarExactly-n for what fol-

lows, using Lemmas 13.1 and 13.2 to connect the argument to the predicates Exactly-

k
2
n and LinearExactly-n at the end.

Now we prove the following:

Theorem 13. Let Sn = {v̄ ∈ Hn :
∧ k

2
−1

i=0 (vi + vi+ k
2

= n)}. The communication

complexity of any k-party protocol for PlanarExactly-n is bounded below by the loga-

rithm of the minimum number of colors required to color the points of Sn so that no

forbidden k-rectangles are colored monochromatically.

First, we need the following lemma:

Lemma 13.3. Let P be a protocol for parties P0, ..., Pk−1. Let Hn = {0, ..., n}k

be the hypercube of situations, and let w̄ = 〈w0, ..., wk−1〉 be any point in Hn. If

v̄0, ..., v̄k−1 is a forbidden k-rectangle for w̄ and the complete broadcast histories at the

v̄j are identical, that is

α = P(v̄0) = P(v̄1) = · · · = P(v̄k−1), (2.2)

then P(w̄) = α.

Proof. We prove the lemma by induction on the length of the broadcast history,

that for all i, the ith bit broadcast at w̄ is the same as the ith bit broadcast at v̄i(mod k).

Base step: If |α| = 0, then every process immediately halts on w̄ since it im-

mediately halts on v̄i. That is, since v̄0, ..., v̄k−1 is a forbidden k-rectangle for w̄,

ζ(Pi)w̄ = ζ(Pi)v̄i ,∀i, by the definition of a forbidden k-rectangle, because Aw̄ only

differs from Av̄i in the aj that are not in ζ(Pi) for each situation, ∀i. Further, b = ε

for each situation, since |α| = 0. Therefore, view(ζ(Pi), b)v̄i,t are equal ∀i, and the
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parties must act identically for any fixed, deterministic protocol P .

Inductive step: Assume that for all histories of length < t, the inductive hypoth-

esis is true. Consider the tth bit to be broadcast. By induction, Pt(mod k) sees the

same broadcast history b at w̄ and at v̄t(mod k). As before, by the definition of a for-

bidden k-rectangle, ζ(Pi)w̄ = ζ(Pi)v̄i ,∀i, so the view(ζ(Pi), b)v̄i,t = view(ζ(Pi), b)w̄,t

∀i. Therefore, Pt(mod k) broadcasts the same bit at time t at w̄ as it would at time t

at v̄t(mod k). �

Note that Lemma 13.3 holds in the case of invalid protocols as well as valid

ones and is independent of the predicate in question. For clarity’s sake, we explicitly

construct an example of the above lemma. Let n = 1, let k = 4 and let w̄ = 〈1, 1, 1, 1〉.

Let the following points form a forbidden 4-rectangle for w̄: v̄0 = 〈0, 0, 1, 1〉, v̄1 =

〈1, 0, 0, 1〉, v̄2 = 〈1, 1, 0, 0〉, and v̄3 = 〈0, 1, 1, 0〉. In particular, note that ζ(Pi) at

v̄i, for all i, is {a(i+2) mod k, a(i+3) mod k} = {1, 1} respectively. By hypothesis, the

broadcast histories b at all the v̄i are identical as well. As a result, the views of each

party Pi at each v̄i at times t, that is view(ζ(Pi), b)v̄i,t = view(ζ(Pi), b)w̄,t, ∀i, t. Thus,

assuming the hypothesis and for any fixed, deterministic protocol P , the parties will

send the same bits at points in the forbidden 4-rectangle as they do at w̄.

Note that this example extends to sets of points of the simple form {〈a, a, b, b〉,

〈b, a, a, b〉, 〈b, b, a, a〉, 〈a, b, b, a〉} for w̄ = 〈b, b, b, b〉 and integers a, b ∈ [0, n] such that

vi ∈ Sn, ∀i (and others, as described below). Further note that points of this form

constitute 2-dimensional planes embedded in the 4-dimensional hypercube of situa-

tions, Hn. A geometric interpretation of this (simple) example is shown in Fig. 2.2.

Lemma 13.4. A k-party protocol P is not valid for the predicate PlanarExactly-

n if it assigns the same broadcast history to all points of a forbidden k-rectangle of Sn.

38



Figure 2.2: A simple forbidden 4-rectangle

Proof. Suppose v̄0, ..., v̄k−1 is a forbidden k-rectangle on Sn for the point w̄, such

that the equality relationship in Equation (2.1) holds. By geometry, w̄ is not on Sn.

(In fact, for each of the v̄i ∈ Sn that are a forbidden k-rectangle for w̄, w̄ differs from

the v̄i in precisely one of the coordinates in each of the summations that are a part

of the
∧ k

2
−1

i=0 (vi + vi+ k
2

= n) expression by definition of a forbidden k-rectangle.) By

Lemma 13.3, P(w̄) = α. Therefore, P is not valid for PlanarExactly-n. �

Define the integer µk(n) to be the smallest number of colors required to color the

points of Sn so that no forbidden k-rectangle on Sn is colored monochromatically.

Now we can prove a general lower bound for PlanarExactly-n.

Proof of Theorem 13. Consider a protocol P that computes PlanarExactly-n. Let

each distinct broadcast history P(v̄), for v̄ ∈ Hn, define a color. (Note that this colors
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all the points of Sn.) If some forbidden k-rectangle on Sn is colored monochromat-

ically, then by Lemma 13.4, P is not valid for PlanarExactly-n, which is a contra-

diction. Therefore, there must be more than µk(n) distinct broadcast histories, and

hence in some situation, Ω(log(µk(n))) bits must be communicated. �

Again, for clarity’s sake, we explicitly demonstrate a construction of Sn from which

µk(n) is directly derived. In particular, we extend the previous geometric illustration

of forbidden 4-rectangles to the case n = 2, k = 4. Consider the following points in

the situation space, Hn, for PlanarExactly-n: v̄0 = 〈0, 0, 2, 2〉, v̄1 = 〈2, 0, 0, 2〉, v̄2 =

〈2, 2, 0, 0〉, and v̄3 = 〈0, 2, 2, 0〉, which form a forbidden 4-rectangle for the point

w̄ = 〈2, 2, 2, 2〉. Consider the set of lines that connect each of the four points in the

forbidden 4-rectangle with minimum Euclidean distance. Observe that the midpoint

of each of these lines is in Hn. (In fact, these nine points form a 3-by-3 grid in which

we must avoid monochromatic rectangles.)

An embedding of the forbidden 4-rectangles in the 4-dimensional hypercube of

situations is shown in Fig 2.3. A geometric interpretation of the resulting set of

forbidden 4-rectangles embedded in the 2-dimensional plane is shown in Fig 2.4.
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Figure 2.3: 4D-embedding of forbidden k-rectangles for PlanarExactly-n (n=2, k=4)
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Figure 2.4: 2D-embedding of forbidden k-rectangles for PlanarExactly-n (n=2, k=4)

In particular, the group3 of the nine forbidden 4-rectangles and the points for

which they form the rectangle from the above example are given below. Recall n = 2

and observe that for each of the v̄i,j,
∧ k

2
−1

K=0(vi,j,K + vi,j,(K+ k
2

) = n), whereas ∀w̄i,∃j

such that vj + vj+ k
2
6= n. (That is, v̄i,j ∈ Sn, ∀i,∀j, and w̄i 6∈ Sn, ∀i.)

3Note the change in index notation when referring to groups of forbidden k-patterns
(resp. forbidden k-rectangles), as discussed in the footnote of Section 1.3.1.
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({v̄0,0 = 〈0, 1, 2, 1〉, v̄0,1 = 〈1, 1, 1, 1〉, v̄0,2 = 〈1, 2, 1, 0〉, v̄0,3 = 〈0, 2, 2, 0〉}, w̄0 = 〈1, 2, 2, 1〉)

({v̄1,0 = 〈0, 1, 2, 1〉, v̄1,1 = 〈2, 1, 0, 1〉, v̄1,2 = 〈2, 2, 0, 0〉, v̄1,3 = 〈0, 2, 2, 0〉}, w̄1 = 〈2, 2, 2, 1〉)

({v̄2,0 = 〈0, 0, 2, 2〉, v̄2,1 = 〈1, 0, 1, 2〉, v̄2,2 = 〈1, 2, 1, 0〉, v̄2,3 = 〈0, 2, 2, 0〉}, w̄2 = 〈1, 2, 2, 2〉)

({v̄3,0 = 〈0, 0, 2, 2〉, v̄3,1 = 〈2, 0, 0, 2〉, v̄3,2 = 〈2, 2, 0, 0〉, v̄3,3 = 〈0, 2, 2, 0〉}, w̄3 = 〈2, 2, 2, 2〉)

({v̄4,0 = 〈1, 1, 1, 1〉, v̄4,1 = 〈2, 1, 0, 1〉, v̄4,2 = 〈2, 2, 0, 0〉, v̄4,3 = 〈1, 2, 1, 0〉}, w̄4 = 〈2, 2, 1, 1〉)

({v̄5,0 = 〈1, 0, 1, 2〉, v̄5,1 = 〈2, 0, 0, 2〉, v̄5,2 = 〈2, 2, 0, 0〉, v̄5,3 = 〈1, 2, 1, 0〉}, w̄5 = 〈2, 2, 1, 2〉)

({v̄6,0 = 〈0, 0, 2, 2〉, v̄6,1 = 〈1, 0, 1, 2〉, v̄6,2 = 〈1, 1, 1, 1〉, v̄6,3 = 〈0, 1, 2, 1〉}, w̄6 = 〈1, 1, 2, 2〉)

({v̄7,0 = 〈1, 0, 1, 2〉, v̄7,1 = 〈2, 0, 0, 2〉, v̄7,2 = 〈2, 1, 0, 1〉, v̄7,3 = 〈1, 1, 1, 1〉}, w̄7 = 〈2, 1, 1, 2〉)

({v̄8,0 = 〈0, 0, 2, 2〉, v̄8,1 = 〈1, 0, 1, 2〉, v̄8,2 = 〈1, 1, 1, 1〉, v̄8,3 = 〈0, 1, 2, 1〉}, w̄8 = 〈1, 1, 2, 2〉)

Further, we describe how the situation changes as k = 4 and n grows, as we will

need this construction to be explicit for later. For n = 3, k = 4, Sn is circumscibed by

the rectangle formed by the set of points {〈0, 0, 3, 3〉, 〈3, 0, 0, 3〉, 〈3, 3, 0, 0〉, 〈0, 3, 3, 0〉}.

Along each line of this rectangle, there are two points in Hn (and Sn). We connect all

of these points in a 4-by-4 grid of points, remniscent of Fig. 2.4, which also introduces

the points in the interior of the outer rectangle. In particular, constructing a path

along any fixed direction in this grid (that is, parallel to an axis) changes the points

in a predictable manner. For example, consider a path from the upper-left point

in Fig. 2.4 to the middle-left point to the bottom-left point. With each step, we

subtract one from v1 and add one to v3, transforming 〈0, 2, 2, 0〉 into 〈0, 0, 2, 2〉 after

two steps and encountering 〈0, 1, 2, 1〉 after one step. In the n = 3, k = 4 case, we

can similarly move from 〈0, 3, 3, 0〉 to 〈0, 0, 3, 3〉 in three steps, sequentially encoun-

tering the points 〈0, 2, 3, 1〉 and 〈0, 1, 3, 2〉 along the path. This relationship holds

as n increases to infinity, with the set of points {〈0, 0, n, n〉, 〈n, 0, 0, n〉, 〈n, n, 0, 0〉,

〈0, n, n, 0〉} circumscribing Sn.

43



Now we need to introduce a final concept in order to relate the solution spaces

of PlanarExactly-n and Exactly-k
2
n (i.e., Sn(PlanarExactly-n) and Sn(Exactly-k

2
n)).

That is, as will be made explicit in the subsequent proof of the main theorem, it is easy

to relate Sn(PlanarExactly-n) and Sn(LinearExactly-n), but consider the situation

when, for example, k = 4 and we have a forbidden 4-rectangle {v̄0, v̄1, v̄2, v̄3} for a

point w̄, where v̄i ∈ Sn(PlanarExactly-n), ∀i. By the proof of Theorem 13, we know

that w̄ 6∈ Sn(PlanarExactly-n), but is it immediate that if the same v̄i ∈ Sn(Exactly-

k
2
n), ∀i, that they are a forbidden 4-rectangle for a point w̄ 6∈ Sn(Exactly-k

2
n)? In

particular, on the face of it, it could be the case that the coordinates in which the v̄i

differ from the w̄ could differ in an inverse manner so that they offset and
∑

iwi = k
2
n

still.

For example, consider the following toy example. Let k = 4 and n = 4, and

let the set {v0 = 〈3, 1, 1, 3〉, v1 = 〈1, 1, 3, 3〉, v2 = 〈1, 3, 3, 1〉, v3 = 〈3, 3, 1, 1〉} form a

forbidden 4-rectangle for the point w̄ = 〈1, 3, 1, 3〉. In this case, note that for each

v̄i, v0 + v2 = 4 = n and v1 + v3 = 4 = n, so v̄i ∈ Sn(PlanarExactly-n), ∀i. Further,

w0 + w2 = 2 6= n, so w̄ 6∈ Sn(PlanarExactly-n). However,
∑

iwi = 8 = 4
2
4 = k

2
n, so

w̄ ∈ Sn(Exactly-k
2
n)!

However, we introduce the following technical lemma in order to show that when

we encounter this problem in the case k = 4 if we “twist” the forbidden 4-rectangle

(that is, permute the ordering of the parties in the protocol execution), we can always

find a new point w̄′ 6∈ Sn(Exactly-k
2
n) such that the same vi are a forbidden 4-rectangle

for this point as well, which will allow us to extend the lower bound for PlanarExactly-

n to Exactly-k
2
n in the 4 party case immediately thereafter.
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Twisting Lemma. Let k = 4, and let n ∈ N.

Suppose there exists a point w̄ = 〈w0, w1, w2, w3〉 and a set of distinct points

V = {v̄0 = 〈v0,0, v0,1, v0,2, v0,3〉, v̄1 = 〈v1,0, v1,1, v1,2, v1,3〉, v̄2 = 〈v2,0, v2,1, v2,2, v2,3〉,

v̄3 = 〈v3,0, v3,1, v3,2, v3,3〉} where v̄i ∈ Hn,∀i, such that the following holds:

1. V is a forbidden 4-rectangle for w̄. That is, vi,j 6= wj if j = i mod k or if

j = (i+ 1) mod k, for 0 ≤ i < 4; otherwise, vi,j = wj.

2. v̄i ∈ Sn(PlanarExactly-n), ∀i. That is,
∧ k

2
−1

j=0 (vi,j + vi,(j+ k
2

) = n), ∀i.

3. w̄ 6∈ Sn(PlanarExactly-n). That is, ∃j such that wj mod k + w(j+ k
2

) mod k 6= n.

4. w̄ ∈ Sn(Exactly-k
2
n). That is,

∑
j wj = k

2
n.

Then there exists a point w̄′ = 〈w′0, w′1, w′2, w′3〉 and a permutation π : V → V such

that the following holds:

A. π(V) is a forbidden 4-rectangle for w̄′. That is, (we will abuse notation and say)

π(vi,j) 6= w′j if j = i mod k or if j = (i+ 1) mod k, for 0 ≤ i < 4; otherwise,

π(vi,j) = w′j.

B. π(v̄i) ∈ Sn(PlanarExactly-n), ∀i. That is,
∧ k

2
−1

j=0 (π(vi,j) + π(vi,(j+ k
2

)) = n), ∀i.

C. w̄′ 6∈ Sn(PlanarExactly-n). That is, ∃j such that w′j mod k + w′
(j+ k

2
) mod k

6= n.

D. w̄′ 6∈ Sn(Exactly-k
2
n). That is,

∑
j w
′
j 6= k

2
n.
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Proof. For 0 ≤ j < 4, let π be defined as follows:

π(v0,j) := v1,j,

π(v1,j) := v0,j,

π(v2,j) := v3,j,

π(v3,j) := v2,j.

(2.3)

Recall that prior to applying π, we have the following situation:

w̄ = 〈w0, w1, w2, w3〉,

v̄0 = 〈v0,0, v0,1, v0,2, v0,3〉,

v̄1 = 〈v1,0, v1,1, v1,2, v1,3〉,

v̄2 = 〈v2,0, v2,1, v2,2, v2,3〉,

v̄3 = 〈v3,0, v3,1, v3,2, v3,3〉.

(2.4)

By Condition (1) of the lemma, we can substitute as follows:

w̄ = 〈w0, w1, w2, w3〉,

v̄0 = 〈v0,0, v0,1, w2, w3〉,

v̄1 = 〈w0, v1,1, v1,2, w3〉,

v̄2 = 〈w0, w1, v2,2, v2,3〉,

v̄3 = 〈v3,0, w1, w2, v3,3〉.

(2.5)
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By Condition (2) of the lemma, we can substitute as follows:

w̄ = 〈w0, w1, w2, w3〉,

v̄0 = 〈(n− w2), (n− w3), w2, w3〉,

v̄1 = 〈w0, (n− w3), (n− w0), w3〉,

v̄2 = 〈w0, w1, (n− w0), (n− w1)〉,

v̄3 = 〈(n− w2), w1, w2, (n− w1)〉.

(2.6)

Now we apply the permutation π and set w̄′ := 〈(n − w2), w1, (n − w0), w3〉, which

gives:

w̄′ := 〈(n− w2), w1, (n− w0), w3〉,

π(v̄0) = v̄1 = 〈w0, (n− w3), (n− w0), w3〉,

π(v̄1) = v̄0 = 〈(n− w2), (n− w3), w2, w3〉,

π(v̄2) = v̄3 = 〈(n− w2), w1, w2, (n− w1)〉,

π(v̄3) = v̄2 = 〈w0, w1, (n− w0), (n− w1)〉.

(2.7)

Now we can prove Implication (A), that π(V) is a forbidden 4-rectangle for w̄′, or in

other words, π(vi,j) 6= w′j if j = i mod k or if j = (i+ 1) mod k, for 0 ≤ i < 4, and

otherwise, π(vi,j) = w′j.

In particular, we have the equalities of (A) immediately from Equation (2.6), and

what remains to be shown are the inequalities. From Condition (3), we know that

∃j such that wj mod k + w(j+ k
2

) mod k 6= n. However, due to Condition (4), which

says
∑

j wj = k
2
n = 2n (where the second equality is due to k = 4), we can extend

Condition (3) to say that ∀j, wj mod k + w(j+ k
2

) mod k 6= n. We prove the extension

by showing if ∃ a unique j such that wj mod k + w(j+ k
2

) mod k 6= n then we have a

contradiction. Since k = 4, there are two cases:
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• Case 1: Suppose w0 + w2 = n and w1 + w3 6= n. Then by Condition (4), we

have

w0 + w1 + w2 + w3 = 2n

Substituting w0 + w2 = n gives,

n+ w1 + w3 = 2n

w1 + w3 = n

which contradicts the supposition, so Case 1 cannot hold.

• Case 2: Suppose w0 + w2 6= n and w1 + w3 = n. Then by Condition (4), we

have

w0 + w1 + w2 + w3 = 2n

Substituting w1 + w3 = n gives,

n+ w0 + w2 = 2n

w0 + w2 = n

which contradicts the supposition, so Case 2 cannot hold.

Therefore, substituting k = 4, ∀j, wj mod 4 +w(j+2) mod 4 6= n. Returning to Equation

(2.6), we find that every inequality that remains to be shown for (A) to hold are all

of the form wj mod k

?

6= (n − w(j+2) mod k). Equivalently, including k = 4 we rewrite

to get wj mod 4 + w(j+2) mod 4

?

6= n, which is true ∀j. So we have (A).

We also immediately get Implication (B) from Equation (2.6). That is, we want

to know if
∧ k

2
−1

j=0 (π(vi,j) + π(vi,(j+ k
2

)) = n), ∀i holds. However, all of the (π(vi,j) +

π(vi,(j+ k
2

)) for j = 0 and j = 1 are of the form x+ (n−x) (resp. (n−x) +x) for some

coordinate value x. In all cases, the x and −x cancel, leaving n. So we have (B).
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Recall that by the definition of w̄′ we have the following values for the coordinates

of w̄′:

w′0 = (n− w2)

w′1 = w1

w′2 = (n− w0)

w′3 = w3

(2.8)

From the proof of (A), we know that w1 + w3 6= n, and consequently from Equation

(2.7), we have that w′1 +w′3 6= n. Thus, setting j = 3 in the statement of Implication

(C) shows that it holds.

Finally, we will prove the key fact, Implication (D). Suppose
∑

iwi =
∑

iw
′
i. Then

we have the following:

w0 + w1 + w2 + w3 = (n− w2) + w1 + (n− w0) + w3

w0 + w1 + w2 + w3 = 2n+ w1 + w3 − w0 − w2

w0 + w2 = 2n− w0 − w2

2w0 + 2w2 = 2n

w0 + w2 = n

(2.9)

However, this is a contradiction, since we know w0 + w2 6= n from the proof of (A).

Therefore,
∑

iwi 6=
∑

iw
′
i. But

∑
iwi = k

2
n by Condition (4), so

∑
iw
′
i 6= k

2
n, and

we have (D). �

We demonstrate how the Twisting Lemma operates by applying it to the previous

example. Recall that k = 4, n = 4, that the set {v̄0 = 〈3, 1, 1, 3〉, v̄1 = 〈1, 1, 3, 3〉, v̄2 =

〈1, 3, 3, 1〉, v̄3 = 〈3, 3, 1, 1〉} forms a forbidden 4-rectangle for the point w̄ = 〈1, 3, 1, 3〉,

that v̄i ∈ Sn(PlanarExactly-n), ∀i, that w̄ 6∈ Sn(PlanarExactly-n), and that w̄ ∈
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Sn(Exactly-k
2
n). As a result, the scenario fits the conditions for the Twisting Lemma,

so we “twist” the forbidden 4-rectangle, giving the set {π(v̄0) = 〈1, 1, 3, 3〉, π(v̄1) =

〈3, 1, 1, 3〉, π(v̄2) = 〈3, 3, 1, 1〉, π(v̄3) = 〈1, 3, 3, 1〉}, and we let the point w̄′ = 〈(n −

w2), w1, (n − w0), w3〉 = 〈(4 − 1), 3, (4 − 1), 3〉 = 〈3, 3, 3, 3〉. Observe that the set

{π(v̄i)},∀i, forms a forbidden 4-rectangle for w̄′. Further, for each π(v̄i), π(v0) +

π(v2) = 4 = n and π(v1) + π(v3) = 4 = n, so π(v̄i) ∈ Sn(PlanarExactly-n), ∀i.

Additionally, w′0 + w′2 = 6 6= n, so w̄′ 6∈ Sn(PlanarExactly-n). And finally,
∑

iw
′
i =

12 6= 4
2
4 = k

2
n, so w̄′ 6∈ Sn(Exactly-k

2
n).

Now we can prove our main theorem:

Theorem (Main). Instances of Monochromatic-Rectangle-Free Grid Coloring

(i.e., RECT-EXTEND) that are “tight” NO instances for any fixed c, or c-minimal (see

Section 1.3.2 for a precise definition), provide lower bounds for the multiparty commu-

nication complexity of the predicates Exactly-k
2
n, PlanarExactly-n, and LinearExactly-

n for the case k = 4.

Proof. By Theorem 13, we know that the communication complexity of any k-

party protocol for PlanarExactly-n is bounded below by the logarithm of the minimum

number of colors required to color the points of Sn (that is, Sn(PlanarExactly-n))

so that no forbidden k-rectangles are colored monochromatically, i.e. µk(n). By

Lemmas 13.1 and 13.2, we know that Sn(PlanarExactly-n) ( Sn(Exactly-k
2
n) and

Sn(PlanarExactly-n) ( Sn(LinearExactly-n). Therefore, all of the forbidden k-rectangles

in Sn(PlanarExactly-n) are also in Sn(Exactly-k
2
n) and in Sn(LinearExactly-n).

First we will show that (1) µk(n) provides a similar, general lower bound for

the communication complexity of LinearExactly-n, then we will show that (2) µ4(n)

provides a lower bound for the communication complexity of Exactly-k
2
n in the 4

party case, and then (3) we will relate Monochromatic-Rectangle-Free Grid Coloring
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and µ4(n).

1. Suppose the communication complexity of any k-party protocol for LinearExactly-

n was less than the logarithm of the minimum number of colors required to color

the points of Sn(PlanarExactly-n) so that no forbidden k-rectangles are colored

monochromatically. Then there would exist a k-party protocol that computes

LinearExactly-n with cost less than log(µk(n)). However, this would imply

that a forbidden k-rectangle of Sn(LinearExactly-n) is colored monochromat-

ically – namely, one of the rectangles in Sn(PlanarExactly-n) that is also in

Sn(LinearExactly-n). This, in turn, implies there exists a point w̄ that is also

colored identically. However, by definition of a forbidden k-rectangle, this w̄

must differ from each of the v̄i of the rectangle in precisely one coordinate of

the pair (vi, vi+ k
2
). But since v̄i ∈ Sn(PlanarExactly-n),∀i, it is the case that∧ k

2
−1

i=0 (vi +vi+ k
2

= n). If you change one and only one coordinate’s value in all of

the respective summations, then none of them will sum to exactly n. Therefore,

it cannot be the case that
∨ k

2
−1

i=0 (vi + vi+ k
2

= n), so w̄ 6∈ Sn(LinearExactly-n),

which is a contradiction – that is, no such k-party protocol exists. Therefore,

the multiparty communication complexity of LinearExactly-n is Ω(log(µk(n))).

2. Similarly for Exactly-k
2
n when k = 4, as we know that all of the forbidden

4-rectangles in Sn(PlanarExactly-n) are in Sn(Exactly-k
2
n), it remains to show

that there exists a w̄ for each of these rectangles that is not in Sn(Exactly-k
2
n)

as the existence of one such w̄ per rectangle would cause protocols costing less

than log(µ4(n)) to be invalid for Exactly-k
2
n when k = 4. Fix any such rectangle

and consider its associated w̄. If w̄ 6∈ Sn(Exactly-k
2
n), we are done. If, however,

w̄ ∈ Sn(Exactly-k
2
n), then we “twist“ the rectangle via the Twisting Lemma,

and we have a w̄′ for which the rectangle is still a forbidden 4-rectangle and

such that w̄′ 6∈ Sn(Exactly-k
2
n).
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3. Finally, for k = 4, n ≥ 1, we simply substitute every point of each respec-

tive predicate’s Sn with the geometrically corresponding cell from an instance

of Monochromatic-Rectangle-Free Grid Coloring. For c-minimal Gn,n (or the

smallest Gn,n not contained in any grid of OBSc), c + 1 = µ4(n) by definition.

In particular, the value of µ4(n) increases by 1 precisely each time n crosses the

“boundary” of a c-minimal grid size, for any c. �

2.3.3 The Ramsey-Communication Conjecture

Based on the above study, we now conjecture that the relationship between Ramsey-

theoretic mathematics and lower bounds in communication complexity extends much

further. First, we generalize the (as-yet informal) notion of Shape-Free Grid Coloring.

In particular, define Shape-Free Space Coloring as the class of computational prob-

lems such that every problem in the class has the following two properties:

1. Let d ≥ 3. Then the problem involves coloring points of a finite, discrete,

d-dimensional space such that no shape (an arbitrary but fixed, geometrically-

defined relationship between points in the space) is colored monochromatically.

2. Van der Waerden’s Theorem applies to the problem by a projection from the

natural numbers to points in the colorable space.

We conjecture the following:

The Ramsey-Communication Conjecture. Fix any problem in Shape-Free

Space Coloring. Then c-minimal instances of this problem provide lower bounds on

the multiparty communication complexity of some predicate.
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2.4 Questions for Further Research

• We did not give a proof that Monochromatic-Rectangle-Free Grid Coloring pro-

vides a tight lower bound for any predicate. In the case of the predicates present

in this thesis, especially for PlanarExactly-n and LinearExactly-n, this seems un-

likely. For PlanarExactly-n and LinearExactly-n, it seems reasonable that they

would reduce to a multiparty analog of the Equality predicate, which has a

tight two-party communication complexity of Θ(n). In the case of Exactly-k
2
n

(or perhaps more generally, Exactly-m for m ∈ [0, kn]), it seems less obvious

that the “correct” lower bound is Ω(k
2
n) (i.e. the amount of bits required to

give any one party all of the available information), even though we could not

provide a matching upper bound of O(log(µk(n)) + c) for constant c. What is

the exact communication complexity of Exactly-k
2
n? Or similarly, does there ex-

ist a predicate where Monochromatic-Rectangle-Free Grid Coloring provides a

matching upper and lower bound (i.e. for which Monochromatic-Rectangle-Free

Grid Coloring provides an answer)?

• Can we provide a stronger, more explicit characterization of the relationship

between Ramsey-theoretic mathematics and lower bounds in communication

complexity? In other words, is the Ramsey-Communication Conjecture true?

Can it be refined to be more precise? (Does it in fact need to be?)

• Can we unconditionally prove Theorem 12? In particular, is the NAE for Robust

for Grids Assumption true?

• Where does the computational complexity of computing c-minimal grids in

various Shape-Free Grid Coloring problems ultimately lie? Given the NAE

is Robust for Grids Assumption, we know there are two possibilities: (1) the

problem is NP-complete, or (2) the problem is NP-intermediate.
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– What would an NP-completeness proof for Shape-Free Grid Coloring look

like? The straightforward answer is a standard reduction from an NP-

complete problem to some (or all) variants of Shape-Free Grid Coloring.

One possibility would be a reduction from E4-Set-Splitting or a similar

problem to RECT-EXTEND. In Ek-Set-Splitting, known to be NP-complete

for k ≥ 3 via [14], seems to capture the relational structure of Shape-Free

Grid Coloring, sans the structural restriction to a grid-shaped hypergraph.

This is in much the same vein to how CSP(G) captures the structural re-

strictions but requires arbitrary relations. In essence, we have two appar-

ently hard problems whose intersection is Shape-Free Grid Coloring, which

is intersting but not sufficient for a proof of Shape-Free Grid Coloring’s

hardness. How can this line of thinking be extended?

– What would an NP-intermediateness proof for Shape-Free Grid Coloring

look like? In general, one should not hope to easily prove the uncon-

ditional existence of NP-intermediate problems (not without separating P

and NP first!), but given an assumption of the ETH, perhaps some progress

is possible. For instance, under the ETH, giving an explicit subexponen-

tial time algorithm for RECT-EXTEND would be a first step (though not

a sufficient one for technical reasons: the ETH’s time complexity claim

only directly regards SAT). Another avenue would be to show that “some-

thing bad” happens (like a collapse of the polynomial hierarchy) if some

predicate’s lower bound, µk(n) requires the same degree of complexity to

compute for all values of k. This approach would, in essence, be initial

evidence of an infinite hierarchy of increasingly more complex problems as

k grows, matching the known consequences of Ladner’s Theorem [30] for

NP-intermediate problems.

• And further, what is the complexity of obtaining various approximation guaran-
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tees for problems in Shape-Free Grid Coloring? As mentioned before, computing

relatively close approximations to the 17x17 4-Color Problem appears, in prac-

tice, to be much easier than exactly computing a full monochromatic-rectangle-

free solution[39]. On the other hand, the similarity between Shape-Free Grid

Coloring and E4-Set-Splitting raises the interesting possibility of a PCP-based

inapproximability threshold in the vein of [22]. Without an unconditional, fixed

complexity for even RECT-EXTEND, this question seems wide open.
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Chapter 3

The 17x17 4-Color Problem

3.1 Introduction

In this chapter, we describe an approach, based on empirical evidence, that is designed

to solve the 17x17 4-Color Problem. The total runtime of the approach is expected to

take under one year to complete and is guaranteed to either find a monochromatic-

rectangle-free 4-coloring of the 17x17 grid or show that no such coloring exists. To

our knowledge, this is – by far – the fastest documented approach that guarantees a

solution. At the same time, it falls just outside of the realm of practicality in terms

of actually being implemented. To actually attack the problem, some improvements

need to be made to lower the runtime requirements.

Recall that the 17x17 4-Color Problem is defined as follows:

The 17x17 4-Color Problem. A rectangle of G17,17 is a set of the form

{(i, j), (i+a, j), (i, j+b), (i+a, j+b)} for constants i, j, a, b such that the rectangle is

contained in G17,17. Given four colors, is there a way to color every element of G17,17

such that G17,17 does not contain a rectangle of all the same color?

It is particularly worthwhile to note that many approximate colorings, where the

goal to is minimize the number of monochromatic rectangle constraints that are vi-

olated by a color assignment, are known and (relatively speaking) easy to find in

practice[39]. The best known approach for approximate colorings is simulated an-

nealing [27], which draws inspiration from the metallurgical practice of annealing, or

applying heat to metals to refine them.

Simulated annealing is a randomized heuristic for finding approximations to a
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global optimization function over a large, discrete search space. In general, simulated

annealing begins at an arbitrary (or randomized) initial state, and at each iteration,

considers some new state that is “close” to the current state, where the distance

metric is chosen on a per-application basis. The algorithm then probabilistically

chooses whether to accept or reject a transition from the current state to the candidate

neighbor-state as a function of the difference in the approximation value of the two

states and a global parameter T , called the temperature. Over time, T decreases

from ∞ to 0, at which point the algorithm terminates.

In the case of simulated annealing for monochromatic-rectangle-free colorings (and

the 17x17 4-Color Problem in particular), here is a candidate implementation in

concept. First, we begin with a random coloring of the 17x17 grid. We set some

parameter k to count the number of total iterations and terminate at some point

in the future depending on how much time we have. On each iteration, we do the

following. First, we check the current grid for violated rectangle constraints. We then

chose one of those at uniform random. For the given violated rectangle constraints,

we then choose one of its four constituent vertices at uniform random. We then select

a new, candidate color for that vertex at uniform random. Then we compare the

percent of violated constraints of the total number of constraints between the current

grid coloring and the current grid coloring with the new, candidate color for our

chosen vertex. We then probabilistically select a threshold at which we will accept

the new coloring, depending on the previously computed percent difference between

the current and new colorings and the value of k. For example, we might randomly

choose “If the new coloring violates 1% fewer constraints than our current coloring

or less, we will accept.” Similarly, we could choose to accept a worse approximate

coloring on occasion, in the hope that it will help break out of a local minimum.

Finally, if we switch, we record the best coloring so far, increment k, and repeat the

process.
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However, we believe that it is worthwhile to primarily investigate approaches that

allow one to show that no monochromatic-rectangle-free coloring of G17,17 exists. Our

motivation for this belief comes from two facts: (1) an approximate coloring of G17,17

brings us no closer to resolving the proper elements of OBS4, and (2) very good

approximate colorings are already known. For an example of the latter, here is an

almost-4-coloring ofG17,17, due to Rohan Puttgunta[35], that contains one uncolorable

cell (marked by “+”) but no monochromatic rectangles.

00000111122223333
01111122223333000
02222133320003111
03333100021113222
10123212332300301
11032221033210032
12301230130120123
13210203231030210
20231313002011312
21320320303101021
22013331200231130
23102302101321203
30312010212132320
31203023113022013
32130032010312102
33021001311202231
0123+012301230123

Therefore, we hypothesize the following and aim to either prove or disprove it:

Hypothesis. There is no monochromatic-rectangle-free 4-coloring of G17,17.

In the following sections, we first discuss some of our new results in monochromatic-

square-free c-coloring as the inspiration for our approach to the 17x17 4-Color Prob-

lem, then we discuss the plan itself from a high-level view before digging deeper into

the technical aspects of its two phases. Finally, we discuss areas for improvement and

some ideas for getting there.
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3.2 An aside: Monochromatic-Square-Free c-coloring

Our results in monochromatic-square-free c-coloring include a 2-coloring of G13,13

and a 3-coloring of G39,39. A monochromatic-square-free c-coloring of Gn,m is an

assignment of colors in {0, ..., c − 1} to the vertices of Gn,m such that no vertices

arranged in a square are colored identically. In this context, a square is a set of four

vertices {(i, j), (i + a, j), (i, j + a), (i + a, j + a)} for constants i, j, and a such that

each pair, (x, y), is a vertex of Gn,m. We first present the colorings and then discuss

the methods and consequences.

Here is a monochromatic-square-free 2-coloring of G13,13:

0000001001111
0101100101010
0011001111001
1110100010011
1011111001000
0110010011110
1101001010100
1000011110010
1011000100111
0001110010101
0101011000011
1100010101001
0110111100100
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And here is a monochromatic-square-free 3-coloring of G39,39:

000000000000000000000000000000000000000
010101010101010101010101010101010101010
001100110011001100110011001100110011001
011201120112011201120112011201120112011
000011210000112100001121000011210000112
010112220101122201011222010112220101122
002121120021211200212112002121120021211
021111221000000011121220021111221000000
000000001111222100000000111221210020101
010102201222110010201011101020201011102
002100112112122200210012112212210001220
022101012211221222221000000100011221121
000012111212211200101202120221010010022
010211121221221112100002110020011211001
011010201020102001011121211222101012020
001111021111122220001220120001101120012
010001010100010010222122102110112101002
000200100010202111112111212021200000200
011002222111002022201121100011212201120
100220211121220112012200102200101202120
001022100212210012021211220210010022212
021211212222101021002212020202011221101
100112011100202121022102220010002112100
101022010020000210200100121122222121110
000200011212101112122120222011100010211
020001102001110122211200112112001022002
002122120221001021120001211202021012122
101011212002121220002011202020121220112
111100120020122020110220010102101102211
222120211002001200010002011012022122121
020010222011111221022112101011102202220
100202000212021002101010112012002111212
001110020122011011110112202200102100022
021220100100202101202221010201012110112
110202021022010202211211100101001010202
211221100120111200001122210120020220200
012000201110121111011020022202222202210
002021112021120102110002211220101210221
100002102000222010200122112100021111020
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The first coloring was generated by a simple backtracking algorithm implemented

in C++ compiled using the GNU C++ compiler, version 4.5.2[17]. It was executed

purely sequentially on a single core running at 3.00 GHz and took approximately 174

hours of consecutive execution to find. Here is a pseudocode implementation:

procedure search ( grid : an n × m array initialized to all -1 ,

c : a number of allowed colors )

x ← 0, y ← 0

while true

gridx,y ← gridx,y + 1

if check(grid, x, y)

if not goToNext(x, y)

output grid

end if

else if gridx,y = c - 1

if not backtrack(grid, x, y)

output false

end if

end if

end while

end procedure

The further, listed procedures – check, goToNext, and backtrack – may be

implemented as desired. However, some optimizations are possible. In particular,

check needs to only check for violate square constraints for those vertices that have

already been colored up to that point in the search. goToNext can specify any or-

dering of the vertices, but in our case, a simple row-major ordering was used. The
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procedure should modify its inputs (x, y) to be (x′, y′), representing the next vertex in

the ordering (if possible), and return false if there are no new vertices to “move” to or

true otherwise. backtrack is simply the inverse operation of goToNext, reversing

whatever ordering of vertices is specified in goToNext, modifying its input to rep-

resent the immediately previous vertex in the ordering if possible and returning false

if given as input the coordinates of the initial vertex or true otherwise. Additionally,

backtrack will reset the value of the vertex it is passed (that is, its color) to -1.

The second coloring (of G39,39) was generated in a slightly modified manner. In-

stead of running the backtracking search from an empty grid (i.e. one without any

colors assigned), the initial grid coloring was seeded with a legal coloring of a lower-

order grid. In particular, the overall process was done via bootstrapping – solutions

to one size of grid were given as the starting point for a backtracking search using

the previously mentioned algorithm for a larger grid later on. Initially, of course, col-

orings were generated from an uncolored grid: first for G11,11, then again for G12,12,

and again for G13,13, and so forth. In the mid-20s – around G25,25 – the runtime of

solving each instance from scratch began to noticably slow down. We then began

inserting colorings of smaller grids into the lower-right quadrant of the larger grids

(flush against the axes) and running the backtracking search from that point onward.

Note that this implies the algorithm would immediately backtrack into the seeded

coloring and change it. For example, when searching for a square-free coloring for

G30,30, the lower-right quadrant of the grid was seeded with the square-free 3-coloring

of G15,15, and so forth (we note that the choice of seeded grid coloring was done in

an ad hoc manner; in other words, completely arbitrary choices were made with each

iteration). The entire process of generating the square-free 3-coloring of G39,39 was

completed in approximately 24 hours via this method. The final coloring obtained

– that of G39,39 – took approximately three hours to generate from a seeding of the

3-coloring for G38,38.
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Admittedly, there is some luck associated with arriving at colorings in the manner

we did, due to the non-rigorous, intuitive way in which input seedings were chosen. At

the same time, one important observation is that a row-major ordered backtracking

search finds colorings in lexicographical order. That is, for some fixed number of colors

c, we can interpret every coloring as a base-c number in order to gain some idea of

how far through the candidate solution space of each instance that the search had to

proceed. For example, interpreting the coloring of G39,39 as a base-3 number gives

a decimal value of approximately 10199, which is an almost-infintesimal percentage

of the total search space 339,39 = 31521, or approximately 10−525. Even then, a huge

percentage of the space actually searched was telescoped over by the backtracking

algorithm, since every time a violated square constraint was found – especially early

in the lexicographical ordering – some large sequence of possible colorings was skipped.

Even more were omitted by initializing the search from the middle of the ordering by

providing seeded inputs.

These two results are surprising for different reasons. In the case of the 2-coloring

for G13,13, it was believed that G10,10 was the limit for square-free 2-colorings[41].

Previous work that arrived at the 2-coloring of G10,10, primarily by Jim Purtilo at

Maryland-College Park, focused on a different approach. Beginning with G2,2 and

scaling upwards, an exhaustive, brute-force enumeration was performed of each legal

coloring for the grids Gn,n. At each new grid size, the grid was seeded with every

possible coloring of the previous size, based on the observation that any n − 1-by-

n − 1 subset of Gn,n must be a legal coloring of Gn−1,n−1. (We wish to attribute

the inspiration for seeding the search with previous grid colorings leading up to the

discovery of the 3-coloring of G39,39 to him.)

In the case of the 3-coloring for G39,39, given how apparently difficult the 17x17

4-Color Problem is, we find it striking how quickly a legal coloring was found in a

massively larger candidate solution space. That is, one of the most-cited, intuitive
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reasons for believing that the 17x17 4-Color Problem is difficult is that there are

417×17 = 4289 ' 10174 possible colorings one has to check (or, respectively, telescope

over via backtracking). On the other hand, there are 339×39 = 31521 ' 10725 possible

3-colorings of G39,39, and 10725 � 10174. There are many possible reasons that the

above approach so quickly found a 3-coloring square-free solution for G39,39; we list a

few here:

1. Pure luck. That is, there just happened to be a single solution very early in

the lexicographical ordering of all square-free 3-colorings of G39,39. We cannot

rule out this possibility, but given that solutions were found similarly quickly

for G10,10 through G39,39, we feel there may be a better explanation.

2. There are many solutions, by percentage of possible colorings. That is, it could

be possible that G13,13 and G39,39 are nowhere near the limit of what is square-

free colorable with 2 and 3 colors, respectively. We tested this hypothesis by

running a pure Monte Carlo search for square-free colorings – i.e. randomly

assigning colors to all vertices in the grid, checking for violations, and repeating

until a legal coloring was found. However, over 2 days of execution failed to find

a single, legal 3-coloring for even G10,10. While this may not be enough to rule

out the possibility in theory, there is a distinct difference in practical runtimes.

3. Lexicographical search exploits an important property of shape-free colorings.

While this would be very exciting in terms of solving the 17x17 4-Color Prob-

lem, applying the same algorithm to search for monochromatic-rectangle-free

colorings of relatively low-order grids did not give the expected results for this

hypothesis. It took approximately one day to find a legal, monochromatic-

rectangle-free 4-coloring of G12,12.

4. Lexicographical search exploits an important property of square-free colorings.

In some sense, this is the only hypothesis remaining that we find plausible.
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While we did not extensively explore this ourselves, we believe it would be an

interesting path for further research to determine and characterize the exact dis-

tribution of legal, square-free colorings with respect to lexicographical ordering

of all possible colorings by enumerating all such solutions through backtracking,

brute-force, or similar approaches.

Taken altogether, we believe this provides empirical value to the claim that the

backtracking approach is often excellent for finding a solution, if one exists. Of

course, if a solution does not exist for a problem, backtracking defaults to a slightly

improved brute-force search, and may often require a runtime on the order of the

candidate solution space itself to find an answer. In the remainder of the chapter,

we present a computational plan based on a similar, long-term-oriented, backtracking

approach to the 17x17 4-Color Problem using high-performance computing resources

and carefully analyze the expected runtime and memory requirements.

3.3 Computational Plan

One of the greatest, if not the greatest, challenges in taking a theoretically-designed

approach and implementing it on a supercomputer comes in the form of the processor-

hours and memory allowances available on any given, actual machine. For instance,

if an algorithm is intended to run in multiple phases, the first phase has a projected

runtime of, say, 250,000 processor-hours, and the systems available are a 10,000-

core machine and a 1,000-core machine, but access to the first machine is only given

in allotments of 200,000 processor-hours at a time, there is a hard decision. Is it

worthwhile to modify how the phases of execution are divided up so that the first

phase can run an order of magnitude faster, or will breaking the overall problem up

into smaller pieces cause too long of a delay?

The overall structure of the computational plan is to first use a backtracking-style,

brute-force search to enumerate all legal, monochromatic-rectangle-free colorings of
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some lower-order grid size. Then, to bootstrap towards the larger grid sizes, we

treat each legal coloring as a valid color for the larger grid and repeat the procedure.

Consider the following toy example:

Suppose we wanted to find all monochromatic-rectangle-free k-colorings

of G8,8, for an arbitrary integer k > 1. Our approach will be to first

enumerate every possible monochromatic-rectangle-free k-coloring of G4,4

from scratch. Suppose that such a search is projected to take 50,000

processor-hours and generate 50 GBs of data – the file, or series of files,

containing all legal k-colorings of G4,4. In the first phase, we need a

machine on which we are allowed at least 50,000 processor-hours and that

has access to an output hard drive with 50 GB of space. Fortunately, the

RAM requirements of the first phase are quite low, since the only thing

we have to hold in RAM is a 4-by-4 array of integers. We run the search,

generate 50 GB of data, and proceed to the next phase.

In the next phase, we treat each 4-by-4 k-coloring as a single “color”

(or, “colored tile”) in the search for a monochromatic-rectangle-free k-

coloring of G8,8. Suppose, then, in our 50 GB hard drive, we have 1020

such colorings. In essence, we perform a new search for a monochromatic-

rectangle-free 1020-coloring of G2,2, since covering G8,8 with colorings of

G4,4 takes four such colorings, one for the top-left, top-right, bottom-

left, and bottom-right quadrants respectively. Of course, the checking

procedure will still treat the grid as G8,8 with 4 colors available per vertex

(rather than 1020 colorings available per quadrant). In this case, the

runtime estimate in terms of processor-hours becomes a major constraint

as well as the RAM requirements (since, to avoid the dramatic slow-down

associated with multiple hard drive reads, we have to load all 1020 colorings

into RAM simultaneously to perform backtracking to even compare the
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possibilities for the top-left and top-right quadrants), while the output

hard drive space should, in theory, become much less of a problem. That

is, assuming G8,8 is at or close to the threshold of legal k-colorings, there

should be very few such colorings to output.

It is important to know, when reading the above example, that such a backtrack-

ing search is inherently embarassingly parallelizable. An embarassingly parallelizable

algorithm is defined in folklore as one where, under Amdahl’s Law, Speedup ' n for

number of processes, n. Amdahl’s law [5] states:

Speedup =
1

rs + rp
n

(3.10)

where rs + rp = 1 and rs represents the ratio of the sequential portion in the algorithm.

Theorem. For a backtracking-style algorithm solving the n×m c-Color Problem,

as described above, rp ' 1.

Proof. For a given number of processes n, we parallelize the search in the follow-

ing manner. Compute the size of total candidate solution space, S, by |S| = cn×m

for colors c and constants n and m as dimensions of Gn,m. Compute the set of n

integers I =
{

0, |S|d 1
n
e, |S|d 2

n
e, ..., |S|dn−1

n
e
}

. Convert each of the integers i ∈ I to

its base-c representation, ic. Pass one ic to each of the n processes respectively as

initial, starting points, and pass each of the (i+ 1)c to each of the same, respective n

processes as final stopping points. The nth process halts at |S|. Since we can do this

procedure for any value of n up to |S|, rp ' 1. �

Corollary. For a backtracking-style algorithm solving the n × m c-Color Prob-

lem, as described above, Speedup ' n, which implies it is embarassingly parallelizable.
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Proof. We apply Amdahl’s Law:

Speedup =
1

rs + rp
n

' 1

0 + 1
n

' n �

As a result, a nice feature of this approach is that the number of cores on a

given machine running an implementation of this approach is essentially independent

of the problem’s constraints. If run a 1,000-core machine, we can expect roughly a

103-times speedup, or if run on a 10,000-core machine, we can expectly roughly a 104-

times speedup, and so forth. Therefore, once we have a good, empirically validated

projection of the number of processor-hours required by this approach, the machine

in question could be any machine, where more cores means lower runtime but not

more hassle.

Overall, the computational plan involves two primary phases. The first phase is

a backtracking-styled, brute-force enumeration of all legal 4-colorings of G8,8. The

second phase is a backtracking-styled, brute-force enumeration of all legal 4-colorings

of G16,16, where we use the legal colorings of G8,8 to cover quadrants of G16,16 at a

time. Finally, we use a final backtracking step to search for extensions from legal

colorings of G16,16 to legal colorings of G17,17. However, we assume the number of

legal colorings of G16,16 will be small – likely many orders of magnitude smaller than

the number of legal colorings of G8,8, since G17,17 is quite close to members of, or

even a proper member of, OBS4. As such, we now describe the two primary phases

of execution and assume that the final step will be a relatively trivial clean-up phase.
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3.3.1 Phase 1

For the first phase, we will use backtracking to enumerate all legal, monochromatic-

rectangle-free 4-colorings of G8,8. To simulate the typical execution of this phase, we

implemented a serial version of the program and ran the code for 10 hours of testing.

The testing was performed on a single core running at 3.00 GHz with access to 4.0

MB of RAM. The operating system used was Windows 7, and the code was compiled

using the GNU C++ compiler version 4.5.2 in the Netbeans 6.9.1 IDE[32]. Every

5 minutes, a timestamp, number of colorings found, and the current coloring under

consideration (to identify how far through the search the algorithm had progressed)

were logged to a file. Here is an abbreviated chart of the data collected, highlighting

“round” values of time and number of colorings found for comparison’s purposes:

Time Elapsed (Minutes) Number of Colorings Found

60 40,021,843

120 80,411,355

155 101,426,216

180 116,741,823

250 155,178,294

370 213,753,643

375 217,422,059

555 368,217,284

600 376,204,182
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At the 600 minute mark, the coloring currently being considered by the algorithm

was:

00000111
01111000
01222122
01233213
01323231
12301120
13310321
13103200

Converting to a base-10 number, we have approximately 1.09×1035 out of a total

space of 48×8 = 464 ' 3.4× 1038 possible colorings. This gives a progress of approx-

imately 0.03205% through the total search. Therefore, we can expect to search to

continue approximately 3120.12 times longer than it already has before it completes.

Given that the search took 10 hours to make this progress, that gives an expected

total runtime of 31,201.2 processor-hours. In other words, if run on a 1,000-core su-

percomputer, the entire first phase should take approximately 31 hours to complete.

In terms of memory requirements, as mentioned before the RAM requirements of

the first phase are inconsequential. However, the amount of data being generated is a

serious concern. In testing, the program generated 376,204,182 colorings in 10 hours

of execution on a single core. These colorings were stored in a series of files containing

50,000 colorings each. Altogether, there were 7,525 such files each requiring 3,565 KB

of memory to store (except the last, which was not completely full). If this trend

holds, that means every 10 hours of execution, there would be 7, 545 × 3, 565 KB =

26,897,925 KB × 1MB
1024KB

× 1GB
1024MB

= 25.65 GB of data generated. Over the entire first

phase, that gives 25.65 GB × 3,120.12 = 80,036.88 GB × 1TB
1024GB

= 78 TB of data.

Clearly 78 TB of data far exceeds the capabilities of all but the most special-

ized supercomputers, considering that we want to load these colorings into RAM

eventually. Therefore, we provide two possible methods of thinning the candidate
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quadrant-colorings of G16,16. The first is to simply remove any colorings that are

“identical” in the sense that entire colors are simply replaced by one another. For

instance, given any legal coloring of G8,8, we remove any coloring that simply swaps

every color a with another color b and vice versa. This method would immediately

lower the memory requirements to store the colorings of G8,8 to 78TB
4!

= 3.25 TB. This,

fortunately, is within range of the RAM capabilities of multiple supercomputers, as

will be described in detail below.

One danger in using this method blindly is that it could be possible that a legal

coloring of G16,16 actually contains two or more “permuted” colorings, all but one

of which would have been eliminated by this thinning process. However, each such

coloring could later be reconstructed from the remaining coloring without a significant

loss in runtime over simply reading and using the coloring itself. In particular, it would

be possible to simply check if any permutations of a given coloring succeed without

performing a single write or read operation (instead using modular arithmetic on the

spot to simulate each such coloring).

The second method would be to make use of the constraints on the potential,

legal 4-coloring of G17,17 identified by Beth Kupin [28]. She discovered two and only

two partial 1-colorings of G17,17 that must be contained inside the final, legal G17,17

4-coloring, if it exists, up to the choice of permutation of the rows and columns. They

are shown in Fig. 3.1.

In the figure, each symbol represents the assignment of the first color to a vertex

of G17,17 (note that the chart has dimension 17 by 17). The letters represent colorings

of vertices that the two partial 1-colorings share in common, while z and c© are

colorings of vertices that differ between the two 1-colorings. In fact however, a quick

observation will show that these partial colorings are row-column permutations of one

another. Swapping the rows containing C, D, E, and F with the rows containing G,

H, I, and J and then swapping the first and second columns transforms one partial
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Figure 3.1: Kupin’s two unique partial 1-colorings of G17,17

coloring into the other, so with respect to a choice of row-column permutation, there

must actually be one unique partial 1-coloring in the legal 4-coloring of G17,17. 4 (Note

that permuting rows and columns in any fashion preserves the legality or illegality

of any monochromatic-rectangle-free coloring, since the vertices of the constituent

rectangle constraints in each row or column are permuted in an identical fashion as

the colorings themselves.)

Therefore, the second method would involve breaking the search for legal 4-

colorings of G8,8 into four separate searches of legal, effectively-3-colorings of G8,8

and fixing the fourth color in the input. That is, the four runs would be seeded with

four different inputs respectively, and the goToNext and backtrack procedures

would simply “skip” over any occurences of the fourth color. The four inputs would

correspond to the upper-left, upper-right, bottom-left, and bottom-right quadrants

of the partial 1-coloring, excluding the far right row and far bottom column.

4We note that this observation also appeared in the comments of a complexity
blog before publication of this thesis, here:
http://www.blogger.com/comment.g?blogID=3722233&postID=2725600741162296905

72



Altogether then, we find it reasonable to assume worst-case bounds of 31,201

processor-hours and 3.25 TB of output data representing at most approximately

376, 204, 182 × 3, 120.12 = 1.17 × 1012 legal 4-colorings of G8,8 out of the 48×8 =

464 > 1038 possible colorings of G8,8 without using any of Kupin’s results. Further, an

approximate 1012

1038
= 10−26 fraction of the possible colorings are legal colorings. Note

the conservative rounding used; a more precise calculation would only give a more

favorable estimate, in the context that follows.

In order to give some estimate of the number of legal colorings of G8,8 by applying

Kupin’s partial 1-coloring of G17,17, we first calculate the number of remaining, possi-

ble coloring extensions after seeding the search space with one of the resultant partial

1-colorings of G8,8. In particular, ignoring the far-right column and far-bottom row

of G17,17, we dissect the space into four G8,8 quadrants, and count the number of pre-

colored cells in each quadrant via Fig. 3.1. In the upper-left, there are 20 pre-colored

cells; in the upper-right, there are 22 pre-colored cells; in the bottom-left, there are

16 pre-colored cells; and in the bottom-right, there are 24 pre-colored cells. Thus,

in the worst case, we are looking for all valid effectively-3-colorings of G8,8 with 16

cells already having a fixed, fourth color. Therefore, there are 38×8−16 = 348 < 1023

possible colorings.

Unfortunately, there is no way to directly relate the fraction of legal 4-colorings of

G8,8 with the fraction of legal effectively-3-colorings of G8,8 with 16 pre-colored cells.

Since those 16 cells are guaranteed to be valid positions for the fourth color, the

number of incorrect colorings will be reduced dramatically (i.e. we implicitly remove

all of the illegal colorings over those cells from the search space). Indeed, a blind

application of the fraction of legal 4-colorings of G8,8 per possible colorings gives a

nonsensical result: that there would be an estimated 10−26 × 1023 = 10−3 < 1 legal

effectively-3-colorings of G8,8. Instead, we do not try to estimate this value exactly,

but simply state that the final number of 4-colorings of G8,8 seeded with the four
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partial colorings is likely to be significantly less (e.g., at least an order of magnitude

or more) than the number of legal 4-colorings of G8,8 without any pre-colored cells.

For the purposes of the next section, let the maximum number of such colorings over

each of the partial 1-colorings be ψ4
1(G8,8), given that 1 ≤ ψ4

1(G8,8) < 1.17× 1012.

Finally, we point out that the execution of Phase 1 could be performed locally on

the University of Arkansas RAZOR cluster[12]. In particular, RAZOR is a 1,512-core

cluster with each core having a clock speed of 2.93 GHz with 27 TB of shared scratch

storage. Utilizing the entire system, Phase 1 would likely be completed in a day on

RAZOR with the runtime extending proportionally longer as less of the system is

allocated toward this one computation.

3.3.2 Phase 2

For the second phase, we will use a modified backtracking approach to enumerate

all legal, monochromatic-rectangle-free 4-colorings of G16,16. In particular, we will

treat every legal 4-coloring of G8,8 as a “colored tile” of the appropriate quadrant of

G16,16. This, in essence, transforms the problem in the worst case into a search for all

legal, “monochromatic-rectangle-free” ψ1
4(G8,8)-colorings of G2,2, where the coloring

tiles of G2,2 conflict (i.e., cause a candidate coloring to be illegal) iff a monochromatic

rectangle is formed by the constituent colored cells of each tile.

To simulate the typical execution of this phase, we implemented a serial version of

the program and ran the code for one hour with universe sizes of 50,000 and 100,000

coloring tiles (and for a handful of minutes with 200,000 coloring tiles) using the same

testbed as with Phase 1. The key difficulty associated with a simulation of this phase

is that its input data is dependent on the results of Phase 1, which we have not run

in its entirety due to administrative and time constraints. Thus, to approximate the

execution of Phase 2 as closely as possible, we used actual data (legal 4-colorings of

G8,8 arising from the appropriate partial 1-colorings) generated by the testing done
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for Phase 1. Here are charts of the data collected:

Universe Size: 50,000 coloring tiles

Time Elapsed (Seconds) Progress Projected Total Time Required

30.015 529 / 50,000 .79 hours

300.146 5327 / 50,000 .78 hours

600.292 10648 / 50,000 .78 hours

900.436 15961 / 50,000 .78 hours

1200.411 21297 / 50,000 .78 hours

2401.12 43600 / 50,000 .76 hours

2744.1 50,000 / 50,000 .76 hours

Universe Size: 100,000 coloring tiles

Time Elapsed (Seconds) Progress Projected Total Time Required

30.014 261 / 100,000 3.33 hours

300.146 2613 / 100,000 3.19 hours

600.292 5258 / 100,000 3.17 hours

900.437 7946 / 100,000 3.15 hours

1200.58 10569 / 100,000 3.16 hours

2401.17 21532 / 100,000 3.1 hours

3601.75 32442 / 100,000 3.08 hours

Universe Size: 200,000 coloring tiles

Time Elapsed (Seconds) Progress Projected Total Time Required

30.015 133 / 200,000 12.54 hours

60.029 268 / 200,000 12.44 hours

120.059 538 / 200,000 12.4 hours

300.146 1349 / 200,000 12.36 hours
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Then, as a rough extrapolation of total time required to complete the search as

the universe size grows, we can estimate that the total runtime increases fourfold

everytime the universe size doubles (note that this is intended only to capture the

time required up to an order of magnitude, and should be read as such):

Estimated Phase 2 Runtimes

Universe Size Projected Total Time Required

400,000 2 days

800,000 8 days

1.6× 106 32 days

3.2× 106 128 days

6.4× 106 512 days

1.28× 107 2048 days

1.024× 108 16384 days

1.6384× 109 262144 days

1.31072× 1010 2097152 days

1.048576× 1011 16777216 days

1.6777216× 1012 268435456 days

Fortunately, these timings assume that Phase 2 is being run on a single 3.00

GHz processor. If the search is instead run on a 1,000-core supercomputer (with a

sufficiently large RAM, in order to store all of the 3.25 TB of coloring tiles in memory

simultaneously), the process is sped up considerably. In particular, if we assume that

ψ4
1(G8,8) ' 109 or less and given access to a 1,000-core high-RAM cluster, the total

runtime of Phase 2 would take approximately 262144 days
1000

= 262.144 days < 1 year.

For an example of such a system, we propose the use of the Blacklight supercom-

puter at the Pittsburgh Supercomputing Center (PSC) [34]. Blacklight is a large-scale

shared-memory system hosting 4096 cores with a clock rate of 2.27 GHz with a total

RAM capacity of 32 TB. It is further worthwhile to note that there are good oppor-

76



tunities for gaining access to such a system. In fact, as of the time of the writing of

this thesis, Blacklight’s administrators were actively looking for additional users with

jobs that fundamentally required a high-RAM solution[42].

Finally, after the execution of Phase 2, we would have some number of legal 4-

colorings of G16,16. Let this number be ψ4
0(G16,16). In fact, ψ4

0(G16,16) should be

quite small, since G16,16 is known to be close to OBS4. We then seed a brute-force

(or backtracking-based) search for legal 4-colorings of G17,17 with each of the legal

4-colorings of G16,16. Each of the total, legal 4-colorings of G16,16 require 33 more

cells to be colored to complete a 4-coloring of G17,17, which gives a search space of

ψ4
0(G16,16) · 433 < ψ4

0(G16,16) · 1020. For values of ψ4
0(G16,16) < 1000 (which we see as

overwhelmingly likely), this search is on the order of the Phase 1 search or less, which

could be completed in one day.

3.4 Questions for Further Research

• What is the order of magnitude of φ4
1(G8,8)? By all accounts, this is a relatively

simple computation on a supercomputer that we were unable to complete due

to time constraints and other issues. We expect it to be on the order of 109,

but it could be either more or less.

• Moreover, we would like to implement the computational plan described in

this chapter in order to get an actual answer for the 17x17 4-Color Problem.

Completing Stage 1 is a good first goal, but generating parallelizable code for a

cluster for a long-term computation is an important next step as well. Also, are

there any better high-performance computing techniques that can be applied?

One interesting area for future exploration would be to design code to run on

GPUs in order to speed up the computation even further. The problem has

many symmetries that GPU computation could naturally exploit.

77



• Is there a more efficient algorithm for Monochromatic-Rectangle-Free Grid Col-

oring (or generally, any problem in Shape-Free Grid Coloring)? There are ex-

citing theoretical and practical motivations for finding a subexponential time

algorithm for the problem. One area for possible progress, as just mentioned,

would be to leverage the natural symmetries in grid coloring to gain a theoretical

speedup as well. For instance, see [4].
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