772 research outputs found

    A study on trade-offs between spatial resolution and temporal sampling density for wheat yield estimation using both thermal and calendar time

    Full text link
    Within-season forecasting of crop yields is of great economic, geo-strategic and humanitarian interest. Satellite Earth Observation now constitutes a valuable and innovative way to provide spatio-temporal information to assist such yield forecasts. This study explores different configurations of remote sensing time series to estimate of winter wheat yield using either spatially finer but temporally sparser time series (5daily at 100 m spatial resolution) or spatially coarser but denser (300 m and 1 km at daily frequency) time series. Furthermore, we hypothesised that better yield estimations could be made using thermal time, which is closer to the crop physiological development. Time series of NDVI from the PROBA-V instrument, which has delivered images at a spatial resolution of 100 m, 300 m and 1 km since 2013, were extracted for 39fields for field and 56fields for regional level analysis across Northern France during the growing season 2014-2015. An asymmetric double sigmoid model was fitted on the NDVI series of the central pixel of the field. The fitted model was subsequently integrated either over thermal time or over calendar time, using different baseline NDVI thresholds to mark the start and end of the cropping season. These integrated values were used as a predictor for yield using a simple linear regression and yield observations at field level. The dependency of this relationship on the spatial pixel purity was analysed for the 100 m, 300 m and 1 km spatial resolution. At field level, depending on the spatial resolution and the NDVI threshold, the adjustedR²ranged from 0.20 to 0.74; jackknifed–leave-one-field-outcross validation–RMSE ranged from 0.6 to 1.07 t/ha and MAE ranged between 0.46 and 0.90 t/ha for thermal time analysis. The best results for yield estimation (adjustedR²= 0.74, RMSE =0.6 t/ha and MAE =0.46 t/ha)were obtained from the integration over thermal time of 100 m pixel resolution using a baseline NDVI threshold of 0.2 and without any selection based on pixel purity. The field scale yield estimation was aggregated to the regional scale using 56fields. At the regional level, there was a difference of 0.0012 t/ha between thermal and calendar time for average yield estimations. The standard error of mean results showed that the error was larger for a higher spatial resolution with no pixel purity and smaller when purity increased. These results suggest that, for winter wheat, a finer spatial resolution rather than a higher revisit frequency and an increasing pixel purity enable more accurate yield estimations when integrated over thermal time at the field scale and at the regional scale only if higher pixel purity levels are considered. This method can be extended to larger regions, other crops, and other regions in the world, although site and crop-specific adjustments will have to include other threshold temperatures to reflect the boundaries of phenological activity. In general, however, this methodological approach should be applicable to yield estimation at the parcel and regional scales across the world

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis

    Wheat yield estimation from NDVI and regional climate models in Latvia

    Get PDF
    Wheat yield variability will increase in the future due to the projected increase in extreme weather events and long-term climate change effects. Currently, regional agricultural statistics are used to monitor wheat yield. Remotely sensed vegetation indices have a higher spatio-temporal resolution and could give more insight into crop yield. In this paper, we (i) evaluate the possibility to use Normalized Difference Vegetation Index (NDVI) time series to estimate wheat yield in Latvia and (ii) determine which weather variables impact wheat yield changes using both ALARO-0 and REMO Regional Climate Models (RCM) output. The integral from NDVI series (aNDVI) for winter and spring wheat fields is used as a predictor to model regional wheat yield from 2014 to 2018. A correlation analysis between weather variables, wheat yield and aNDVI was used to elucidate which weather variables impact wheat yield changes in Latvia. Our results indicate that high temperatures in June for spring wheat and in July for winter wheat had a negative correlation with yield. A linear regression yield model explained 71% of the variability with a residual standard error of 0.55 Mg/ha. When RCM data were added as predictor variables to the wheat yield empirical model a random forest approach resulted in better results compared to a linear regression approach, the explained variance increased up to 97% and the residual standard error decreased to 0.17 Mg/ha. We conclude that NDVI time series and RCM output enabled regional crop yield and weather impact monitoring at higher spatio-temporal resolutions than regional statistics

    Earth Resources. A continuing bibliography with indexes, issue 25, April 1980

    Get PDF
    The bibliography lists 380 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1980 and March 31, 1990. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Proceedings of Plenary Session: The LACIE Symposium

    Get PDF
    A technology assessment of the LACIE data processing and information systems was discussed during the Large Area Crop Inventory Experiment Symposium. Crop inventories of wheat yield in the United States as well as several other nations (such as the U.S.S.R., Canada, etc.) were discussed, along with the methodology involved in acquiring this data

    Study of the Spatial and Temporal Dynamics of Rainfall over the Period 1991-2020 in Burkina Faso

    Get PDF
    The spatial and temporal variability of rainfall is a major constraint for the development of socio-economic activities in Burkina Faso. The objective of this work is to study the spatial and temporal dynamics of rainfall across the country in order to guide policy measures for major disaster management. The methodology is based on the mapping of statistical metrics calculated on time series of annual cumulated rainfall from CHIRPS data and the annual number of rainy days estimated by the ANAM over the period 1991-2020. The results indicate an average variability in rainfall over the 1991-2020 normal. The persistence of drought in the Far West is accompanied by a loss of rainfall. The approach based on the two data sources presents similar information for the assessment of rainfall variability, complementary for the estimated rainfall trend areas, and the frequency of drought and contradictory for assessing the frequency of wet years

    Crop Phenology Modelling Using Proximal and Satellite Sensor Data

    Full text link
    peer reviewedUnderstanding crop phenology is crucial for predicting crop yields and identifying potential risks to food security. The objective was to investigate the effectiveness of satellite sensor data, compared to field observations and proximal sensing, in detecting crop phenological stages. Time series data from 122 winter wheat, 99 silage maize, and 77 late potato fields were analyzed during 2015–2017. The spectral signals derived from Digital Hemispherical Photographs (DHP), Disaster Monitoring Constellation (DMC), and Sentinel-2 (S2) were crop-specific and sensor-independent. Models fitted to sensor-derived fAPAR (fraction of absorbed photosynthetically active radiation) demonstrated a higher goodness of fit as compared to fCover (fraction of vegetation cover), with the best model fits obtained for maize, followed by wheat and potato. S2-derived fAPAR showed decreasing variability as the growing season progressed. The use of a double sigmoid model fit allowed defining inflection points corresponding to stem elongation (upward sigmoid) and senescence (downward sigmoid), while the upward endpoint corresponded to canopy closure and the maximum values to flowering and fruit development. Furthermore, increasing the frequency of sensor revisits is beneficial for detecting short-duration crop phenological stages. The results have implications for data assimilation to improve crop yield forecasting and agri-environmental modeling

    Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning

    Get PDF
    Global gridded crop models (GGCMs) are essential tools for estimating agricultural crop yields and externalities at large scales, typically at coarse spatial resolutions. Higher resolution estimates are required for robust agricultural assessments at regional and local scales, where the applicability of GGCMs is often limited by low data availability and high computational demand. An approach to bridge this gap is the application of meta-models trained on GGCM output data to covariates of high spatial resolution. In this study, we explore two machine learning approaches – extreme gradient boosting and random forests - to develop meta-models for the prediction of crop model outputs at fine spatial resolutions. Machine learning algorithms are trained on global scale maize simulations of a GGCM and exemplary applied to the extent of Mexico at a finer spatial resolution. Results show very high accuracy with R2>0.96 for predictions of maize yields as well as the hydrologic externalities evapotranspiration and crop available water with also low mean bias in all cases. While limited sets of covariates such as annual climate data alone provide satisfactory results already, a comprehensive set of predictors covering annual, growing season, and monthly climate data is required to obtain high performance in reproducing climate-driven inter-annual crop yield variability. The findings presented herein provide a first proof of concept that machine learning methods are highly suitable for building crop meta-models for spatio-temporal downscaling and indicate potential for further developments towards scalable crop model emulators
    • …
    corecore