20 research outputs found

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Enabling Wearable Hemodynamic Monitoring Using Multimodal Cardiomechanical Sensing Systems

    Get PDF
    Hemodynamic parameters such as blood pressure and stroke volume are instrumental to understanding the pathogenesis of cardiovascular disease. Unfortunately, the monitoring of these hemodynamic parameters is still limited to in-clinic measurements and cumbersome hardware precludes convenient, ubiquitous use. To address this burden, in this work, we explore seismocardiogram-based wearable multimodal sensing techniques to estimate blood pressure and stroke volume. First, the performance of a multimodal, wrist-worn device capable of obtaining noninvasive pulse transit time measurements is used to estimate blood pressure in an unsupervised, at-home setting. Second, the feasibility of this wrist-worn device is comprehensively evaluated in a diverse and medically underserved population over the course of several perturbations used to modulate blood pressure through different pathways. Finally, the ability of wearable signals—acquired from a custom chest-worn biosensor—to noninvasively quantify stroke volume in patients with congenital heart disease is examined in a hospital setting. Collectively, this work demonstrates the advancements necessary towards enabling noninvasive, longitudinal, and accurate measurements of these hemodynamic parameters in remote settings, which offers to improve health equity and disease monitoring in low-resource settings.Ph.D

    Heart rate measurement using the built-in triaxial accelerometer from a commercial digital writing device

    Full text link
    Wearable devices are on the rise. Smart watches and phones, fitness trackers or smart textiles now provide unprecedented access to our own personal data. As such, wearable devices can enable health monitoring without disrupting our daily routines. In clinical settings, electrocardiograms (ECGs) and photoplethysmographies (PPGs) are used to monitor the heart's and respiratory behaviors. In more practical settings, accelerometers can be used to estimate the heartrate when they are attached to the chest. They can also help filter out some noise in ECG signal from movement. In this work, we compare the heart rate data extracted from the built-in accelerometer of a commercial smart pen equipped with sensors (STABILO's DigiPen), with a standard ECG monitor readouts. We demonstrate that it is possible to accurately predict the heart rate from the smart pencil. The data collection is done with eight volunteers, writing the alphabet continuously for five minutes. The signal is processed with a Butterworth filter to cut off noise. We achieve a mean-squared error (MSE) better than 6.685x103^{-3} comparing the DigiPen's computed Δ{\Delta}t (time between pulses) with the reference ECG data. The peaks' timestamps for both signals all maintain a correlation higher than 0.99. All computed heart rates from the pen accurately correlate with the reference ECG signals

    Recent development of respiratory rate measurement technologies

    Get PDF
    Respiratory rate (RR) is an important physiological parameter whose abnormity has been regarded as an important indicator of serious illness. In order to make RR monitoring simple to do, reliable and accurate, many different methods have been proposed for such automatic monitoring. According to the theory of respiratory rate extraction, methods are categorized into three modalities: extracting RR from other physiological signals, RR measurement based on respiratory movements, and RR measurement based on airflow. The merits and limitations of each method are highlighted and discussed. In addition, current works are summarized to suggest key directions for the development of future RR monitoring methodologies

    Acoustic sensing as a novel approach for cardiovascular monitoring at the wrist

    Get PDF
    Cardiovascular diseases are the number one cause of deaths globally. An increased cardiovascular risk can be detected by a regular monitoring of the vital signs including the heart rate, the heart rate variability (HRV) and the blood pressure. For a user to undergo continuous vital sign monitoring, wearable systems prove to be very useful as the device can be integrated into the user's lifestyle without affecting the daily activities. However, the main challenge associated with the monitoring of these cardiovascular parameters is the requirement of different sensing mechanisms at different measurement sites. There is not a single wearable device that can provide sufficient physiological information to track the vital signs from a single site on the body. This thesis proposes a novel concept of using acoustic sensing over the radial artery to extract cardiac parameters for vital sign monitoring. A wearable system consisting of a microphone is designed to allow the detection of the heart sounds together with the pulse wave, an attribute not possible with existing wrist-based sensing methods. Methods: The acoustic signals recorded from the radial artery are a continuous reflection of the instantaneous cardiac activity. These signals are studied and characterised using different algorithms to extract cardiovascular parameters. The validity of the proposed principle is firstly demonstrated using a novel algorithm to extract the heart rate from these signals. The algorithm utilises the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic recordings is found by extracting the S1 events using the relative information between the short- and long-term energies of the signal. The S1 events are localised using three different characteristic points and the best representation is found by comparing the instantaneous heart rate profiles. The possibility of measuring the blood pressure using the wearable device is shown by recording the acoustic signal under the influence of external pressure applied on the arterial branch. The temporal and spectral characteristics of the acoustic signal are utilised to extract the feature signals and obtain a relationship with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Results: This thesis proposes three different algorithms to find the heart rate, the HRV and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results obtained by each algorithm are as follows: 1. The heart rate algorithm is validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. A high statistical agreement between the heart rate obtained from the acoustic signal and the photoplethysmography (PPG) signal is observed. 2. The HRV algorithm is validated on the short-term acoustic signals of 5-minutes duration recorded from each of the 12 subjects. A comparison is established with the simultaneously recorded electrocardiography (ECG) and PPG signals respectively. The instantaneous heart rate for all the subjects combined together achieves an accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respectively. The results for the time-domain and frequency-domain HRV parameters also demonstrate high statistical agreement with the ECG and PPG signals respectively. 3. The algorithm proposed for the SBP/ DBP determination is validated on 104 acoustic signals recorded from 40 adult subjects. The experimental outputs when compared with the reference arm- and wrist-based monitors produce a mean error of less than 2 mmHg and a standard deviation of error around 6 mmHg. Based on these results, this thesis shows the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for the continuous monitoring of heart rate and HRV, and spot measurement of the blood pressure at the wrist.Open Acces

    Advances in materials strategies, circuit designs, and informatics for wearable, flexible and stretchable electronics with medical and robotic applications

    Get PDF
    The future of medical electronics should be flexible, stretchable and skin-integrated. While modern electronics become increasing smaller, faster and energy efficient, the designs remain bulky and rigid due to materials and processing limitations. The miniaturization of health monitoring devices in wearable form resembles a significant progress towards the next-generation medical electronics. However, there are still key challenges in these wearable electronics associated with medical-grade sensing precision, reliable wireless powering, and materials strategy for skin-integration. Here, I present a series of systematic studies from materials strategies, circuit design to signal processing on skin-mounted electronic wearable devices. Several types of Epidermal Electronic Systems (EES) develop applications in dermatology, cardiology, rehabilitation, and wireless powering. For skin hydration measurement, fundamental studies of electrode configurations and skin-electrode impedance reveal the optimal sensor design. Furthermore, wireless operation of hydration sensor was made possible with direct integration on skin, and on porous substrates that collect and analyze sweats. Additionally, I present an epidermal multi-functional sensing platform that could provide a control-feedback loop through electromyogram and current stimulation; and a mechano-acoustic device that could capture vibrations from muscle, heart, and throat as diagnostic tools or human-machine interface. I developed a modularized epidermal radio-frequency energy transfer epidermal device to eliminate batteries and power cables for wearable electronics. Finally, I present a clinical study that validates a commercialized ESS on patients with nerve disorders for electromyography monitoring during peripheral nerve and spinal cord surgeries

    Wearable and BAN Sensors for Physical Rehabilitation and eHealth Architectures

    Get PDF
    The demographic shift of the population towards an increase in the number of elderly citizens, together with the sedentary lifestyle we are adopting, is reflected in the increasingly debilitated physical health of the population. The resulting physical impairments require rehabilitation therapies which may be assisted by the use of wearable sensors or body area network sensors (BANs). The use of novel technology for medical therapies can also contribute to reducing the costs in healthcare systems and decrease patient overflow in medical centers. Sensors are the primary enablers of any wearable medical device, with a central role in eHealth architectures. The accuracy of the acquired data depends on the sensors; hence, when considering wearable and BAN sensing integration, they must be proven to be accurate and reliable solutions. This book is a collection of works focusing on the current state-of-the-art of BANs and wearable sensing devices for physical rehabilitation of impaired or debilitated citizens. The manuscripts that compose this book report on the advances in the research related to different sensing technologies (optical or electronic) and body area network sensors (BANs), their design and implementation, advanced signal processing techniques, and the application of these technologies in areas such as physical rehabilitation, robotics, medical diagnostics, and therapy

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Assessment of trends in the cardiovascular system from time interval measurements using physiological signals obtained at the limbs

    Get PDF
    Cardiovascular diseases are an increasing source of concern in modern societies due to their increasing prevalence and high impact on the lives of many people. Monitoring cardiovascular parameters in ambulatory scenarios is an emerging approach that can provide better medical access to patients while decreasing the costs associated to the treatment of these diseases. This work analyzes systems and methods to measure time intervals between the electrocardiogram (ECG), impedance plethysmogram (IPG), and the ballistocardiogram (BCG), which can be obtained at the limbs in ambulatory scenarios using simple and cost-effective systems, to assess cardiovascular intervals of interest, such as the pulse arrival time (PAT), pulse transit time (PTT), or the pre-ejection period (PEP). The first section of this thesis analyzes the impact of the signal acquisition system on the uncertainty in timing measurements in order to establish the design specifications for systems intended for that purpose. The minimal requirements found are not very demanding yet some common signal acquisition systems do not fulfill all of them while other capabilities typically found in signal acquisition systems could be downgraded without worsening the timing uncertainty. This section is also devoted to the design of systems intended for timing measurements in ambulatory scenarios according to the specifications previously established. The systems presented have evolved from the current state-of-the-art and are designed for adequate performance in timing measurements with a minimal number of active components. The second section is focused on the measurement of time intervals from the IPG measured from limb to limb, which is a signal that until now has only been used to monitor heart rate. A model to estimate the contributions to the time events in the measured waveform of the different body segments along the current path from geometrical properties of the large arteries is proposed, and the simulation under blood pressure changes suggests that the signal is sensitive to changes in proximal sites of the current path rather than in distal sites. Experimental results show that the PAT to the hand-to-hand IPG, which is obtained from a novel four-electrode handheld system, is correlated to changes in the PEP whereas the PAT to the foot-to-foot IPG shows good performance in assessing changes in the femoral PAT. Therefore, limb-to-limb IPG measurements significantly increase the number of time intervals of interest that can be measured at the limbs since the signals deliver information from proximal sites complementary to that of other measurements typically performed at distal sites. The next section is devoted to the measurement of time intervals that involve different waves of the BCG obtained in a standing platform and whose origin is still under discussion. From the relative timing of other physiological signals, it is hypothesized that the IJ interval of the BCG is sensitive to variations in the PTT. Experimental results show that the BCG I wave is a better surrogate of the cardiac ejection time than the widely-used J wave, which is also supported by the good correlation found between the IJ interval and the aortic PTT. Finally, the novel time interval from the BCG I wave to the foot of the IPG measured between feet, which can be obtained from the same bathroom scale than the BCG, shows good performance in assessing the aortic PAT. The results presented reinforce the role of the BCG as a tool for ambulatory monitoring since the main time intervals targeted in this thesis can be obtained from the timing of its waves. Even though the methods described were tested in a small group of subjects, the results presented in this work show the feasibility and potential of several time interval measurements between the proposed signals that can be performed in ambulatory scenarios, provided the systems intended for that purpose fulfill some minimal design requirements.Les malalties cardiovasculars són una tema de preocupació creixent en societats modernes, degut a l’augment de la seva prevalença i l'elevat impacte en les vides dels pacients que les sofreixen. La mesura i monitoratge de paràmetres cardiovasculars en entorns ambulatoris és una pràctica emergent que facilita l’accés als serveis mèdics i permet reduir dràsticament els costos associats al tractament d'aquestes malalties. En aquest treball s’analitzen sistemes i mètodes per la mesura d’intervals temporals entre l’electrocardiograma (ECG), el pletismograma d’impedància (IPG) i el balistocardiograma (BCG), que es poden obtenir de les extremitats i en entorns ambulatoris a partir de sistemes de baix cost, per tal d’avaluar intervals cardiovasculars d’interès com el pulse arrival time (PAT), pulse transit time (PTT) o el pre-ejection period (PEP). En la primera secció d'aquesta tesi s’analitza l’impacte del sistema d’adquisició del senyal en la incertesa de mesures temporals, per tal d’establir els requeriments mínims que s’han de complir en entorns ambulatoris. Tot i que els valors obtinguts de l’anàlisi no són especialment exigents, alguns no són assolits en diversos sistemes habitualment utilitzats mentre que altres solen estar sobredimensionats i es podrien degradar sense augmentar la incertesa en mesures temporals. Aquesta secció també inclou el disseny i proposta de sistemes per la mesura d’intervals en entorns ambulatoris d’acord amb les especificacions anteriorment establertes, a partir de l’estat de l’art i amb l’objectiu de garantir un correcte funcionament en entorns ambulatoris amb un nombre mínim d’elements actius per reduir el cost i el consum. La segona secció es centra en la mesura d’intervals temporals a partir de l’IPG mesurat entre extremitats, que fins al moment només s’ha fet servir per mesurar el ritme cardíac. Es proposa un model per estimar la contribució de cada segment arterial per on circula el corrent a la forma d’ona obtinguda a partir de la geometria i propietats físiques de les artèries, i les simulacions suggereixen que la senyal entre extremitats és més sensible a canvis en arteries proximals que en distals. Els resultats experimentals mostren que el PAT al hand-to-hand IPG, obtingut a partir d’un innovador sistema handheld de quatre elèctrodes, està fortament correlacionat amb els canvis de PEP, mentre que el PAT al foot-to-foot IPG està correlat amb els canvis en PAT femoral. Conseqüentment, l’ILG entre extremitats augmenta de manera significativa els intervals d’interès que es poden obtenir en extremitats degut a que proporciona informació complementària a les mesures que habitualment s’hi realitzen. La tercera secció està dedicada a la mesura d’intervals que inclouen les ones del BCG vertical obtingut en plataformes, de les que encara se’n discuteix l’origen. A partir de la posició temporal relativa respecte altres ones fisiològiques, s’hipostatitza que l’interval IJ del BCG es sensible a variacions del PTT. Els resultats experimentals mostren que la ona I del BCG és un millor indicador de l’ejecció cardíaca que el pic J, tot i que aquest és el més utilitzat habitualment, degut a la bona correlació entre l’interval IJ i el PTT aòrtic. Finalment, es presenta un mètode alternatiu per la mesura del PTT aòrtic a partir de l’interval entre el pic I del BCG i el peu del foot-to-foot IPG, que es pot obtenir de la mateixa plataforma que el BCG i incrementa la robustesa de la mesura. Els resultats presentats reforcen el paper del BCG com a en mesures en entorns ambulatoris, ja que els principals intervals objectiu d’aquesta tesi es poden obtenir a partir de les seves ones. Tot i que els mètodes descrits han estat provats en grups petits de subjectes saludables, els resultats mostren la viabilitat i el potencial de diversos intervals temporals entre les senyals proposades que poden ésser realitzats en entorns ambulatoris, sempre que els sistemes emprats compleixin els requisits mínims de disseny.Postprint (published version
    corecore