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SUMMARY 

Hemodynamic parameters such as blood pressure and stroke volume are 

instrumental to understanding the pathogenesis of cardiovascular disease. Unfortunately, 

the monitoring of these hemodynamic parameters is still limited to in-clinic measurements 

and cumbersome hardware precludes convenient, ubiquitous use. To address this burden, 

in this work, we explore seismocardiogram-based wearable multimodal sensing techniques 

to estimate blood pressure and stroke volume. First, the performance of a multimodal, 

wrist-worn device capable of obtaining noninvasive pulse transit time measurements is 

used to estimate blood pressure in an unsupervised, at-home setting. Second, the feasibility 

of this wrist-worn device is comprehensively evaluated in a diverse and medically 

underserved population over the course of several perturbations used to modulate blood 

pressure through different pathways. Finally, the ability of wearable signals—acquired 

from a custom chest-worn biosensor—to noninvasively quantify stroke volume in patients 

with congenital heart disease is examined in a hospital setting. Collectively, this work 

demonstrates the advancements necessary towards enabling noninvasive, longitudinal, and 

accurate measurements of these hemodynamic parameters in remote settings, which offers 

to improve health equity and disease monitoring in low-resource settings. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Cardiovascular disease (CVD) is the leading killer worldwide [1]. This comes as no 

surprise, as the heart is responsible—through phases of electrical conduction, 

mechanical contraction, and hemodynamic pulsation—for delivering the vital 

nutrients necessary to sustain life. Fortunately, these essential processes offer a 

plethora of rich and unique information that can be used to holistically assess 

cardiovascular health. For example, as illustrated in Figure 1, in disease states (e.g., 

hypertension and heart failure) these physical mechanisms and downstream 

hemodynamic parameters—such as blood pressure (BP) and stroke volume (SV)—

are disrupted before adverse events ensue [2]. Though these fluctuations can be 

tracked to diagnose exacerbations in clinical status, current standard of care hinges on 

the century-old approach of obtaining these infrequent measurements in-clinic. This 

paradigm of the measurement being anchored to the clinical setting and requiring persons 

to proactively visit a medical professional to determine their clinical status is 

unaccommodating, costly, and ineffective [3]–[6]. Hence, we observe remarkable 

disparities in detection and treatment across socioeconomic status, race, and geographic 

location: with populations lacking regular access to care having nearly half the awareness 

of their clinical status and enduring up to quadruple the rates of subsequent cardiac events 

[7]–[9]. Therefore, technologies enabling frequent, reliable, and accurate measurements of 

clinical parameters in ambulatory settings promise to reduce the global burden of CVD and 

offer an opportunity to advance health equity [10], [11]. Leveraging the ubiquity of 
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smartphones and digital health technologies equipped with highly sensitive, miniaturized 

sensors can prove essential to this remote monitoring movement [12].  

 

Figure 1. Connection between hemodynamic parameters and cardiac health. 
Illustration of a healthy (left) versus diseased (right) heart and artery shown with 
alterations in left ventricle wall thickness and arterial diameter resulting in 
differences in the stroke volume of blood ejected (SV) by the heart and blood 
pressure (BP) in the artery. 

1.1.1 Blood Pressure Monitoring 

Office BP measurements have long been the cornerstone of hypertension diagnosis and 

management. However, these single-point measurements are susceptible to either 

appreciable short-term fluctuations in BP or inadvertent errors caused by the measurement 

setting and procedure (i.e., white-coat hypertension) [4]. Furthermore, the natural 

variability in daily BP requires an emphasis to be placed on taking multiple measurements, 

which has been shown to decrease risk, reduce hospitalizations, and improve diagnostic 

accuracy [13]. Ubiquitous monitoring provides a holistic evaluation that accounts for 
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organic changes in BP such as sleep, circadian rhythm, stress, nervous system activity, 

vasomotor tone, physical activity, and time of day [13].  

Existing wearable devices that incorporate noninvasive BP methodologies offer an 

affordable and efficient means to track BP out-of-office [14]. Unfortunately, they 

commonly employ inconvenient techniques (i.e., oscillometry and tonometry) that demand 

imparting uncomfortable forces on blood vessels to achieve accurate readings [15]–[17]. 

These inconveniences fail to empower users to take control of their health, posing a 

significant challenge towards the widespread routine monitoring of BP. Instead, strategies 

that compute the pulse transit time (PTT)—a measure of arterial stiffness—present a 

convenient alternative for BP estimation [18].  

The PTT, the time the pressure wave propagates along a length of the arterial tree, is a 

cuff-less surrogate for BP and can be acquired noninvasively [18]. In practice, to acquire 

noninvasive PTT requires a combination of sensors—typically either an accelerometer, 

force sensor, light-emitting diode (LED) and photodiode (PD), electrode, or ultrasonic 

transceiver—placed proximally and distally along the arterial tree and computed from 

fiducial points in the captured seismocardiogram (SCG), ballistocardiogram (BCG), 

photoplethysmogram (PPG), impedance cardiogram (ICG), impedance plethysmogram 

(IPG), or arterial BP waveform (ABP), respectively [19], [20].  

While the main advantage of PTT lies in the ability to conveniently measure BP outside 

of the office, most studies, including those seen in two recent meta-analyses of PTT-based 

technologies, limit their analysis to a controlled lab environment and do not explore its 

feasibility in an at-home setting [14], [18]. Specifically, though most of these studies 
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validate the use of PTT, measurements at-home face additional challenges that may affect 

accuracy due to the inherent nature of capturing unregulated changes in BP in a completely 

unsupervised setting.  

In addition, despite the inherent convenience of these sensing modalities, they are 

naturally of concern when used in populations with intrinsic mechanical, optical, and 

electrical barriers—stemming from higher melanin levels and body fat percentages. To our 

best knowledge, noninvasive PTT-based BP estimation has yet to be examined in a diverse 

population—a gap in our scientific understanding that presents a formidable obstacle 

towards its adoption. Specifically, some medically underserved areas (MUA), which stand 

to benefit the most from remote monitoring [21], have high Black and Latino populations 

with higher melanin content and obesity rates compared to Whites [22]. Recent notable 

data from the Centers for Disease Control and Prevention (CDC) further stress these 

concerns by exposing that non-Hispanic Blacks not only suffer significantly higher 

hypertension prevalence than non-Hispanic Whites, but also witness significantly lower 

hypertension control rates [23], [24]. Affordable remote monitoring options have the 

responsibility to combat not only social determinants of health, such as access to healthcare 

and income, but also—in turn—the existing health disparities that are byproducts of them.  

As a result, there exists a glaring hole in PTT-based BP monitoring: that this technology 

has yet to be tested in the settings where, and on the populations for whom—it may be the 

most valuable. Until addressed, continuing practice of this BP monitoring paradigm will 

only exacerbate existing health disparities.  

1.1.2 Stroke Volume Monitoring 
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Congenital heart disease (CHD) affects approximately 40,000 births per year in the 

United States alone, a quarter of whom suffer from critical cases that require surgery or 

other interventions in the first year of life. Even more disturbingly, only 69% of those 

presenting with these critical types of CHD reach adulthood [25], [26]. While 

advancements in cardiac care and surgery have significantly improved the CHD survival 

rate from a few decades ago, these treatments are not curative by nature. Hence, the 

growing population of patients with CHD are at high risk of clinical deterioration, either 

sudden or gradual. Specifically, low cardiac output syndrome (LCOS) is the leading cause 

of post-CHD surgery death, while the development of heart failure is the leading cause of 

mortality amongst adult CHD patients [27], [28]. Fortunately, routine assessment of key 

hemodynamic parameters such as ejection fraction, stroke volume (SV), and cardiac output 

(CO)—the percentage and volume of blood pumped out by the heart per heartbeat and 

volume per minute—has been shown to inform prognosis and guide interventions, reducing 

overall mortality [29]. Since these parameters assess the ability of the heart to pump blood 

effectively to meet oxygen demand, they are hallmark indicators of left ventricular 

dysfunction [30] when depressed—a strong predictor of major adverse cardiac events [31]. 

Thus, the development of technologies allowing continuous, noninvasive, and inexpensive 

measurement of SV and CO represents a critical need in CHD; such technologies could be 

used in both inpatient and outpatient settings to improve outcomes. 

Existing SV and CO measurement methods are suboptimal, especially in children and 

those with CHD. Thermodilution-based pulmonary artery catheterization is accurate, but 

is not commonly used in children due to the large size of catheters and inaccuracies in 

patients with shunts [32]. Transesophageal Doppler echocardiography is less invasive but 
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often cannot be used continuously, angle-dependent and therefore less accurate, bulky, and 

requires a trained professional [33]. Cardiovascular magnetic resonance (CMR) imaging—

a noninvasive technique widely considered as the gold standard in children and those with 

CHD because of high accuracy and excellent reproducibility [34]—is not feasible for 

continuous SV monitoring because of the inability to be performed at bedside or in the 

outpatient setting. Therefore, noninvasive continuous CO monitoring (NICCOM) 

technologies have been developed that estimate SV from models utilizing demographic 

information combined with either the impedance cardiogram or the finger arterial pressure 

waveform, obtained through bioimpedance and the vascular unloading technique, 

respectively [33], [35]–[38]. However, these approaches are obtrusive, require strict 

placement of multiple electrodes or cuff-sizes, have low accuracy in critically ill patients, 

and are rarely tested in children so their practicality remains in doubt when used for 

monitoring SV in patients with CHD [35].  

Seismocardiography is a promising method for NICCOM that uses a low-noise 

accelerometer placed on the chest to capture the SCG, which provides cardiomechanical 

information unobtainable by other NICCOM methods. When combined with the 

electrocardiogram (ECG), the SCG allows for the calculation of systolic time intervals—

such as the pre-ejection period (PEP) and ventricular ejection time (VET). In recent years, 

groups have demonstrated that ECG and SCG signals acquired from wearable devices can 

accurately estimate SV [39], heart failure clinical status [40], and underlying events in the 

cardiac cycle using echocardiography and CMR [41] in persons with structurally normal 

hearts. However, SCG signals have not been evaluated in patients with CHD, resulting in 

lack of understanding in how major anatomical and physiological differences, such as those 
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present in single-ventricle patients, affect the waveform morphology. Furthermore, the 

ability of baseline SCG features to accurately assess diagnostic differences in absolute SV 

across different persons has not been examined. Finally, SCG-based SV estimation has 

only been studied in comparison to the transesophageal Doppler echocardiogram and 

therefore never with respect to an unequivocal gold standard measurement such as CMR. 

Overall, a convenient wearable biosensor that accurately estimates SV enables remote 

monitoring of cardiac function and may potentially help identify decompensation in 

patients with CHD. 

In conclusion, these noninvasive sensing methodologies may prove to accurately assess 

hemodynamic parameters—such as BP and SV—previously buried below the surface of 

the skin. Finally, the integration of these sensors into wearable multimodal sensing systems 

offers an interdisciplinary approach to address these multifaceted problems and provide a 

holistic assessment of cardiovascular health.  

1.2 Major Contributions of This Work 

The main contributions of this work are given below: 

• Designed, optimized, and validated a custom wearable system and associated 

calibration techniques for feasible and robust cuff-less BP estimation over the 

course of a day in an unsupervised, at-home setting. 

• Evaluated the accuracy and feasibility of the cuff-less BP monitoring system in a 

medically underserved and predominantly Black population, including participants 

with a high body mass index and hypertension. 
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• Demonstrated that seismocardiogram measurements using a wearable device can 

noninvasively quantify stroke volume in patients with congenital heart disease in a 

hospital setting. 

1.3 Document Organization 

The following work is separated into individual chapters, each which expand upon the 

major contributions listed above. First, background on the most pertinent overlapping 

cardiovascular physiology and multimodal wearable sensing concepts is provided in 

CHAPTER 2. Then, in CHAPTER 3 the development and at-home validation of 

SeismoWatch—a noninvasive, wrist-worn device for estimating BP without a cuff—are 

covered. Next, CHAPTER 4 concerns the comprehensive in-lab evaluation of 

SeismoWatch in a racially diverse and high body mass index population—for whom 

noninvasive sensing using optical and mechanical sensors is of large concern and 

potentially could provide the greatest value. CHAPTER 5 details the design of a chest-

worn wearable biosensor and its ability to noninvasively estimate stroke volume in patients 

with congenital heart disease. Finally, in CHAPTER 6 we provide the overall conclusion 

of using multimodal wearable sensing systems to monitor these hemodynamic parameters 

including both the overarching impacts of this work and suggestions for future efforts 

which can stem from the advancements made herein. 

1.4 Chapter Summaries 

CHAPTER 3. This chapter covers the development of our wearable watch-based device 

(“SeismoWatch”) designed to provide convenient, noninvasive, cuff-less blood pressure 

estimation in an at-home setting. The watch measures single-lead electrocardiogram, tri-
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axial seismocardiogram, and multi-wavelength  photoplethysmogram signals to compute 

the pulse transit time, allowing for blood pressure estimation. We sent our custom watch 

device and an oscillometric blood pressure cuff home with 21 healthy subjects, and 

captured the natural variability in blood pressure over the course of a 24-hour period. After 

subject-specific calibration, our noninvasive pulse transit time measurements correlate with 

around-the-clock blood pressure (Pearson correlation coefficient of 0.69 and root-mean-

square error of 2.72 mmHg). Using a novel two-point calibration method, we achieved a 

root-mean-square error of 3.86 mmHg. We further demonstrated the potential of a semi-

globalized adaptive model to reduce calibration requirements.  

CHAPTER 4. Using our cuff-less, wrist-worn, pulse transit time–based device 

(“SeismoWatch”) developed in CHAPTER 3, here we present findings on its feasibility 

when monitoring blood pressure in a diverse population. We recruited a diverse 

population through a collaborative effort with a nonprofit organization working with 

medically underserved areas in Georgia. We compared the wearable pulse transit time 

measurements with those from a finger-cuff continuous blood pressure device over the 

course of several perturbations used to modulate blood pressure. Our pulse transit time-

based wrist-worn device accurately monitored diastolic blood pressure and mean arterial 

pressure in a diverse population (N=44 participants) with a mean absolute difference of 

2.90 mm Hg and 3.39 mm Hg for diastolic blood pressure and mean arterial pressure, 

respectively, after calibration. We further demonstrate the ability of our device to capture 

the commonly observed demographic differences in underlying arterial stiffness.  

CHAPTER 5. In this chapter, we present the feasibility of multimodal wearable estimation 

of stroke volume in a diverse congenital heart disease population (N=45 patients). We used 
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our chest-worn wearable biosensor to measure baseline electrocardiogram and 

seismocardiogram signals from patients with congenital heart disease, before and after their 

routine cardiovascular magnetic resonance imaging exam, and derived features from the 

measured signals, predominantly systolic time intervals, to estimate stroke volume using 

ridge regression. Wearable signal features achieved accurate stroke volume estimation 

(28% error with respect to cardiac magnetic resonance imaging) in a held-out test set of 

patients with congenital heart disease, per CO measurement guidelines, with a root-mean-

square error of 11.48 mL and R2=0.76. Additionally, we observed that using a combination 

of electrical and cardiomechanical features surpassed the performance of either modality 

alone. Overall, we observed that using a combination of electrical and cardiomechanical 

features surpassed the performance of either modality alone.  
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CHAPTER 2. GENERAL CONCEPTS 

2.1 Cardiovascular Physiology and Hemodynamic Parameters 

2.1.1 Blood Pressure 

BP represents the pressure exerted by circulating blood on the vessel walls and 

therefore is an important hemodynamic parameter of both the amount of blood the heart 

can pump out and the resistance to blood flow in the arteries. Hence, BP is understood to 

be the product of the volumetric flow rate of blood through the arterial system (i.e., CO) 

and the resistance to flow exerted on circulating blood by the vasculature (i.e., systemic 

vascular resistance (SVR)). It can be further dissected into three major components which 

are the diastolic BP (DBP), systolic BP (SBP), and mean arterial pressure (MAP), shown 

in Figure 2. Respectively, these components represent the BP during diastole (i.e., when 

the left ventricle is filling with blood), systole (i.e., when the left ventricle ejects blood into 

the aorta), and the average BP over a cardiac cycle.  
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Figure 2. Arterial blood pressure (ABP) diagram. ABP waveform over the duration 
of one cardiac cycle shown. The three major components of blood pressure (BP) 
indicated—namely systolic blood pressure (SBP), diastolic blood pressure (DBP), 
and mean arterial pressure (MAP)—represent the BP when the left ventricle ejects 
blood into the aorta, is filling following ejection, and the average pressure over the 
cardiac cycle, respectively. Adapted from [42]. 

2.1.1.1 Pulse Transit Time and BP Relationship 

The PTT is the time it takes for a pressure wave ejected from the left ventricle to 

propagate along the arterial tree and reflects arterial stiffness. It has been shown to be 

inversely related to BP through arterial wave propagation models. Mathematically, this 

relationship is derived from the Moens-Korteweg equation which relates the pulse wave 

velocity—equivalent to the distance travelled along the arterial tree divided by the PTT—

to the arterial wall elasticity. This relationship is shown in Equation 1 below, where the 

parameters are the Young’s modulus (E), vessel wall thickness (h), vessel radius (r), blood 

density (p), arterial inertance per unit length (L), and compliance (C).  
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𝑃𝑊𝑉 = %

𝐸ℎ
𝑟𝑝 =

1
√𝐿 ∗ 𝐶

 (1) 

The compliance is also inversely related to the pressure (P), as shown in Equation 2 

below, where Am, P0, and P1 are subject specific parameters used in physical models to 

correlate BP to PWV. 

 𝐶(𝑃) = 	
𝐴!

𝜋 ∗ 𝑃" 41 + 6
𝑃 − 𝑃#$
𝑃"

89
 

(2) 

Assuming a constant distance, and substituting Equation 2 into Equation 1, PTT can be 

modelled to be inversely related to BP, commonly expressed as the formula in Equation 3, 

where K1 and K2 are subject specific parameters related to arterial stiffness and baseline 

BP, respectively.  

 𝐵𝑃 =
𝐾"
𝑃𝑇𝑇 + 𝐾$ (3) 

As a result, as shown in Figure 3, the PTT can be captured by measuring the pulse 

wave at two locations along the arterial tree and provides information about arterial 

stiffness and, by using these equations, also BP. However, though PTT can be used as a 

surrogate for BP—because several factors can modulate arterial stiffness independently 

from BP—it is first and foremost a measure of arterial stiffness.  
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Figure 3. Relationship between pulse transit time (PTT) and arterial stiffness. PTT 
differences between a healthy and stiff artery captured through two noninvasive 
sensors placed proximal to and distal from the heart. 

2.1.2 Stroke Volume 

SV represents the volume ejected by the heart with each heartbeat. Because the heart 

does not eject its entire volume of blood with each heartbeat the SV can be computed as 

the difference between the end diastolic volume (EDV) and end systolic volume (ESV), 

provided in Equation 4.  

 𝑆𝑉 = 𝐸𝐷𝑉 − 𝐸𝑆𝑉 (4) 

The percentage of the blood volume ejected to the volume that filled the heart is further 

quantitatively expressed as the EF, shown in Equation 5. 

 𝐸𝐹 =
𝑆𝑉
𝐸𝐷𝑉 ∗ 100 (5) 

Furthermore, as given in Equation 6, the product of heart rate (HR) and SV is the CO, 

related to BP through SVR. 
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 𝐶𝑂 = 𝑆𝑉 ∗ 𝐻𝑅 (6) 

2.2 Cardiomechanical Biosignals 

2.2.1 Seismocardiogram 

Seismocardiography, originally used as a means of monitoring the cardiac function of 

astronauts during the 1960s space programs, involves the simple use of a low-noise 

accelerometer placed on the chest to capture local cardiac mechanical activity—or a 

biosignal known as the SCG [19], shown in Figure 4. The SCG is an infrasonic, cardiogenic 

sternal vibration signal that, in combination with the ECG, contains rich information on 

systolic time intervals such as the PEP and left ventricular ejection time (LVET). In lieu of 

the ECG, which alone measures the electrical activity of the heart, the SCG waveform 

offers a means to assess the vital—and otherwise difficult to obtain—mechanical activity 

that is traditionally overlooked. In recent years, groups have shown the ability of the SCG 

signal to assess SV [39], oxygen uptake [43], and heart failure clinical status [40]. 
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Figure 4. Cardiomechanical biosignals mechanistic overview and key signal 
features. A, Concept illustration of seismocardiogram (SCG) and 
photoplethysmogram (PPG) origin, noninvasive acquisition, and resulting signal. B, 
Wearable biosignals and their pertinent derived systolic time intervals. In order 
from top to bottom: electrocardiogram (ECG), SCG, infrared PPG, red PPG, green 
PPG signals measured from our custom wrist-worn wearable system 
(“SeismoWatch”). Methods for ECG interbeat R-R wave interval (RRI), SCG pre-
ejection period (PEP) and left ventricular ejection time (LVET), and PPG pulse 
arrival time (PAT) and pulse transit time (PTT) feature computations shown. 

2.2.2 Photoplethysmogram 

The PPG is a blood volume per pulse biosignal that is obtained through the use of an 

LED and an optical sensor, PD. The combination of the LED and PD are used to transmit 

and receive light—the intensity of which varies corresponding to the periodic changes in 

blood volume as per the Beer-Lambert law, which relates light attenuation to the material 

properties of the medium it is propagating through [44]. Hence, the greater the arterial 

blood volume, the more light absorbed by the blood vessels and the less light intensity 

measured by the PD. Therefore, the PPG signal is indicative of the small-signal pulsatile 

changes in arterial blood which are masked by the significantly greater light intensity 

reflected from components of the tissue, venous blood, and non-pulsatile arterial blood. It 
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can be configured to either be in transmissive or reflective mode depending on whether the 

LED and PD combination is on the opposite or same side of the vessel being monitored, 

respectively. Transmissive mode PPGs, despite having greater accuracy and the ability to 

apply a backing force, are limited to the extremities (i.e., primarily fingers, toes, and 

earlobes) because of body part thickness and optical wavelength penetration depth. 

However, reflective PPG can be used to monitor the vasculature at several sites on the body 

in a more convenient manner. The PPG signal has been used primarily in pulse oximeters 

for its relationship to peripheral blood oxygen saturation, due to haemoglobin and deoxy-

haemoglobin having different absorption and emission spectra at red and infrared (IR) 

wavelengths, but has now found its use in HR monitoring and BP estimation without the 

use of a cuff [44].  

Collectively, the SCG and PPG represent cardiomechanical signals—due to their 

ability to capture mechanical activity, whether it be force of cardiac contraction or blood 

volume—that can provide a holistic assessment of cardiac health by distinctively 

examining both the function of the “pump” and the “pipes”, respectively. 
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CHAPTER 3. WEARABLE CUFF-LESS BLOOD PRESSURE 

ESTIMATION AT HOME VIA PULSE TRANSIT TIME 

3.1 Introduction 

Several technologies exist that provide a more complete assessment of BP status, but 

they each have drawbacks. The most common measurement technique is the oscillometric 

cuff. Typically, a cuff is placed around the upper arm and its bladder is inflated until it 

exceeds the SBP. Then the bladder is gradually deflated while the device measures the BP 

oscillations and computes the SBP, DBP, and MAP. While widely accepted as the gold-

standard of at-home BP monitoring, oscillometric cuff measurements are inconvenient, 

have limited portability, and require the user to follow strict guidelines to obtain an accurate 

reading. In an effort to decrease obtrusiveness and increase portability wrist-worn devices 

have been developed (e.g., Omron HeartGuide, Bpro) that currently still use oscillometry 

or tonometry—both which require imparting forces on the vessel to measure pressure 

differences—to acquire BP, thereby falling into the same pitfall as their uncomfortable 

upper-arm counterparts [17]. Therefore, there is a need for a low-user-input, noninvasive 

device that can perform cuff-less BP monitoring. 

Our previous work [45] focused on developing a wearable watch to estimate BP by 

extracting the PTT: the time it takes for a pulse wave to travel between two distinct 

locations along the arterial tree, using noninvasive sensors (i.e., an accelerometer and PPG) 

[18]. Other noninvasive cuff-less wearable watch- based devices currently exist such as 

Heartisans; however, their ECG-based methods, albeit convenient, technically extract the 
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pulse arrival time (PAT), which performs poorly as a surrogate for BP when compared to 

PTT [18]. In addition, our group showed that PTT-based BP estimation significantly 

outperformed PAT- based BP estimation using an older version of this watch in our 

previous work [45].  

Our group has already shown that PTT can be acquired noninvasively and correlates 

well to BP in our previous work [45]. However, a significant drawback to the design was 

the lack of portability. The various sensors in the watch needed to connect to an external 

analog-front-end (AFE) and a subsequent data acquisition system (DAQ). Consequently, 

the watch was limited to lab studies, and home monitoring was not practical. To address 

this limitation, we improved on the design to create a novel and unique combination of off-

the-shelf sensors in a robust multimodal, noninvasive, and fully wearable device for 

obtaining high-fidelity PTT measurements, allowing for low-user-input in an at-home 

setting. Additionally, our device utilizes data from multiple sensors to trigger different 

operational modes that preserve battery life and reduce memory requirements from the 

addition of low-power states. We used the device to obtain multiple PTT measurements for 

comparison to BP readings from a oscillometric cuff over the course of a 24-hour period 

at-home. Finally, we present novel and realistic calibration methods for the practical use 

of this technology in a real-world setting. To the best of our knowledge this represents the 

first comprehensive assessment of BP estimation noninvasively utilizing PTT in an at-

home setting.  

3.2 Methods 

3.2.1 Hardware Design for Home Monitoring 
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We adapted the design from our previous work to allow for wearable, at-home 

monitoring. Though other wearable devices on the market (e.g., Apple Watch and Fitbit) 

have accelerometers, PPG, ECG sensors, and offer cardiovascular health metrics (i.e., heart 

rate, oxygen saturation, arrhythmia detection, etc.), they still have yet to demonstrate cuff-

less BP monitoring. These devices, compared to the one described in this chapter, lack 

high-sensitivity multi-wavelength PPG arrays and a low-noise-floor accelerometer that 

have been essential for our group’s ability to obtain high quality signals in our previous 

works [46], [47]. 

The design was refined to integrate all sensors with an on-board microcontroller inside 

a small main watch body (27.5 × 27.5 × 16.1 mm), removing any need for external 

components and making the watch truly portable. Additionally, to allow for further 

assessment of cardiac health, we included an ECG, sternum PPG sensors, a gyroscope, and 

environmental sensors. The ECG sensor allows for easy partitioning of the heartbeats and 

can be used to assess the heart rate variability (HRV) to provide insight into autonomic 

state [48]. To capture sternum PPG, we placed three additional PPG sensors on the top side 

of the watch to measure the sternum’s pulse wave while the user performs the same 

maneuver needed to capture the SCG, as detailed in our previous work [45]. The sternum 

PPGs will provide an additional timing reference for PTT calculations. We included a 

gyroscope to sense the gyrocardiogram (GCG) signal. Previous work noted a reduced error 

when using the GCG in combination with SCG to predict the PEP [49]. The environmental 

sensor measures the temperature, relative humidity (RH), and barometric pressure, adding 

an aspect of activity context for improved physiological interpretations. 
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The complete design features three stacked printed circuit boards (PCBs) and a 150 

mAh lithium-ion battery (Adafruit Industries, New York City, NY, USA) inside of a 

custom 3D printed case. From the backside of the watch—closer to the wrist when worn—

to the topside, the boards and battery are stacked in the following order (Figure 5B): wrist 

PPG/ECG board, main board, battery, and finally, sternum PPG board. The case includes 

three slots on both the top and bottom portion to expose the PPG sensors. 
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Figure 5. A, SeismoWatch 2.0. B, The inside of the watch contains three printed 
circuit boards (PCBs) and a 150 mAh lithium-ion battery. A stack connector 
connects the main board to the wrist PPG/ECG board. The sternum PPG board and 
the wrist PPG/ECG board snap into the 3D printed case. Stainless steel electrodes 
placed on the back of the watch and the wristband allow for ECG measurements. C, 
Main board that includes the ATSAM4LS8B microcontroller, ADXL355 
accelerometer, BMG250 gyroscope, BME280 environmental sensor, SD card, 
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charging circuit, and connectors to the daughter boards. An on-board micro-USB 
port allows for data transfer and battery charging. D, The wrist PPG/ECG board 
with three pairs of SFH7072 photodiodes (PDs)/light-emitting diodes (LEDs) and 
MAX86141 analog-front-ends (AFEs), and the ADS1291 ECG AFE. E, Sternum 
PPG board with three pairs of SFH7060 PDs/LEDs and MAX86140 AFEs. F, 
Ensemble averaged waveforms from a single 30-second recording. G, Recordings 
during a 10-minute walk outside where 30-second measurements were taken four 
times. To take a complete measurement, subjects place a finger or thumb on the 
wrist electrode. When there is no contact with the electrode and watch is on the 
wrist, the watch reduces power by lowering the sample rate and only turning on 
certain sensors. 

For the microcontroller, we selected the ATSAM4LS8B (Microchip Technology, 

Chandler, AZ, USA) for its large amount of storage (512kBytes Flash, 64kBytes RAM), 

high number of peripheral options (48 GPIOs, 4 USART), and ultra-low power 

consumption (1.5 μA sleep mode). We removed the custom AFEs used in the previous 

iteration and selected sensors with internal AFEs to reduce the number of components and 

power consumption. Additionally, we decided to not use on-board analog-to-digital 

converters (ADCs) due to the relatively high noise and low bit conversion compared to 

external ADCs. Instead, we selected sensors that included an integrated ADC. This allowed 

for a completely digital interface and allowed the sensors to independently make 

conversions, freeing up processor time on the microcontroller.  

The various components on each of the boards can be seen in Figure 5(C/D/E). Table 

1 details the system specifications including the sample rate for each sensor. The main 

board contains most of the watch hardware: the microcontroller, charging circuit, 

accelerometer, gyroscope, environmental sensor, secure digital (SD) card, and various 

connectors to the other components. For the accelerometer, we selected the ADXL355 

(Analog Devices Inc., Norwood, MA, USA) that has a noise floor at 25 μg/Hz and 

resolution of 0.003 mV/bit. This high-resolution, low-noise accelerometer is needed to 
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accurately measure the SCG, which can have a peak-to-peak amplitude of as low as 

approximately 8 mg. To measure the GCG, we chose the BMG250 (Bosch, Gerlingen, 

Germany) due to the low output noise (0.007 ◦/s/√Hz). The main board also includes the 

BME280 (Bosch, Gerlingen, Germany) that features a small package size (2.5 × 2.5 mm), 

low current consumption (3.6 μA), and a low noise floor pressure sensor (0.2 Pa RMS). 

The microcontroller stores data on an on-board SD card at a write speed of 12 Mb/s. 

The wrist PPG/ECG board, as the name implies, contains both the wrist PPG and ECG 

circuit. On the back side of the board are three SFH7072s (Osram, Munich, Germany) with 

each containing a green, red, and infrared (IR) LED and two photodiodes (PDs). One of 

the PDs blocks red and IR wavelengths, improving the detection of a green wavelength, 

while the second more broadband PD has a peak sensitivity around the red and IR 

wavelength. Measurements of PTT would utilize the red and IR detectors to monitor the 

deeper arteries. The high signal-to-noise ratio (SNR) green detector could constantly 

measure heart rate when the user is not taking a PTT measurement and indicate 

physiological states between PTT measurements. Each SFH7072 interfaces with a 

MAX86141 (Maxim Integrated, San Jose, CA) to drive the LEDs and to read the current 

output of the PDs. This board also includes the ECG circuitry where we selected the 

ADS1291 (Texas Instruments, Dallas, TX) due to the low-noise (8 μVpp) and high-

resolution ADC (24 bit). The ADS1291 connects to three dry stainless-steel electrodes. For 

the negative reference and the right leg drive, two electrodes are placed on the back- side 

of the watch to make contact with the wrist. We placed a third electrode for the positive 

reference on the outside of the wristband. Using the ADS1291’s lead-off detection feature, 
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which constantly monitors the connection to the body, the user can initiate a measurement 

by simply touching the wristband electrode with the opposite hand. 

Table 1. Device specifications 

 
a Note that a “-” indicates that particular sensor was not enabled during that measurement mode. 

Parameter Value 
  PTT measurement mode Continuous mode Standby mode 
Data storage capacity  (Depends on 𝜇SD 

card size) 
 

Power consumption 19 mA 5 mA 4 mA 
Battery life (based on 150mAh 
battery) 

8 hrs 30 hrs 38 hrs 

Physiological measurements    
ECG (single-lead)    
 Bandwidth 125 Hz -a - 
 Noise 8 𝜇Vpp - - 
 Sample rate 1 kHz - - 
Accelerometer (3-axis)    
 Bandwidth 125 Hz 31.25 Hz - 
 Noise 25 𝜇g/√𝐻𝑧 25 𝜇g/√𝐻𝑧 - 
 Sample rate 500 Hz 125 Hz - 
Gyroscope (3-axis)    
 Bandwidth 125 Hz 25 Hz - 
 Noise 0.007 º/s/√𝐻𝑧 0.007 º/s/√𝐻𝑧 - 
 Sample rate 500 Hz 125 Hz - 
Sternum PPG (Green, Red, IR)    
 Wavelength (𝜆!"#$) 530, 660, 950 nm -, -, - -, -, - 
 Spectral sensitivity 0.27, 0.47, 0.77 A/W -, -, - -, -, - 

 Radiant sensitive area 1.3 x 1.3 mm -, -, - -, -, - 
 Sample rate 333, 333, 333 Hz -, -, - -, -, - 
Wrist PPG (Green, Red, IR)    
 Wavelength (𝜆!"#$) 526, 660, 950 nm 526, -, - nm 526, -, - nm 
 Spectral sensitivity 0.31, 0.56, 0.84 A/W 0.31, -, - A/W 0.31, -, - A/W 
 Radiant sensitive area 0.89 x 0.89 mm 1.29 x 2.69 mm 1.29 x 2.69 mm 
 Sample rate 333, 333, 333 Hz 125, -, - Hz 8, -, - Hz 
Environmental measurements    
Temperature sensor    
 Noise 0.004 ºC RMS 0.004 ºC RMS - 
 Sample rate 33 Hz 4 Hz - 
Pressure sensor    
 Noise 1.3 Pa RMS 1.3 Pa RMS - 
 Sample rate 33 Hz 4 Hz - 
Humidity sensor    
 Noise 0.07 % RH RMS 0.07 %RH RMS - 
 Sample rate 33 Hz 4 Hz - 
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The remaining board, the sternum PPG board, contains three pairs of SFH7060s 

(Osram) and MAX86140 s (Maxim Integrated, San Jose, CA). We selected the SFH7060 

over the SFH7072 due to the increased area of the PDs, increasing the total sensitivity and 

compensating for the decreased perfusion at the sternum when compared to the wrist. Since 

the SFH7060 only includes a single PD, we selected the single-channel MAX86140 AFE. 

Similar to the SFH7072, the SFH7060s still contain green, red, and IR LEDs. 

The data is temporarily saved to the SD card. The watch interfaces with the computer 

through a micro-USB port on the main board and is accessible through a cut-out in the 

case. A custom C# based app communicates using the universal serial bus (USB) protocol 

with the microcontroller to pull and subsequently delete data on the SD card, freeing up 

space for future measurements. Additionally, the inserted micro-USB interfaces with a 

battery charger (bq24232, Texas Instruments) to charge the battery. 

3.2.2 Device Operations 

We designed the watch to operate in three modes: standby, continuous, and PTT 

measurement mode. During standby mode, all sensors on the device are shutdown except 

for a single green PPG on the wrist which is sampled at 8 Hz and configured to act as a 

proximity sensor. When an object approaches the sensor, as when the user places the watch 

on the wrist, an interrupt flag is set, and the watch transitions to continuous mode. During 

this mode, the three green wrist PPGs, accelerometer, and gyroscope are active and sample 

at 125 Hz. The environmental sensor is also turned on and samples at 4 Hz. The lower 

sample rate saves power while providing enough context for activity classification. The 

watch transitions to PTT measurement mode when the ECG senses a lead-on event. To 
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trigger this mode when wearing the watch on the wrist, the user will need to touch the 

wrist-band electrode with the hand contralateral to the watch, as seen in Figure 6. During 

PTT measurement mode, the sternum PPGs are turned on and the device was placed 

directly in contact with the subject’s skin at the mid sternum. All wavelengths (i.e., green, 

red, and IR) of both the wrist and sternum PPGs were activated. The sternum was chosen 

primarily for optimal SCG quality based on some of our previous work characterizing 

signal quality at different sensor placement locations [50]. In this mode, all sensors are 

sampled at the full rate as shown in Table 1. Although the measurement bandwidth of the 

PPG and environmental signals is very low (≤10 Hz), part of the reason we were able to 

acquire high-quality data, was related to our ability to oversample all of these signals such 

that less complex filters are needed during post-processing. In addition, because of our 

power-saving operational modes, we were not concerned with increased power 

consumption or memory storage requirements when sampling higher. Figure 5F shows the 

ensemble average of the ECG, SCG, GCG, and PPG during a 30-second recording while 

the watch was operating in the PTT measurement mode. 



 28 

 

Figure 6. Measurement protocol diagram. Subjects were instructed to acquire pulse 
transit time (PTT) and blood pressure (BP) cuff measurements hourly, over the 
course of a 24-hour period, wearing the watch throughout the period except during 
sleep. As shown, the watch was worn on the arm contralateral to the oscillometric 
cuff. Each hourly measurement session required a sequence of PTT measurements, 
acquired by placing the watch on the chest, in contact with skin, and touching the 
wrist electrode, and BP cuff measurements, taken using the oscillometric cuff. 
Diastolic BP (DBP) and inverse pulse transit time (PTT−1) data for Subject 21 are 
shown. 

Figure 5G shows the recordings of all sensors during a 10-minute walk outdoors. When 

the user touched the wrist electrode, the watch transitioned to PTT measurement mode, 

increasing the sample rate and sampling from all sensors. When the finger was removed, 

the watch returned to continuous mode, decreasing the sample rate and only sensing from 

sensors that give activity context for determining physiological states. Configuring the 

watch to transition between these modes reduces power consumption and memory 

requirements, as well as indicating PTT measurement timings. Specifically, the additional 

capability of transitioning between device modes (PTT measurement, continuous, standby 
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mode) allowed us to save battery life (8, 30, and 38 hrs) enough to readily acquire PTT 

data for a complete assessment of around-the-clock BP changes. In context, if used as an 

ambulatory BP cuff, which takes measurements every 30 minutes, the watch would only 

be in measurement mode 0.8% of the time with the 15 second measurements used herein. 

To compensate for variable PPG signal quality due to different skin tones amongst 

subjects, we decided to automatically adjust the LED drive current for the individual PPGs 

and wavelengths to prevent railing and improve signal quality. This required having a two-

state current threshold and adaptively decreasing the LED current and switching to the 

lower threshold value if the most significant byte (MSB) of the input light measured from 

the PD exceeded the higher threshold. Otherwise, the current cutoff was increased to its 

higher value to allow the signal to grow in amplitude. 

3.2.3 Study Protocol 

This study was conducted under a protocol approved by the Georgia Institute of 

Technology Institutional Review Board. For this study, 21 (16 males, 5 females) young 

and healthy volunteers (Age: 25.9±3.4 years, Weight: 74.4±16.9 kg, Height: 176.3±10.9 

cm, and body mass index (BMI): 23.7±3.6) with no prior history of heart problems were 

recruited, and written informed consent was obtained. The subjects were instructed to take 

the watch and an Association for the Advancement of Medical Instrumentation (AAMI) 

approved BP785 N BP cuff (Omron, Kyoto, Japan) home and acquire measurements hourly 

over the course of 24 hours, taking at least 12 total measurements. In addition, they were 

told to specifically take a measurement directly before and after bedtime and to not wear 

the watch during sleep. Therefore, the watch was worn until bedtime to obtain data from 
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the continuous mode—for activity context—was charging during sleep, and re-worn the 

next morning. The subjects were briefed on how to use the watch and BP cuff to perform 

measurements. The watch was worn on the right wrist, and the BP cuff was worn on the 

left arm. They were not worn on the same arm to mitigate any potential confounding effects 

of vessel occlusion associated with the oscillometric cuff measurement. Additionally, the 

maneuver where the user places the watch on their sternum benefits from being at a heart 

level which helps increase BP reading accuracy from wrist-worn devices [51]. Due to this 

user-input requirement, our device currently can only be used to reliably acquire 

measurements when stationary, as in this study. This fit well with the procedure for the 

oscillometric cuff, which itself can be even more restricting and tedious to obtain an 

accurate measurement. Since all the data was saved automatically from both devices the 

protocol required low-user-input, essential for an at-home measurement system. Every 

measurement session consisted of five sections broken down into three 30 second watch 

measurements with BP cuff measurements in between as shown in Figure 6, resulting in 

approximately three-minute-long measurement sessions. We ensured that at least 15 

seconds were added between the middle watch measurement and the BP cuff 

measurements before and after to comply with the American Heart Association’s (AHA’s) 

recommendation of one-minute intervals between BP cuff measurements. To keep this 

consistent, both before the first BP cuff measurement and after the final BP cuff 

measurement, we made sure that 15 seconds were added before proceeding to that next 

measurement. 

3.2.4 Signal Processing 
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The signal processing was carried out in MATLAB R2018a (MathWorks, Natick, MA). 

Only the data from the PTT measurement mode were analyzed in this study. The entire 

recording was partitioned using the serviceable ECG lead-on detection feature to extract 

signals from each of the individual measurement sessions. We reduced the length of signals 

to 15 seconds per session for PTT analysis to remove sections corrupted with motion 

artifacts caused by the subject still adjusting and placing the watch on the sternum. 

Additionally, the sternum and all green and red wavelength PPGs were not utilized as the 

IR wavelength wrist PPGs had the highest mean SNR, potentially due to IR wavelength’s 

ability to penetrate deeper in the tissue and capture larger, more pulsatile arteries. 

Furthermore, we attempted to use only data from the last cuff reading and measurement 

session as the subject had a greater likelihood of reaching a resting steady-state before 

readings. Since the subjects did not take both measurements at the same time, using the 

later measurements when the subject was more likely to have a steady BP allowed us to 

more accurately compare cuff BP to watch PTT. However, a few subjects had corrupted 

watch measurements due to erratic toggling probably due to misapplication of the ECG. In 

those cases, we used the latest clean watch section. For subjects whom we had to use the 

first watch section, we also used the first BP cuff measurement. Additionally, for one 

subject that we did not use the first watch section for, we used the first cuff measurement 

because the second had the lowest recorded standard deviation (SD) of DBP at 2.2 mmHg. 

The PTT was calculated as the difference between the proximal timing reference, aortic 

valve opening (AO) point of the dorso-ventral SCG (i.e., z-axis acceleration), and the distal 

timing reference, foot of highest SNR PPG. First, we filtered the ECG, SCG, and PPG 

signals using a digital FIR bandpass filter with a bandwidths of 2.2–30 Hz, 0.8–25 Hz, 1–
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8 Hz, respectively. Then, we split the SCG and PPG waveforms into separate beats by 

using a simple peak detection algorithm for determining R-to-R intervals of the ECG. Next, 

we ensemble averaged both the SCG and PPG beats and the resulting wave- forms were 

used to extract both of the aforementioned timing references. The SNR was calculated 

using a noise-to-signal ratio (NSR) detection algorithm detailed in [52]. Both the methods 

to determine the two timing references, the foot of the PPG and the AO point of the SCG, 

were the same as those used in our previous work [45]. Specifically, the foot of the PPG 

was computed from the intersecting tangent method described in [45] and the AO point 

was assumed to be the first peak in each ensemble averaged window. SNR thresholds were 

set to retain only high-fidelity signals; if the SNR of the SCG or PPG beats was not greater 

than the prescribed cutoff, then the respective ensemble averaged waveforms were deemed 

too noisy for use. If the SCG or all of the PPG waveforms were discarded, then that 

measurement session was not used for PTT calculation. If the subject had fewer than 9 

measurements with valid SNR levels, we gradually decreased SNR thresholds in an effort 

to yield more data points. The logic behind our approach was sound as it led to subject-

specific SNR thresholds but only to yield at least 75% of total measurement sessions per 

subject for regression. In general, not surprisingly, inconsistencies due to an unsupervised 

study led to low SNR signals overall. 

3.2.5 Statistical Analysis 

The multiple linear regression shown in Figure 7 was performed independently on 

subject-specific MAP, DBP, and SBP inverse PTT value pairs to calculate the coefficient 

estimates for each of the three BP components per subject. The calibration coefficients 

used in the regression model therefore are merely the slope and y-intercept of the line of 
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best fit. Outliers were removed if the corresponding residual was greater than expected in 

95% of new observations. The mean-absolute-difference (MAD) was computed from the 

mean of the absolute value of the difference between the estimated and reference BP. The 

error bounds for analysis were chosen based on the Institute of Electrical and Electronics 

Engineers (IEEE) Standard for Wearable Cuff-less BP Measuring Devices [53] and the 

MAD was compared to the requirements therein. Finally, the root-mean-square error 

(RMSE), which was calculated from the root-mean-square (RMS) of the difference 

between the estimated BP and measured BP, was also presented because it is more sensitive 

to outliers. 

3.2.6 Calibration Analysis 

The aforementioned slope and y-intercept outputs from linear regression are the 

calibration coefficients K1 and K2 in the popular PTT model [18] shown in Equation 3 

above. 

In this section, we will present two new potential calibration methods that leverage the 

natural variability in BP and show promise in reducing calibration requirements for a PTT-

based BP estimation device: (1) a ‘semi-globalized’ model and (2) a two-point calibration 

model. For these additional calibration analyses, only DBP estimation was examined due 

to the im- proved correlations. In general, PTT correlates better with DBP, as the distal 

timing reference used, the foot of the PPG waveform, occurs during diastole [18]. First, we 

investigated the performance of our subject-specific curve in estimating intrasubject DBP 

when trained using an increasing number of calibration points. Then, we sought to compare 

this intrasubject model, in which both the K1 and K2 calibration coefficients are subject-



 34 

specific, to those of semi-globalized models. This ‘semi-globalized’ model determines one 

calibration coefficient using intrasubject data and the other one from all the remaining 

subject’s data—which we refer to as the ‘global’ set herein. While this model still requires 

intrasubject data and thus requires subject-specific calibration, the burden on calibration is 

reduced since only one variable is needed for calibration as the ‘global’ set is used to 

calibrate the second variable. Specifically, in our work, the global K1 model trains K1 on 

the global set and K2 on intrasubject data. Similarly, the global K2 model trains K2 on the 

global set and K1 on intrasubject data. Finally, we investigate the performance of two, 

intrasubject two-point calibration methods that either use the subject-specific maximum 

and minimum DBP values for calibration or the subject-specific maximum and minimum 

PTT values. 

Data points of PTT and corresponding DBP values for each subject were randomly 

selected for training an intrasubject linear regression curve used to determine calibration 

coefficients. These coefficients were then used to estimate DBP based on the PTT values 

from the remaining data points (i.e., testing set) for that subject. As aforementioned, the 

RMSE was computed between the estimated and measured DBP. This process was 

repeated until the averaged RMSE reached an expected value. We verified that overfitting 

was avoided, by ensuring that none of the testing subject’s data was trained on for our 

intrasubject multi-point calibration testing loss results shown in Figure 8A. An increasing 

number of training points were used, which were again independently and randomly 

selected from each subject. As shown in Figure 8 intrasubject training stopped once a total 

of six calibration points was reached, as there were subjects with only seven total 

calibration points available. Since regression was not possible based on a single training 
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point, for single-point calibration we assumed that the first randomly selected data point’s 

DBP value would be the same estimated DBP value for all of the subject’s points, hence 

the labeling ‘Constant DBP’ in Figure 8. 

To test the performance of a semi-globalized model to estimate DBP from PTT, we 

investigated placing global constraints on either the K1 or K2 calibration coefficient while 

adaptively changing the other. The individual global methods either fix the testing subject’s 

K1 or K2 to the K1 or K2 output of the linear regression curve calculated from all the PTT 

and DBP data points for all the remaining subjects, respectively. That is, none of the held-

out test subject’s data were used when training the global coefficient. The remaining 

calibration coefficient was estimated for each subject independently using this global 

constraint for an increasing number of calibration points. 

Two, two-point calibration methods were tested and compared to the regular multi-

point calibration already presented in this study. For these methods either both the PTT 

values associated with the maximum and minimum BP or the maximum and minimum 

PTT values over the subject’s 24-hour period were chosen for use in training a linear 

regression curve for BP estimation. Subjects were removed if BP and PTT values used for 

calibration directly correlated. This resulted in only one subject being removed, and only 

for the BP dynamic range method. The other subject that was removed from both methods 

was identified as an outlier probably due to having the lowest Pearson correlation 

coefficient (r = 0.44) of the entire population. 
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Two-sample t-tests were performed for these various calibration analyses to assess the 

significance (P<0.05) level of these differences in RMSE from independent, randomly 

sampled points with normal distributions. 

3.3 Results 

Figure 7 illustrates the correlation and Bland-Altman plots for PTT-based BP 

calibration of MAP, DBP, and SBP across all subjects. A more thorough view of our results 

per subject are provided in Table 2. The mean MAD was 2.24 mmHg, 2.50 mmHg, and 

4.03 mmHg for DBP, MAP, and SBP, respectively. The mean±SD RMSE was 2.72±0.75 

mmHg, 2.99±1.12 mmHg, and 4.75±2.29 mmHg for DBP, MAP, and SBP, respectively. 

DBP and MAP estimation had better confidence intervals (95%) than SBP at 5.64 mmHg, 

6.48 mmHg, and 10.67 mmHg, respectively. Our Pearson correlation coefficients were 

0.69, 0.61, and 0.33 for PTT-based DBP, MAP, and SBP estimation respectively. Across 

all subjects we used data from 216 out of 245 total measurement sessions (88%), with at 

least 75% of measurements used per subject. All unused measurement sessions were 

deemed too noisy for a trustworthy PTT calculation. 
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Figure 7. Correlation and Bland-Altman plots between pulse transit time (PTT) 
estimated blood pressure (BP) and gold-standard oscillometric cuff BP for mean 
arterial pressure (MAP), diastolic BP (DBP), and systolic BP (SBP) estimation. The 
root-mean-square error (RMSE) and mean-absolute-difference (MAD) for each 
correlation are shown. 

Table 2. Individual subject diastolic blood pressure estimation results  

Subject 𝝁DBP [mmHg] RMSE [mmHg] R e < 5 mmHg 
1 77 ± 3 1.09 0.92 1.00 
2 79 ± 3 2.31 0.54 1.00 
3 64 ± 5 4.07 0.48 0.70 
4 76 ± 6 3.01 0.84 0.89 
5 73 ± 5 2.81 0.76 0.80 
6 56 ± 4 2.27 0.80 1.00 
7 66 ± 5 3.13 0.72 0.89 
8 66 ± 3 2.87 0.45 1.00 
9 91 ± 5 3.49 0.71 0.90 
10 77 ± 5 1.99 0.89 1.00 
11 69 ± 4 2.61 0.67 1.00 
12 78 ± 3 2.36 0.48 1.00 
13 67 ± 4 3.54 0.54 0.82 
14 81 ± 4 2.90 0.50 0.90 
15 64 ± 4 1.64 0.90 1.00 
16 72 ± 3 2.18 0.72 1.00 
17 75 ± 4 2.70 0.64 0.89 
18 61 ± 3 1.73 0.75 1.00 
19 68 ± 5 3.64 0.69 0.83 
20 73 ± 4 3.28 0.44 0.78 
21 75 ± 12 3.50 0.95 0.69 
𝝁 𝟕𝟐 𝟐. 𝟕𝟐 𝟎. 𝟔𝟗 𝟎. 𝟗𝟏 
𝝈 𝟗 𝟎. 𝟕𝟓 𝟎. 𝟏𝟔 𝟎. 𝟏𝟎 

Figure 8 depicts changes in RMSE across a different number of training points and 

comparisons between semi-globalized calibration models. Notably, in Figure 8A RMSE 
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significantly (P<0.05) decreased from a single-point calibration (6.05±1.75 mm Hg) to 

four-point (4.73±2.41 mm Hg, P=.0495), five-point (4.24±1.97 mm Hg, P=.0043), and six- 

point (3.83±1.40 mm Hg, P=.0004) calibration. Four points were the minimum required 

for calibration to result in a mean (4.73±2.41 mm Hg) that was lower than that of the single-

point calibration (6.05±1.75 mm Hg). Despite not showing statistical significance, the 

globalized K1 calibration model in Figure 8B outperformed the regular intrasubject 

calibration with one point (5.34±1.59 mm Hg vs. 6.05±1.75 mm Hg). However, at four and 

six points the regular intrasubject calibration model began to outperform the global K2 

model (4.73±2.41 mm Hg vs. 4.81±1.22 mm Hg) and global K1 model (3.83±1.40 mm Hg 

vs. 4.03±1.28 mm Hg) respectively. 

 

Figure 8. A, Boxplots showing the statistically significant (*P<.05) decreasing root-
mean-square error (RMSE) for diastolic BP (DBP) in intrasubject testing loss with 
an increasing number of calibration points. B, Boxplots showing the notable 
differences in RMSE for DBP in intrasubject testing loss between the regular 
intrasubject calibration method, the global K2 model, and the global K1 model with 
an increasing number of calibration points. 

Figure 9 shows the boxplots of two different two-point calibration methods compared 

to the regular multi-point calibration method. The mean±SD RMSE values for the regular 
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multi- point, BP dynamic range, and PTT dynamic range methods are 2.71±0.75 mmHg, 

5.99±3.03 mm Hg, and 3.86±1.53 mm Hg respectively. Both dynamic range two-point 

calibration methods significantly outperformed the regular, randomly selected, two-point 

intrasubject testing loss (11.62±16.82 mm Hg) seen in Figure 8A. The mean MAD was 

4.66 mm Hg and 3.16 mm Hg for the two-point BP dynamic range and PTT dynamic range 

calibration methods, respectively. 

 

Figure 9. Boxplots showing statistical significance (*P<.05) in root-mean-square 
error (RMSE) for diastolic BP (DBP) intrasubject testing loss between two different 
two-point calibration methods using either the maximum and minimum DBP values 
or pulse transit time (PTT) values and the standard multi-point calibration method. 

3.4 Discussion 

This study represents, to the best of our knowledge, the first time that BP has been 

estimated using noninvasive PTT measurements in an at-home setting. We demonstrated 

the feasibility of a more convenient method for obtaining ambulatory BP than the standard 

oscillometric cuff and presented new methods for accurately estimating BP even when 

calibrated less frequently. The work represents an important step towards enabling 
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wearable PTT-based BP estimation and monitoring for persons outside of clinical settings, 

including through the development and validation of a novel watch-based form factor with 

embedded systems innovations enabling robust sensing and storage of PTT. 

3.4.1 Tracking Around-The-Clock BP 

We developed a PTT-based BP monitoring device and demonstrated accurate 

monitoring of BP throughout the day in an at-home setting. Our results for MAP, DBP, 

and SBP were well within the acceptable criteria for BP estimation error set by the IEEE 

standard (MAD≤5 mm Hg) [53]. Ultimately, we were still able to achieve a reliable 

correlation between PTT and BP even with several factors—intrinsically coupled to an in-

the-wild study— confounding PTT measurements and independently affecting BP. 

The average correlation in this study was lower than that in our group’s previous work 

which was conducted in a lab setting—0.84 and 0.69, respectively—but this reduction was 

attributed to the uncontrolled setting as well as narrower BP ranges and unaccountable 

transient fluctuations in vascular smooth muscle tone [45]. Despite the weaker correlation, 

our RMSE values were still within 5 mmHg for MAP, DBP, and SBP, understandably im- 

plying that BP did not change considerably. Specifically, not only were there narrower 

daily BP ranges, due to the lack of perturbations previously employed, but also several 

confounding factors that affected BP in this uncontrolled, in-the-wild experiment. To 

elaborate, in the previous work, as with many PTT studies, known perturbations that 

affected both smooth muscle contraction (SMC) and BP proportionally were employed to 

modulate BP and determine the effectiveness of a PTT-based approach in a controlled lab 

setting. Since both SMC and BP concomitantly and considerably affect PTT when 
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measured from peripheral arteries [6], calibration accounted for changes in both BP and 

vasomotor tone. In an uncontrolled setting, external stimuli can modulate vasomotor tone 

independently from BP, resulting in unbalanced peripheral arterial elasticity which relates 

to PTT. For instance, a study demonstrated that the relationship between pulse wave 

velocity and muscle sympathetic nerve activity is independent of BP in normal individuals 

[54]. This suggests that over the course of a day, several encounters and stressors can 

instantaneously modulate sympathetic arousal to different degrees acutely affecting 

vascular smooth muscle tone prior to and independently from BP, transiently confounding 

PTT but not BP cuff measurements [55]. Although, we have not previously accounted for 

transient fluctuations in vascular smooth muscle tone, we try to minimize them by 

leveraging longer wavelength LEDs to measure the small pulsatile changes in blood 

volume from deeper arteries in the tissue that would not be affected as much as thinner, 

more cutaneous capillaries [18]. Despite these obstacles, our device demonstrated accurate 

BP estimation in an at-home setting. 

Predictably, DBP estimation proved to be the most accurate, similar to our previous 

work [45], as the foot of the PPG wave- form signifies the arrival of the distal pulse wave 

and signifies end-diastole [18]. Meanwhile, our SBP estimation performed the worst, as 

the peak rather than the foot of the pulse wave occurs during systole [18]. Regardless, 

recent studies have shown and mentioned that PTT computed from the foot outperforms 

that from the systolic maximum for both DBP and SBP and thus the peak was not examined 

herein [56], [57]. It is noteworthy that the subject whose data is plotted in Figure 6, with 

the highest Pearson correlation coefficient (subject = 21, r = 0.95) also had the greatest 

standard deviation of DBP (±12 mm Hg) and had taken the greatest number of 
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measurements. This subject had apparently performed running exercise before a 

measurement, which explains the wide DBP range. Additionally, their point of maximum 

DBP was not determined as an outlier because their PTT had also considerably changed. 

We found this to be a promising possible indication that it would be best to acquire fewer, 

more significant, calibration points after some initial exercise or when BP has changed past 

a significant threshold from baseline to capture the full dynamic range of normal daily BP. 

3.4.2 Reducing Calibration Requirements 

For the first time, we demonstrated the ability of novel calibration methods to reduce 

the burden of calibration required for accurate BP estimation through PTT. Notably, we 

achieved accurate BP estimation within the IEEE’s standards using both a semi-globalized 

calibration model and a two-point calibration method that each use fewer coefficients and 

fewer points, respectively, for calibration [53]. 

Our device accurately predicts DBP over the course of a day using only four calibration 

points—on average less than half of the used data points for the regular multi-point 

calibration. Due to outliers stemming from the inclusion of noise and lack of wide DBP 

ranges, our regression-based approach for two and three- point calibration performed worse 

than single-point calibration. While a good result was obtained with single point 

calibration, presumably due to low variations in DBP, we found a statistically significant 

improvement in RMSE when using multi-point calibration versus single point calibration. 

Furthermore, we assess the ability of the calibration curve to track changes in DBP by 

providing the Pearson correlation coefficient, resulting in R-values comparable, albeit 

lower, to those seen in previous works [18]. Global model parameters were then 
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incorporated into subject-specific models to improve the estimation accuracy at fewer 

numbers of points. 

Our semi-globalized integrated models were better estimators of DBP than the regular 

intrasubject multi-point method with a fewer number of calibration points. Understandably, 

the multi-point subject-specific calibration method eventually surpassed the global models. 

Additionally, the global K1 model outperformed the global K2 model considerably and 

consistently, as well as the regular intrasubject testing loss until six points, though not 

significantly other than at three calibration points. Though we do not present a globalized 

intersubject model for estimating BP from PTT, an ideal solution, we believe that the 

results presented here within show promise for a more realistic solution. Compared to a 

globalized model, a subject-specific model will realistically always have improved 

performance, with the downside of increased complexity. However, in the meantime this 

result demonstrates the feasibility of reducing this complexity and burden by requiring only 

a single variable for calibration. Specifically, we propose a heuristic that represents an 

intermediate-globalized model which can be adaptively and marginally tailored to a 

specific subject to provide a more accurate estimation when using fewer calibration points 

for estimation. 

Using two points for calibration, our device accurately tracks around-the-clock DBP 

within the IEEE’s standards by selecting more physiologically salient calibration points 

[53]. In addition, they significantly improve upon the intrasubject two-point calibration 

testing loss seen in Figure 8A. This can be attributed to a training set with wider DBP 

range, thereby avoiding randomly selected points that neighbor one another and thus do 

not offer a good assessment of normal daily DBP range. Ideally the best possible two 
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calibration points would be the ones with the widest range—the minimum and maximum 

points in which the PTT and DBP change proportionally and markedly together [18]. The 

PTT dynamic range method yielded a statistically significant improvement when compared 

to the DBP dynamic range method, potentially due to accounting for differences in 

vasomotor tone confounding PTT-based DBP estimation. Specifically, we believe that this 

suggests that there were factors present which changed DBP independently from the PTT, 

rendering those points poor for calibration. In general, PTT-based studies with wider BP 

ranges tend to have higher correlations, while ones with narrower ranges tend to yield lower 

RMSE values [18]. To further decrease computational complexity, this data suggests that 

a recursive least-squares approach could be applied to a subject’s past data to optimally 

estimate a calibration curve given a new point. These results become especially exciting 

when considering the ability of our hardware to use a multimodal sensor fusion approach 

to gate different operational modes based on hemodynamic-contextualized data and prompt 

users for these more physiologically salient calibration measurements. 

3.4.3 Limitations and Future Design 

3.4.3.1 Study Population Demographic 

Our PTT-based device should be tested in elderly, overweight, and hypertensive 

populations. Aside from the growing importance of monitoring younger populations [58], 

similar to that studied herein, accurate remote monitoring has the ability to immediately 

improve the hypertension screening and management standard of care. However, first PTT-

based BP estimation should be investigated in diverse populations with differences in 

arterial stiffness, compliance, and SMC [18]. 
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3.4.3.2 PTT Models and Calibration Longevity 

Linear regression, albeit rudimentary, was used in this study: while non- linear models 

can have better accuracy, they tend to contain more than two unknown variables which 

dictates the need for more PTT and BP calibration points [18]. Furthermore, in cases where 

perturbations do not noticeably change BP, or in our case where there were no 

perturbations, only linear models might be feasible and employable [18]. Also, the 

confounding factors that were inherently prevalent in this unsupervised, at-home study 

such as SMC can have a linearizing effect [59]. Eventually, however, once enough datasets 

amongst at-home, longitudinal, and at-risk monitoring subjects have been collected, these 

similar methods could be reanalyzed and combined with more recent work that has shown 

promise in estimating BP either through analytical models [60] or machine learning (ML) 

approaches for a potential globalized model. As a whole, further work needs to be 

completed to assess how reliably subject-specific calibration curves can function across 

several days, thereby eliminating the need for consistent re-calibration. 

3.4.3.3 Novel Signal Processing Algorithms and Sensor-Fusion for Improved PTT 

Calculation and BP Calibration 

One of the challenges of using the SCG as the proximal timing reference is determining 

the true AO peak. The signal varies greatly between subjects, and the peaks can either be 

mistaken for the wrong physiological markers or the location of the peaks can be corrupted 

by either motion artifacts or improper placement of the watch. While for most subjects our 

method to determine the AO point was sound and led to a high correlation between PTT 

and BP, for a few sessions it annotated the incorrect AO point and had to be manually 
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remedied. In our previous study we relied on the user to undergo a protocol such as exercise 

to increase the heart’s contractility to decrease the PEP [45]. However, at-home monitoring 

of natural variability in BP is a more challenging problem and dictates a need to capitalize 

on promising signal processing advances. Specifically, by using new ML approaches to 

assess signal quality [61] or a gyroscope as an additional proximal timing reference [49]. 

Novel methods to both identify higher quality PPG signals and select those from 

arteries deeper in the tissue should be investigated to improve the distal timing reference 

and avoid inconsistencies that arise when measuring from cutaneous capillaries [18]. In 

particular, we attached an array of three LED-PD pairs to the top side of the watch. These 

now allow for a pulse wave measurement at the sternum as the user performs the same 

maneuver needed to capture the SCG. The sternum PPGs, taken from a more central 

location, tend to have pulse waves with a different morphology—typically with smoother 

systolic peaks—and therefore should be investigated further to see if timing references 

extracted from them will lead to a more reliable BP estimation [62]. Additionally, 

examining PPG signal features will not only allow us to better select amongst the various 

PPGs but also elucidate properties of the underlying waveform morphology that are of 

greater importance in different populations. For example, features such as the augmentation 

index and rise-time have been shown to capture physiologically salient pulse waves that 

generate a more accurate, and meaningful estimated BP [45]. 

3.4.3.4 Hardware Advances for Usability 

For remote monitoring, wireless technologies (e.g., cellular, LoRa, Bluetooth, and Wi- 

Fi) must be incorporated such that data can be automatically uploaded to the cloud for 
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clinicians to view. Additionally, PTT-based BP estimation should be handled on-chip or 

on the cloud prior to viewing by leveraging advances in lightweight firmware or cloud-

based algorithms for computation. 

3.5 Conclusion 

Ultimately, we show a more convenient method for obtaining accurate ambulatory BP 

than using the standard oscillometric cuff and present new calibration methods for BP 

estimation using fewer calibration points that are more practical for a real-world scenario. 

Remote monitoring of hypertension is critical to the success of the AHA and World Health 

Organization’s new missions and can assist prevention, offer early detection, and 

incentivize lifestyle changes to ultimately increase both the quality-adjusted life years 

(QALY) of at-risk patients and lifetime savings versus clinic BP measurements [3], [63]. 

For already hypertensive patients serial and longitudinal monitoring of BP at-home, and in 

outpatient settings, can be used to remotely titrate care of antihypertensive drugs [64]. We 

have demonstrated that a watch- based wearable device, capable of noninvasive PTT based 

BP estimation, can reliably and conveniently track natural around- the-clock variability in 

BP in an at-home setting. Following future studies with more diverse populations, and 

longer-term studies aimed at evaluating the time-course for which the calibration curve 

may hold as accurate, this device may enable more convenient and widespread monitoring 

of BP outside of clinical settings.  
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CHAPTER 4. ENABLING WEARABLE PULSE TRANSIT TIME-

BASED BLOOD PRESSURE ESTIMATION FOR MEDICALLY 

UNDERSERVED AREAS AND HEALTH EQUITY 

4.1 Introduction 

Noninvasive and cuff-less approaches to monitor BP, in light of their convenience and 

accuracy, have paved the way toward remote screening and management of hypertension. 

However, existing noninvasive methodologies, which operate on mechanical, electrical, 

and optical sensing modalities, have not been thoroughly evaluated in demographically and 

racially diverse populations. Thus, the potential accuracy of these technologies in 

populations where they could have the greatest impact has not been sufficiently addressed. 

This presents challenges in clinical translation due to concerns about perpetuating existing 

health disparities. 

In our previous work, we designed a wearable, multimodal, wrist-worn PTT monitoring 

device (“SeismoWatch”) and validated it in both controlled lab [45] and unsupervised 

home [65] settings, primarily on young, healthy persons with lighter skin. Here, we expand 

upon our previous work with a community-engaged research strategy that leverages 

expertise from a nonprofit organization serving MUAs in Georgia and evaluated our device 

in a more diverse population. We present our device’s ability to accurately estimate BP in 

this diverse population and capture significant demographic-level differences in underlying 

arterial stiffness that coincide with observations from existing literature, through the 

calibration coefficients used in our BP estimation model. This study represents the first 
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time that a noninvasive, cuff-less, PTT-based wearable device has been extensively 

evaluated in a community-based diverse population as a potentially reliable and convenient 

monitoring option toward, ultimately, the remote screening and management of 

hypertension for health equity. 

4.2 Methods 

4.2.1 Study Protocol 

A comprehensive breakdown of the demographics of the study population is presented 

in Table 3. This study was conducted under a protocol approved by the Georgia Institute 

of Technology institutional review board (protocol number H19251). The study was 

separated into two different populations (N=44 participants): (1) a young and healthy 

homogeneous population (first cohort=26 participants) and (2) an older, entirely Black, 

higher BMI, metropolitan population (second cohort=18 participants) recruited later 

through the help of our community outreach partners—a nonprofit organization serving 

medically underserved persons in the state of Georgia. For the first cohort, 26 (19 males 

and 7 females) young and healthy volunteers (mean age 26.7 years, SD 3.7; mean weight 

73.8 kg, SD 14.1; height 173.9 cm, SD 9.6; and mean BMI 24.2 kg/m2, SD 3.2) with no 

previous history of cardiovascular disease were recruited, and written informed consent 

was obtained. For the second cohort, 18 (6 males and 12 females) Black participants (mean 

age 44.1 years, SD 11.7; mean weight 94.4 kg, SD 18.0; mean height 169.6 cm, SD 11.5; 

and mean BMI 33.2 kg/m2, SD 7.6) with no previous history of cardiovascular disease 

other than hypertension were recruited from the Atlanta metropolitan area, written 

informed consent was obtained, and further demographic information was collected post 
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hoc with verbal consent. Both hypertensive status and the use of regular prescription 

medications were self-reported. 

Table 3. Participant demographics and cardiovascular parameters for study 
participants (grouped by cohort; N=44). 

Demographics and 

cardiovascular 

parametersa 

Homogenous data set 

(first cohort; n=26; 

participant 1-26) 

Community outreach (metropolitan 

Atlanta) data set (second cohort; 

n=18; participant 27-44) 

P 

value 

Age (years), mean (SD) 26.7 (3.7) 44.1 (11.7) <.001 

Sex, n (%)   N/Ab 

 Male 19 (73) 6 (33)  

 Female 7 (26) 12 (67)  

Height (cm), mean (SD) 173.9 (9.6) 169.6 (11.5) .19 

Weight (kg), mean (SD) 73.8 (14.1) 94.4 (18.0) <.001 

BMIc (kg/m2), mean (SD) 24.2 (3.2) 33.2 (7.6) <.001 

Obesity class, n (%)   N/A 

 I 1 (4; participant=23) 2 (11; participant=30, 43)  

 II N/A 3 (17; participant=38, 40, 42)  

 III N/A 4 (22; participant=34, 36, 37, 41)  

Race, n (%)   N/A 

 Black 1 (4; participant=5) 18 (100)  

 Other race 25 (96) N/A  

Hypertensive status, n (%)   N/A 

 Normotensive 26 (100) 15 (83)  

 Hypertensive N/A 2 (11; participant=29,37)  

 Hypotensive N/A 1 (6; participant=33)  

Current medications, n (%) N/A 

 Hydrochlorothiazide  N/A 2 (11; participant=29,37)  

 Lisinopril  N/A 1 (6; participant=29)  

 Iron supplement N/A 1 (6; participant=33)  

 
a Statistical significance between groups in values, where applicable, was computed using an unpaired two-
tailed t-test. 
b N/A: not applicable. 
c Obesity classified using the BMI per the guidelines from the National Heart, Lung, and Blood Institute of 
the National Institutes of Health [67] (I: BMI=30-34.9; II: BMI=35-39.9; III: BMI ≥40). 
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The concept of the study design is shown in Figure 10. Although not explicitly shown, 

two versions of the SeismoWatch were used in this study: a previous version of the 

hardware with comparable sensors was used in the young, homogeneous population (i.e., 

the first cohort), before being adapted for a more robust, portable, and multimodal wearable 

device used in the metropolitan Atlanta population (i.e., the second cohort). Specifically, 

the data from these cohorts were collected during two intervals, between which the 

hardware was revised to incorporate multiwavelength PPGs before investigating the 

performance of the sensing modality in the underrepresented population. This was essential 

to assess the efficacy of shorter-wavelength LEDs (i.e., those with shallower skin 

penetration depths) in a Black population. However, in both the correlations in Figure 11 

and calibration coefficient comparisons in Figure 12, only the results derived from the 

infrared (IR) PPGs, available to both devices, were computed and shown. The other key 

sensing components and reference system components were essentially identical: (1) the 

first version of the device used an analog version of the accelerometer (ADXL354, Analog 

Devices Inc.) to acquire the SCG, whereas the second version simply used the digital 

version of the same sensor (ADXL355, Analog Devices Inc.) to reduce size and (2) the 

finger-cuff continuous BP reference system (ccNexfin, Edwards Lifesciences) along with 

the data acquisition module (MPU150, Biopac Systems) were identical in both studies. 
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Figure 10. Concept overview and study design. Sensor information and placement 
locations for wearable system (blue) and reference system (purple). Noninvasive pulse 
transit time (PTT) measurement concept overview using seismocardiogram (SCG) 
and photoplethysmogram (PPG) sensors. Study protocol tasks in chronological order 
with duration and mean (SD) of mean arterial pressure (MAP) values for each task. 
Sample filtered signals from the participant with the lowest signal-to-noise ratio 
(SNR) signals (n=37): a hypertensive, high BMI, older Black female. In order from 
top to bottom: electrocardiogram (ECG), SCG, infrared PPG, red PPG, green PPG 
signals measured from the wearable system (blue) and the synchronized ECG, and 
arterial blood pressure (ABP) signals measured by the reference system (purple). 
Systolic blood pressure (SBP; top) and diastolic blood pressure (DBP; bottom) plotted 
across the full protocol for participant 37, with rest periods (green) and perturbations 
used to modulate blood pressure (BP) (red) highlighted in chronological order, and 
the location where the reference finger-cuff continuous BP system was paused during 
the exercise indicated.  
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Figure 11. Wearable pulse transit time (PTT)–based blood pressure (BP) estimation 
results. Correlation and Bland-Altman plots between PTT-estimated BP and the 
finger-cuff continuous BP for mean arterial pressure (MAP), diastolic BP (DBP), and 
systolic BP (SBP) estimation. The root-mean-square error (RMSE) and the mean 
absolute difference (MAD) for each correlation are shown.  

 

Figure 12. Participant-specific diastolic blood pressure (DBP) calibration coefficients 
are significantly different in demographics with typical disparities in arterial 
stiffness. Boxplots showing the statistically significant (*P<.05; Mann-Whitney U) 
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difference in the DBP K1 and K2 calibration coefficients between participants who are 
nonobese and obese. Boxplots showing the statistically significant (*P<.05; Mann-
Whitney U) difference in the DBP K1 calibration coefficients between male and female 
participants. Boxplots showing the statistically significant (*P<.05; Mann-Whitney U) 
difference in the DBP K1 calibration coefficients between participants of other race 
and Black participants. Boxplots showing the difference in the DBP K1 and K2 
calibration coefficients between young and older participants.  

To acquire a timing reference for the start of a cardiac cycle, while serving as a 

reference for alignment to the wearable system signals, a wireless ECG module (BN-EL50, 

Biopac Systems) was attached to the participant in a three-lead configuration with Ag/AgCl 

gel electrodes as shown in Figure 10. As depicted in Figure 10, a finger-cuff BP sensor 

based on the volume-clamp methodology (ccNexfin, Edwards Lifesciences) [66], [67] was 

placed on the same hand as the watch, acquiring a reference measurement of continuous 

beat-by-beat BP. Although volume-clamping continuous BP devices are not the clinical 

gold standard for ABP measurements, an arterial line was not feasible due to invasiveness, 

and a sphygmomanometer was not used because of the need for a trained professional and 

lack of beat-by-beat BP data. Similarly, semiautomated BP cuffs were not used as they 

hinge on following strict guidelines to obtain an accurate reading, such as being seated and 

resting the arm at heart level, which were impossible to satisfy simultaneously while 

acquiring watch measurements, given the need for the contralateral hand to touch the ECG 

electrode to activate the PTT mode [65]. In addition, it was recently demonstrated that a 

volume-clamping–based system had comparable accuracy with noninvasive oscillometric 

BP cuffs [68]. All reference system sensors were sampled at 1 kHz and interfaced to a 

computer using a data acquisition system (MPU150, Biopac Systems) and its 

corresponding software (Acqknowledge, Biopac Systems). The reference system files were 

saved to a desktop computer for postprocessing. 
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Participants were asked to change into either a V-cut T-shirt or tank top, if not wearing 

one already, to acquire the sternal PPGs included in the wearable designs, though not 

examined in this study. The watch was fitted such that the PPGs faced the radial artery on 

the ventral side of the wrist. To capture the PTT, the participant performed a simple 

maneuver to place the watch on the sternum to acquire the SCG for the proximal timing 

reference, as shown in Figure 10, whereas the PPGs were sampled at both the sternum and 

wrist. Although this offers a noncontinuous assessment, routine remote BP monitoring 

using oscillometric devices has already demonstrated clinical value despite similarly not 

offering continuous BP measurement [69]. Specifically, ambulatory BP monitors, due to 

their superior portability and measurement frequency—comparable with what this 

wearable device can easily provide [65]—have become invaluable for the screening and 

management of hypertension [69] such that the added benefit of continuous BP 

measurement may only be marginal. 

In order, the participants went through a 2-minute baseline period while sitting before 

obtaining another 2-minute baseline measurement while standing. Then, a series of 

perturbations with varying rest periods in between were used to modulate BP. First, a 

mental arithmetic exercise was used to increase BP [18], in which participants were given 

a three-digit integer and were told to add the sum of the digits to the number repeatedly for 

1 minute. Then, a cold pressor test was conducted in which participants submerged their 

hand contralateral to the watch in a bucket of ice water for as long as tolerable or until the 

full minute. Finally, during the exercise session, the finger cuff was removed to avoid 

damage, and the participant performed either a stair stepping or bicycling exercise, based 

on personal preference, for 1 minute. As mentioned in our previous work [65], the new 
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version of the watch enters the PTT measurement mode when the user places a finger from 

their hand contralateral to the watch on the positive wrist ECG electrode; therefore, we 

were unable to acquire PTT data during exercise for both cohorts and cold pressor for the 

participants in the second cohort (i.e., second cohort). Although with the newer hardware, 

we were unable to collect PTT data during the cold pressor perturbation for the second 

cohort, the effect of the cold pressor—assessed directly after the hand was removed from 

the ice water (i.e., a maximum of 1 minute after immersion)—was still well within its 

physiological window during the following rest period [70]. Overall, as our device is not 

designed to offer continuous measurements of BP, examining the effect of these 

perturbations in the rest period directly following them, similar to our previous work [45], 

still allowed for a comprehensive evaluation of the methodology in a diverse population. 

However, PTT data from the first cohort during the cold pressor were still used. As the BP 

data from the cold pressor test were still acquired for the second cohort, as the continuous 

BP cuff was still on, the mean arterial pressure (MAP) values were factored into the ones 

displayed in Figure 10. To do so, a 50 ms moving average filter was applied to the measured 

continuous BP signal, ensemble averages of 10 heartbeats with 50% overlap were taken, 

and the BP beat with the highest SNR was selected. 

4.2.2 Signal Processing 

The signal processing pipeline is shown in Figure 13. All signal processing and 

statistical analyses were performed in MATLAB R2018a (MathWorks). Before 

preprocessing the SCG and PPG signals acquired from the wearable system, it was 

imperative to time-align them to the continuous BP signal from the reference system using 

the respective ECGs to ensure proper temporal comparison. Specifically, the ECGs from 
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each system were first filtered using a digital finite impulse response bandpass filter (BPF; 

fpass=10-40 Hz) to remove baseline wander due to postural sway and extract the R-wave, 

which was then identified using a simple peak detection algorithm. Then, cross-correlation 

was used to align the R-peaks of the two ECG readings by detecting the amount of lead 

and truncating either the wearable or reference signals depending on the condition. After 

alignment, the dorsoventral axis of the SCG (i.e., z-axis acceleration) and green, red, and 

IR wrist PPGs were filtered using a digital finite impulse response BPF with bandwidths 

of 1-40 Hz and 1-8 Hz, respectively, to remove their out-of-band noise and baseline wander 

due to respiration. In addition, the continuous ABP waveform was smoothed using a 50 ms 

moving average filter. 
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Figure 13. Signal processing pipeline. Block diagram of signal processing overview 
showing signal alignment using electrocardiogram (ECG) signals acquired from the 
wearable system (blue) and reference system (purple) before bandpass filtering 
(BPF), heartbeat windowing, and photoplethysmogram (PPG) selection. After beat 
selection and signal quality assessment, the pulse transit time (PTT) is computed as 
the aortic valve opening point (AO) of the seismocardiogram (SCG) to the diastolic 
foot of the PPG. Calibration is used to estimate blood pressure (BP) using the arterial 
BP (ABP) waveform acquired from the continuous BP finger-cuff. Block diagram of 
the custom PPG selection algorithm, locating beats with greater systolic upstrokes 
and signal-to-noise ratio (SNR).  
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Next, the filtered and aligned SCG, PPG, and ABP waveforms were split into separate 

heartbeats using the detected R-R intervals of the synchronized ECG. Then, these 

heartbeat-indexed signals were ensemble-averaged using 10-beat windows with 50% 

overlap before assessing the signal quality to select the highest quality beat per task for 

each participant, similar to the methods used in our previous works [45], [65]. Given the 

number of high BMI participants in this population, the SCG not only had a lower mean 

SNR when compared with our previous studies but was also observed to have less 

variability than the PPG SNR; hence, an emphasis was placed on determining the optimal 

PPGs first. In addition, upon an initial assessment of signal quality, it was observed that 

when the PPG signal had the highest SNR, typically, the SCG signal did as well—perhaps 

because acquiring a clean PPG signal inherently hinges on applying consistent pressure. 

The optimum PPG was selected using a physiologically inspired algorithm to first identify 

the beats with the top 10% of systolic upstrokes (i.e., maximum of the derivative of the 

PPG waveform) and then select the remaining beat with the maximum SNR. The SNR was 

calculated using a noise-to-signal ratio detection algorithm detailed in Inan et al [52]. The 

methods used to determine the timing references for PTT calculation, the foot of the PPG, 

and the AO point of the SCG were the same as those used in our previous studies [45], 

[65]. Specifically, the foot of the PPG was computed using the intersecting tangent method 

described in the study by Mukkamala et al [18], and the AO point was assumed to be the 

first peak in each ensemble-averaged window before the foot of the PPG. Occasionally, the 

SCG signal was manually annotated to impose realistic constraints for the AO point or to 

ensure that the same morphological peak was consistently chosen for all tasks per 

participant. Participant-specific SNR thresholds were set to retain only high-fidelity 
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signals; if the SNR of the SCG, PPG, or ABP beats was not greater than the prescribed 

cutoff, or if the foot of the PPG was not within a realistic range, then the respective 

ensemble-averaged waveforms were deemed too noisy for use and that task was not used 

for PTT calculation. Notably, the continuous reference BP allowed for the ability to 

evaluate the SNR of the ABP signal and incorporate this quality assessment into our signal 

processing pipeline to remove beats with low SNR reference measurements. After the 

entire signal quality assessment process, at least four of the tasks were used for BP 

estimation per participant. Finally, the PTT was calculated as the difference of the proximal 

timing reference, AO point of the paired SCG, and distal timing reference, the foot of the 

selected PPG. In addition to wavelength comparisons, the green and red wavelength PPGs 

were not used as the IR wavelength wrist PPGs had the highest mean SNR, because of the 

greater indifference of the IR wavelength to melanin absorption and the ability to capture 

more pulsatile arteries deeper in the tissue than cutaneous capillaries [18], [71]. 

In addition, the postexercise recovery period was separated into an early and late rest 

period based on when the BP reached a consistent value. This allowed us to capture both 

the immediately heightened CO–induced BP increase postexercise and the recovery back 

to baseline, while opportunely adding another PTT and BP data point for linear regression. 

4.2.3 Statistical Analysis 

Simple linear regression was performed independently between wearable participant-

specific inverse PTT (PTT−1) and reference diastolic BP (DBP), MAP, or systolic BP (SBP) 

value pairs, to calculate the calibration coefficients necessary to estimate each of the three 

BP components per participant; nonlinear models, whereas potentially more accurate, 
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dictate the need for more calibration points [18], [59]. Therefore, the resulting calibration 

coefficients—used to estimate BP from the conventional PTT-based BP estimation model 

shown in Equation 3—are merely the slope (i.e., slope calibration coefficient [K1]) and y-

intercept (i.e., Y-intercept calibration coefficient [K2]) of the line of best fit [18]. This was 

identical to the calibration methods used in our previous work [45], [65]. 

The mean absolute difference (MAD) was computed from the mean of the absolute 

value of the difference between the estimated and reference BP. The benchmarks for MAD 

were chosen based on the Institute for Electronics and Electrical Engineers (IEEE) standard 

for wearable cuff-less BP measuring devices [53]. In addition, the RMSE, calculated as the 

RMS of the difference between the estimated BP and measured BP, was computed because 

of its enhanced sensitivity to outliers. 

We stratified the entire study population for the demographic comparisons of the 

calibration coefficients shown in Figure 12, based on four factors (i.e., obesity, sex, race, 

and age) known to affect arterial stiffness [72]–[77] and therefore the PTT. The participants 

were split into nonobese and obese groups based on the guidelines from the National Heart, 

Lung, and Blood Institute of the National Institutes of Health defining a BMI ≥30 kg/m2 

as obese [78]. Thus, the nonobese group had a BMI ≤30. To assess differences due to age, 

we separated the participants into younger (aged ≤40 years) and older groups (aged ≥40 

years). Statistical significance (P<.05) between demographic data for each cohort was 

assessed using an unpaired two-sample, two-tailed t test, as shown in Table 3. 

For the demographic DBP calibration coefficient comparisons, a one-sample 

Kolmogorov-Smirnov test was used on each data point to test for normality, which 
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determined that none of the data for the comparisons were normally distributed. Then, a 

Mann-Whitney U test (i.e., Wilcoxon Rank Sum test) was used to assess statistical 

significance (P<.05) among the unpaired data. 

For the PPG wavelength DBP estimation comparisons—only applicable to the second 

cohort population due to the differences in hardware used—first, a one-sample 

Kolmogorov-Smirnov test was used on each data point to test for normality, which 

determined that none of the data for the comparisons were normally distributed. Then, a 

Wilcoxon Signed Rank test was used to assess statistical significance (P<.05) among the 

paired data. 

4.3 Results 

4.3.1 Multimodal Engineering Mechanics of the SeismoWatch 

The previous version of the watch, not shown in this thesis, consisted of a 3D printed 

case embedded with an accelerometer, PDs, and IR LEDs. All sensors were connected to 

a small external circuit box with straps for the participant to wear around the waist. The 

output of the analog accelerometer (ADXL354, Analog Devices Inc.) was connected to an 

AFE in the circuit box. To amplify the SCG signal and prevent saturation of the alternating 

current components owing to the varying direct current levels, the AFE separated the direct 

current and alternating current components using a low pass (fc=1 Hz; G=−10 dB) and 

BPF (fpass=0.2 Hz-40 Hz) in parallel. An analog adder recombined both components. For 

PPG measurements, the cathode of the PDs (S2386-18k, Hamamatsu Photonics) was 

connected to transimpedance amplifiers configured as a low-pass filter (fc=12 Hz; G=110 

dB) followed by gain and filter stages (fpass=0.5-12 Hz; G=59 dB). Finally, the ECG was 
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acquired by placing three copper dry electrodes on the wrist band of the watch with two on 

the inside in contact with the wrist and one on the outside to place the index and middle 

finger. The two on the inside act as the right leg drive electrode and the positive lead, 

whereas the outside electrode is the negative lead. All electrodes were connected to an AFE 

(AD8232, Analog Devices Inc.) for ECG measurements. A microcontroller (Teensy 3.6, 

PJRC LLC) sampled the output of the accelerometer, PPG, and ECG AFE at 1 kHz. An 

onboard SD card was used to store the raw data for postprocessing, and a 1.2 Ah lithium-

ion rechargeable battery was used to power the system. All instrumentation details were 

adopted from our previous work, with minor revisions [45]. 

The updated hardware, pictured in Figure 14, added modalities of sensing (i.e., a 

gyroscope), included multiple wavelengths of LEDs for comparison with IR, improved the 

form factor for comfort and ease of use, and featured embedded systems innovations 

leveraged in this study. A more thorough description of the revised hardware is available 

in our most recent work [65]. An example of the serviceable automatic LED current scaling 

algorithm, detailed in our previous work [65], is highlighted in Figure 14. This proved to 

be an integral part of enabling accurate BP estimation in this study; by adaptively adjusting 

the LED drive current, we were able to prevent saturation and variable PPG signal quality 

caused by varying contact pressure and, more importantly, prominent differences in skin 

tone among participants. 
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Figure 14. Pertinent multimodal hardware block diagram and adaptive light-
emitting diode (LED) scaling. Main board with ATSAM4LS8 microcontroller (µC), 
ADXL355 triaxial accelerometer, BMG250 triaxial gyroscope, and BME280 
environmental sensor using the serial peripheral interface (SPI) for fast 
communication supporting higher sample rates. Sensor board used to acquire wrist 
photoplethysmogram (PPG) and electrocardiogram (ECG) signals. Automatic LED 
current scaling in operation during data collection: showing an increase in contact 
pressure and subsequent saturation of the photodiode, mitigated by an automatic 
decrease in LED current and overall consequential improvement in PPG signal 
quality.  

 

4.3.2 Human Subject Studies in a Diverse Population 
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All applicable results are presented as mean (SD). Figure 11 illustrates the correlation 

and Bland-Altman plots for our wearable PTT-based BP estimation of MAP, DBP, and 

SBP across all participants (N=44). The MAD was 2.90 mm Hg, 3.39 mm Hg, and 5.36 

mm Hg for DBP, MAP, and SBP, respectively. The mean RMSE was 3.41 (SD 2.01) mm 

Hg, 3.95 (SD 2.42) mm Hg, and 6.28 (SD 3.44) mm Hg for DBP, MAP, and SBP, 

respectively. DBP and MAP estimation had better 95% CIs than SBP at 7.99 mm Hg, 9.42 

mm Hg, and 14.59 mm Hg, respectively. The mean Pearson correlation coefficient (PCC) 

was 0.67 (SD 0.16), 0.63 (SD 0.31), and 0.50 (SD 0.41) for PTT-based DBP, MAP, and 

SBP estimation, respectively. 

The MAD for the individual study populations (first cohort=26 participants and second 

cohort=18 participants) was 2.69 mm Hg and 3.20 mm Hg, 3.21 mm Hg and 3.64 mm Hg, 

and 5.17 mm Hg and 5.63 mm Hg, for DBP, MAP, and SBP estimation, respectively. The 

mean RMSE for the individual study populations (first cohort=26 participants and second 

cohort=18 participants) was 3.19 (SD 1.64) mm Hg and 3.73 (SD 2.48) mm Hg, 3.78 (SD 

2.06) mm Hg and 4.18 (SD 2.90) mmHg, and 6.26 (SD 3.25) mm Hg and 6.32 (SD 3.80) 

mm Hg for DBP, MAP, and SBP estimation, respectively. The mean PCC for the individual 

study populations (first cohort=26 participants and second cohort=18 participants) was 

0.69 (SD 0.15) and 0.65 (SD 0.17), 0.68 (SD 0.23) and 0.55 (SD 0.38), and 0.58 (SD 0.33) 

and 0.39 (SD 0.49) for DBP, MAP, and SBP estimation, respectively. 

The MAD for the 19 Black participants was 3.18 mm Hg, 3.72 mm Hg, and 5.84 mm 

Hg for DBP, MAP, and SBP estimation, respectively. The mean RMSE for all 19 Black 

participants was 3.72 (SD 2.41) mm Hg, 4.29 (SD 2.86) mm Hg, and 6.69 (SD 4.03) mm 

Hg for DBP, MAP, and SBP estimation, respectively. The mean PCC for all 19 Black 
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participants was 0.64 (SD 0.17), 0.53 (SD 0.38), and 0.37 (SD 0.48) for DBP, MAP, and 

SBP estimation, respectively. 

The MAD for the 10 participants who were obese was 2.69 mmHg, 3.17 mm Hg, and 

5.02 mm Hg for DBP, MAP, and SBP estimation, respectively. The mean RMSE for all 10 

participants who were obese was 3.28 (SD 2.59) mm Hg, 3.69 (SD 3.00) mm Hg, and 5.71 

(SD 4.18) mm Hg for DBP, MAP, and SBP estimation, respectively. The mean PCC for 

all 10 participants who were obese was 0.65 (SD 0.18), 0.52 (SD 0.48), and 0.39 (SD 0.58) 

for DBP, MAP, and SBP estimation, respectively. 

Figure 12 depicts the boxplots of the DBP calibration coefficients from our estimation 

model, K1 and K2, for four different demographic factors known to affect arterial stiffness: 

obesity, sex, race, and age. The DBP K1 and K2 values for nonobese (N=34) versus obese 

(N=10) participants are 2.38 (SD 1.99) mm Hg/s versus 1.20 (SD 0.88) mm Hg/s and 61.02 

(SD 18.03) mm Hg versus 74.31 (SD 5.14) mm Hg, respectively. The DBP K1 and K2 

values for male (N=25) versus female (N=19) participants are 2.65 (SD 2.18) mm Hg/s 

versus 1.40 (SD 0.98) mm Hg/s and 60.16 (SD 20.64) mm Hg versus 69.14 (SD 8.29) mm 

Hg, respectively. The DBP K1 and K2 values for non-Black (N=25) versus Black (N=19) 

participants are 2.63 (SD 2.21) mm Hg/s versus 1.44 (SD 0.94) mm Hg/s and 60.66 (SD 

20.29) mm Hg versus 68.49 (SD 9.98) mm Hg, respectively. The DBP K1 and K2 values 

for young (N=31) versus older (N=13) participants are 2.38 (SD 2.09) mm Hg/s versus 

1.47 (SD 0.87) mm Hg/s and 61.96 (SD 19.03) mm Hg versus 69.00 (SD 9.22) mm Hg, 

respectively. 
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Both K1 and K2 were significantly different between the nonobese and obese 

populations (P=.045 and P=.008, respectively). The female K1 values were significantly 

(P=.04) lower than those of their male counterparts. The K1 values for Black participants 

were significantly (P=.047) lower than those of the other races. 

For the participants in the second cohort—all Black—with whom we used the newer 

version of the hardware [65] that included green and red LEDs in addition to the IR, the 

PCC for DBP estimation was 0.38 (SD 0.34), 0.59 (SD 0.44), and 0.65 (SD 0.17) when 

using the green (𝜆=526 nm), red (𝜆=660 nm), and IR (𝜆=950 nm) wavelength PPGs for the 

distal timing reference, respectively. The PCC for the IR and red wavelength PPGs was 

significantly (P=.01 and P=.048) higher than that of the green wavelength PPGs. However, 

the corresponding mean DBP RMSE was 3.95 (SD 2.53) mm Hg, 3.11 (SD 2.33) mm Hg, 

and 3.73 (SD 2.48) mm Hg for green, red, and IR, respectively. 

4.4 Discussion 

4.4.1 Principal Findings 

To the best of our knowledge, this is the first study to accurately estimate DBP and 

MAP using noninvasive PTT measurements acquired from a holistic population, with 

considerable differences in body fat percentage, melanin levels, and vascular stiffness 

associated with age and hypertension. Furthermore, our SBP estimation is sufficient to be 

clinically recommended for monitoring [53], [79]. We demonstrated the reliability of a 

convenient method for estimating BP and observed that our calibration coefficients were 

significantly different in characteristic demographic groups known to have increased 

arterial stiffness. This study represents a necessary advancement toward remote monitoring 
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for persons in MUAs by enabling wearable PTT-based BP estimation, including through 

the comprehensive evaluation of a watch-based form factor conducive to obtaining 

ambulatory BP measurements in low-resource settings. 

4.4.2 Accurately Estimating BP in a Diverse Population Using a Multimodal Wearable 

Device 

We demonstrated the performance of our wrist-worn PTT-based device when used to 

estimate BP within a diverse population over the course of multiple unique perturbations. 

Our results for MAP and DBP passed the acceptable benchmarks for the BP estimation 

error set by the IEEE standard on wearable cuff-less BP estimation devices 

(MAD≤5 mm Hg) [53]. We were still able to achieve a reliable correlation between PTT 

and BP even with several demographic factors such as age, melanin levels, and BMI 

inherently influencing the measured optical-PPG and mechanical-SCG signals. 

The DBP estimation remained the most accurate, similar to our previous studies [45], 

[65]; the foot of the PPG waveform, used as the distal timing reference, indicates the arrival 

of the pulse wave during end diastole. Similarly, the SBP estimation continued to perform 

the worst, as the peak of the pulse wave is the fiducial marker of the PPG that occurs during 

systole; however, the peak is not frequently extracted, as its true timing can be confounded 

by wave reflection interference, leading to unreliable PTT estimates [18]. Recent studies 

have demonstrated that the PTT computed using the diastolic foot of the PPG outperforms 

that using the systolic maximum for both DBP and SBP [56]. 

The DBP RMSE was relatively similar at both low and high values of DBP, which 

indicates that the diastolic foot was a dependable timing reference for calculating the PTT, 
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irrespective of inherent participant-specific differences in BP. Although our SBP 

estimation was just outside the acceptable limits set forth by the IEEE standard (i.e., 

MAD=5.36 mm Hg vs 5.0 mm Hg) [53], this error translates to a grade B classification 

[53] and therefore would still be clinically recommended for monitoring SBP [79]. 

Furthermore, the SBP range studied was greater than 100 mm Hg, substantially higher than 

that reported in previous studies in the literature for wearable cuff-less BP estimation, and 

a combination of different perturbations was used to modulate BP. Using a single 

perturbation would have led to an improved correlation [18], [20], as in our previous work 

where we had only used exercise [45]. However, a comprehensive evaluation of this 

methodology would be incomplete without a procedure consisting of a wide variety of 

perturbations with different known physiological responses and pathways to modulate BP 

[20]. In addition, as noted in Figure 10, the exercise perturbation did not apparently produce 

a marked difference in BP due to several factors: (1) technical limitations in rapid 

calibration for the reference measurement (i.e., finger-cuff continuous BP) and increased 

motion artifacts following exercise led to a greater percentage of beat removal in the early 

exercise section than any other task and (2) exercise does not necessarily consistently 

modulate BP in a predictable manner due to differences in participant-specific vasoactivity 

and contractility [18], [80]. 

Only the DBP was examined for further analyses conducted below because, as 

previously mentioned, the distal timing reference used (i.e., the foot of the PPG waveform) 

occurs during diastole and therefore provides the most reliable estimation of DBP out of 

the three BP components [18]. The dependability of the diastolic foot and our robust DBP 

estimation were necessary before performing in-depth analyses with confidence. Although 
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elevated SBP is considered to be the greatest predictor of future cardiovascular risk [81], 

[82], elevated DBP has nonetheless been shown to independently increase the risk of 

subsequent cardiac events [81], [83]. In addition, DBP is a greater contributor to MAP, 

which in older patients with isolated systolic hypertension, when compared with an 

equivalent increase in pulse pressure, has been shown to be a comparable independent 

predictor of both stroke and all-cause mortality [84]. Finally, DBP has been shown to be a 

more significant predictor than SBP of new-onset hypertension in adults younger than 50 

years of age [82], [85]–[87]. This suggests that accurate DBP estimation using a wearable 

device can efficiently be used to incentivize people to make healthy lifestyle modifications 

earlier in life, central to the World Health Organization’s effort to reduce the global 

prevalence of hypertension [88]. 

4.4.3 Essential Device Novelties Enabling Reliable PTT Computation 

For the first time, we demonstrated that noninvasive PTT measurements are reliable 

estimators of BP across a wide range of skin tones and BMI. Both DBP and MAP 

estimation for the 10 participants who are obese and 19 Black participants in this study 

were well under the IEEE requirement [53]. This was enabled by the highly sensitive 

hardware, multi-sensor approach, and automated LED current scaling that our custom 

wearable device offers [65]. The PPG array and adaptive LED current scaling allowed us 

to automatically mitigate poor signal quality issues due to misplacement, inherent 

differences in skin tone, and applied pressure that typically corrupts PPG signals. However, 

the most integral components of our PPG hardware were the IR wavelength LEDs. 
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We leveraged longer wavelengths of light for deeper penetration into the tissue to 

robustly acquire the PPG signal from arteries located deeper than the cutaneous vascular 

bed [18]. Cutaneous arteries are greatly affected by the changes in vascular tone expected 

from the perturbations we used to modulate BP herein (i.e., cold pressor and exercise). 

Furthermore, as IR PPGs are more susceptible to motion artifacts than lower wavelength 

ones [18], [89], our PPG-first signal quality assessment not only avoided these motion 

artifact corrupted waveforms because of their low SNR but also avoided moments where 

the SCG quality would naturally suffer as well. However, even the red PPGs had a 

considerably larger SD in their PCC than the IR PPGs, possibly because the IR wavelength, 

when compared with red, is less sensitive to the oxygen content of hemoglobin and has 

approximately half the skin absorption coefficient in Black individuals [18], [71]. Despite 

statistically significant differences in the PCC using IR and red PPGs rather than green 

PPGs, the actual DBP RMSEs were comparable. This implies that when using the green 

PPGs for participants with a low PCC, our signal quality assessment algorithm removed 

beats with greater BP variability, resulting in a lower SD of DBP and consequent RMSE. 

Although even green wavelength PPGs have demonstrated the ability to reliably extract 

heart rate across a wide variety of skin tones [90], our data suggest that these shorter 

wavelengths cannot be used to dependably compute the PTT in a diverse population. In 

addition, although unconventional, our watch was placed on the ventral side of the wrist, 

which allows for both higher quality, convenient SCG acquisition and enhanced PPG SNR 

due to viable access to the radial artery and less melanin content than the dorsal side [91]. 

Therefore, existing smartwatches, beginning to slowly incorporate cuff-less, noninvasive 
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BP methodologies, may face even greater difficulties in achieving accurate PPG 

measurements across a broad range of skin tones. 

Finally, our physiologically inspired PPG selection algorithm—to first select the PPG 

signals with the greatest systolic upstrokes—had an important role in reducing the BP 

estimation error. PPG waveforms with greater systolic upstrokes (i.e., maximum derivative 

of the PPG waveform) offer improved PTT estimates and are key indicators of BP 

stemming from larger, more pulsatile, elastic arteries with greater distensibility [18], [92]. 

In addition, several recent ML approaches to use the PPG signal for BP estimation have 

shown that the systolic upstroke is one of the most important features of the waveform 

[93], [94]. Hence, the selection algorithm, by extracting information from these more 

reliable and clinically important arteries, was a central part of our ability to notice the 

demographic differences in arterial stiffness rooted in our calibration coefficients. 

4.4.4 Calibration Coefficients Capture Demographic Differences in Arterial Stiffness 

We observed that the participant-specific calibration coefficients used in the standard 

linear PTT-BP estimation model for DBP, shown in Equation 3 (i.e., K1 and K2), are 

significantly different between subpopulations with large variations in demographic factors 

known to affect arterial stiffness. We selected the four demographic categories (i.e., 

obesity, sex, race, and age) based on the literature, emphasizing these as major 

determinants of differences in arterial stiffness and therefore risk factors for hypertension 

[22], [72]–[75], [77], [95], [96]. 

The K1 value (i.e., the slope of the line of best fit) is indicative of the underlying 

baseline vascular stiffness, whereas K2 (i.e., the intercept) represents the inherently 
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correlated bias in baseline BP [18], [97], [98]. At the same BP, persons with greater arterial 

stiffness have inherently faster pulse wave velocities (PWVs) and therefore shorter PTTs 

than persons with normal arterial stiffness [18]. The K1 value mitigates these differences 

in PTT-based estimation by capturing the intrinsic participant-specific arterial stiffness to 

output similar BP values. Therefore, with increasing arterial stiffness, we expected to find 

a lower K1 value and a higher K2 value, as observed in the PWV literature [97], [98]. 

Obesity was the only comparison for which the differences in the K1 and K2 calibration 

coefficients were statistically significant. This coincides with the literature stating that 

obesity is one of the greatest age-normalized risk factors and contributors to arterial 

stiffness [99]. Otherwise, only the K1 values in the sex and race comparisons were 

statistically significant between the groups. Although it has been shown that both females 

and Black individuals have greater arterial stiffness than similar-age males and White 

individuals [73], [76], [77], these two comparisons should be re-evaluated after increasing 

our recruitment. Approximately 47% (9/19 participants) of both the female and Black 

population were also obese. The age comparison was not statistically significant, although 

the older population followed a similar trend of a lower K1 and higher K2. This finding is 

not surprising, as significant differences in arterial stiffness and substantial augmentations 

in arterial remodeling are typically examined in participants older than 50 years of age [74], 

[100]. 

4.4.5 Limitations and Future Work 

4.4.5.1 Refining Population Demographics and Investigating PTT, K1, and K2 as 

Potential Digital Biomarker of Arterial Stiffness 
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Overall, although this data set captured a more representative population in the range 

of end users for which consistent BP monitoring is recommended [58], our PTT-based 

device should be further tested in an exclusively older (i.e., age>50 years), morbidly obese 

(i.e., BMI>40 kg/m2), and hypertensive population—with even distributions across sex, 

race, and skin tones along the Fitzpatrick scale—to truly understand the limits of this 

technology and supplement the findings herein. 

Early vascular remodeling due to the demographic factors investigated, not to mention 

socioeconomic factors affecting MUAs [21], [22], predispose individuals who are obese 

and Black individuals to greater lifetime cardiovascular risk [72], [77], [99], [101], [102]. 

Therefore, future PTT-based BP estimation studies should closely monitor the calibration 

coefficients, K1 and K2, as potential intermediate digital biomarkers for longitudinal 

monitoring and the comparison of arterial stiffness among different persons [12]. 

Eventually, even PTT measurements, as PWV is already an independent predictor of 

arterial stiffness [103], may indicate subclinical differences in vascular resistance due to 

early stage arterial remodeling, the main precursor to hypertension [74]. 

4.4.5.2 Reducing the Burden of Calibration 

Consistent recalibration poses a practical concern for PTT-based BP estimation. Hence, 

future studies should focus on evaluating the timeframe for which participant-specific 

calibration curves can reliably estimate BP and whether interparticipant and population-

level curves can be sufficient. However, given the value of interpreting the calibration 

coefficients presented, caution should be exercised due to the trade-off of sacrificing this 

potential usefulness when using generalized interparticipant models. Furthermore, the 
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individual effects of the perturbations used to modulate BP in this experiment should be 

scrutinized, along with other exercises shown to substantially change BP [104]–[106]. The 

goal is to use perturbations that can consistently be leveraged to increase the dynamic range 

of BP measurements for calibration—critical to achieving optimal estimations at home in 

our previous work [65] and are achievable in low-resource settings. 

4.4.5.3 Leveraging ML and Hardware Advancements for Robust SCG AO Detection 

Similarly, to the instrumental role of the physiologically inspired PPG selection 

algorithm, further exploration into automated SCG fiducial point detection algorithms may 

help extract the most informative SCG signals. Specifically, the SCG can be greatly 

affected by inaccurate placement of the watch; however, recent advancements using ML 

techniques have shown that the SCG waveform is modulated in a predictable manner 

during these placement inaccuracies [107]. Therefore, by interpreting these findings, one 

might be able to convert the measured SCG to the archetypal SCG or use a template-

matching localization approach [108] for each participant before extracting salient features 

from the optimal waveform. 

In addition, annotating the exact AO point can be challenging because the signal not 

only has appreciable interparticipant variability, especially in a population with 

considerable differences in BMI, but can also be corrupted by motion artifacts. Although 

our technique for extracting the AO point has led to a high correlation between PTT and 

BP, in both our recent work [65] and this one, for a few sessions, we manually annotated 

the SCG to impose realistic constraints for the range of the PEP and selected a consistent 

morphological peak across all tasks per participant. Eventually, robust identification of this 
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timing reference is necessary for reliable automatic PTT computation, as the main 

advantage of using the PTT over the pulse arrival time (i.e., the time from the R-wave of 

the ECG to the diastolic foot of the PPG) for BP estimation is its ability to account for 

changes in the nonnegligible cardio-electromechanical delay, that is, the PEP [18], [109]. 

Furthermore, examining the other sensor data available at our disposal, such as filtering the 

SCG in a higher bandwidth (i.e., fpass=30-125 Hz) to retain the phonocardiogram (PCG) 

signal indicative of valve closures, using the three-axis gyrocardiogram or simply the other 

axes of the SCG, could prove to help with improving PEP estimation as shown in previous 

work [45], [49]. 

4.5 Conclusions 

We have demonstrated that a wrist-worn device, using noninvasive PTT estimates, can 

reliably and conveniently track BP in a diverse population. Leveraging the ubiquity of 

wearable devices can empower users to make healthy lifestyle modifications such as 

exercise, which can contribute to a significant reduction in arterial stiffness [72], [110] by 

providing consistent feedback on progress [111]–[113]. In addition, digital health 

technologies that accurately estimate BP could potentially be used to titrate BP medications 

for patients with hypertension from the comfort of their homes [12], [64]. In addition to 

these broader impacts, the knowledge gained from this study—especially when combined 

with the advent of low-profile, flexible electronics capable of robustly detecting 

physiological biosignals [114]–[117]—represents a significant step toward the unobtrusive 

monitoring of BP in ambulatory settings and health equity for persons in MUAs. 
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CHAPTER 5. TOWARD SMART WEARABLE 

SEISMOCARDIOGRAPHY-BASED ASSESSMENT OF STROKE 

VOLUME IN CONGENITAL HEART DISEASE 

5.1 Introduction 

Patients with CHD are at risk for the development of low CO and other physiologic 

derangements, which could be detected early through continuous SV measurement. 

Unfortunately, existing SV measurement methods are limited in clinic because of their 

invasiveness (e.g., thermodilution), location (e.g., cardiac magnetic resonance imaging), or 

unreliability (e.g., bioimpedance). Multimodal wearable sensing, leveraging the SCG—a 

sternal vibration signal associated with cardiomechanical activity—offers a means to 

monitor SV conveniently, affordably, and continuously. However, it has not been evaluated 

in a population with significant anatomical and physiological differences (i.e., children 

with CHD) or compared against a true gold standard (i.e., CMR). 

We sought to evaluate the use of SCG to measure SV in a unique population of patients 

with CHD using our convenient wearable biosensor. In this work, simple, intuitive, 

physiologically inspired ECG and SCG features derived from this wearable biosensor were 

used, along with ML, to estimate the baseline SV of patients with CHD undergoing a 

clinically indicated CMR. In addition, this work provides greater insight into how 

cardiomechanical signals such as the SCG are modulated in CHD patients with severe 

anatomical and physiological differences. Ultimately, it will yield a framework, along with 

the pertinent features necessary, for estimating SV using wearable ECG and SCG signals 
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toward noninvasive, continuous, and ubiquitous monitoring of this vital hemodynamic 

parameter. 

5.2 Methods 

5.2.1 Multimodal Hardware Design 

 

Figure 15. Wearable multimodal hardware engineering mechanics. A, Pertinent 
multimodal hardware diagram. Final wearable biosensor iteration with exploded 
view detailing photoplethysmogram (PPG) components, gel-electrode 
electrocardiogram (ECG) connectors, lithium-polymer battery, and printed circuit 
boards (PCBs). Main PCB with ATSAM4LS8 microcontroller (µC), BMG250 
triaxial gyroscope, and BME280 environmental sensor, micro secure digital card 
(µSD), and bq24232 battery charger. Sensor PCB—connected to main PCB via 
flexible connector—with ADXL355 accelerometer, ADS1291 analog-front-end, and 
magnetic wire connections to separate PCB containing SFH7016 multi-chip light-
emitting diode (LED) and SFH 2703 photodiode (PD) used to acquire triaxial 
seismocardiogram (SCG), single-lead ECG, and multi-wavelength sternum PPG 
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signals, respectively. B, Sample five seconds of filtered wearable signal data from a 
single-ventricle patient with corresponding amplitudes shown. In order from top to 
bottom: ECG, lateral SCG (SCGlat), head-to-foot SCG (SCGhf), dorso-ventral SCG 
(SCGdv), green PPG, red PPG, infrared PPG signals. The darker blue ECG and 
SCGdv signals are those utilized in this study. 

The electronic hardware used in this study is an updated and miniaturized version to 

that described in detail in [65]. Updates focused on decreasing the overall device size to 

accommodate a pediatric population. From a sensing standpoint, identical sensors and 

AFEs, were utilized in this study to acquire the ECG (ADS1291, Texas Instruments Inc., 

Dallas, Texas, USA) and SCG (ADXL355, Analog Devices Inc., Norwood, Massachusetts, 

USA) signals across all versions of the hardware, and the same three-dimensional printing 

filament—polylactic acid—was used to manufacture the device housing. Data was saved 

locally on an internal SD card and downloaded over USB using the custom software 

application mentioned in [65].  

Overall, the key upgrades from the hardware used in [65] include the addition of a 

flexible connector, two main sensing PCBs as opposed to three, eventually the use of gel-

electrode ECG, a separate PPG sensor board with newer discretized PDs and LEDs, and a 

foam-based spring backing mechanism for improved PPG sensing. However, the PPG 

signals were not explored in this work and therefore—to prevent detracting from the focus 

of this work—the specific details of that hardware will not be expanded on further. In the 

newer version, shown in Figure 15, the sample rate of the SCG was increased to 2 kHz to 

provide a bandwidth of 500 Hz; the SCG sampling frequency was adjusted to capture 

higher frequency vibrations that may eventually be utilized to monitor patients with heart 

murmurs—a subsection of the CHD population at a greater risk of decline. Unfortunately, 

as with a proof-of-concept study, the hardware required few—mostly device housing—
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modifications at different stages of the study before reaching the current prototype pictured 

in Figure 15. Most importantly, the earlier version of the hardware utilized in this study 

featured the use of a dry electrode ECG, using stainless steel tape, for which the device 

was pressed against the chest of the patient to acquire the biosignals, while the later version 

used standard infant AgCl gel electrodes (Kendall HP69, Medtronic PLC, Dublin, Ireland) 

to adhere to the chest, eliminating the need for an extra contact force. To help mitigate any 

issues from differences in contact pressure with the dry electrode version, in addition to 

having the same group of few clinicians collect all data, only segments of the signals where 

the dry electrode acquired ECG—which is susceptible to variations in contact pressure due 

to changes in skin-electrode-impedance [118]—had a consistent amplitude were analyzed. 

Devices with both versions of the ECG featured a firmware modification which leveraged 

the lead-on detect feature of the ECG chip and would toggle a LED facing the clinician 

between red and green for when ECG lead was detected as off or on, respectively. This 

also removed the possibility of accidentally applying an excessive amount of pressure 

without knowing whether a signal was being acquired. 

5.2.2 Study Protocol 

A detailed overview of the study design is provided in Figure 16. This study was 

conducted under Institutional Review Board protocol STU2019-1280 at the University of 

Texas Southwestern Medical Center. We approached consecutive CHD patients 

undergoing a clinically indicated CMR and obtained written consent and assent as 

appropriate. For this study, data were analyzed from volunteers who had both a supine 

wearable and CMR measurement. We placed the wearable chest-worn biosensor on the 

patient while they were supine, if possible, for a maximum of three minutes both before 
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and after their CMR scan. If the patient was undergoing the scan under anesthesia, the 

device was placed 10 minutes after induction of anesthesia to allow for them to reach 

physiological equilibrium [119]. During the clinical CMR scan, left ventricular and right 

ventricular SV—and, if recommended, aortic valve forward flow—were collected per 

clinical protocols [120]. Only either pre-CMR or post-CMR supine data were examined in 

this work, with most data taken from the pre-CMR measurement to ensure consistency, 

unless unavailable. The aortic forward flow measurement was prioritized over the 

volumetric one, if acquired. The systemic ventricle—connected to the aorta and responsible 

for CO—was labeled by the cardiologist and SV data from this ventricle along with the 

instantaneous HR taken from the corresponding CMR measurement, for either the 

volumetric or aortic forward flow measurement, were used as the reference SV and HR 

measurement, respectively. 

 

Figure 16. Concept overview. Study design showing wearable biosensor placement 
when supine and asynchronous reference cardiac magnetic resonance (CMR) 
measurement. Seismocardiogram (SCG) mechanistic overview detailing modulation 
due to cardiac physiology, acquisition with an accelerometer, and sensing axes for 
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electrocardiogram (ECG)—negative, positive, and right-leg-drive (RLD) 
electrodes—and tri-axial SCG signals. Analysis pipeline—from sensor input to 
model estimation of stroke volume (SV)—for wearable (blue), demographic (green), 
and CMR (purple) data. 

5.2.3 Signal Processing 

A signal processing block diagram is depicted in Figure 17. Pre-processing consisted 

of bandpass filtering the ECG and the dorso-ventral axis of the SCG signal between 5-

30 Hz and 0.8-30 Hz to remove their respective out-of-band noise. The SCG was also 

filtered into a higher frequency bandwidth 30-125 Hz to produce a signal hereafter referred 

to as high-frequency SCG, which is more closely representative of the PCG. In turn, this 

wider bandwidth accelerometer signal is capable of picking up on higher frequency 

vibrations, coupled to the acoustics of the PCG, thus offering a more reliable timeframe to 

estimate aortic valve opening and closing events [45], a common technical challenge in 

SCG processing [65]. After filtering, all signals were resampled to 1 kHz. The R-peaks of 

the ECG were used to segment the SCG and high-frequency SCG signals into different 

heartbeats. The SCG and high-frequency SCG heartbeats were ensemble averaged using 

30 heartbeat windows with 50% overlap—to reduce zero-mean noise, account for 

respiratory induced variability in SCG signals, and improve the consistency of amplitude 

features—before selecting the highest signal-to-noise-ratio beat later used to extract the 

features shown in Table 4.  
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Figure 17. Signal processing pipeline. Block diagram of signal processing overview 
showing interpolation of electrocardiogram (ECG) and seismocardiogram (SCG) 
signals acquired from the wearable before bandpass filtering, R-peak detection, 
heartbeat windowing, and signal quality assessment using the signal-to-noise ratio 
(SNR). Illustration of the custom high-frequency SCG (HF-SCG)—indicative of 
valve closures—assisted feature selection algorithm, helping to locate key fiducial 
points such as the aortic valve opening (AO) and aortic valve closure (AC) on the 
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SCG—used to compute the pre-ejection period (PEP), ventricular ejection time 
(VET), and the AC. Additionally, the search radius for the AO (green) and AC (red) 
algorithm as well as their candidate points are shown. 

Table 4. Physiological features and corresponding measurement system 

Feature name Measurement system 

Heart rate (HR) Both Reference CMR and Wearable System 

Pre-ejection period (PEP) Wearable System 

Ventricular ejection time (VET) Wearable System 

Timing of aortic valve closure (AC) Wearable System 

Root-mean-square power during PEP (RMSPEP) Wearable System 

Root-mean-square power during VET (RMSVET) Wearable System 

PEP-to-VET ratio (PEP/VET) Wearable System 

VET-to-PEP ratio (VET/PEP) Wearable System 

All signal processing and feature extraction was carried out in MATLAB 2018a 

(MathWorks, Natick, Massachusetts, USA) and entirely automated. A high-frequency 

SCG signal more closely related to the PCG was extracted for this analysis. The PCG, 

typically acquired from digital stethoscopes, is a wide bandwidth, high-frequency acoustic 

signal that captures heart sounds (i.e., S1 and S2) and obtains information of valve closures 

when placed at specific auscultation sites. Although, the PCG should be acquired using a 

wide-bandwidth, piezoelectric accelerometer (i.e., a contact microphone) rather than the 

capacitive, direct current micro-electro-mechanical systems accelerometer used herein, the 

sampling rate of the accelerometer was increased to provide this bandwidth. First, the R-

peaks of the ECG—marking ventricular depolarization—were found using Pan-

Tompkins’s algorithm and used to determine the wearable HR. Then the SCG and high-

frequency SCG signals were segmented into different heartbeats using and beginning with 
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the detected R-peaks of the ECG. Due to the large differences in HR in this dataset, all of 

the heartbeats were zero-padded to a fixed length of 1300 ms, based on the slowest HR in 

the dataset. Next, the SCG and high-frequency SCG heartbeats were ensemble averaged 

using 30 heartbeat windows with 50% overlap—to reduce zero-mean noise, remove 

respiratory induced variability, and improve the consistency of amplitude features—before 

selecting the highest SNR beat—calculated using the algorithm in [52]. First the envelope 

of the high-frequency SCG was computed which provided the profiles for the conventional 

heart sounds S1 and S2.  The algorithm for detecting the AO point on the max SNR SCG 

beat was the same as that used in [45], where the AO was detected by finding the nearest 

zero-crossing after the peak of the high-frequency SCG envelope between 0 and 150 ms; 

the AC point was determined by finding the most consistent peak of the high-frequency 

SCG itself between 250 ms to the end of the beat. The AO point resembles the PEP with 

the difference between that and the AC point being the VET. Two other reciprocal features, 

PEP/VET and VET/PEP—systolic marker robust to differences in HR–are the quotient of 

the PEP and VET. Two interpretable systolic amplitude features were calculated as the 

RMS amplitude of the SCG during the PEP and during the VET. In total 9 systolic features 

were extracted from the wearable signals. Note that the HR from the CMR was added as a 

feature, due to both the inability to acquire continuous measurements with the wearable 

patch during the CMR—because of magnetic interference and injury— and due to expected 

high accuracy in HR estimation when using wearable ECG during baseline measurements, 

as a closer measure of the HR during the reference measurement. 

Leveraging surrounding physiological information can contextualize and improve the 

estimation accuracy of wearable measurements. The SV measurement from the CMR, is 
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computed from a composition of several images which are obtained a relatively slow 

sampling rate. Therefore, due to respiratory induced variability in SV readings—stemming 

from changes in venous return, preload, and HR—clinicians typically ask patients to hold 

their breath. However, as imaginable, for younger children this is obviously not possible. 

Instead, multiple scans are taken, are the resulting images are averaged before computing 

SV from the averaged image. Similarly, when using wearable measurements to accurately 

estimate SV compared to CMR readings should also factor in respiratory variability by 

averaging over a larger timespan—such as the 30 heartbeats employed in this analysis.  

5.2.4 Machine Learning Regression Analysis 

Ridge regression was utilized to estimate SV due to its ability to handle 

multicollinearity—a trait common amongst systolic time intervals—as well as provide 

feature importances with reduced complexity simply from its weights as a linear model. 

To avoid data leakage, a 80%-20% fixed training-testing scheme (i.e., 36 patients for 

training, 9 for testing) was determined using a true random number generator 

(RANDOM.ORG, Dublin, Ireland). A 10-fold cross-validation on the training set was used 

to perform the grid search necessary for hyperparameter optimization. Forward feature 

selection, on the training set, was used to reduce the feature set from 14 down to nine 

features by examining the coefficient of determination, through simple linear regression 

between ECG and SCG features and SV. Different ridge regression models, trained on a 

combination of feature sets, each with their respective optimized lambda hyperparameter 

from the 10-fold cross validation on the training set, were used to estimate SV. Specifically, 

we began by examining a model that was merely trained on demographic features alone 

(i.e., body surface area and age)—due to their well-known correlation to CO [121]—which 
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assessed the ability to quantify SV without the use of a wearable biosensor at all. Next, we 

tested using ECG features—namely HR—to assess the estimation accuracy when using 

solely a conventional metric that is readily, remotely, and continuously available through 

Holter monitors. Then, we tested our novel approach by adding SCG features to the ECG 

model to provide for a holistic evaluation of both the electrical and mechanical aspects of 

cardiac health. Finally, we have provided various combinations of these wearable biosensor 

and demographic feature sets to determine whether the easily accessible demographic 

information can augment model estimation. 

To assess these model performances, we computed the RMSE and the coefficient of 

determination (R2) between the estimated SV and true CMR SV in the held-out test set that 

was unseen to the ML algorithm until final testing. Percent error was calculated for the 

highest performing model given the guidelines for CO measurement devices per Equation 

7 below with a percent error less than 30% regarded as accurate [122]. Feature importances 

were derived from the magnitude of the weights from ridge regression, shown in Figure 

19, and permutation importances—iterated 1000 times—were also computed and are 

provided in Figure 20.  

 
𝑃𝐸 = 6

1.96 ∗ (𝑆𝐷	𝑜𝑓	𝑏𝑖𝑎𝑠	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝐶𝑀𝑅	𝑎𝑛𝑑	𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒)
0.5 ∗ (𝑀𝑒𝑎𝑛	𝑆𝑉%&' +𝑀𝑒𝑎𝑛	𝑆𝑉()*+*,-))

8 ∗ 100 (7) 

All ML and CV was performed in Python 3.0 using scikit-learn ridge regression and 

grid search packages, respectively. Despite a considerable sample size with respect to other 

SCG literature—especially given the diversity of demographics and diagnoses in such a 

diseased population—due to a small number of overall datapoints for a ML problem, multi-
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variate ridge regression was chosen as a more interpretable model to estimate SV. Ridge 

regression is similar to multiple-linear regression but with a regularization penalty—

commonly referred to as lambda—that penalizes the model to prevent overfitting to the 

training data, thereby hopefully improving model generalizability. 

10-fold CV was chosen as a commonly regarded robust method for optimizing 

hyperparameters and given that each subject had only one datapoint there would be no 

overlap of subject-specific data in each fold. To approximately balance and have a 

representative number of the number of single-ventricle patients in the training and testing 

set based on their size, originally during the data collection we again randomly split them 

into groups of four and three, respectively. However, after the final data was collected, a 

last single-ventricle patient was added to the training set to achieve a perfect 80%-20% 

split, hence a slight imbalance. 

When selecting features for biomedical ML problem with a small dataset size there is 

a greater importance placed on not only selecting a few features that can explain a lot of 

the variance but also ones that can be clinically understood. Therefore, the original feature 

set of predictor variables consisted of 14 features that were chosen based on those with 

strong overlap between commonly used SCG features in existing literature and those that 

are simple and intuitive to cardiologists. 

Both training and testing set features were normalized based on the training set mean 

and standard deviation. The hyperparameter lambda for the highest performing model, 

which combined ECG and SCG features, came out to the maximum regularization penalty 

of 1.0. 
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5.3 Results 

We enrolled 57 and successfully acquired both supine wearable and CMR data from 

45 patients. Their detailed subject demographics are presented in Table 5.  

Table 5. Overview of patient demographics and clinical parameters of 
cardiovascular function for study participants. 

 
a Statistical significance between training and testing sets in values, where applicable, was computed using 
an unpaired t-test. 
b N/A: not applicable. 
c Values for systemic ventricle data shown. 

Demographics and cardiovascular 

parametersa 

Training set 

(n=36) 

Held-out test set 

(n=9) 

P 

value 

Sex, n (%)  

 Male 22 (61) 6 (67) N/Ab 

 Female 14 (39) 3 (33) N/A 

Height (cm), mean (SD) 151.3 (26.6) 163.1 (16.0) .21 

Weight (kg), mean (SD) 56.3 (26.0) 59.2 (19.7) .76 

Body surface area (m2), mean (SD) 1.52 (0.48) 1.63 (0.34) .52 

Age (y), mean (SD) 15.0 (7.9) 14.7 (2.6) .90 

Stroke volumec (mL), mean (SD) 68.8 (32.34) 78.19 (24.81) .42 

Cardiac outputc (L/min), mean (SD) 4.94 (1.88) 5.01 (0.84) .92 

Ejection fractionc (%), mean (SD) 0.57 (0.08) 0.59 (0.12) .51 

Reference heart rate (bpm), mean (SD) 76.1 (14.2) 67.7 (14.8) .12 

Single ventricle, n (%) 5 (14) 3 (33) N/A 

Systemic ventricle, n (%)  

 Right ventricle 6 (17) 2 (22) N/A 

 Left ventricle 30 (83) 7 (78) N/A 
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The regression model performance—the coefficient of determination and RMSE—for 

the training (i.e., 10-fold CV) and testing set for all feature sets are shown in Table 6. The 

test set performance, when combining features from both the ECG and SCG modalities, 

improved upon that of the ECG model alone (R2=0.76 and RMSE=11.48 mL vs. R2=0.69 

and RMSE=13.05 mL) and substantially upon the demographic one (R2=-0.10 and 

RMSE=24.56 mL). However, the ECG only model still outperformed the SCG only model 

(R2=0.20 and RMSE=20.51 mL). To put the significance of these low RMSEs into context, 

the dynamic range of measured SV in the training and test set were 146.5 mL and 74.8 mL, 

respectively. The regression and Bland-Altman plot for the highest performing model, 

combining ECG and SCG features to estimate SV, are shown in Figure 18. The percent 

error—the metric that is used by CO measurement guidelines—for this highest performing 

model was 28%, within the acceptable criteria of 30% [122]. By contrast, the percent error 

for the ECG only model was outside the threshold for accuracy at 31%. 

Table 6. Ridge regression performance using different feature sets 

Feature set 10-fold CV training set R2 Held-out test set R2 RMSE [mL] 

ECG 0.47 0.69 13.05 

SCG 0.22 0.23 20.51 

Age + BSA 0.72 -0.10 24.56 

ECG + SCG 0.49 0.76 11.48 

ECG + SCG + Age + BSA 0.88 0.27 19.94 

ECG + SCG + BSA 0.74 0.46 17.20 

The demographic feature model has a stark difference between training (R2=0.72) and 

testing (R2=-0.10) performance—a clear sign of overfitting. Therefore, combining the 
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demographic information with ECG and SCG features improved their training set 

performance(R2=0.88), but not the test set performance (R2=0.27). However, as presented 

in Table 5, there was no significant difference, between the demographics of the training 

and testing set. 

 

Figure 18. Wearable stroke volume (SV) estimation results. Correlation and Bland-
Altman plots between wearable signal estimated SV and the cardiac magnetic 
resonance (CMR) imaging SV for held-out test set of nine patients. The coefficient of 
determination (R2=0.76) and root-mean-square error (RMSE=11.48 mL) are shown. 

The feature importance based on the magnitude of the weights from the ridge regression 

model are shown in Figure 19. Other than HR the most important features are either the 

PEP, VET, or a ratio derived from the combination of them. The permutation importances, 

given in Figure 20, were comparable to the magnitude of the weights from ridge regression, 

however, with VET and PEP having opposite ordering in importance. 
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Figure 19. Feature importances for stroke volume (SV) estimation model. Feature 
importances for wearable system from magnitude of ridge regression weights 
ranked in order from top to bottom and color-coded by wearable sensing 
modality—electrocardiogram (ECG) and seismocardiogram (SCG) signals. 

 

Figure 20. Permutation feature importances for stroke volume (SV) estimation 
model. Permutation feature importances for wearable system with features 
randomly shuffled 1000 times, ranked in order from top to bottom, and color-coded 
by wearable sensing modality—electrocardiogram (ECG) and seismocardiogram 
(SCG) signals. 

5.4 Discussion 

In this study, we show that a combination of SCG and ECG parameters, obtained 

noninvasively, can estimate SV in patients with CHD undergoing CMR with sufficient 

accuracy per CO measurement guidelines [122]. This work represents a necessary 
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advancement toward both more holistic wearable SV estimation for diagnostics and 

remote monitoring for CHD patients. Furthermore, our study is novel in using SCG in 

children and those with CHD; other studies have focused on structurally normal hearts. 

Specifically, although it has been shown previously that noninvasive ECG and SCG 

measurements can be used to accurately estimate SV [39], this relationship had not been 

examined in a diverse population of patients with structural heart defects and compared 

against a true gold standard measurement. Here, we evaluated the future utility of a 

convenient method for estimating SV and observed that there was a strong correlation 

between simple, highly interpretable SCG features and SV, across a wide range of CHD 

diagnoses, ages, and anatomical differences. We further achieved accurate estimation of 

SV in a completely held-out test set by using a regression model that combined both 

electrical and cardiomechanical wearable features—producing performance superior to 

that of either feature subset alone.  

5.4.1 Wearable Multimodal Signal Features Can Accurately Estimate Baseline SV in a 

Completely Held-out Test Set 

Wearable features were strongly correlated to baseline gold standard CMR SV in a 

heterogenous population of CHD patients. Furthermore, with an overall 28% error, we 

were able to achieve an accurate estimation of SV—based on the criteria set forth by CO 

measurement guidelines—in a completely randomized held-out test set [122]. This SV 

estimation model trained on multimodal wearable signal features and tested on unseen data 

is of greater utility than a purely correlation-based result. Additionally, for the Bland-

Altman analysis, all estimations were within the limits of agreement indicative of high 

model precision. Meanwhile, existing inconvenient methods—although more 
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comprehensively evaluated—such as transesophageal Doppler and NICCOM methods 

have estimation errors of greater than 40% [123]. In the field of physiological research and 

biomedical signal processing, to be able to accurately compare baseline measurements to 

absolute values in clinical parameters across a subject population is extremely difficult and 

rarely performed. Typically, a perturbation or intervention are leveraged to modulate 

physiological properties, in this case hemodynamics, which allows for a greater dynamic 

range and ability to track subject-specific changes in waveform morphology, usually 

resulting in higher accuracy. In this study, the comprehensive age range and diagnoses—

representative of higher-risk children and adults with CHD, who would be undergoing 

CMR—not only adds difficulty in hardware design, but also contributes to a high 

intersubject variability. Eventually, if the device were to be utilized to obtain continuous, 

noninvasive measurements, perhaps in the case of monitoring patients with CHD post-

surgery for low CO syndrome, then tracking subject-specific changes in SCG signals would 

suffice to monitor status, predict exacerbation, and offer personalized healthcare without a 

specific gold-standard baseline assessment. Generally, subject-specific models will 

outperform globalized models, although the reduced complexity of the latter may prove to 

be beneficial in certain scenarios. 

Our low RMSE for the test set of 11.48 mL—underscored by the wide dynamic range 

in SV of 74.8 mL within—demonstrates that our estimation is relatively robust to outliers. 

Hence, the inability to explain these outliers with a demographics-only model, which 

performed worse than our overall model, suggests that the accurate estimation was not 

driven primarily by patient size (e.g., body surface area). Similarly, wide dynamic range of 

the training set—nearly double that of the test set—of 146.5 mL may explain the lower 
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performance therein and the discrepancy observed in this random seed. From the residual 

errors in the regression plot shown in Figure 18, our model also had comparable estimation 

of high and low SVs: a well-known limitation of ML approaches that cleverly estimate the 

mean to reduce error. However, there was a slightly better performance at lower SV, most 

likely due to a greater number of datapoints with similar target values. Additionally, in our 

training set there were again fewer datapoints near the highest SVs which lead to the 

greatest error when estimating them and potentially explains the difference between the 

good training but strong testing performance. Therefore, increasing the number of 

datapoints with an emphasis on those exhibiting the boundaries of SV should improve 

estimation performance and overall model robustness. 

Nevertheless, using wearable signal features to accurately estimate SV across a 

heterogeneous population of patients with CHD, suggests that eventually SCG signals can 

assist in overall diagnostics—previously not demonstrated in SCG literature. 

5.4.2 Cardiomechanical SCG Features Improve Model Estimation 

As shown in Table 6, adding the cardiomechanical SCG features to the purely electrical 

ECG model resulted in a modest improvement in performance that reduced the percent 

error from 31% to 28%, which was sufficient to achieve accurate SV estimation per CO 

measurement guidelines. Although the heart is electrically activated, it remains a 

mechanical pump and therefore assessing these other aspects of cardiac health—though 

traditionally ignored by NICCOM methods—are essential to quantifying its mechanical 

function. Specifically, while HR is well known to exhibit a strong correlation to SV, the 

other most important features essential to achieving a good estimation were the PEP, VET, 
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and PEP/VET [124], [125]. The PEP—a combination of the intrinsic electromechanical 

delay and isovolumic contraction time—was our second most important feature. This is in 

accordance with established knowledge that the PEP can vary based on age, between 

infancy and puberty, and differences in contractility and preload—both captured in our 

dataset [126]. Similarly, the VET—the time it takes to eject the SV of blood out the aorta—

is related to SV [124], [126]. In addition, several NICCOM technologies utilize the 

impedance cardiogram to estimate SV through mathematical formulas—grounded in well 

understood relationships between bioimpedance and CO [37]—and leverage the VET as a 

strong correlate to SV. However, bioimpedance inconveniently requires multiple 

electrodes to be placed on the body, while SCG can capture the same VET in a significantly 

more convenient manner simply through an accelerometer placed on the chest. 

Additionally, their ratio (i.e., PEP/VET) has been demonstrated to be inversely related to 

contractility and helpful in determining heart failure [127]. This relationship is understood 

to be due to the greater amount of time required for the failing heart to build up the pressure 

necessary for ejection—related to PEP—and the smaller stroke volume ejected during a 

shorter VET [127]. 

Though the ECG features had a more significant independent contribution in estimating 

baseline SV, the SCG signal has been shown to better capture longitudinal changes in 

ventricular function by assessing the mechanical aspects of cardiac health [39], [40]. 

Nonetheless, given the complex determinants of SV, it is not surprising that combining 

features from multiple sensing modalities was necessary to create the holistic model that 

had the greatest performance. 

5.4.3 Demographic Based Correlations to SV Do Not Necessarily Generalize 
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Demographic feature models (i.e., those using age and body surface area) did not 

generalize well to our held-out test set. Typically, body surface area is known to be well 

correlated to CO—especially in this population with significant age and developmental 

size differences [121]. However, although these demographic feature models substantially 

improved training set performance, these improvements did not translate to the test set. 

This inability to generalize well in cases when the conventional trend between SV and 

demographics may not be observed [128], suggests that the proper physiological data in 

waveform format is necessary for the robust estimation of SV. Overall, demographics may 

be misleading—especially in populations presenting with the unique anatomies and 

extreme physiologies typical to those with underlying CHD. Regardless, with an increasing 

number of datapoints the contribution of these demographic features should be utilized for 

a similar diagnostic application. Specifically, given our accurate SV estimation and the 

available wearable HR, these demographic characteristics can clearly be incorporated, if 

the body surface area is correlated to SV, to compute cardiac index, which is commonly 

used in pediatric cardiology to assess adequacy of oxygen delivery.  

5.4.4 SV Estimation is Robust Against Anatomical Differences 

Largely, our data suggest that accurate SV estimation can be achieved regardless of the 

unique anatomies and physiologies in patients with CHD. Although there are considerable 

anatomical modifications between single-ventricle and two-ventricle patients, it has 

previously been shown that there are no distinguishable differences in their  SV estimation 

before and after the hemi-Fontan operation when using magnetic resonance imaging [129]. 

In addition, due to their wide-ranging diagnoses and demographics, the intersubject 

variability in the single-ventricle patients may have overshadowed their population 
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variability with respect to the two-ventricle patients. In future studies, to accurately 

determine whether any anatomical-induced modulation in SCG morphology exists, data 

should be taken from a larger and more homogenous single-ventricle population; for 

instance, reducing the age gap to only neonates with single- and two-ventricles.  

Eventually, remote monitoring of the growing population of older children and adults 

with heart defects appears to be more feasible due to their uncoupled characteristics with 

respect to this novel sensing modality and key hemodynamic parameters of ventricular 

function such as SV. 

5.4.5 Study Limitations 

This study has limitations related to both the technologies utilized and the patient 

population studied. The wearable biosensor is not MRI safe and thus simultaneous 

measurement of CMR flows and volumetrics with ECG and SCG was not possible. Thus, 

to mitigate this limitation we obtained the wearable measurements as soon as possible 

before and after the CMR scan and after the patient was under anesthesia for those getting 

the CMR with anesthesia. However, it is possible that the patient was in different 

physiologic states during the CMR as compared to when the wearable measurements were 

taken.  

To acquire reliable sternum PPG signals is exceptionally challenging due to issues 

facing significantly lower perfusion and greater skin melanin content when compared to 

conventionally used peripheral sites, differences in chest contours, the influence of body 

hair, and lower accuracy when using reflective PPG. Over the course of this study, our 

mechanical design was modified to include a spring-loaded mechanism. This provided the 
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necessary backing force for the sensors required to obtain the PPG and allowed for a 

constant pressure, with a modular range, to be applied—resulting in a significant 

improvement in PPG signal quality. Unfortunately, PPG features could not be reliably 

extracted from enough patients, which created an imbalance in model feature sets, and so 

these signals were not utilized. Nonetheless, we believe that features from the PPG signal 

such as pulse transit time—a measure of arterial stiffness and surrogate of BP—would 

reasonably add another key modality of sensing to assess SV and CO, as demonstrated in 

prior work [130].  

Finally, though high-fidelity wearable measurements were acquired and only few 

minutes of data collection were necessary for this work, the wearable biosensor still needs 

further miniaturization to be used in future longitudinal studies in a pediatric population. 

However, given the considerably smaller footprint of the internal essential sensing 

elements, the hardware could readily be miniaturized and exploit the advent of flexible 

electronics which can offer a low-profile, less obtrusive solution for even greater 

convenience when performing longitudinal monitoring [117]. 

5.5 Conclusion 

We demonstrated that a multimodal wearable biosensor that measures both SCG and 

ECG signals can accurately estimate SV in patients with CHD. In the future, this work 

could be expanded to monitor patients conveniently and longitudinally either post-surgery 

or from the comfort of their homes. Noninvasive, continuous monitoring of SV using a 

wearable biosensor equips clinicians with the tools necessary to track their patients 

longitudinally—not currently captured by any clinical program and seldom studied—
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which is essential to comprehend the lifetime complications facing this growing 

population. Eventually, advanced ML algorithms may even be capable of predicting the 

periodic decompensations of patients with CHD. In addition, it is well known that there are 

racial, socioeconomic, and geographic factors that contribute to disturbing health 

disparities in CHD mortality [131]. Ultimately, following further studies in a larger 

population, an inexpensive ECG and SCG wearable biosensor may provide accurate, low-

user-input SV monitoring in a noninvasive, continuous, and affordable manner for patients 

in out-of-office settings in low resource settings. 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

Collectively, this dissertation lays the groundwork for quantifying vital hemodynamic 

parameters, such as BP and SV, using noninvasive cardiomechanical signals—the SCG 

and PPG. First, we developed and validated a watch that can estimate BP without the use 

of a cuff in an uncontrolled, at-home setting. Then, we demonstrated the efficacy of this 

method for noninvasive, cuff-less BP estimation in a medically underserved population. 

Finally, we elucidated the ability of features derived from these wearable signals to 

estimate SV in patients with CHD. More importantly, the work herein determined that these 

multimodal sensing methods uphold their accuracy when used in populations of persons 

unsupervised at home, those with darker skin tones and high BMI, and pediatric patients 

with structural heart defects—all for whom these approaches may be the most difficult to 

utilize but also the most valuable. To have evaluated the feasibility of these novel 

techniques in these diverse populations represents a significant step toward the translation 

of wearable multimodal sensing for convenient longitudinal monitoring. Specifically, these 

advancements have both broader impacts—toward health equity and affordable monitoring 

for persons in MUAs using wearable devices—and intellectual merit—from understanding 

the limitations of these systems and development of novel methods used to mitigate them. 

6.2 Future Work 

For BP estimation, future work should assess the longevity of PTT-BP calibration 

measurements to determine the gravity of the cost associated with recalibration. 
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Furthermore, automated algorithms to classify activities of daily living and autonomic 

state—using the on-board accelerometer, gyroscope, pressure sensor, and heart rate 

sensing—should be incorporated to determine optimal periods for calibration 

measurements with a wide dynamic range in physiological values. In addition, the use of 

PTT alone to estimate BP may not suffice in all contexts and persons, and therefore, other 

signal features such as the dicrotic notch and features from the derivatives should be 

extracted to help design robust BP estimation models. Meanwhile, the ability of wearable 

PTT to act as a conveniently acquired, longitudinal biomarker of arterial stiffness should 

be examined in persons who are at risk of developing peripheral arterial disease, 

atherosclerosis, etc. Hardware should be refined by leveraging the advent of flexible 

electronics to create more conformal devices for comfortable longitudinal monitoring. 

Furthermore, hardware can be optimized for greater Sternum PPG signal quality which can 

then be evaluated for its ability to estimate BP and SV from a more advantageous central 

location. Monitoring from a more central body site may suffer less from confounding 

vasomotor tone effects than the periphery and can double as an efficient means to collect 

continuous ECG and SCG data for studying the holistic dynamics of hemodynamic 

parameters. In addition, hardware that enables continuous PTT measurements may act as 

a convenient and attainable surrogate can be used for monitoring during sleep when 

obtaining BP is more challenging. 

For SV estimation, longitudinal SCG signals should be captured along with concurrent 

clinical markers of low CO to assess whether continuous monitoring of the changes, in the 

features extracted or signals themselves, are correlated to variations in clinical target 

variables. If such longitudinal estimation is accurate, then SCG signals may be used as a 
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convenient approach for monitoring SV bedside or at home without the need for a gold-

standard. Then, time-series modeling using ML techniques such as recurrent neural 

networks can be used to build predictive models to forecast exacerbations in clinical status 

and guide intervention. SCG signals themselves should be captured in a more homogenous 

population of neonates with single ventricles to assess if there are truly any distinctive 

differences in their signal morphology. If differences are captured, such a dataset could be 

combined with finite element modeling and system identification approaches to help 

elucidate the origin and propagation mechanics behind the SCG signal, improving our 

understanding and ability to effectively use this novel cardiomechanical signal.  

6.3 Potential Impact of This Work 

To effectively handle increasing global life-expectancy, the efficiency of healthcare 

must improve, which will hinge upon leveraging technological advancements for remote 

health monitoring in outpatient settings. The development and validation of the wearable 

cardiomechanical sensing systems in this dissertation are a logical next step in this direction 

toward convenient and efficient remote monitoring. Furthermore, there are several exciting 

avenues of research which can now stem from the work herein. Most importantly, these 

wearable, multimodal methodologies can now confidently continue to be studied due to the 

promise demonstrated in accurately estimating hemodynamic parameters in uncontrolled 

settings and diverse and diseased populations. Specifically, research can progress toward 

cuff-less, ambulatory BP estimation in medically underserved populations where 

calibration requirements are reduced by using both demographics to determine subject-

specific constants related to arterial stiffness (i.e., K1) and physiological measures acquired 

during low-power operational modes to select salient calibration points. In addition, with 
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the understanding that the SCG can be conveniently employed to estimate SV in patients 

with structural heart defects, continuous SV and CO estimation—whether it be bedside or 

in outpatient settings—holds promise in monitoring neonates with single ventricles post-

surgery to predict LCOS. Together, our efforts in demonstrating the feasibility of 

noninvasive and convenient methods for monitoring BP and SV, may deliver a means to 

longitudinally track the health of underserved populations for whom these approaches may 

be the most impactful. 
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