66 research outputs found

    Optimising Age-Replacement and Extended Non-Renewing Warranty Policies in Lifecycle Costing

    Get PDF
    This paper analyses the life cycle cost of equipment protected by both base and extended warranty policies from a consumer's perspective. We assume that the equipment has two types of failure: minor and catastrophic. A minor failure can be corrected with minimal repair whereas a catastrophic failure can only be removed by a replacement. It is assumed that equipment is maintained at no charge to the consumer during the warranty period, whereas the consumer is fully charged for any maintenance on failures after the extended warranty expires. We formulate the expected life cycle cost of the equipment under a general failure time distribution, and then for special cases we prove that the optimal replacement and extended warranty policies exists where the expected life cycle cost per unit time is minimised. This is examined with numerical examples. © 2011 Elsevier B.V. All rights reserved

    Some contributions to modeling usage sensitive warranty servicing strategies and their analyses

    Get PDF
    Providing a warranty as a part of a product\u27s sale is a common practice in industry. Parameters of such warranties (e.g., its duration limits, intensity of use) must be carefully specified to ensure their financial viability. A great deal of effort has been accordingly devoted in attempts to reduce the costs of warranties via appropriately designed strategies to service them. many such strategies, that aim to reduce the total expected costs of the warrantor or / and are appealing in other ways such as being more pragmatic to implement - have been suggested in the literature. Design, analysis and optimization of such servicing strategies is thus a topic of great research interest in many fields. In this dissertation, several warranty servicing strategies in two-dimensional warranty regimes, typically defined by a rectangle in the age-usage plane, have been proposed, analyzed and numerically illustrated. Two different approaches of modeling such usage sensitive warranty strategies are considered in the spirit of Jack, Iskandar and Murthy (2009) and Iskandar (2005). An `Accelerated Failure Time\u27 (AFT) formulation is employed to model product degradation resulting due to excessive usage rate of consumers. The focus of this research is on the analysis of warranty costs borne by the manufacturer (or seller or third party warranty providers) subject to various factors such as product\u27s sale price, consumer\u27s usage rate, types and costs of repair actions. By taking into account the impact of the rate of use of an item on its lifetime, a central focus of our research is on warranty cost models that are sensitive to the usage rate. Specifically, except the model in Chapter 4 where the rate at which an item is used is considered to be a random variable; all other warranty servicing policies that we consider, have usage rate as a fixed parameter, and hence are policies conditional on the rate of use. Such an approach allows us to examine the impact of a consumer\u27s usage rate on the expected warranty costs. For the purpose of designing warranties, exploring such sensitivity analysis may in fact suggest putting an upper limit on the rate of use within the warranty contract, as for example in case of new or leased vehicle warranties. A Bayesian approach of modeling 2-D Pro-rated warranty (PRW) with preventive maintenance is considered and explored in the spirit of Huang and Fang (2008). A decision regarding the optimal PRW proportion (paid by the manufacturer to repair failed item) and optimal warranty period that maximizes the expected profit of the rm under different usage rates of the consumers is explored in this research. A Bayesian updating process used in this context combines expert opinions with market data to improve the accuracy of the parameter estimates. The expected profit model investigated here captures the impact of juggling decision variables of 2-D pro-rated warranty and investigates the sensitivity of the total expected profit to the extent of mis-specification in prior information

    Determination of optimal pricing and warranty policies

    Get PDF
    An important problem facing manufacturers in today\u27s competitive market is the determination of the selling price of a product and its warranty period. A longer warranty may serve as a signal of product reliability; however, it may also lead to an increase in cost and hence reduce the profit if the product reliability is low. A burn-in test may be used to improve the reliability of products prior to their shipment.;This research presented integrated models for maximizing the expected profit for products that are subjected to a burn-in test and sold with warranty. The burn-in time, warranty period, and price were chosen as three decision variables in these models. The price and warranty period were treated as marketing variables and a simple multiplicative form was used to model their effect on sales. Solution procedures were developed for several warranty policies. These procedures are applicable for any failure time distribution. Three failure time distributions were further investigated and formulas for optimal solutions were derived. Finally, two sets of data were used to illustrate the application of the models. Two computer programs were developed to solve the models both parametrically and nonparametically

    Optimal Burn-in Time and Imperfect Maintenance Strategy for a Warranted Product with Bathtub Shaped Failure Rate

    Get PDF
    ‘Burn-in/preventive maintenance’ programme is an efficient approach used to minimise the warranty servicing cost of a product with bathtub shaped failure rate. Burn-in is a widely used method to improve the quality of product during its ‘infant mortality’ period and preventive maintenance is a scheduled necessary activity carried out during its ‘wear-out’ period. In this paper, an optimisation model is developed to determine the optimal burn-in time and optimal imperfect preventive maintenance strategy that minimises the total mean servicing cost of a warranted product with an age-dependent repair cost. We provide a numerical study to illustrate our results

    Optimal Overhaul-Replacement Policies for Repairable Machine Sold with Warranty

    Get PDF
    This research deals with an overhaul-replacement policy for a repairable machine sold with Free Replacement Warranty (FRW). The machine will be used for a finite horizon, T (T <ï‚¥), and evaluated at a fixed interval, s (s< T). At each evaluation point, the buyer considers three alternative decisions i.e. Keep the machine, Overhaul it, or Replace it with a new identical one. An overhaul can reduce the machine age virtually, but not to a point that the machine is as good as new. If the machine fails during the warranty period, it is rectified at no cost to the buyer. Any failure occurring before and after the expiry of the warranty is restored by minimal repair. An overhaul-replacement policy is formulated for such machines by using dynamic programming approach to obtain the buyer's optimal policy. The results show that a significant rejuvenation effect due to overhaul may extend the length of machine life cycle and delay the replacement decision. In contrast, the warranty stimulates early machine replacement and by then increases the replacement frequencies for a certain range of replacement cost. This demonstrates that to minimize the total ownership cost over T the buyer needs to consider the minimal repair cost reduction due to rejuvenation effect of overhaul as well as the warranty benefit due to replacement. Numerical examples are presented for both illustrating the optimal policy and describing the behavior of the optimal solution

    Imperfect Repair Strategies for Two-Dimensional Warranty

    No full text
    When a repairable product under warranty fails, the manufacturer (warrantor) has the choice to either repair or replace the failed product. When repairing a failed product, the degree of repair which affects the working condition of the product can vary, and this is assumed to have an impact on the cost of the repair. The main motivation of this study is to develop a warranty repair strategy that minimizes the costs associated with servicing the warranty. In this research, the product coverage is represented by a two-dimensional rectangular region with a free-replacement warranty. We propose an imperfect repair strategy that suggests employing imperfect repairs of a predefined degree, in prespecified subregions of the warranty region. The aim is to then minimize the expected warranty servicing cost to the manufacturer by determining the optimal partitioning of the warranty region for the chosen degrees of repair. Two imperfect repair models are considered, and for both, the expressions for the distribution of the times to imperfect repair and the expected warranty servicing cost per product sold are derived. We numerically illustrate our findings and compare the expected costs of the proposed imperfect repair strategy with those of previously developed repair-replacement warranty strategies

    Imperfect Repair Strategies for Two-Dimensional Warranty

    No full text
    When a repairable product under warranty fails, the manufacturer (warrantor) has the choice to either repair or replace the failed product. When repairing a failed product, the degree of repair which affects the working condition of the product can vary, and this is assumed to have an impact on the cost of the repair. The main motivation of this study is to develop a warranty repair strategy that minimizes the costs associated with servicing the warranty. In this research, the product coverage is represented by a two-dimensional rectangular region with a free-replacement warranty. We propose an imperfect repair strategy that suggests employing imperfect repairs of a predefined degree, in prespecified subregions of the warranty region. The aim is to then minimize the expected warranty servicing cost to the manufacturer by determining the optimal partitioning of the warranty region for the chosen degrees of repair. Two imperfect repair models are considered, and for both, the expressions for the distribution of the times to imperfect repair and the expected warranty servicing cost per product sold are derived. We numerically illustrate our findings and compare the expected costs of the proposed imperfect repair strategy with those of previously developed repair-replacement warranty strategies

    Warranty and Maintainability Analysis for Sensor Embedded Remanufactured Products in Reverse Supply Chain Environment

    Get PDF
    Remanufactured products are very popular with consumers due to their appeal to offer the latest technology with lower prices compared to brand new products. The quality of a remanufactured product induces hesitation for many consumers, in regards to its efficacy and reliability. One stratagem that remanufacturers could employ to encourage customer security are product warranties. This paper studies and scrutinizes the impact that would be had by offering renewing warranties on remanufactured products. This study was able to determine the optimal costs of warranty for two-dimensional non-renewable warranty offered on remanufactured products using the simulation model and design of experiments

    Optimal Two Dimensional Preventive Maintenance Policy Based on Asymmetric Copula Function

    Get PDF
    For some kinds of products, the consumers have strict requirements to the reliability of these products in the based warranty period. Then the manufacturer is inclined to provide the two-dimensional preventive maintenance policy to take the usage degree of the product into account. As a result, two-dimensional preventive maintenance policy in the warranty period has recently obtained increasing attention from manufacturers and consumers. In this paper, we focused on the optimization of based warranty cost and proposed a new expected based warranty cost model considering the two-dimensional imperfect preventive maintenance policy from the perspective of the manufacture. Asymmetric copula function was applied to modeling the failure function of the product. And the optimal two-dimensional preventive maintenance period was obtained by minimizing based warranty cost. At last, numerical examples are given to illustrate the proposed models, of which the results prove the model effective and validate
    • …
    corecore