97 research outputs found

    A statistical approach to the identification of diploid cellular automata based on incomplete observations

    Get PDF
    In this paper, the identification problem of diploid cellular automata is considered, in which, based on a series of incomplete observations, the underlying cellular automaton rules and the states of missing cell states are to be uncovered. An algorithm for identifying the rule, based on a statistical parameter estimation method using a normal distribution approximation, is presented. In addition, an algorithm for filling the missing cell states is formulated. The accuracy of these methods is examined in a series of computational experiments

    Identification of cellular automata based on incomplete observations with bounded time gaps

    Get PDF
    In this paper, the problem of identifying the cellular automata (CAs) is considered. We frame and solve this problem in the context of incomplete observations, i.e., prerecorded, incomplete configurations of the system at certain, and unknown time stamps. We consider 1-D, deterministic, two-state CAs only. An identification method based on a genetic algorithm with individuals of variable length is proposed. The experimental results show that the proposed method is highly effective. In addition, connections between the dynamical properties of CAs (Lyapunov exponents and behavioral classes) and the performance of the identification algorithm are established and analyzed

    Modelling Chromosome Missegregation in Tumour Evolution

    Get PDF
    Cancer is a disease in which the controls that usually ensure the coordinated behaviour of individual cells break down. This rarely happens all at once. Instead, the clone of cells that grows into a developing tumour is under high selection pressure, leading to the evolution of a complex and diverse population of related cells that have accumulated a wide range of genetic defects. One of the most evident but poorly characterized of these genetic abnormalities is a disorder in the number of chromosomes, or aneuploidy. Aneuploidy can arise though several different mechanisms. The project explores one such mechanism - chromosome missegregation during cell division- and its role in oncogenesis. To address the role that chromosome missegregation may have in the development of cancer a computational model was devised. We then defined the behaviour of individual cells, their genomes and a tissue niche, which could be used in simulations to explore the different types of cell behaviour likely to arise as the result of chromosome missegregation. This model was then used to better understand how defects in chromosome segregation affect cancer development and tumour evolution during cancer therapy. In stochastic simulations, chromosome missegregation events at cell division lead to the generation of a diverse population of aneuploid clones that over time exhibit hyperplastic growth. Significantly, the course of cancer evolution depends on genetic linkage, as the structure of chromosomes lost or gained through missegregation events and the level of genetic instability function in tandem to determine whether tumour growth is driven primarily by the loss of tumour suppressors or by the overexpression of oncogenes. As a result, simulated cancers diff er in their level of genetic stability and in their growth rates. We then used this system to investigate the consequences of these differences in tumour heterogeneity for anti¬cancer therapies based on surgery and anti-mitotic drugs that selectively target proliferating cells. Results show that simulated treatments induce a transient delay in tumour growth, and reveal a significant difference in the efficacy of different therapy regimes in treating genetically stable and unstable tumours. These data support clinical observations in which a poor prognosis is correlated with a high level of chromosome missegregation. However, simulations run in parallel also exhibit a wide range of behaviours, and the response of individual simulations (equivalent to single tumours) to anti-cancer therapy prove extremely variable. The model therefore highlights the difficulties of predicting the outcome of a given anti-cancer treatment, even in cases in which it is possible to determine the genotype of the entire set of cells within the developing tumour

    Layered Cellular Automata

    Full text link
    Layered Cellular Automata (LCA) extends the concept of traditional cellular automata (CA) to model complex systems and phenomena. In LCA, each cell's next state is determined by the interaction of two layers of computation, allowing for more dynamic and realistic simulations. This thesis explores the design, dynamics, and applications of LCA, with a focus on its potential in pattern recognition and classification. The research begins by introducing the limitations of traditional CA in capturing the complexity of real-world systems. It then presents the concept of LCA, where layer 0 corresponds to a predefined model, and layer 1 represents the proposed model with additional influence. The interlayer rules, denoted as f and g, enable interactions not only from adjacent neighboring cells but also from some far-away neighboring cells, capturing long-range dependencies. The thesis explores various LCA models, including those based on averaging, maximization, minimization, and modified ECA neighborhoods. Additionally, the implementation of LCA on the 2-D cellular automaton Game of Life is discussed, showcasing intriguing patterns and behaviors. Through extensive experiments, the dynamics of different LCA models are analyzed, revealing their sensitivity to rule changes and block size variations. Convergent LCAs, which converge to fixed points from any initial configuration, are identified and used to design a two-class pattern classifier. Comparative evaluations demonstrate the competitive performance of the LCA-based classifier against existing algorithms. Theoretical analysis of LCA properties contributes to a deeper understanding of its computational capabilities and behaviors. The research also suggests potential future directions, such as exploring advanced LCA models, higher-dimensional simulations, and hybrid approaches integrating LCA with other computational models.Comment: This thesis represents the culmination of my M.Tech research, conducted under the guidance of Dr. Sukanta Das, Associate Professor at the Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India. arXiv admin note: substantial text overlap with arXiv:2210.13971 by other author

    On the development of slime mould morphological, intracellular and heterotic computing devices

    Get PDF
    The use of live biological substrates in the fabrication of unconventional computing (UC) devices is steadily transcending the barriers between science fiction and reality, but efforts in this direction are impeded by ethical considerations, the field’s restrictively broad multidisciplinarity and our incomplete knowledge of fundamental biological processes. As such, very few functional prototypes of biological UC devices have been produced to date. This thesis aims to demonstrate the computational polymorphism and polyfunctionality of a chosen biological substrate — slime mould Physarum polycephalum, an arguably ‘simple’ single-celled organism — and how these properties can be harnessed to create laboratory experimental prototypes of functionally-useful biological UC prototypes. Computing devices utilising live slime mould as their key constituent element can be developed into a) heterotic, or hybrid devices, which are based on electrical recognition of slime mould behaviour via machine-organism interfaces, b) whole-organism-scale morphological processors, whose output is the organism’s morphological adaptation to environmental stimuli (input) and c) intracellular processors wherein data are represented by energetic signalling events mediated by the cytoskeleton, a nano-scale protein network. It is demonstrated that each category of device is capable of implementing logic and furthermore, specific applications for each class may be engineered, such as image processing applications for morphological processors and biosensors in the case of heterotic devices. The results presented are supported by a range of computer modelling experiments using cellular automata and multi-agent modelling. We conclude that P. polycephalum is a polymorphic UC substrate insofar as it can process multimodal sensory input and polyfunctional in its demonstrable ability to undertake a variety of computing problems. Furthermore, our results are highly applicable to the study of other living UC substrates and will inform future work in UC, biosensing, and biomedicine

    Development of mathematical methods for modeling biological systems

    Get PDF

    Genetic patterns of dispersal and colonization during initial invasion and spread of an invasive grass, Brachypodium sylvaticum

    Get PDF
    Evolution of genotypes during range expansion is driven in part by colonization dynamics. I investigated genetic patterns of colonization and dispersal during initial expansion of an invasive bunchgrass, Brachypodium sylvaticum, into Oregon. Using microsatellite markers, I sampled plants at two different scales: at regular intervals along three parallel roads spanning about 30km, and in populations identified throughout Oregon. I also collected field-generated progeny from a subset of populations and used molecular identification of outcrossing events to estimate selfing rates in both central and peripheral populations. Dispersal patterns were similar at both scales, with non-contiguous dispersal responsible for colonization of new populations. High levels of differentiation were observed at all scales, though newly-colonized populations were more differentiated than older populations. Corvallis populations were responsible for colonization of a majority of populations throughout Oregon, while individuals from Eugene were only occasionally found in new populations. Admixture occurs between Corvallis and Eugene populations, decreasing differentiation, and potentially creating novel phenotypes and increasing evolutionary potential of populations. Selfing rates were high, but two populations in the areas of original introduction had lower rates of selfing, suggesting that selfing rates may decrease as population density and diversity increases with age. The influences of founder effects and bottlenecks on phenotypic evolution during range expansion require further investigation, as inbreeding, lag times, and selection may influence evolutionary trajectories of populations

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications
    • …
    corecore