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ABSTRACT 

AN EXPLORATION AND VALIDATION OF COMPUTER 

MODELING OF EVOLUTION, NATURAL SELECTION, AND 

EVOLUTIONARY BIOLOGY WITH CELLULAR AUTOMATA FOR 

SECONDARY STUDENTS 

MAY 1992 

GEORGE COLLISON, B.S. TUFTS UNIVERSITY 

M.A.T. SMITH COLLEGE 

Ed.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Leveme Thelen 

The Evolutionary Tool Kit, a new software package, is the prototype of 

a concept simulator providing an environment for students to create 

microworlds of populations of artificial organisms. Its function is to model 

processes, concepts and arguments in natural selection and evolutionary 

biology, using either Mendelian asexual or sexual reproduction, or 

counterfactual systems such as 'paint pot' or blending inheritance. In this 

environment students can explore a conceptual "What if?" in evolutionary 

biology, test misconceptions and deepen understanding of inheritance and 

changes in populations. Populations can be defined either with typological, 

or with populational thinking, to inquire into the role and necessity of 

variation in natural selection. The approach is generative not tutorial. The 

interface is highly graphic with twenty traits set as icons that are moved 

onto the 'phenotypes'. Activities include investigations of evolutionary 

theory of aging, reproductive advantage, sexual selection and mimicry. 

Design of the activities incorporates Howard Gardner's Theory of Multiple 

Intelligences. Draft of a teacher and student manual are included. 
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CHAPTER 1 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Introduction 

Experts in both the history of science and practitioners of the life 

sciences do not doubt that evolution by natural selection, evolutionary 

biology, and its sister science, population genetics are the key ideas to 

understanding modern biological thought (Futuyma, 1983; Ghiselin, 1969; 

Margulis, & Sagan, 1986; Maynard Smith, 1986; Mayr, 1988; Mayr, 1991; 

Ridley, 1983). Unfortunately these unifying topics generally have occupied 

a minor role in practical pedagogy in secondary science. One reason may 

be that the great 'evolutionary synthesis' that was achieved by the 

Darwinians, geneticists, paleontologists, naturalists, and geneticists from 

the 1920's to the 1960's was seen by educators, and perhaps by professional 

researchers, as very largely a technical matter with many supporting 

arguments expressible only in dense technical prose, often accompanied by 

pages of highly abstract mathematical analysis. The older modeling 

strategies in evolution and population genetics depended on algorithms 

with roots in either iterated finite difference mathematics or differential 

calculus and the modeling of continuous variables (Maynard Smith, 1974a; 

Maynard Smith, 1982; Morrison, 1991; Murray, 1989; Partridge, Lopez, & 

Johnston, 1984; Wilson, & Bossert, 1971). 

The work of seminal researchers in this field like Fisher, Wright and 

Haldane are "incomprehensible to the average biologist, even to many of 

those interested in the processes of evolution . It is doubtful whether the 

majority of those who read mathematically-oriented papers on population 

genetics to gatherings of geneticists realize that many of their audience will 
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have little understanding of what is said, and that few will understand it 

thoroughly (Crosby, 1973)." 

In the late 60 s Jack Crosby at the University of Durham pioneered 

the use of computers in modeling genetics and evolutionary biology. Crosby 

was among the first to explore computer models both for research and as 

pedagogical aids. He stated that "sometimes the arguments have forgotten 

the biology and been about the mathematics (Crosby, 1973)." "The 

consequence of this is that most biologists are often in no position to be able 

to judge for themselves the validity of the mathematical representations of 

evolutionary systems in which they are interested." He cites a vehement 

argument between Fisher and Wright on the evolutionary importance of 

random fluctuations, "a problem which could be solved quite easily using a 

non-mathematical model." Crosby's 1973 book, Computer Simulations in 

Genetics, is a landmark in the field. Almost all computer modeling of 

genetic systems draw on his insights. 

Unfortunately, for the general reader, and certainly for the 

secondary educator, Crosby's work poses barriers as high as that of the 

mathematical formalism of earlier researchers. The computers and 

software environments available at the time he did his work were not at all 

friendly by today's standards. Crosby's algorithms are written in either 

assembly language for machines that no longer exist or in a higher level 

language he devised for his modeling called MENDOL. It is not easily 

accessible to the modern reader or computer user. 

Since Crosby's pioneering work research in this area has been quite 

extensive. Over the last thirty years, new tools and new methods have been 

explored by many biologists and evolutionary theorists, as well as some life 

science educators (Avers, 1989; Axelrod, & Hamilton, 1981; Ayala, 1978; 
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Barricelli, 1962; Bowler, 1989; Conrad, 1970; Eldredge, 1989; Futuyma, 1983; 

Mani, 1984; Maynard Smith, 1982; Mayr, 1988; Price, 1985; Raup, 1991; 

Rizki, & Conrad, 1985). Generally stated, the method these investigators 

used involved finding numerical solutions to linked non-linear partial 

differential equations. Stochastic elements often were introduced to 

simulate the random effects of the selection process. Populations were 

treated as numerical quantities and incremented or decremented over time 

intervals. Various rates of natality or mortality were determined at each 

time interval based on auxiliary functions dependent on the states of other 

populations or initial conditions. As one might expect, analysis of this sort 

requires considerable mathematical preparation to comprehend, and more 

than considerable mathematical gifts to creatively apply to new situations 

and arguments. 

This highly technical mathematical method of analysis poses an 

insurmountable barrier in presenting the important ideas of natural 

selection, evolution, and evolutionary biology at the secondary level. These 

are very important fields, necessary components of a student's 

understanding of the living world. They are also the threads that tie 

together the diverse areas of biological thought. Waiting till late in 

secondary school, or perhaps at the post secondary level, to introduce these 

topics until students have mastered the rudiments of algebraic probability 

and differential calculus is just not good enough. It is too late. Currently a 

very low number of students are exposed to these ideas; fewer understand 

them. Our society depends on a consensus of well informed citizens. 

Some science educators have tried to use modeling on micro-computers to 

circumvent this methodological bottleneck. 
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Some talented science educators have made very innovative 

adaptations of mathematical modeling once done on mainframes for 

educational purposes (Hodgson, & Murphy, 1984; Jungck, & Galley, 1985; 

Kinnear, 1986; Murphy, 1984; Murphy, 1986; Price, 1985; Slack, 1989; Slack, 

1990; Thomson, & Stewart, 1985). Some have even abandoned the 

mathematical formalism that formerly carried these ideas, even in the 

computer models, and created graphic interfaces usable at the secondary 

level. In genetics education, the work of Kinnear, Jungck, Slack, and 

Stewart has made significant impact. Some of their work is available from 

educational software houses or commercial distributors. 

Another approach was taken by General Systems Dynamics of Old 

Lyme, New Hampshire in the creation of Stella, a generalized graphic 

modeling language. Stella is based on the work of E. Forrester at M.I.T. 

Stella users place graphic 'primitives' of boxes (representing populations or 

stocks), valves (representing rates of change, positive or negative), and 

circles tied to either boxes or valves (representing auxiliary relationships or 

constants governing rates, or population interactions) at various points on 

the screen. Stocks are given initial values; rates of increase or decrease 

from valves are defined algebraically or by point and click charts referring 

to values of populations, auxiliaries, or other rates. The modeling engine 

within Stella automatically constructs differential equations, invisible to the 

user, that drive the output screens. Non-linear multiple linked differential 

equations are modeled with the same ease as graphing straight lines. 

Users of Stella can model quickly an astounding variety of processes, 

including biological ones. 

Stella is a remarkable product. Its sole drawback from the point of 

view of modeling evolutionary phenomena is the nature of the modeling 
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process itself. Stellft uses differential equation methods to extrapolate from 

properties of whole systems to properties of systems as a whole; it is not 

based on properties of individuals. There is no genotype' or phenotype' 

possible for an individual organism in a Stella model. One can say 10% are 

heterozygous for trait X; but which individuals have this property cannot be 

determined. There are no individuals. For modeling of natural selection in 

any attempt to show it as a process dependant on variation within the 

individuals of a population, the drawback is severe. 

Another type of system modeling using objects called cellular 

automata, one not based on difference equations or continuous variables, 

paralleled these efforts. It was based on some ideas set out by John von 

Neumann in the mid 50's. Automata modeling became more widely used 

in the 70's and 80s (Collins, & Jefferson, 1991; Jefferson, et al., 1991; 

Kauffman, & Levin, 1987; Langton, 1989; Langton, 1991; Murray, 1989; 

Pagels, 1988; Rizki, & Conrad, 1986; Toffoli, & Margolus, 1989). 

What are 'Cellular Automata? They are 'creatures' that occupy 

cells in a grid that is modeled in the memory of a computer. Rules govern 

the manner in which each automata changes through time. The rules can 

depend on conditions of neighboring automata, or on global conditions for 

the whole grid, or on internal conditions specific to that automata. Initially 

automata modeling was used on physical systems such as fluid flow, 

annealing of metals, or atmospheric modeling. The mathematics of each of 

these applications is notoriously very difficult. If conditions are changed 

even slightly, the new phenomenon is totally different than that which 

preceded it. Recent studies have shown that many systems studied in these 

fields are chaotic in behavior; it is theoretically impossible to obtain general 

models for phenomena in fluid flow, metallurgy, and atmospherics for 

5 



other than very simple cases (Briggs, & Peat, 1989; Gleick, 1987; Langton, 

1991; Morrison, 1991; Stewart, 1989). 

Von Neumann attempted to bypass the problems presented in finding 

differential equations that would predict global properties of these 

dynamical systems from initial conditions by attempting to model them 

locally using objects called cellular automata. The automata cells would 

represent regions of a flowing liquid, a cooling metal, or a small region of 

the atmosphere. Based on these local 'events', and known physical laws, 

each cell would interact with neighbors, and the global pattern of 

interaction could be extracted by massive computation integrating effects at 

the cellular level. In general the effort was successful. Much climatic 

modeling is based on von Neumann's insights. Automata modeling also is 

subject to chaotic behavior under certain conditions, but it is more easily 

understood and modeled than current alternatives. 

In the early to mid 1980's research in cellular automata took a turn 

that even von Neumann had not predicted. Scientists began to use 

automata to model natural systems (Barlow, 1991; Barto, 1975; Burks, 1975; 

Hogeweg, 1988; Langton, 1986; Margolus, 1984; Preston, & Duff, 1984; 

Wolfram, 1983; Wolfram, 1986). Cellular automata had properties, or could 

be defined to have properties, much like natural organisms. Each 

automata could be set up with a 'genetic code', a packet of data, analogous 

to a genome. The information in the code determines the physiological or 

social behavior or physical properties of the automata, its 'phenotype'. 

Each automata would interact with other automata, or its environment 

according to the rules set up by the programmer. The modes of inheritance 

of information from one 'generation' to another can be modeled by rules 

governing the cellular automata. Mutations in the pseudo-genetic code can 
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be provided by a random number generator. Some modelers used self 

modifying neural nets in place of the rules' to determine what automata 

would do. 

Based on research in this new area, a new discipline sprang up 

called "Artificial Life" (Brockman, 1988; Langton, 1986; Langton, 1991; 

Packard, 1987; Pattee, 1987). With the new discipline also came more 

questions (Augros, & Stanciu, 1987; Barlow, 1991; Margulis, 1988), "Is this 

life at all?" "Is this biology or computation?" For an educator the question 

is a side issue. If these artificial organisms have properties and behaviors 

analogous to living organisms, they can be very useful indeed. With micro¬ 

worlds based on these models students can have complete control over 

environment, inheritance mechanisms, mutations, agents and effects of 

natural selection, long range studies of effects of mutations, and many 

more key constructs of modern evolutionary theory. 

The first of these cellular automata algorithms that was widely 

known was Conway's GAME OF LIFE in the late 1960's (Casti, 1989; 

Langton, & Kelley, 1988; Rucker, 1988). Conway's game happened in a 

square grid with automata showing up as lighted squares. They would 

"die" if there were too many neighbors with all edges occupied. If there 

were too few neighbors (only one), they would "die" of loneliness. With two 

or three neighbors, the automata would reproduce in an empty square. 

Lovely, complex patterns were produced under these simple rules. Some 

initial patterns were cyclic, recurring after a fixed number of generations. 

Others would always die out. A few would replicate to fill the entire board. 

Analysis by Rucker and Wolfram demonstrated the power of the 

concept of cellular automata (Rucker, 1988; Wolfram, 1986). The creatures 

of Conway's LIFE, together with the generalized rules that govern them are 
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"Universal Computational Machines". This technical term means that 

any problem that can be programed and solved in a digital computer can be 

solved by a cellular automata model with correctly chosen rules and a space 

large enough to contain all its operations. Principles of cellular automata 

modeling are becoming very important in the designs and algorithms of the 

newest parallel processing computers. 

Dewdney, in several articles in "Scientific American" popularized a 

simple ecological model called Sharks and Fishes based on cellular 

automata (Dewdney, 1988; Dewdney, 1989b). It had circled among hackers 

for several years before that. The cellular automata and the rules that 

govern the sharks and fishes are not intrinsically difficult to understand. 

These automata "live" in either two or three dimensional worlds; their 

interactions with other automata, such as motion, or breeding are 

determined by rules like: "If Energy > minimum, then Move one square at 

a random direction,." or "If Energy > minimum and Age > Breed Age, then 

Breed." There is no need to invoke calculus based mathematics to describe 

their interactions. The plots produced by the simulations resemble very 

closely natural predator/prey plots including natural limits of carrying 

capacity, as well as potential approximations of gene frequency ratios. In 

this regard cellular automata simulations are easily applicable to life 

science instruction in the secondary schools. 

Unfortunately very little research has been done by educators on the 

pedagogical applications of these newer evolutionary and genetic models 

used by professionals. There is only one short report on application of the 

technique (Sepe, 1988). Some have speculated about the educational 

potential of this new form of modeling (Resnick, 1989; Taylor, Jefferson, 

Turner, & Goldman, 1987). One reason for the lack of educational 
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literature may be that the material is so new. The first conferences on 

cellular automata and artificial life were held at Los Alamos in 1987. A 

second was held at the same site in 1989. Much of the material still 

remains in primary, technical sources. This inquiry will attempt to take 

some of the most recent results of research scientists in evolutionary 

biology, computer science, and artificial life, and translate their ideas and 

methods into working simulations and models, suitable for instruction at 

the secondary level. 

Central to the design of this effort will be an adaptation of the 

'conjecturing' technique pioneered by Judah Schwartz and Michal 

Yerushalmi in mathematics instruction with the Geometric Supposer 

(Schwartz, & Yerushalmy, 1987). Cited by many mathematics educators 

as "the first change in geometry instruction since the publication of 

Euclid's Elements" the Geometric Supposer approaches geometry in an 

inductive, student centered way. 

Going far beyond the electronic geo-board, the Geometric Supposer 

provides a new learning environment and challenges students to actually 

"do" mathematics, to think like mathematicians. As the title of Schwartz's 

article states, it does restore the sense of invention to the field of geometry 

education. Rich formulations, called conjectures, are given to students to 

investigate. Each conjecture may contain many different "proofs", some 

deeper than others. Using the measuring tools of the Geometric Supposer 

the students probe the relationships of elements of the conjecture 

construction, doing "what if s" at any point on the way. When they are 

satisfied that any proposition is true (or false), they attempt to construct a 

standard two-column proof for it. The rationale for the seemingly artificial 

deductive form of the proof is supplied by the intellectual investment that 
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the student has in the problem through his or her inductive explorations. 

The Geometric, SuppQser provides normally passive students with an active 

way to interact with geometry and mathematics, a way to develop 

intellectual commitment to solving a mathematical problem as 

mathematical researchers. This new modeling technique using cellular 

automata, combined with the conjecturing pedagogical strategy of the 

Geometric Supposer shows great pedagogical promise in life sciences. 

Statement of Purpose 

The Nobel Prize winning physicist, Murray Gell-Mann once 

remarked that education in the 20th century is a most remarkable and 

exciting experience. It is like being invited to a world class restaurant 

staffed by the world's finest chefs. With great relish one sits down to begin 

a meal that promises to be most memorable, except the only thing you are 

offered to eat is the menu. 

Unfortunately this analogy to current educational practice is all too 

accurate. In a world where there is an information explosion, where there 

are more active writers, scholars, researchers, and scientists than at any 

time in the history of our planet, our students are provided educational 

experiences with all the nutritive value of cardboard. Offerings of this sort 

may be enough to provide real sustenance if the student's mental apparatus 

contains the analog of the busy micro-fauna in a termite's gut. Cellulose is 

digestible with the right enzymes. If you don't have them, all one can do is 

contemplate a string of finely printed words. In many classrooms students 

just get the menu read to them. The real question is "Where's the meal?" 

As committed educators we can, and must, do better. I feel we can give all 

of our students, not just those with special enzymes, a basic understanding 

of the great ideas of this century. This shared understanding is necessary 
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for our species and the richness of life on this plant to survive into the next 

century (Ehrlich, 1986; Ornstein, & Ehrlich, 1989; Thornburg, 1991). 

The core of this dissertation centers on a serious consideration of 

Gell-Mann's remarks when applied to teaching in the life sciences. Much 

like the investigation of the mysterious beast called the elephant by the 

fabled blind men, many students' approach to life science commonly yields 

confusing and conflicting interpretations. The unity of the life sciences, 

provided by the insights of evolution, natural selection, and evolutionary 

biology eludes them. I wish to explore the opportunities offered by micro¬ 

computers and cellular automata modeling, combined with innovative 

pedagogy, that will fill this need for a vision of the unity of the life science. 

My investigation will explore this potential in three areas: Accuracy and 

Appropriateness of Content, New Methodology, New Ways of Thinking. 

Accuracy and Appropriateness of Content 

The micro-worlds populated by cellular automata exhibit many of the 

properties that communities of living organisms exhibit. Cellular 

automata themselves exhibit many properties similar to those of living 

organisms. I wish to make no arguments that cellular automata, no 

matter how complex, are 'living' systems. This is a field for experts; some 

of whom have answered in the affirmative (Brockman, 1988; Hogeweg, 

1988; Langton, 1991; Langton, et al., 1988; Ray, 1991; Rizki, et al., 1986). 

Other strongly argue against this position (Harris, 1991; Margulis, 1988; 

Mayr, 1988). I will treat cellular automata models as powerful tools, very 

useful heuristics for science educators for investigation of relationships 

and concepts in evolution and population genetics for "possible" living 

organisms at levels and in ways that were not possible before. 
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New Methodology 

The ease of manipulation of these micro-worlds provides a powerful 

pedagogical tool to explore the unifying ideas of evolution and population 

genetics at the secondary level, with possible extensions to the middle 

grades. Much like the micro-worlds of Logo and the Geometric Sunnoser 

the worlds populated by cellular automata permit personal interaction of 

the learner with the subject area. In life science education cellular 

automata modeling provides a remarkable potential for student centered 

learning that is constructive, not instructive. Students can appropriate 

their own knowledge, rather than be the passive recipient of the knowledge 

of others. 

Beyond providing a platform for a much needed constructivist 

approach in this discipline, cellular automata modeling also provides an 

opportunity to mold instruction to individual learning styles. Howard 

Gardner's Theory of Multiple Intelligences gives a framework for 

restructuring curricula for individual learning. Gardner set out seven 

modes by which humans learn and interact with their surroundings: 

Linguistic, Logico-Mathematical, Intrapersonal, Spatial, Musical, 

Interpersonal, and Kinesthetic (Gardner, 1988; Gardner, 1989). Gardner 

believes that all of us have a dominant mode with capabilities in the other 

six. 

Unfortunately most classrooms and instructional techniques rarely 

go beyond the first three, with much science instruction assuming a 

Logico-Mathematical mode continually. Limiting educational practice to 

these modes fails students in two ways. First, it ignores the needs and 

abilities of students whose dominant intelligence is not one of these three. 

Secondly, it fails other children in the class whose intelligence and 
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experience are not validated in these modes. Computers offer educators an 

invaluable tool in opening up their classrooms to multiple paths to 

learning. Ways to include other individual learning styles in science 

instruction will be explored. 

The approach will also build on the research done on student 

misconceptions in the sciences in the last decade. Gardner calls this "the 

smoking gun" in the indictment our educational practices (Gardner, 1991). 

The "venerable subject of physics" provided the first evidence that "even 

when our schools appear the most successful, even when it elicits the 

performances for which it has been designed, it typically fails to achieve its 

most important missions." In several carefully designed investigations it 

was found that the majority (in some cases over 80%) of undergraduate 

physics majors and engineering students, even some graduate students, at 

M.I.T. (DiSessa, 1983), Johns Hopkins (McCloskey, 1983), the University of 

Montreal (Faucher, 1983), and the University of Massachusetts (Clement, 

1982b; Mestre, 1989) do not demonstrate a qualitative knowledge of 

Newtonian mechanics even slightly outside a textbook context. 

Gardner cites other studies in the biological sciences that reveal 

similar startling gaps in understanding in genetics (Browning, & Lehman, 

1988; Martin, 1983; Simmons, 1987; Slack, 1990; Thomson, et al., 1985), 

meiosis (Brown, 1990; Stewart, Hafner, & Dale, 1990) and natural selection 

(Bishop, & Anderson, 1990; Brumby, 1979; Brumby, 1984; Clough, & Wood- 

Robertson, 1985b; Greene Jr., 1990; Jungwirth, 1975). Brumby's pioneering 

1979 study discovered that over 80% of the second year medical students 

interviewed preferred Lamarkian or teleological explanations of 

evolutionary processes. Bishop found, among other distressing discoveries, 

that years of instruction in biological science made no difference in 
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students acceptance of teleological or Lamarkian explanations. The other 

studies, their findings, and ways that The Evolutionary Tool Kit, can 

practically approach the problems they have found will be discussed latter 

in this paper. 

In both physical and biological sciences the world views that 

students' brought to classes are remarkably robust and resistant to change. 

The conclusion of all these researchers was that students' preconceptions 

must be addressed if educators can expect instruction to bring about any 

meaningful conceptual change. The Evolutionary Tool Kit using 

micro worlds that students construct themselves, populated by cellular 

automata attempts to provide life science educators a new tool to challenge 

these naive world views and assist students in accommodating to 

conceptual change. 

New Wavs of Thinking 

The computer is very much a part of our world. Its virtues as data 

collector, analyzer, predictor, quantifier are extolled in all forms of media. 

It is a good thing that this machine has such potential, as we certainly will 

need its services to solve the problems that face our species and the planet 

as a whole in the coming decades. The problems are such that our minds 

and sensory apparatus do not even perceive them as problems at all: toxic 

chemicals, nuclear waste, ozone depletion, green house gases, 

urbanization. Psychologist Robert Omstein attributes this difficulty to "old 

mind" mental mechanisms like "fight or flight", among others, that have 

dominated our thought patterns since our Hominid ancestors found them 

so useful (Ornstein, et al., 1989). The newer challenges require "new 

mind" mechanisms, new ways of seeing. Evolutionary biology and 

population genetics, as I noted before, are particularly difficult to teach 
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because the disciplines are fundamentally dynamic, long-term processes, 

all but invisible to the eye. Our educational medium is generally a 40 

minute lecture. Our perceptual and conceptual frameworks are not 

attuned to see change on a long term scale. 

The point Ornstein makes is an old one; it is also a profound one, 

well worth exploring. Emmanuel Kant stated three hundred years ago that 

all perception is interpretation. The world is changing in a decade more 

than it changed in a millennium; the rate of change is ever increasing. 

"Adapting to change must be the center of any new kind of teaching 

(Ornstein, et al., 1989)." Disciplines like Evolutionary Biology and 

Population Genetics where dynamic change are central elements are most 

important in forming the perceptions that will aid a student in 

understanding the world they must live in. Students investigating with 

computers through cellular automata modeling can gain precious insights 

that can help mankind solve the problems in the next century. 

There is also a fourth theme running through this investigation: 

Critical Thinking and Biology Education. It is a central concern certainly, 

but it is not of the same quality as the other three. Matthew Lippman's 

defines critical thinking as "skillful, responsible thinking, that facilities 

good judgement because it (a) relies on criteria (b) is self-correcting, and (c) 

is sensitive to context (Lippman, 1988)." There are many who say that this 

is what is done in their classrooms. This is nothing other than the 

scientific method. The second statement may be valid. The results of the 

cognitive researchers in science education belie the general validity of the 

first. A curriculum that is inflexible, teacher centered, knowledge based, 

and ignorant of the deeply rooted misconceptions that our students bring to 

school cannot be said to practice critical thinking. 
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It is through the exercise of critical thinking the Lippman sees the 

classroom developing into a "community of inquiry." The Geometric 

SuPPQ*?61* has managed to do this for a curriculum as venerable as 

Euclidian geometry. Geometry classes using The Geometric Supposer are 

alive with inquiry; students are working as mathematicians exploring and 

discovering their own mathematics. 

It is most important to note that mathematics is not science, nor 

science mathematics. The core ideas in geometry, the nature of induction 

and deduction require different pedagogical strategies than core ideas in 

science. Contrary to much popular lore in books on science education, the 

central method of science is not induction or deduction but analogical 

thinking. It is the central analogies, models, gestalts, that define the 

connections and extensions of a discipline in science. The harmonic 

oscillator in physics is applied from the level of atomic particles to motions 

of galaxies. 

Life science brings very different analogies. In genetics, the 

particulate nature of inheritance is a central theme, as is the role of 

randomness in genetic recombination. Evolutionary biology poses a 

particularly difficult problem. As Ernst Mayr states, the first, and most 

important change in Darwin's thinking was "The gradual replacement of 

the assumption that all individuals of a species are essentially alike by the 

concept of the uniqueness of every individual (Mayr, 1991)." 

This is a very difficult step to make indeed. It is a change in 

paradigm from essentialist thinking (thinking in terms of types) to 

population thinking (thinking in terms of individuals defined by variety). 

Essentialist thinking had dominated Western (and Eastern) thought for 

thousands of years. Plato's ideas, Aristotle's categories, and all their 
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descendents are still very much with us. Our language itself is essentialist 

in formulation. We use the word dog' to define a class of organisms, not to 

describe the variations of individuals in that class. Language ignores these 

differences. The problem is much deeper than recognition of simple 

stereotyping. 

Essentialist thinking has shown remarkable success in other 

scientific areas like mathematics or physics. All triangles, all circles, 

pendula, all harmonic oscillators are to be treated in a similar fashion. 

Galileo's brilliant insight in dropping the weights from the tower was to 

realize that what was important was not that the times were different, but 

that the time it took to fall was almost the same. He specifically stated that 

he thought the difference was due to some other factors (which we now call 

air resistance) that made the heavier fall slightly faster. It was a 

remarkable typological insight. Even much of the biological cannon, 

theories of classification and taxonomy are based fundamentally on 

essentialist thinking. 

Evolution and natural selection are not based on typological insights. 

"Variation, which had been irrelevant and accidental for the essentialist, 

now became one of the crucial phenomena of living nature (Mayr, 1991)." 

Once organisms are viewed as members of a population, each with 

individual differences, then competition between them has some real 

meaning. "Indeed the concept of competition among individuals would be 

irrelevant if all these individuals were typologically identical - if they had 

the same essence (Mayr, 1991)." 

A great deal has been written about Darwin and the origin of 

populational thinking and his first insights into the process of natural 

selection. The application of Lippman's definition and the creation of a 
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community of inquiry in the biology classroom demand that the students 

own minds be the subject of inquiry into the nature of individuals and 

populations. To achieve the conceptual change required, the teacher must 

create an environment which can demonstrate the power of populational 

thinking and, at the same time, the inadequacy of essentialist thinking. 

The Evolutionary Tool Kit attempts create an environment in which 

the students can experience the same cognitive dissonance that Darwin 

experienced, and then, through directed discussions and guided inquiry, 

uncover the advantages and insights possible with populational thinking. 

From the studies already cited by Brumby, Bishop and Anderson, Clough, 

Greene, Hatano, and Jungwirth, reading about it, or being lectured about it 

is completely insufficient, even for our brightest students. One reading of 

Malthus (in which populational thinking is not explicit at all) was 

sufficient for Mr. Darwin; but this was a special case. 

The target population for The Evolutionary Tool Kit is not upper level, 

advanced track students. It is aimed at general students in the early years 

of secondary schooling. It is during these years that the basic questions, 

the fundamental metaphors of the study of life science are formed. The 

design is qualitative; it is intended to model concepts, not mathematical 

models. If the effort in secondary life science is classificatory or essentialist 

to the exclusion of other kinds of thinking, it is little wonder that students 

later have a great deal of difficulty understanding concepts based on 

populational thought. 

I am suggesting that introductory life science students pose and 

investigate 'the big questions' as an essential part of their studies. Mark 

Ridley in The Problems of Evolution (Ridley, 1983), masterfully frames for 

the general reader the main lines of inquiry of evolutionary biology in the 
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form of ten ’Great Questions'. The first four are: "Is evolution true?", 

What is the nature of heredity? , What is the mechanism of evolution?", 

and How does natural selection work in nature?" Other questions explore 

the nature of molecular evolution, principles of classification, 'What is a 

species?', forces that drive speciation, rates of evolution, and problems of 

macro-evolution. Professor Ridley asserts that almost all biologists are 

firm in their belief that the answers to the first four questions are settled. 

The answers to the last six are less certain; some even lend themselves, 

even in professional circles, to heated discussion and very diverse opinions. 

Others may certainly have a different set of questions (Mayr, 1988). 

The problems faced by secondary educators attempting to teach 

natural selection and evolutionary biology are certainly very different than 

those of the researcher in seeking answers to any of them. Clearly, in the 

minds of many students, the answers to the first questions are not settled 

firmly at all. Indeed they may be settled quite firmly, but not in the 

direction of evolution or modem evolutionary biology. It is not the intent of 

this inquiry to convince creationists of the validity of Darwinian theory. I 

am seeking a method to increase accurate understanding of evolution by 

natural selection. Results by Bishop and Anderson show that for university 

students a course specifically designed to produce conceptual change can 

increase by 50% the number of students understanding of the fundamentals 

of the theory evolution by natural selection. The number of students who 

'disbelieved' the theory after 'successful' instruction remained unchanged. 

This result may not be comforting to science educators, but it does give an 

indication of the robustness of students' preconceptions. 

The intent is to provide an learning environment that is theoretically 

and pedagogically sound, in which students can explore interactions of 
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artificial organisms, operating under rules that are closely analogous to 

those constraining living organisms. They can then modify the rules, 

make hypotheses, and refute or verify them. In the course of their 

investigations seminal terms like, population, mutation, population 

sample, natural selection, selected for, selected against, advantageous, 

gene pool, and gene frequency will appear in their natural context, as 

descriptions of phenomena they encounter. 

Within the confines of the computer simulation, I wish to make the 

arguments in favor of evolution plausible. The experience should bring the 

student to a level of cognitive dissonance at which they can begin to feel 

uncomfortable with their naive view of organisms and typological thinking. 

I wish to provide a platform on which students can build for themselves a 

knowledge of the interaction of organisms, genetic information, and the 

environment that supports them. This experience with the core metaphors 

of the discipline will lay the groundwork for inductive argumentation and 

content familiarity so that students can follow and assess inductive 

arguments in favor of evolutionary theory using evidence from fossils or 

living organisms for interpretation and support. 

Once an understanding of populational thinking has been forged, 

students can approach the problem of seeking the mechanism of evolution 

is to find a theory that can explain evolution, that can explain adaptation, 

and fit the facts of heredity. Darwin, Huxley, Weissman all faced the same 

difficulty. Examples of evolution and adaptation are plentiful from the 

paleontological record and from the observations of naturalists: multi-toed 

horses, Galapagos finches, pepper colored British moths, and many others. 

It is most important for educators to note that none of these examples are 

dynamic. This fact was noted by the pioneers at the turn of the century also. 
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Yes, one can parade photos of fossils of many sorts, slides of finches and 

moths; all, conclusive "proof of evolution and its traces in time. Yet the 

student is very much the passive recipient of all of these "illustrations". 

One really must ask "What has the student proven, or can prove to him or 

herself?" Simulations using cellular automata provide just this platform 

for exploration. 

Beyond this pedagogical difficulty in convincingly presenting support 

for evolutionary theory, there is a major problem integrating Mendelian 

inheritance as a support for evolutionary theory. The heated arguments 

from the pages of the history of biology attest to the difficulty of this 

synthesis (Futuyma, 1983; Ghiselin, 1969; Gillispie, 1960; Mayr, 1988). 

Demonstrations of the underlying algebra of Baysian probabilities by 

drawing colored marbles from jars are insufficient. It didn't convince the 

last few generations of scientists, why should it convince our students? The 

natural process is dynamic, not algebraic. Under Mendelian inheritance 

there is no directing process that could bring about evolution. Students 

sense this problem immediately: how can randomness bring about any 

change other than some organic smearing? The relationship is not 

obvious; but it is exactly this random change, random mutation that is 

required by natural selection to bring about adaptive states (Futuyma, 1983; 

Ridley, 1983). 

The key insight is that the randomness of heredity provides only the 

raw material; the particulate nature of Mendelian inheritance actually 

conserves variation while natural selection operates on it. Mendelian 

particulate heredity is an all or nothing affair, the traits produced by the 

genes do not blend. It is very easy to hold the idea that, in a large 

population, one mutation, advantageous or not, will naturally "wash out"; 

21 



this idea is also quite wrong. Cellular automata permit students to 

experiment with systems of heredity not found in nature (like blending of 

characters) but which are found in their own naive views, and those of 

scientists of former generations. Why was the theory of blending 

characteristics discarded? Saying that "it is wrong" is circular; it does not 

answer the question. Why is it wrong? What results does it predict? 

Conjecturing with cellular automata can be a strong first step in 

providing a student with hands-on experience that particular inheritance 

will actually preserve variation. Using automata operating under 

alternative models of heredity, for example, "paint-pot" genetics, students 

can explore the counterfactual environments. As an example, students 

can explore the conjecture that under "paint-pot" genetics: "If heredity is a 

mixing of qualities (as most assume), then any variation or mutation, even 

a very highly advantageous one, will wash out, leaving little or no effect on 

the population." This conjecture, interestingly, is true. 

Guessing at the meaning of photos of fossils or trying to extrapolate 

population changes from bean bag genetics is just not enough. With the 

resources at our disposal, science educators can do much better than 

attempting to teach natural selection and evolutionary biology with 

educational techniques little changed since the last century. There is such 

a thing as "evolutionary pressure". How can a student experience or 

believe in the effects of natural selection, or become convinced of its validity, 

unless he or she can actually see these forces drive changes in organisms 

before their eyes? A powerful pedagogical advantage of modeling with 

cellular automata is the concreteness of the conjectures and the associated 

experiments. Students need "hands-on" time to manipulate and work with 

complex ideas before they can really be said to believe them. The cellular 
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automata, experiments are dynamic, not subject to the vagaries of 

interpretation of the incomplete fossil record. They actively involve the 

student from inception of the conjecture to the design of the experiment, to 

the interpretation of the results. 

Implementation of the Rationale 

I propose to design and construct a general cellular automata 

modeling environment for life science students called The Evolutionary 

Tool Kit that will simulate many of the processes of biological natural 

selection and evolutionary biology. Cellular automata are ideal to 

demonstrate the interaction of these two great ideas of modern biological 

thought: natural selection and evolutionary biology. 

The data structure of the automata model sets up a 'genetic code', a 

'genotype' for each automata as well as an environment in which they 'live' 

and interact. The code determines the physiological or social behavior or 

physical properties of the automata, its phenotype' according to the rules of 

the traits assigned to the organism by the student experimenters. 

Inheritance can be governed strictly by Mendelian laws, or, alternatively by 

other hypotheses such as "paint pot" genetics. Mutations in the pseudo- 

genetic code can be provided by a random number generator. 

Most importantly, adaptation of the individual organism is 

determined by the interaction of the automata with each other, with the 

environment, and by other auxiliary calculations based on size, shape, and 

physical law. It is important to note that modeling of natural selection at 

the individual level is not possible using models based on finite differences 

or differential equations. Cellular automata are local phenomena, locally 

determined. What is truly remarkable is that these simple digital beings do 
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evolve, at a rate of hundreds of generations per hour, much like living 

organisms would at a significantly slower rate. 

In the field of education, no research has been done in this area. I 

have found several professional references that extend cellular automata to 

evolutionary and ecological modeling (Brown, 1987; Collins, et al., 1991; 

Conrad, & Strizich, 1985; Goel, & Thompson, 1987; Hogeweg, 1988; Langton, 

1991; Lovelock, 1991; Niklas, 1986; Ray, 1991; Rizki, et al., 1985; Taylor, et 

al., 1987). Models studied by these professionals include mosquito control, 

evolution of language, lek formation, evolution of molecular self- 

reproducing systems, and models of punctuated equilibria. 

Clearly the The Evolutionary Tool Kit is a much simpler model than 

any of these; it will permit qualitative modeling of inheritance and 

evolutionary processes. Reproduction is modeled through particulate 

(Mendelian) or alternative continuous ("paint-pot") models. Students may 

also select (under Mendelian inheritance) either SEXUAL or ASEXUAL 

genetics, dominant or recessive traits, multiple allele (in series), adjustable 

mutation rates, and adjustable penalties for some traits (say multiple 

births). Predation can also be modeled. 

Students will also be able to control the interaction with the 

environment with the substrate in some regions specified as "fertile", 

"average", "poor" or "seasonal". In future models the environment will be 

time variant. Also there will be the possibility of setting up time dependant 

barriers impassible by organisms to investigate rates of speciation from 

isolated populations. Also catastrophic declines can be explored to 

investigate the effect of drastic reductions in population on the gene pool. It 

is also possible to extend the interaction with the environment to include 

metabolic reactions and the effects on the substrate. Interactions between 
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organisms will also include social interactions such as hunting strategies, 

camouflage, flocking or cooperative or altruistic behavior. 

All experiments will be constrained by physical laws. The automata 

will move, live, or die using first order estimates of gravitation, tensile 

strength, or drag (laminar flow) of genetically determined shapes derived 

from physiology or fluid mechanics. Students will be able to change some 

physical constants such as gravitational acceleration (to try out life on 

another planet , for example). Extensions to considerations of metabolic 

functions of the organisms and their affect on the environment will also be 

explored. 

All of the above investigations appear in various research literature 

on automata modeling using super-computers, Connection Machines, or 

high powered work stations. A further constraint is that The Evolutionary 

Tool Kit fit comfortably in the confines of the type of computer that most 

secondary educators are likely to see in classrooms over the next decade. 

Before going on to a review of automata literature and a description of 

the algorithms used by The Evolutionary Tool Kit let us consider some 

sample investigations of modeling with cellular automata, much in the 

spirit of the approach taken by the Geometric Supposer. in which the 

student to explore the world of evolutionary genetics in a semi-concrete 

way, making conjectures, designing experiments and verifying or 

disproving hypotheses on the way. 

In a sample conjecture, a student would first select the inheritance 

pattern (we will assume Mendelian for these examples). They would then 

select ASEXUAL or SEXUAL inheritance. Sexual populations present a 

particularly interesting counter-intuitive result. It is very tempting to 

conclude that an advantageous mutation, once it has reached a certain low 
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percentage in a population, will go on to propagate through the entire 

population. Most people guess that it will probably take over 100% of the 

gene pool. Similarly, one is very tempted to believe that recessive traits 

could never propagate through breeding populations. Even if 

advantageous, they would always occupy a small percentage of the 

population. Both of these propositions are false. The cellular automata 

model can demonstrate that quite easily. Sample hypotheses or conjectures 

students can make and explore with cellular automata are: 

Conjecture one: "In a sexually reproducing population, an 

advantageous trait expressed by a dominant allele will eventually propagate 

through the entire population." This is false. Such a trait will always be 

expressed over the recessive allele in the phenotype. This means that the 

trait will always remain part of the gene pool, even though it may be heavily 

selected against. An equilibrium will be reached after a sufficiently large 

number of generations. It is NOT dependent on the Mendelian ratios, 

rather on a 'fitness' measure of the trait. 

Conjecture two: "In a sexually reproducing population, an 

advantageous trait expressed by a recessive allele will never propagate 

through the entire population." This also is false. Oddly enough, an 

advantageous trait expressed by a recessive allele will take over all of the 

population. In order for a recessive trait to manifest in the phenotype, the 

individual must have two copies of the recessive gene (homozygous 

recessive). It will take considerable time for sufficient numbers of 

homozygotes to build up. When this happens the take over of the population 

is very rapid. It approaches 100% quickly. 

Conjecture three: "In a sexually reproducing population, a 

disadvantageous trait expressed by a dominant allele will eventually be 
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eliminated from the population." This is also false in general. There are 

many examples of this phenomena in human genetics: Huntington's 

syndrome, several forms of dwarfism, polydactyly. Students can find 

conditions that make the conjecture true also - early lethality or impaired 

fertility. 

Conjecture four: "In an asexually reproducing population, a 

disadvantageous trait will not propagate through a population." This is 

false. In fact disadvantageous traits propagate readily. Haploid 

inheritance patterns are not limited to lower animals. All mammals have 

haploid inheritance patterns in the male chromosome (it comes from one 

parent only) or in mitochondrial DNA (passed on by the ovum). The laws of 

probability guarantee that after a sufficient time the decedents of one 

ancestor comprise the whole population (one all female generation kills any 

one line of X chromosomes). The mutation rate is relatively constant over 

this time. Therefore X chromosomes have a tendency to accumulate 

disadvantageous traits. The high rate of infertility in African cheetahs 

seems to be an example of accumulation of genetic defects. 

The Evolutionary Tool Kit will permit students to explore 

conjectures like these in evolutionary biology in a highly dynamic and 

creative way under a wide range of environments and genetic constraints. 

Such a program will be a most useful addition to life science classes at the 

secondary level. It will put into the hands of students and teachers alike a 

tool to explore the core ideas of the life sciences using the results of 

contemporary researchers without the heavy burden of abstract 

mathematical formalism which dominated exposition of these topics in 

older literature. Notes on staff development for teachers and departments 

planning to use this approach should also be included in discussion of 
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educational applications of The Evolutionary Toni Kit. . Without the 

pedagogical mechanism of cellular automata I see no way to provide 

students a hands-on feel for the relationship of random mutations at the 

molecular and the phenotypic world of classification and morphology 

(Pickover, 1990; Sheppard, Turner, Brown, Benson, & Singer, 1985; 

Thompson, 1942). 

The approach taken in The Evolutionary Tool Kit, is very flexible. 

Many extensions are possible. Of particular interest is use of cellular 

automata modeling to include inclusion work done by Sheppard and Owen 

on Mullerian rings in butterflies (Owen, 1980; Sheppard, et al., 1985). It is 

possible to have cellular 'genes’ that govern wing patterns (Owen, 1980). 

Owen’s formal work gives algorithms for generating patterns of butterfly 

wings. With a cellular automata approach, one can integrate these formal 

pattern generating algorithms with an analog of the natural selection 

process. The distasteful butterflies with one pattern would co-evolve with 

the tasty mimics with another pattern right on the screen. Through 

random mutations and the pressure of selection, the patterns of the tasty 

butterflies will "evolve” to similar patterns to the distasteful butterflies. It 

is an important pedagogic point to note the effects of non-random 

transitions, those that give rise to the Mullerian or Batsean rings. Yes, the 

changes at the molecular level are random, yet direction to the changes is 

produced by the filter of natural selection. Changes at the molecular level 

may also force other changes in populations in non-random fashion. The 

randomness in the process of natural selection occurs only at the final step. 

Natural selection is the final filter that shows us the observable phenotypes. 

The role of randomness in the process of natural selection, from a Neo- 

Darwinian viewpoint, may be considerable. 
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Naturally The Evolutionary Tool Kit should be pilot tested in actual 

classroom environments, and its evaluation based on the experience of 

students and teachers. Afterwards a revised edition should be made 

available to a wider range of schools and student populations. 

Unfortunately on-site piloting is not possible at the current time. Three 

obstacles must be overcome before on-site trials of The Evolutionary Tool Kit 

can begin. 

First, the methods and algorithms used by the cellular automata 

models are very demanding on the hardware platform. The most powerful 

commonly available machines like Mac II's or 386 based processors and 

several megabytes of memory are still too slow for many of the 

computations posed by the tool kit. Stronger machines are not generally 

available at the secondary level now, but in a few years they will be. The 

Evolutionary Tool Kit will provide a prototype for modeling evolution, 

natural selection, and evolutionary biology for these new generation of 

computers. 

Second, the underlying assumptions behind all of the models in The 

Evolutionary Tool Kit are Neo-Darwinian (Cho, Butler, & Nordland, 1985; 

Futuyma, 1985; Mahadeva, & Randerson, 1985; Margulis, et al., 1986; 

Maynard Smith, 1989; Mayr, 1988). The Neo-Dawinian synthesis, developed 

over the last 40 years, recognizes the important role of randomness in 

natural evolutionary processes. This recognition brought about some 

fundamental changes in the way biologists conceive of the process of 

natural selection. As set out previously explanations in The Evolutionary 

Tool Kit strongly depend on the development of populational thinking. The 

program's design encourages students to construct "What if?" scenarios to 

confirm or even dispute these findings. Few secondary teachers are 
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currently prepared to present these views. There are strong indications 

that very few of our potential teachers understand the nature of natural 

selection, and the populational thinking that underlies it s (Bishop, et al., 

1990; Greene Jr., 1990; Jungwirth, 1975). 

A desired result is for students themselves to construct the Neo- 

Darwinian synthesis, or even find ways in which it must be modified. It is 

for this reason that the first use of The Evolutionary Tool Kit may be in 

teacher training programs in schools of science education. This issue of 

confirmation of the teacher's understanding of the discipline will be 

explored in the section on validation. Mathematics educators learning to 

use software like The Geometric Supposer worked very hard to developing a 

pedagogy and curriculum that is student centered; many stated that they 

learned more mathematics while learning to use these student centered 

programs than they did at university. 

There is preliminary evidence from genetics education of a similar 

phenomenon (Jungck, et al., 1985; Simmons, 1987). The simulations by 

Jungck (The Genetics Construction Kit) and Kinnear (Catlab) require 

teachers to work more on a level with their students, as facilitators, even as 

colleagues in investigating a problem. Many find the experience 

unsettling; they are uncomfortable with inquiries in which there may be no 

right answers'. 

I feel that prototype software like The Evolutionary Tool Kit used in 

schools of education can partially pave the way to a student centered 

curriculum in evolutionary studies. In the current environment in 

secondary schools, the model advocated by The Evolutionary Tool Kit would 

prove very difficult for many science teachers, given the current state of 

30 



integration of computers in science instruction. Much staff development is 

needed. 

Third, The pedagogical model advocated by the design of The 

Evolutionary Tool Kit much like that of The Geometric Supposer. goes far 

beyond what educators normally conceive as CAI (Computer Assisted 

Instruction). As one seasoned geometry teacher said of her own 

experiences in geometry classes, "I felt like I had been trained to perform 

some one else’s mathematics. With The Geometric Supposer students 

actually become practicing mathematicians". With The Geometric 

Supposer mathematics teachers went a long way to developing a pedagogy 

and curriculum that is student centered. I feel that prototype software like 

The Evolutionary Tool Kit can partially pave the way to that laudable goal. 

The model advocated by The Evolutionary Tool Kit would prove very 

difficult for many science teachers, given the current state of integration of 

computers in science instruction. 

Since at this time The Evolutionary Tool Kit cannot be validated in 

practice, I will seek out the help of expert practitioners in science education 

and pedagogy to validate content soundness, use in teacher preparation, 

and applicability to performance based assessment. I have contacted and 

received confirmation of their willingness to review and comment on The 

Evolutionary Tool Kit from the following experts: Soundness and 

appropriateness of content by Richard Wickender, Ph.D., Paleobiology, 

University of Massachusetts and Paul Deal, Research microbiologist, 

NASA, author of the only other automata based simulation on evolution; 

Potential for new directions in pedagogy by Seymour Itzkoff, Professor of 

Education and Philosophy, Smith College; and Potential for use in 

classrooms and in staff development programs by Neil Davidson, State Sci- 
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Net Coordinator, and Science Staff Developer, Massachusetts Department 

of Education. 

These experts' comments and suggestions will be incorporated into 

the instructional design of the program, and in its documentation. 

Although each is associated with a single topic in the above schema, each 

expert will be encouraged to comment on the other two topics, to the extent 

that they feel themselves qualified to do so. 
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CHAPTER 2 

REVIEW OF LITERATURE 

For clarity of exposition, the review of literature is broken into four 

parts: education research on misconceptions in evolution and natural 

selection; commercially available software in natural selection and 

evolutionary biology, commercial software based on cellular automata 

modeling, and current research on modeling with cellular automata that 

has immediate applications for middle and secondary educators. 

Research on Misconceptions in Evolution and Natural Selection 

The pioneering work in this field was done by British researchers, 

Margaret Brumby, J. A. Deadman and P. J. Kelly in the late seventies as 

part of the educational reform that swept that country at that time. Before 

the 1960's evolution as a phenomena, the process of change and adaptation, 

natural selection, randomness, and inheritance had not been part of the 

secondary curriculum. After the 1960's heredity and evolution assumed a 

central place in biology textbooks with passages on the importance of these 

concepts for both society and the individual. 

The introduction of these ideas was a matter of considerable debate. 

In their studies on misconceptions of secondary students on evolution 

Deadman and Kelly (Deadman, & Kelly, 1978) cite studies by Kelly and 

Monger (Kelly, & Monger, 1974) that show both teachers and students find 

aspects of evolutionary theory such as heredity (Hardy-Weinberg, DNA 

studies, genetic code, and the gene-enzyme hypothesis) difficult. In 

evaluation studies of the Nuffield project the students performance on this 

section of the course was poor compared to other units. They also cite a 

theoretical study by Shayer (Shayer, 1974) based on a Piagetian framework 

33 



in which Shayer suggests that "... a reasonable structure, based on Nuffield 

content, might be arrived at by abandoning the evolutionary picture 

objective of Year V (with its implied distorting constraint of the content of 

previous years), regarding the environmental approach of Year IV as the 

end objective instead...". Deadman and Kelly strongly dissented. "We 

should accept the challenge of finding suitable methods of presenting these 

topics (heredity and evolution) to the under 16's (general biology students)." 

Evolution and heredity are important at this level; we have not yet 

established what methods and sequence is appropriate. 

In an attempt to discover the problems that may lay at the root of 

difficulties students have with these topics Deadman and Kelly proceeded to 

interview 52 boys, ages 11-14, from an all male secondary school to 

ascertain their understanding of seven key concepts: evolution as a 

phenomenon, why evolution occurred, the process of change, adaptation, 

natural selection, chance, and inheritance. 

All boys were aware of evolution as a phenomena but the form of the 

concept varied considerably. Some saw it as a series of disconnected 

episodes. Much fewer showed awareness of a time dimension. Almost all 

described evolution as associated with primitive life forms. They showed no 

reference or "apparent understanding of relationships between groups of 

animals." 

Explanations of why evolution occurred tended to be naturalistic 

(associated with 'needs' or 'wants', or 'making them better') or overtly 

environmentalistic (associated with specific changes in animals and the 

environment, such as the Ice Age). In older boys, though a few used biotic 

factors in their explanations, explanations were still naturalistic. 
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The explanations for the process of change invariably elicited 

explanations similar to that of why evolution occurred. "Some were 

phenomenistic ('It just happened.’)" Others were naturalistic. Still others 

were explicitly Lamarkian. Deadman and Kelly noted a very interesting 

conceptual shift that occurred when boys who explained with great 

certainty starting off in terms of mutations, progressive changes in cells or 

chromosomes but then were faced with difficulties. "They invariably 

started to refer to the 'needs' of the organism." 

Adaptation was central to all of their explanations. Younger boys 

almost always associated the term with a naturalistic view described 

earlier. It was seen as an subconscious 'trying to improve.' There was no 

evidence of the idea of pre-adaptation and very few were aware of the 

evolutionary implications of 'survival.' Of the boys who did understand the 

evolutionary meaning of survival, "the concept of survival became 

dominant in their explanations and their concept of adaptation took on a 

new dimension" expressed as an aspect of change instead of an end 

product. 

All were aware that some species of earlier times had descendants 

today and some did not. Their explanations were generally inter-specific. 

They did not relate the process to adaptive change. Clarity of the idea varied 

widely. A few older boys were aware of intra-specific selection. No boy had 

a full concept of selection. 

Chance was rarely used in their explanations. They appeared "to be 

virtually unaware of the probabilistic aspects of the evolutionary process." 

Interestingly the idea of other hypothetical outcomes of selective processes 

or alternative breeding patterns appeared to be absent. A few boys provided 
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explanations in which the environment was seen as a guiding force in 

evolution." 

All showed a singular lack of understanding of any valid concept of 

inheritance as a source of variation among organisms. They understood 

that heredity involved the transmission of characteristics from generation 

to generation. But changes in animals were explained in Lamarkian 

terms. With few exceptions explanations of the appearance of new 

characteristics used folklore ('mistakes can happen.' 'grandchildren can 

look like grandparents.') or plausibility arguments relating to everyday 

occurrences. There was much confusion on the mechanism of inheritance 

as well. "Some believed that certain essential characteristics, such as 

teeth, bone, and eyes, are not controlled by any physical mechanism but just 

happen." 

Deadman and Kelly's interviews revealed that the concept of 

variation was not central to their conceptual structure. They very rarely 

used it as a subsumer in their explanation of other concepts. The authors 

speculated that it may have been inadequately covered in previous studies 

and that it is "important to introduce studies of variation early in a biology 

course... to serve as a basis for understanding evolution and heredity." 

Two problem concepts were identified by Deadman and Kelly. The 

first is the naturalistic or Lamarkian interpretations that students use for 

many concepts. The second is their inability to understand probability. A 

hopeful insight was gained on deeper probing of some students who gave 

naturalistic explanations. It may be a way of saying 'I don't know.', "a 

colloquial abbreviation for a poorly understood concept." The student 

readily abandoned the naturalistic answer with subsequent probing. 
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Deadman and Kelly attribute the seeming intuitive nature of 

naturalistic or Lamarkian explanations to the anthropocentric world view 

of adolescents. Being conscious of his own needs and abilities he "intrudes 

these into his explanations." Change is conceived within individual 

organisms rather than between generations of organisms. Likewise the 

young person "feels more comfortable with certainty and will look for firm 

and simple explanations." Explanations that are probabilistic in nature 

are resisted. "The absence of a broad concept of chance, and a simple 

concept of Mendelian inheritance to act a subsumer was a major bloc on the 

development of more elaborate concepts." 

Initially Deadman and Kelly assumed that they were dealing in the 

study with concepts that were derived from incidental learning. Some, like 

knowledge of the phenomenon of evolution, were of that type. But there 

were others like adaptation, naturalistic and Lamarkian processes, were 

"of a more intuitive kind". Students were infrequently unable to define 

them or link them with discemable facts. "This prompts us to suggest that 

a number of key biological concepts may have an intuitive form or 

counterpart in the minds of children." They also suggest that some of these 

concepts may be robust and long standing and dominate students thinking 

during and after the student's schooling. Prior knowledge of these 

structures is a great value to teachers. 

Margaret Brumby's 1979 publication, an outgrowth of her doctoral 

work, examined the nature and origin of misunderstandings of natural 

selection of first year university students (Brumby, 1979). The population 

consisted of 63 university students, 49 of which had passed either A-level 

biology or zoology. The remainder had not studied biology at the A-level. 

Students responded in writing to three questions in an open response 
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format. The same three questions were translated into multiple choice 

format where students would circle the most appropriate responses. 

Distractors in that section were taken from responses given by students in 

pilot testing of the questions and were selected to reveal specific 

misunderstandings. 

There was a remarkably consistent pattern of introduction of 

incorrect responses to the written test. The terms 'good' and poor’ were 

defined in relation to Bloom's higher levels of application and analysis as 

applied to the concept of natural selection. "'Good' students (14% of the 

sample) all mentioned that individual variation exists in all populations by 

chance mutations, and correctly explained that with a change in the 

environment only some individuals will survived by natural selection 

(Brumby, 1979)." The 'poor' students (86%) accounted for change in simple 

Lamarkian terms. They saw adaptation as a process in which individuals 

became immune to changes in the environment. Few students attempted to 

introduce any concept of heredity. 

The origin of their misunderstandings Brumby found particularly 

significant. She notes four central problems in the misunderstandings 

exhibited by the ’poor' students. First, the conception that populations 

contain individual variation which arises from spontaneous mutation was 

totally absent. Second, "adaptation is described as a positive process rather 

than an the end-result of selection of the better adapted." She attributes 

some of this difficulty to inconsistent usage in textbooks. "The difference 

between an adaptive process and a selective process must be emphasized by 

teachers." Third," students so not take into account the time scales of 

evolution. They extrapolate from the idea of changes to individuals 

occurring within a lifetime to explain changes seen in populations over 
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many generations. Even though most of them had passed A-levels in life 

science, they did not understand the significance of Weissmannian 

inheritance. Fourth, they often introduced the concept of immunity to 

explain natural selection. One of the questions involved the development of 

resistance to a pesticide by an insect population. Students commonly 

described it as a case of insects getting more immune'. They did not see 

this as a case rather of descendants of particular insects who were less 

affected by the pesticide increasing in the population. 

"The pattern of misunderstandings was consistent with the results 

reported by Deadman and Kelly." Of the students who had passed A-level 

biology, 82% exhibited either partial or poor understanding of natural 

selection. Of these 59% had exhibited poor understanding. Of students who 

had not taken university level biology, 86% exhibited poor understanding of 

the concepts, with the rest exhibiting partial understanding. There is a 

bright side to this result; though not statistically significant, it may be that 

university level biology does increase understanding of natural selection 

over students who have not formally studied it. But the 82% showing little 

or no understanding is clearly disheartening. 

Brumby states that "Together with Deadman's report, this finding 

suggests that pre-existing (Lamarkian) beliefs have acted as a barrier, 

which blocks the formal learning of Darwin's theory." She also notes that 

running "Lamarkian type experiments" runs the risk of enforcing the 

intuitive misunderstandings. "Teachers have to 're-teach' this concept, in 

order to overcome students' misconceptions which block their 

understanding." No specific pedagogy or practical suggestions are given. 

In response to an educator who had vigorously attacked the curricular 

change as virtual indoctrination in Darwinism in our classrooms', 
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Brumby whimsically replied that, in light if this research, "it is a 

theoretical, rather than a real problem." 

Brumby s 1984 work caused considerable stir in science education 

circles. Its results were stunning (Brumby, 1984). She studied 

misconceptions about natural selection of 150 first year medical school 

students in Australia. Certainly these were able science students; their 

backgrounds showed years of course work in biology and other sciences. 

Written responses to a series of problems were taken. Also individual 

interviews presented further problems with students taped 'thinking 

aloud.' The problems were of greater difficulty than those in her previous 

study or that of Deadman and Kelly. In the interviews ninety percent 

showed poor or partial understanding of natural selection (59% showed 

poor understanding). They showed confusions between immunity and 

selection, the action of antibodies and antibiotics, as well as on other 

concepts. In the same time frame that the interviews were conducted 

students were attending lectures on Darwinian evolution including 

evidence of fossil 'links'. No student correctly referred to these ideas in any 

of their explanation of homologous structures. Some did refer to them but 

implied a 'master mind’ role for natural selection. 

Brumby states that "these results clearly demonstrate that the 

majority of these very able science students leave school believing that 

evolutionary change occurs a s a result of need (Brumby, 1984)". The 

lecture material given in progress with the interviews did not influence 

their conceptions. "The 'intuitive Lamarkism' in biology problems appears 

similar to the intuitive Aristotelian explanations in mechanics problems.... 

They are far more than simple errors of knowledge which can be simply 

corrected. The entire pattern of reasoning is faulty." "Indeed it is more 
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surprising to consider, not how little these students knew, but how much 

they knew incorrectly, for their answers were give with assurance, not 

hesitatingly." 

She goes on to consider the implications for pedagogy. "Lamarkian 

and Aristotelian ideas had scientific acceptance in earlier centuries. 

Perhaps intuitive scientific reasoning mirrors a kind of 'recapitulation 

theory' of the history of scientific thought (Brumby, 1984)." Should this be 

consistently found for other basic concepts then such information can be 

very useful for predicting and perhaps designing curricula to uncover and 

re-educate around major misconceptions. 

She sees a second problem in the way science is generally taught, a 

series of lectures. It is too often seen as "a body of absolute knowledge... 

recorded in books or yet to be discovered by experts." The danger of this 

approach is that it encourages students to view the learning of science as 

an exercise in rote learning. "They are learning the 'What' not the "How’." 

Brumby states that passive learning is "insufficient to bring about sufficient 

conflict in students' minds to alter their existing understanding." We 

must create curricula in which "students begin to use, rather than recite 

their understanding." 

In a study centered around the conceptual and philosophical 

foundations of evolution by natural selection E.Jungwirth of Jerusalem 

University revealed similar problems (Jungwirth, 1975). In the 1975 study 

he cites an article by the great historian of biology M. T. Ghiselin, "On the 

Semantic Pitfalls of Biological Adaptation" (Ghiselin, 1967). Ghiselin states 

that "Different basic assumptions about the nature of the universe are 

mirrored by conflicts about the definition of terms." Jungwirth 

paraphrases this quotation by "The verbal formulations of the science 
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teacher, and pupil, mirror different basic assumptions about the nature of 

the universe." This observation would seem to tell authors, editors, as well 

as teachers to be very mindful of the effects of language on the effect of their 

content communication. 

Jungwirth continues with some quotations from highly regarded 

several sources describing evolutionary processes that demonstrate 

anthropomorphic and even outspokenly teleological mechanisms. Bacteria 

"showing ingenuity". Cacti "transforming" their leaves. Limbs 

"developing for." Is the danger of high school and university students 

understanding their instructor's loose locutions very literally? Jungwirth 

thinks Yes'. 

To ascertain high school pupils succeed in the formation of certain 

basic biological concepts, and if they can differentiate between philosophical 

implications relating to these concepts, Jungwirth constructed the Test on 

Understanding of the Language of Science. It was administered to ten 4th 

form classes and ten 6th form classes and 48 third year university students 

in Israel. Lists of 4 statements were given to the students. The form of the 

test was simple. They were asked to read each statement and circle the ones 

that represented acceptable 'scientific' explanations. 

The test revealed considerable distortion in students' minds about the 

concepts of 'adaptation' and 'evolution'. 'Cart before the horse' evolution 

was quite popular in all groups (from 26% to 69%). A sample Cart before 

the horse' evolution statement would be : "When primitive plants had 

reached a certain size, additional growth would have raised the problem of 

efficient distribution of water and nutrients, so the were provided with 

transport systems." Or, "Certain plants grow in hot and dry regions and 

for that reason features developed in these plants which enable them to 
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reduce water-loss". Teleological statements were also commonly accepted 

as scientific. A sample teleological statement is: "Certain plants, which 

grow in hot and dry regions try to develop features, which will enable them 

to reduce water-loss. On average, less than one third of the university 

students were able to detect the scientifically acceptable explanation. 

University students interviewed by the author after the examination 

were asked what contributed to their poor performance. "One of the most 

frequent replies was that, in essence, university studies had contributed 

very little, if anything, to a deeper, philosophical understanding of the 

concepts under discussion here, so that the respondents had based their 

choices on their high school experience i.e. their teacher's formulations 

and locutions". The prospects are chilling for persons preparing for a 

teaching career. "The danger of a vicious circle must seriously be 

considered." Instructors and text book writers should not assume that 

"loose formulations by their pupils are meant metaphorically, but rather, 

that they actually mirror different (and faulty) assumptions about the 

nature of the universe." 

In a pair of well designed parallel studies Elizabeth Engel Clough 

and Colin Wood-Robinson explored students understanding of inheritance 

and adaptation (Clough, & Wood-Robertson, 1985a; Clough, et al., 1985b). 

In "Children's Understanding of Inheritance" Clough and Wood-Robinson 

interview of 84 British students from 12-16 years old with two series of tasks 

relating to inheritance of acquired characteristics (chopped mouse tails, 

athletes’ training, and gardner's rough skin) and inheritance of intra¬ 

specific variation (spotted markings on dogs, twin similarity, brother/sister 

similarity, and mating of a mouse born with no tail with a normal mouse). 
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Results of this study were thoroughly consistent with the studies by 

Brumby and Deadman and Kelly. There was a well developed and coherent 

set of ideas about inheritance that children brought to school. Much of it 

was either naturalistic, teleological, or Lamarkian. From age 12 to age 16 

the number of students believing that acquired characteristics over time 

would be inherited remained constant at about 45% of the group. Over that 

frame, the number of students using some form of genetic inheritance 

increased from 10% to about 50% for 16 year olds. An intuitive idea of 

particulate inheritance through a genetic entity rose from 13% to 63% in 

that time. 

Clough and Wood-Robinson noted that the results showed some 

improvement towards a better scientific understanding of inheritance. 

Nevertheless, some alternative conceptualizations, representing ideas far 

removed from scientifically accepted ones, were held by 16 year old 

students. "The present study alerts teachers to a number of commonly held 

viewpoints which do not conform to currently accepted scientific theory, 

and may constitute 'blocks ' in later understandings." Clough and Wood- 

Robinson endorsed the idea that open discussion of students conceptions 

about inheritance in a non-threatening atmosphere. The explanations put 

forward here can serve as a starting point for discussions in biology 

classes. Most importantly, from the viewpoint of the unique design of The 

Evolutionary Tool Kit they specifically stated the need for the development of 

new pedagogical strategies to aid teachers in clearing up students' 

misconceptions. "The creation of this atmosphere and the devising of 

strategies for open exploration of ideas are real challenges for science 

teachers. It seems obvious that we must find ways of incorporating ideas 
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from 'everyday experience' into our biology lessons and that extended 

discussion will be an essential component of any strategies developed." 

In "How Secondary Students Interpret Instances of Adaptation" 

Clough and Wood-Robinson interviewed the same 84 students from ages 12- 

16 using two tasks involving predicting and explaining outcomes about 

colored caterpillars on colored tree trunks, and the length of hair on arctic 

foxes. 

Again results were consistent with previous studies by Brumby and 

Deadman. From the 12 year old population to 16 year old population there 

was an increase in students who responded in a 'scientifically acceptable' 

manner from 2% to 30% for both the fox and caterpillar tasks. Naturalistic 

and Lamarkian responses were very popular. Additionally there was no 

indication of any better scientific understanding from 12 to 14 year olds. 

There was a clear improvement at 16 years. 

Clough and Wood-Robinson also strongly disagreed with the 

suggestion by Shayer that ideas about evolution are too difficult for this age 

level. "Evolution is of such central importance in modem biological thought 

that we must surely instead think of ways of teaching it more effectively." 

They do remark that students find it much more difficult than many 

teachers realize. 

As with their suggestions on teaching inheritance, Clough and 

Wood-Robinson state that "It seems clear that a way forward would be to 

start with students' ideas and to devise teaching strategies which take some 

account of them." They state, also, that perceived teleological or 

anthropomorphic responses may reflect language related difficulties, 

rather than consistent misunderstandings in some cases. Citing Jungwith 

(1977) they ask "Is it fair to attribute these interpretations to students when 
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many educators (and television programs) describe evolution in stridently 

teleological and anthropomorphic terms?" 

The authors suggest a strategy in which teachers assist students to 

clarify what they do believe "to provide them more structured opportunities 

for them to talk through ideas at length". Alternative ideas should 

definitely be included in these discussions. These, as well as scientifically 

accepted ones, should be discussed and evaluated by both the teacher and 

fellow students. The authors remark that "Some alternative theories 

mirror theories which preceded new-Darwinian theory. A deliberate link 

with the historical development of thought on evolutionary processes might 

be a useful strategy." I cannot help but comment that this is exactly the 

model proposed in The Evolutionary Tool Kit: only with this computer 

program the class now has a common environment in which to explore and 

comment on their observations and theories. 

Finally Clough and Wood-Robinson note that "rather than delaying 

the teaching of evolution beyond 16 years, we need to include it much earlier 

in the secondary science curriculum. It may be better, rather than 

ignoring it, to draw this out-of-school knowledge into our classrooms and 

laboratories and make use of it." 

J. Murphy and B. K. Hodgeson describe a university level course in 

evolution taught to 446 students at The Open University during summer 

session (Hodgson, et al., 1984; Murphy, 1984). The course used a CAL and 

distance learning format quite advanced for that time. Students did a 

computer project as one of a four part course assignment. The program 

used was EVOLVE a direct descendant of the work of Crosby (Crosby, 1973). 

EVOLVE modeled the genetic and evolutionary consequences of two 

populations of flowering plants coming together after a period of genetic 
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isolation. The driving force behind the evolutionary aspects of the model is 

that, though the plants freely intermix, hybrids have impaired fertility (FI 

hybrids have a fertility of .25). Nine genes are studied, no linkage, no 

epistasis. Genes affect the time, during the 10 week summer' that the 

plants flower. The program, running on a mainframe, provided printouts 

of allele frequencies for each year of the experiment. A version of EVOLVE, 

marketed by CONDUIT, is now available for micro-computers (see the 

following section). Hodgson (Hodgson, et al., 1984) reports that the 

curricular experiment was generally very successful (70-82% responded 

positively to the course, irrespective of their grade). 

Clearly such a program is not easily adaptable for secondary 

students. In all the screens and printouts there is nary a flower anywhere, 

only tables of alleles. Its significance, as Hodgeson states, is that this 

innovative approach shows that "CAL was not chosen selectively by 

computer enthusiasts or avoided by those with limited experience of 

computing. It is most important that simulation CAL be regarded by both 

students and teachers not as something special' but as complementary to 

traditional work. 

Frank Price in "EVOLVE: a Computer Simulation for Teaching 

Labs on Evolution" describes a computer simulation he authored for 

modeling microevolution for university level students (Price, 1985). 

EVOLVE is also currently available from CONDUIT for micro-computers. 

In this article he eloquently addresses some concerns of biologists 

attempting to use computers as teaching tools. "Many people regard 

biology laboratories as 'wet' places where you cut up frogs ... or mix colored 

beakers.... Learning about evolution is made more difficult because 

students cannot 'get their hands dirty' by doing experiments." He states 
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that a lab should not merely demonstrate, this is too cook-bookish. The goal 

of a lab should be to help students see what professionals in the discipline 

do.... But what does an evolutionary biologist do?" 

One cannot apply the standard approach of experimenting and 

testing hypotheses very easily in this discipline. Many of the models of 

evolutionary processes are highly mathematical rather than observational. 

"In essence we simulate some aspect of the real world in mathematical 

form, and then experiment with the simulation.... The concept of Hardy- 

Weinberg equilibrium and the mathematical population genetics that 

evolved from it are excellent examples." 

EVOLVE is such a model. It is a Monte Carlo simulation; it uses 

random numbers to simulate complex processes and events. It is based on 

a hypothetical organism with characteristics that make it useful for the 

simulation. One gene is studied with alleles + and 0. There are three 

genotypes: ++, +0, and 00. The alleles can affect any of four 

characteristics: survival, emigration rates of juveniles, and reproductive 

and immigration rates of adults. 

Price notes that "rates of survival, reproduction, immigration and 

emigration are not, strictly speaking phenotypes in the sense that color of a 

petal is for a flower." The rates used by EVOLVE are "statistical 

characteristics of populations of organisms. "EVOLVE incorporates the 

statistical effects of phenotypes not the phenotypes themselves." 

The model makes no assumptions about "the mode of inheritance of 

the characteristics." The user sets parameters for the pattern of 

inheritance of the two alleles. Setting survival rates at 80%, 80%, 0% for the 

genotypes will simulate a recessive lethal gene. The life cycle of the 

organism is simple. It hatches, matures over a period of time, during 
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which it may die or emigrate. At the end of the juvenile period, "surviving 

individuals become adults. Additional adults may immigrate. During 

breeding season all adults mate, produce offspring, and die." EVOLVE is 

not a cellular automata simulation. The data structure holding the 

population is a simple list. There is no environmental interaction. 

"If the population of adults exceeds an upper limit set by the student, 

the number of adults is randomly reduced to a lower limit". This artificial 

mechanism prevents overflow of memory. The reduction or population 

'crash' is independent of genotype so that surviving populations are 

representative of the initial gene pool. It is possible to drive a population to 

extinction depending on choice of reproduction and survival rates. 

The design and parameters of the simulation satisfy the Hardy- 

Weinberg conditions. All individuals are identical with respect to sex and 

age. There is no mutation and mating is random. "Because students may 

specify values for all of the other assumptions, they may 'design' a 

population that fits any experiment your want them to do on selection, 

genetic drift, and gene flow." In the article Price goes on to illustrate the 

potential of EVOLVE with several experiments on selection of dominant or 

recessive alleles. It is a remarkably versatile and well crafted package. 

Several of the experiments in The Evolutionary Tool Kit manual are and 

modeled after Price's suggestions. 

There is one informal study of the effectiveness of EVOLVE and some 

of the Chelsea science simulations on high school students (Ybarrondo, 

1984). Ybarrondo conducted a 3 week summer seminar in population 

genetics and evolution for AP biology students. The treatment group 

received CAI labs in lieu of a traditional laboratory experience received by 

the control group. There was no significant difference in content 
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comprehension between the groups. There was no quantitative measure 

attempted of affective areas. 3 he written student responses reviewing their 

CAI experiences were very positive. 

Ola Hallden describes a very rich and penetrating study of the 

different perceptions and perspectives of secondary students and their 

teachers in the study of evolution (Hallden, 1988). It is the most involved 

and conceptually complex study done in this area. I will attempt to provide 

only a skeletal outline of his method and results. 

Hallden notes that many previous researchers remark that 

"understanding the significance and meaning of diversity of organisms 

within a species is a major stumbling block for pupils attempting to explain 

evolution." He noted the work of Longden, Radford, and Stewart (Longden, 

1982; Radford, & Stewart, 1982; Stewart, 1983) recognizing genetics as an 

area of particular difficulty for secondary students. He suggests that 

"although instruction in genetics usually precedes instruction in evolution, 

it does not give pupils a means for understanding the mechanisms of 

evolution." Including those cited by Hallden there are many studies citing 

'successful' students lack of comprehension of material in genetics even 

after attaining good grades in their genetics courses (Brown, 1990; 

Browning, et al., 1988; Marek, 1986; Martin, 1983; Radford, et al., 1982; 

Simmons, 1987; Slack, 1989; Slack, 1990; Stewart, et al., 1990; Thomson, et 

al., 1985). Even 'good' instruction in genetics fails to provide students with 

an understanding of variation in a population. Hallden designed an 

observational study of instruction in genetics and evolution to probe 

students understanding and perspectives on the content and the 

instruction. 
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The study was earned out in a 11th year Swedish secondary school 

with 27 pupils averaging 17 years of age. A seven week, 30 lesson, unit on 

genetics and evolution was given. Instruction was in standard lecture, 

discussion, demonstration, laboratory format. No computer simulations 

were used. Students understanding of the materials was observed and 

analyzed in two forms, written and oral explanations. Before and after the 

instruction students were asked "to write an essay explaining the 

development of species." At the end of the instruction, two groups of three 

students were asked to give an oral presentation "of how traits and genetic 

predispositions are inherited". Presumably these were the most able 

students; no selection information was provided. The groups met and 

discussed for an hour to discuss' and arrive at a consensus for the 

presentation. The discussions were taped. 

Both the essay explanations and oral presentations contained 

mountains of confusion. There was very little content difference between 

the pre and post instruction explanations in the essays. The only 

pronounced difference was that seven students who had previously written 

nothing, now produced an essay. The same confusions and misconceptions 

about typological populations, teleological and naturalistic causes', and 

Lamarkian inheritance filled their writing, much in agreement with 

earlier researchers. Hallden concluded that "the conceptual problems 

encountered by pupils arise independently of their studies of genetics." 

The problems were very deep seated. In responding to the inquiry of 

"Why do students adapt a surface approach, rather than a deep approach?" 

Hallden found that it was very much the case that they did not get 'the 

point' because they were not looking for it. The instruction appeared to be 

disjointed to the students. The framework had been logically set out: an 
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experiment on mice breeding, introduction to genetics in the context of 

evolution, the mechanisms of inheritance, cell division, traits appearing in 

offspring, and ending with deviations from the normal. "The sequence 

made the content of the instruction inaccessible to the pupils, preventing 

them from forming a coherent picture of the mechanisms of genetics and 

their relationship to evolution." To understand "DNA and cell division, one 

must know something about how it is constructed." Understanding gene 

distribution during cell division one needs to know about cell division and 

phases. They did not understand the 'chain of events’ 

Beyond the problem of the whole becoming lost in the detail Hallden 

noted another significant difficulty relating to the domains of knowledge 

presented. The initial questions touched on in the opening of the course 

made sense on a commonsense level. "How is inheritance passed on?" 

"How do species evolve or change?" When answers were explored within 

the context of the course material and the phenomena dealt with in the 

course "a major gap" appeared between the students' understanding and 

classroom experiences and course-specific questions. This change from 

"commonsense questions to course-specific questions .... also put a 

limitation on what type of explanation appeared to be appropriate." The 

students did not understand the kind of explanation that would be 

appropriate at this different level. The students persisted in asking their 

"own questions, whether or not they are relevant." The explanations or 

concepts presented in the material will then "be incomprehensible or lack 

real value as explanations to his questions." 

Beyond considerations of students alternative frameworks Hallden 

argues for the existence of a meta-level, "conceptions of the subject field as a 

whole, and what counts as an explanation within the subject field as a 
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whole." Understandings determined in this meta-level determine "the 

relevance of the information presented in the teaching." Schools should try 

to clarify beyond what questions are being asked, but also what kinds of 

explanations are needed, as well as "what questions we are not providing 

answers to." 

Lawrence Scharmann study "Enhancing an Understanding of the 

Premises of Evolutionary Theory: The Influence of a Diversified 

Instructional Strategy" (Scharmann, 1990) builds on premises and 

observations similar to those of Hallden but he incorporates a practical 

pedagogical tool and studies its effectiveness. The subjects were members 

of two sections of a concurrent, summer session college biology course for 

non-majors (n=30). The course duration was three weeks; the format was 

150 minutes of lecture, and 120 minutes of laboratory each day for six days. 

The unit on evolution was introduced early in the course; it lasted one 

week. One the control group received standard lecture, demonstration, lab 

work. The treatment group received what Scharmann called diversified 

instructional strategy'. 

The diversified instructional strategy consisted of group discussion of 

students' written responses to four questions "regarding the potential 

controversy between evolutionary theory versus creation origins." The 

questions were as follows: "(1) From what you have been taught in science 

classes, explain how you feel about the theory evolution. (2) From what you 

have read or been taught, explain how you feel about creation origins. (3) 

Do you perceive there to be a conflict in your feelings or responses to 

questions 1 & 2? (4) Do you believe that science teachers should present 

creation as well as evolutionary origins in their classes? Why or why not?" 
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Students in the test group were then assigned into random groups 

and discussed their responses as an exercise in critical thinking. They 

were asked to find the best reasons for teaching one view only (evolution or 

creationism), both, or neither. They were then asked to make a judgement 

on their discussions and arguments in each of the three positions. After 

the group work the instructor provided an interactive 

lecture/demonstration attempting to "resolve the misconceptions that arose 

as a consequence of the small group sessions." Students were finally asked 

to reflect individually on their feelings on these issues. 

A pre and post test in Likert format was given to assess content 

knowledge and understanding of science and its methods. The instrument 

was constructed by Johnson and Peebles (Johnson, & Peebles, 1987). No 

difference was measured in content understanding of evolutionary items 

between the groups. The experimental group did show "greater 

understanding of the nature of science and attitude toward evolution (p < 

0.05). In commenting on the null result for difference in understanding 

versus the positive result for understanding science and evolution, 

Scharmann suggests that "non-major biology majors are less concerned 

with learning the specific content of a course in general biology." Since 

there was no difference in content understanding, he further suggests that 

general biology instructors be aware "that the factual content taught is 

potentially less important than the development of learner attitudes 

regarding biology and the application of biological concepts on both a 

personal and social level." 

Edgar Greene Jr. in his article "The Logic of University Students' 

Misunderstanding of Natural Selection" enquired into the misconceptions 

about natural selection among 322 university sophomores (education 
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majors) at Appalachian State University (Greene Jr., 1990). Students were 

in 11 classes spread over 8 years (1977-1984). The vast majority were 

sophomores taking the course in fulfillment of a requirement for an 

education degree; 90% were white females. 

Greene narrowed the inquiry focus of other researchers in an 

attempt to find any patterns in the misconceptions students consistently 

showed. Evolution problems used as measures were part of the final 

assessment process of the course. Greene was the instructor. A sample 

problem is: "The ancestor of the modem day bat could not fly, resembling a 

shrew or mouse. Assume that the bat evolved wings from the arm and 

paws of shrew-like ancestors. Explain how this could have happened using 

the idea of natural selection (Greene Jr., 1990)." 

Citing Ernst Mayr (Mayr, 1988), Greene set out two major 

assumptions that are necessary to understand natural selection. The first 

is the recognition of populational thinking. If students assume that "a 

population is a collection of individuals representing a common type, then 

variations among individuals will have little importance in the change 

process of the population." This is typological thinking. Student responses 

to the questions were categorized as typological focus or populational focus. 

Greene attempted to see if there was any relation between the kind of 

population thinking used and the kind of change process students used in 

their explanations. He defined two views for change: closed' or 'open. 

'Closed' change processes would create changes without reference to any 

outside information. Also 'closed' change would not be linked in any way to 

'need' or changing environments. Darwinian selection needs a closed 

change process such as mutation at the molecular level. Other closed 

change processes have appeared in the history of ideas; orthogensis is one. 
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Orthogensis explains change by stating that it is the result of patterns 

within the organism constantly unfolding generation after generation 

(Bowler, 1989; Greene Jr., 1990). The changes could be positive or negative, 

accounting for survival or extinctions. No students advocated this line of 

thought, however. A closed process also creates a range of variations. 

Open change processes are those that are not closed (Lamarkian, 

teleological, naturalistic). A process that used the 'need' of the organism, 

or a 'need' set by the environment was termed open. An open process could 

create variation also. 

Student responses were also classified, beyond the population focus, 

or the kind of change process used, and by the type of selection chosen. 

Green categorized student selection processes as Darwinian, non¬ 

functional, and non-selection. If the selection process has a mechanism for 

judging which individuals live or die it is Darwinian. If a trait is deemed 

already advantageous, and that trait is used to confirm that individuals 

possessing it will survive, then the student is using non-functional 

selection. "No judgement is made between individuals with different 

traits." "If the student did not make a logical connection between survival 

and death and the definitions of advantageous or disadvantageous or the 

response does not mention survival or death" the response is deemed non¬ 

selection. 

Greene hypothesizes that there are specific patterns in student 

responses. Students using a teleological thinking will use a more directed 

change process and a less functional selection process on an evolution 

problem. A common assumption that students make is that "When nature 

changes, it is not at random." This is teleological thought. This is at odds 

with the random nature of variation in Darwinian natural selection. 
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Greene hypothesizes that students using teleological thinking will use a 

more directed change process and a less functional selection process on an 

evolution problem. 

Student responses were scored and tabulated. Reliability of the 

classification was tested by having other biology instructors analyze 10 

responses randomly chosen. The reliability estimate from this procedure is 

96%. Null hypotheses were formulated and checked against data from the 

scoring of the student responses. 

The results of the study again were in agreement with previous 

studies by Brumby, Deadman, and Clough. Only 3% of the students showed 

a ’true’ understanding of natural selection. By this Greene meant: a 

populational focus, a closed change process; and a Darwinian selection 

mechanism. However 43% demonstrated a functional understanding 

within a typological framework. By contrast 17% of the students used 

Lamarkian explanations: typological focus, open change process, and non¬ 

functional selection or non-selection. 

There is a structure to students misunderstandings Greene's study 

clearly shows. The greatest stumbling block is the development of a 

population focus for the students' thinking. Green's study shows that if a 

student views a population as a repository of many variations, then the 

student will also view the change process as closed. It seems that Mayr is 

correct. If one can get a student to think with a populational focus, rather 

than a typological one, more than half the battle is won. 

If the student thinks typologically "there is a relationship between the 

degree of the directedness of the change process and the use of less 

functional selection processes." Highly directed change implies choice of a 

less functional selection process. Less directed change implies a choice of 
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selection process that is more functional in a Darwinian sense. This result 

suggests that the change and selection process are chosen by the student 

so that they are compatible.'' Students are trying to make sense of the ideas, 

but they are fitting them into an existing conceptual framework. "The logic 

between the change and the selection processes suggests that the student 

tries to fit the change and the selection process into the whole rather than 

using each part independently." "Students starting with the assumption of 

non-random change will not grasp the meaning of selection." For them 

"survival or death" is the product of natural selection, not part of the 

process. Also students using the idea that acquired characteristics are 

inherited (Lamarkism) will also use non-selection. 

On the meaning of this study for biology teachers, Greene states, 

"Students are trying to make the idea of evolution make sense." Biology 

teachers should be mindful of the probable roots of students' 

misconceptions. It is important that topics be integrated around the 

principle involved in the assumptions. "The idea of populations filled with 

variations as nature's way to insure against an unpredictable future makes 

sexual reproduction and meiosis, which ensure variations, fit tightly 

together rather than separate and independent processes as is often 

taught." The weakness of directed evolution and Lamarkian ideas must be 

openly addressed. Lamark's explanation just doesn't work; one must not 

just take the teacher's word for it. "It is through the understanding of 

students' misunderstandings that effective instruction can be created." 

Beth Bishop and Charles Anderson published a recent study titled 

"Student Conceptions of Natural Selection and Its Role in Evolution" 

(Bishop, et al., 1990). It builds on the work of Novak, Brumby, Clough, and 

parallels that of Greene and extends it to practical pedagogy. The results 
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are most illustrative. Bishop and Anderson studied the effects of 

instruction specifically designed to bring about conceptual change in 

evolution and natural selection on 110 college students, mostly juniors and 

seniors in a one term non-majors course in biology. "We used techniques of 

research on conceptual change in order to understand better the nature of 

our students' difficulties" "On the basis of this understanding we hoped to 

develop teaching materials and techniques that better helped students to 

overcome their difficulties". 

Using principles of conceptual change learning, the authors 

attempted "to develop instructional materials, including, lecture 

overheads, laboratory activities, and problem sets that would result in 

students' a) becoming dissatisfied with their existing conceptions, b) 

achieving minimal understanding of the scientific conception, and c) 

seeing that the scientific understanding is useful and plausible in a variety 

of situations (Bishop, et al., 1990)." The full module is available from the 

Institute for Research on Teaching, Michigan State University, East 

Lansing, Michigan. No computer simulations of evolution or natural 

selective processes were used. 

The initial concepts and beliefs of the students were assessed by 

instruments piloted as a post test on pilot groups. "Patterns of student 

responses which appeared to differ from correct understanding as we had 

defined it were identified and used as the basis for hypotheses concerning 

the nature of students' conceptions." The revised instrument, including 

open written questions, and multiple choice items was administered to 110 

pre-test students and post test students. Using a description of the student 

reposes devised in the pilot study, student responses were coded, and 

conception scores assigned to each on the basis of test responses. Also data 
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was taken on the number of years of biology studied prior to the biology 

course. Students were also asked "Do you believe the theory of evolution to 

be truthful?" 

Student responses on the tests were tabulated by percent of the 

population comprehending three basic issues. The first issue was the 

origin and survival of new traits. Its associated scientific conception was 

that random processes are responsible for the appearance of traits, and that 

natural selection accounts for the survival or disappearance of the 

individuals with these traits. This is a clear statement of the two fold 

nature of Darwinian natural selection. The second issue was the role of 

variation within a population. Its associated scientific conception was that 

variable population is essential for evolution. The third issue was 

evolutionary change. Its associated scientific conception was that 

evolutionary change involves changing proportions of individuals with 

discrete traits. 

Analysis of both the pre and post tests of conceptual understanding 

revealed remarkably low scores all round. Even with students who had 

three or more years of biology instruction only 31% demonstrated an 

understanding of the second issue. That was the highest score. These 

same students scored 3% and 17% on issues one (random processes and 

natural selection) and two (nature of evolutionary change). 

Another remarkable result was that "previous biology instruction did 

not "seem to have any effect on the the students’ ability to learn the 

scientific conceptions during the biology course." Also there was no 

significant association of belief in any of the scientific conceptions on the 

post test with any number of biology courses taken on any of the issues. 
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On the positive side, the effect of the instruction was to increase the 

number of students able to use scientific conceptions to explain evolutionary 

changes from 25% to over 50% on all three of the issues. Corresponding 

naive beliefs decreased. Bishop and Anderson plainly state: "These results 

indicate two things: First, the concepts of evolution by natural selection are 

far more difficult for students to grasp than most biologists imagine. 

Second, many students can change their naive conceptions on the subject if 

instructors are aware of them and are prepared to confront them." They 

also admit that even with specially prepared materials they were not able 

"to help a significant number of students." 

Results on belief in theory of evolution were also interesting. In the 

pre-test the believer/non-believer/undecided ratio in percentages was 59: 11: 

30. In the post-test the results were 49: 26 : 27. Sixty seven percent did not 

change their beliefs after instruction. "Of the 11 who did change their 

belief, it was into the unsure category. There were no changes from 

believer to non-believer or visa versa." Interestingly "student conceptions of 

the process of evolutionary change were not associated with the belief (or 

lack of belief) in the truthfulness of evolution." In fact the percentage of 

non-believers who understood the theory of evolution (73: 73: 80, quoted as 

percentages understanding the three issues previously), as measured by 

Bishop and Anderson's instrument, was slightly higher, though not 

significantly so, than the percentage of believers in the theory (50: 57: 57). 

There implications for educators of this study are considerable. 

First, if the sample of students taken in this study are "representative of 

college educated non-scientists', then it appears that a majority of people on 

both sides of the evolution-creation debate do not understand the process of 

natural selection or its role in evolution." It seems that the college students 
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in East Lansing are not alone. Some men in black robes sitting in high 

places share some considerable confusions on this topic as well (Gould, 

1991b). Bishop and Anderson, in seeming resignation, state that much of 

the debate is reduced to, as creationists argue, a dispute between two 

different kinds of faith." Approximately half of the students claiming to 

believe in the theory do so based on an acceptance of the authority or 

prestige of science, rather than on any understanding of the reasoning that 

led to acceptance of the theory. 

Biologists may find disturbing the lack of appreciation of the public 

toward the central theory of the discipline. Perhaps in open sympathy with 

Brumby's comment on the effectiveness of instruction in natural selection, 

Bishop and Anderson remark, "it should be comforting to those who fear 

that instruction in evolution will cause students to abandon religious 

beliefs." The results do indicate that over half the 'well-educated' 

population possess naive conceptions about this central idea of modern 

biological thought. 

Bishop and Anderson, at the end of the article, speculate on why the 

population holds these beliefs. First, they suggest, the simplicity and logic 

of the naive ideas are attractive. "It would be much simpler if organisms 

could simply acquire those features necessary for survival; but nature does 

not operate in this manner." They posit a second potential reason as 

inaccurate language in popularizations of evolutionary history. "As the 

climate changed, the plants and animals had to adapt or face extinction." 

A biologist may hear and understand these statements much differently 

than "a member of the general public for whom the program was 

intended." 
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The alternatives offered by Bishop and Anderson are, I feel, a bit 

simplistic. The problem cannot be laid at the feet of script writers of 

educational documentaries. The roots of naive biology' run deeper. Even 

conceptually honed conventional pedagogy designed to produce conceptual 

change is not effective. Perhaps unconventional pedagogy is more in order. 

With The Evolutionary Tool Kit I propose to permit students to build and 

experiment with their own micro-worlds. They can do "what ifs" with 

systems of inheritance and reproductive strategies. One of the problems 

with presenting the central ideas of evolution and natural selection, as 

pointed out by Clough, Greene, and Mayr is the typological nature of 

language itself. If students can experiment with an non-verbal systems 

such as worlds defined through cellular automata and rules that govern 

them, perhaps a new level of understanding can be reached. 

A recent study by Don Ploger of UC Berkeley (Ploger, 1991), though 

not on instruction in evolution or natural selection, shows the possibilities 

of such an unconventional approach. Ploger describes the use of Boxer a 

computational medium based on Logo described by A. DiSessa (DiSessa, & 

Abelson, 1986). Boxer is a concept simulator much like The Evolutionary 

Tool Kit. It simple, more general, but it is not dynamic, and, I feel, not as 

easily adaptable for specific investigations into the nature of variations, 

inheritance, and randomness in populations as is The Evolutionary Tool 

Kit- 

Boxer permits students to draw boxes on the screen and label them at 

will. These are really Logo sprites, capable of limited movement. Several 

layers of diagrams are permitted. Ploger used Boxer to permit high school 

students to model for themselves the uptake of glucose by muscle cells. 

Using Boxer students constructed a narrative that described a muscle cell 
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(represented by a large rectangle). Sprites representing glucose (composed 

of a simple pattern of smaller boxes) and insulin (again a different pattern 

of boxes), the cell receptor, and the carrier protein. The representation of 

insulin and the cell receptor schematically indicated the key in latch’ 

nature of the interaction. In a more advanced model the student indicated 

whether the insulin was bound or not. The student wrote in the Boxer 

medium simple routines that permitted the sprites to move and 

demonstrate the function of insulin and the cell receptor. The student later 

"became interested in what happened to the glucose after it entered the 

cell." 

The student continued the process to make a more detailed model of 

glycolysis "which simultaneously presents the cellular and molecular 

views of the process." Flipping through 'cards' in the Boxer medium 

permitted the student to zoom in and out of the levels. The student 

advanced through a series of models, the first being very crude, the later 

ones more sophisticated, though still not advanced as the 'right' way 

according to modern biology. In another article Ploger explores extensions 

of this idea in a historical context (Ploger, 1990). Students used Boxer to 

"investigate Sanger's technique for determining the sequence of amino 

acids in a protein." Students built their own models describing initial 

work, then improved on the models to illustrate finer and finer detail in 

their representations. 

Mitchel Resnick and Brian Silverman, in Dewdney's new 

recreational computing magazine Algorithm described an informal 

investigation in genetics using Logo on a work station class machine 

(Resnick, & Silverman, 1991). These authors were surprised to find that the 

pattern of trait inheritance of their creations followed precise mathematical 
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lines. On reviewing the literature they found that they had 'rediscovered' 

the Hardy-Weinberg equilibrium. The design and implementation of 

interface of The Evolutionary Tool Kit was begun a year before the 

publication of the ideas of Resnick and Silverman. 

The Evolutionary Tool Kit is intended to provide a similar 

computational medium for early secondary life science students to explore 

the fundamental ideas of evolution, natural selection, and evolutionary 

biology. 

Available Commercial Programs On Evolution and Natural Selection 

Dr. Harold Modell of the University of Washington at Seattle, Editor 

of the newsletter Computers for Life Science Educators, maintains a listing 

of available software for life science educators. In the January 1991 edition 

of the newsletter Dr. Modell listed 23 programs as resources for educators 

in evolutionary biology (Modell, 1991). The following discussion describes 

and offers a brief critique of programs in Dr. Modell's list relevant to 

middle and secondary school science educators. Only programs that focus 

on student interaction with material are discussed; tutorial programs are 

omitted. 

Of special note is a very recent resource article "Resources for 

Teaching Evolutionary Biology Labs" published in The American Biology 

Teacher (McComas, 1992). After discussing common lab activities on 

evolution in textbooks and lab manuals, McComas noted "a certain 

uniformity in the activities commonly provided in these published sources." 

McComas, in an attempt to "bridge the gap between what is readily 

available in previously mentioned sources (texts/lab manuals)" lists 18 

"non-textbook laboratory exercises dealing with aspects of evolution. None 
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of the entries contain any computer simulations. Price's EVOLVE or the 

simulations by the Chelsea Science Series are not noted. 

Qh, Deer! by the Minnesota Educational Computer Consortium (5- 

9). First published in 1985 Oh, Deer! received glowing reviews by educators 

(Willis, Hovey, & Hovey, 1987). Based on a real life model, Oh. Deer! 

challenges students to manage a herd of white-tailed deer in a residential 

area. It fosters an understanding of population dynamics while giving 

students a feeling for the effects of controlled and uncontrolled variables. 

Following the innovative design of many M.E.C.C. products, Oh. Deer! 

utilizes several levels of interaction with students. Much of the information 

and feedback from decisions made by students running the simulation is in 

a written format, fitting well with Gardner's "linguistic intelligence". 

Reading level is appropriately set at the 4th grade level. 

Considerations of costs of each of the actions suggested as well as 

costs of the damage done by the deer must also be part of the students' 

decision processes. Students track the size of the herd off the computer by 

plotting information given in textual form on the screen. Students 

construct their own graphs from data collected from experiments or 

surveys done in the program to evaluate their progress. At each option a 

random element, a 10% chance of a viral infection, forest fire, or 

construction project, impacts the size of the herd. The program is driven by 

a finite differences model of a deer population. A limitation of the program 

is that no opportunity is given to explore other animals, or to investigate 

other related topics such as gene pools, and dynamic inheritance. The 

"deer" are fundamentally a static collective entity. There is no way for 

students to gain an understanding of the importance of variation in a 
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population from models constructed on this line. This same modeling 

system lies at the core of many other designs. 

Mgndglbugs by Focus Media (7-12) explores the fundamentals of 

genetics and heredity. It includes a tutorial and several simulations. 

Students breed generations of 'bugs' through monohybrid and dihybrid 

crosses. The program summarizes in Punnet Squares the results of their 

experiments. There is an animated Punnet Squares program that provides 

a fine illustration of this genetic bookkeeping heuristic. 

In general Mendelbugrs is an excellent introduction to Mendelian 

genetics. A minor inconvenience is caused by the fact that the shapes of 

the bugs, as well as the pattern of inheritance is fixed by the program. 

More serious pedagogical difficulty arises when trying to integrate 

treatments of genetics as in Mendelbugs with evolutionary theory or with a 

sense of dynamics of the genes in the population. The problem resides not 

in the program but in the nature of Mendelian inheritance and its relation 

to change. There is no way for students to include a fitness function on any 

of the crosses. It is very difficult for the student to get a feel for why the 

Mendelian patterns have anything to do with evolution or change. 

Natural Causes by Q.E.D. Educational Computing (7-12) is based on 

predator-prey-environment relationships on the nearly closed moose/wolf 

ecosystem on Isle Royale, Michigan. It is based on difference equations 

models, giving students limited control over variables like immigration, 

emigration, mortality, natality, carrying capacity and the effects of severe 

weather and disease on the moose or wolf populations. Students running 

the simulation can vary any of the above quantities for either of the 

populations and try to predict and explain the outcome. Output is almost 
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exclusively quantitative or graphical expression of quantitative population 

data. 

Population Ecology and Genetics by Edutech of Cambridge MA (10- 

College) explores population genetics covering topics like Hardy-Wienberg 

equilibrium, and simulations of natural selection, genetic drift, inbreeding, 

mutation , migration, and gene flow. The program also includes modules 

on population ecology that can test hypotheses about systems in nature for 

making future predictions of population sizes and values of variables. 

Population Ecology and Genetics also permits exploration of exponential 

logistic, discrete, geometric, Leslie, Lotka-Volterra competition, as well as 

Volterra predator-prey and MacArthur predator-prey models of population 

growth. Output is generally quantitative graphics. 

This two disk set is a clearly potent brew. Considerable class work 

and mathematical training is needed to understand and run the 

simulations intelligently. The underlying model again is a set of linked 

difference equations in which the student has some control over various 

coefficients selected from various menus. Population Ecology and Genetics 

is by far the most comprehensive offering in this area. One problem does 

surface after running this simulation for a while. One cannot help feeling 

that this simulation (perhaps it is the general method of using computers to 

teach topics in this manner) somehow fundamentally begs the question. 

One can easily see students asking "What is being studied: life or 

mathematics?" "Where are the genes that are mutating or flowing' or 

'drifting' anyway?" It is certainly true that the implementation of the 

various theoretical models is cleverly done. Unfortunately, because of the 

modeling strategy chosen, there are no 'populations' composed of 

individuals, nor are there any individual genes’. 
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PfluGen; Population Genetics Simulation (9-College) explores Hardy- 

Weinberg Law and concepts of genes in populations. Students can select 

cases that violate any of four conditions and observe effect on the gene, 

genotype and phenotype frequencies over time. Output is solely tables of 

gene frequencies. No graphics are employed. Current technology and 

general 'computer literacy' of average students is such that the whole 

simulation could be set up in Excel. Excel, or other general spreadsheets, 

also have built in powerful graphical display utilities permitting users to 

share, manipulate and display data in any way he or she sees fit. This 

simulation, as well as Popgrow. Balance: Predator-Prev Simulation. 

Moths: Peppered Moth Evolution, and even complex simulations EVOLUT. 

could be set up by students in a spreadsheet format, including graphical 

displays of results surpassing those in the original programs. 

Popgrow: (9-12) Population Growth Simulation by Diversified 

Educational Enterprises permits students to experiment with three 

population growth models manipulating variables. This is the weakest of 

the simulations listed. 

Balance: Predator-Prev Simulation by Diversified Educational 

Enterprises (9-12). Students manipulate variables of food supply, carrying 

capacity, environmental conditions and external pressures to explore 

effects on population. Tabular and graphic output of students' experiments 

are produced. Though control of emmigration and immigration and 

natality rates is permitted, there is no real 'gene pool'. Mutation is not 

permitted 

Moths: Peppered Moth Evolution: by Diversified Educational 

Enterprises (8-12) students examine effects of changing environment on 

the numbers of light and dark colored peppered moths in a population. The 
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model is virtually identical with that in Balance: Predator-Prey Simulation 

except that there are two linked populations undergoing predation. Output 

is given as quantitative graphics. This could be done, with a few well 

chosen equations, in any standard speadsheet. In fact this type of problem, 

with this form of global modeling, is ideal for a program like Stella. 

EVOLVE by Frank Price, available from COMPRESS, has already 

been partially described. It is a fine simulation for its intended purposes. 

It does not permit mutation in any temporally extended sense, nor does it 

permit the modeling of fitness other than setting survival rates for various 

genotypes. If the student has a firm grasp of populational thinking in 

his/her first meeting with the organisms in EVOLVE they can learn a 

great deal. If the student thinks typologically, the simulation cannot easily 

help a student overcome that problem. 

EVOLUT: A Unit on Natural Selection (10-college) by S. McCormick, 

available from Conduit Software, University of Iowa, is a simulation based 

on linked difference equations. First published in 1980 by the Chelsea 

College Science Project, EVOLUT demonstrates the beginnings of a trend 

in science education in which computer simulations were designed to 

involve students actively in the learning process. It is a direct descendant 

of the modeling done by James Crosby on the genetics of the evening 

primrose in the 1960's. It shares some of that previous model's brilliant 

insights as well as some of its pedagogic difficulties. Experiments in 

evolution or population genetics in EVOLUT take minutes instead 

millennia, clearly a pedagogical advantage. 

With EVOLUT students can select several scenarios to run: 

Mendel's experiments with mixing, counting, and breeding peas; sickle 

cell anemia with its condition of heterozygous advantage; color banding on 
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snails; differential allele selection in plants growing on slag heaps (similar 

to Crosby s models); and the selection process of the gray and black forms of 

the British Peppered Moth in the 19th century. For its time frame this 

package was quite forward looking. Students can interact with the 

material in a more meaningful manner than if the ideas were taken off the 

printed page. Limiting the potential for this product were some of the 

examples, as well as many of the supporting materials. Unfortunately 

there is not a pea, snail, plant, or moth to be seen in any of the runs. A 

great number of graphs keep the user informed about the allele frequencies 

and their time dependant evolution. The printed support materials were 

unavailable outside Britain. Many of the examples would be familiar only 

to inhabitants of those isles. The limited use of graphics and presentation 

of data solely through highly structured tables on the screen or in print 

unfortunately confines this program to being a specialist's tool in a general 

science curriculum. 

Similar criticisms, from the view point of use as a tool in developing 

populational thinking in secondary students, can be made of another 

program from the Chelsea Science series. LINKOVER. Understanding of 

the basic issues is assumed before the program starts. As the above 

research shows, the assumption is not generally warranted. 

Beyond the lack of concreteness and a clear analogy to what is being 

modeled, a very important pedagogical idea missing. With global 

computational structures like those in EVOLUT there is no way for 

students to see the feedback from the micro or local level to the macro or 

global level of conditions effecting both the organism and the environment 

(Langton, 1991). The unit of selection must be the individual gene 

(Dawkins, 1976; Dawkins, 1983; Maynard Smith, 1982; Ridley, 1983); yet 
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genes are not at the center of any of these models. It is the gene that affects 

the growth, development, and function of the organism, which, in turn 

affects other organisms and the environment, which, in turn, effects, 

through the process of natural selection, the populations of genes. Models 

based on cellular automata can provide that necessary link. 

Steven Sepe describes a program called EVO (Sepe, 1988); it is not 

commercially available. Organisms in EVO resemble the world of 

Dewdney's sharks and fishes. Like Resnick and Silverman, Sepe has gone 

beyond the typological definition of Dewdney's world so that each organism 

has particular characteristics. It is written in C for an MS/DOS 

environment. It possesses a limitation of 640K for the grid and data. 

Reproduction is asexual. The simulation runs very slowly; several hours 

are needed for a single run. Characteristics include: lifespan, number of 

offspring, adaptive index, and dispersion of young. Interaction with the 

substrate is not modeled. The ’adaptive index’ measures "the chance of 

survival when competing with other organisms. The greater the adaptative 

index, the better the organism is adapted to the current conditions." The 

user can also vary the mutation rate. 

Although EVO does have some pedagogical potential I find the 

adaptive index' variable confusing and even circular. The definitions of 

adaptation, natural selection, fitness, and survival potential should be 

external to the variables of the program. The student should be the source 

of these analytical concepts in his or her attempt to understand the analogs 

of natural processes in the simulation. EVO does not clarify the 

fundamental concepts behind natural selection that the previous studies 

have shown to be so confusing to students. 
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A final evolution simulation came to my attention during the final 

draft of this paper. John Jungck and a group of biology educators has 

announced a series of new simulations titled BioQuest (Wright, 1992). His 

Genetic Cpngtructipn Kit is one of them. The simulations are intended for 

college students. One of the simulations titled Biota addresses evolution 

and population genetics. The program was not available to me for review at 

the time of publication. 

Available Commercial Packages Using Cellular Automata 

There are six packages based on cellular automata currently 

available for educators. Three are marketed at the national level. 

Life and Cellular Automata Technisoft Engineering, Bremerton, 

WA. This Macintosh based program, published in 1985 incorporates 

Conway's GAME OF LIFE, as well as several other more complex cellular 

automata simulations. The review of Life and Cellular Automata by 

Willis, Hovey, and Hovey (Willis, et al., 1987) gives some idea of the reaction 

of life science educators to the educational possibilities and pitfalls of 

cellular automata. "Life and Cellular Automata differs drastically from 

most simulations reviewed . . . because the program simulates abstract 

concepts instead of ’real world' events." The authors further state that 

"Another 'problem' with this simulation is the fact that it can be used in 

many different classes - from a high school biology class to a graduate level 

computer science course." Later the authors state that "Life and Cellular 

Automata thus requires more careful planning, and often much more 

preparation, than many simulations." Willis, Hovey, and Hovey set the 

audience for the program as "Advanced or accelerated high school classes 

in computer science, math, botany, and college classes in computer 
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science, math, botany. The Macintosh interface makes the program easy 

to use and the concepts it addresses very easy to understand. 

It seems that while simulations based on cellular automata pose 

significant problems for reviewers, the same may not true for students. 

One wonders what real world event' is captured in the coefficients of Lotka- 

Volterra predator/prey equations. Of particular interest is the reviewer's 

concern about the general applicability of the cellular automata modeling. 

A decompartmentalization of science is very much underway in the halls of 

research (Clark, 1989). The Human Genome Project will require the 

combined resources of thousands of geneticists, molecular biologists, 

mathematicians, and computer scientists for several decades (Lander, 

Langridge, & Saccocio, 1991). It is estimated that there is a serious 

shortage of computational biologists needed for this type of work (Frenkel, 

1991). Much planning and careful preparation will be required for this most 

important project. New ways to capture massive amounts of data from the 

estimated three billion base pairs of the human genome are being planned. 

Designs for teams of biologists, microbiologists, geneticists, and computer 

scientists are being formulated to start preliminary compilations of the data 

(Lander, et al., 1991). Why not ask the same careful interdisciplinary 

planning and concern from science educators attempting to restructure 

their own curriculum? 

The response to Life and Cellular Automata shows that a great deal 

of work must be done over the next decade by science educators and schools 

of education. A massive quantity of new knowledge is being created by a 

synergy of many disciplines. The Human Genome Project is but one 

example. Our students, and most importantly, our future science teachers 

must know about these developments if they are to prepare students to 
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understand the world and century in which they will live. The current 

compartmentalized curriculum is not well suited to receive, much less 

teach this new knowledge. New ways of structuring and teaching must be 

found. 

In defense of Willis, Hovey, and Hovey's criticism of Life and 

Cellular Automata, the software indeed may have limited application in the 

life science curriculum. The rules by which the cells interact are 

restricted. Many are seemingly "non-biological", or so abstract as to be 

biologically meaningless. The model itself holds a great deal of potential 

that deserves exploration. 

Phantom Fish Tank: An Ecology of Mind by Logo Computer Systems 

Incorporated, published in 1987,. provides a similar approach to automata 

as Life and Cellular Automata for younger students. It is also available in 

a variety of machine formats. Students can explore automata by seeding 

the screen with organisms that live or die according to global rules defined 

by the user. The full range of automata behavior described by Wolfram is 

possible in this microworld (Wolfram, 1986). Students can make rules and 

seedings that are static, periodic (returning to one configuration after a 

finite number of moves), complex (having arbitrarily long periods), and 

chaotic. The manual describes how the "fish" and their rules can be made 

to model AND and OR gates. One can build a simple binary counter with 

automata. The exercise can be extended to building parts of larger 

automata computers'. Wolfram and Langton have offered proof that 

automata are capable of Universal Computation, meaning that if a problem 

can be solved by any computer, then it can be programmed into a cellular 

automaton, if one has a large enough grid (Langton, 1991; Wolfram, 1986). 
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This is all very interesting, but is it life science? Is it biology? 

Perhaps some boundaries between disciplines have been crossed. Are the 

rule governed dynamical patterns of the cells in the Phantom Fish Tank 

representative of any sort of ecology? There isn't even a substrate to support 

them, other than transistors changing states. Are there really populations 

here? Lynn Margulis and Dorian Sagan take strong exception to this 

computational view of life (Margulis, 1988; Sagan, 1988). Phantom Fish 

Tank, delightful as the program is, has a very limited audience. It is 

predicated on a very profound insight: VonNeuman's cellular automata in 

which exchange of information between localized neighborhoods can be 

seen as a model for change of all kinds. One of the characteristics of life is 

change. Langton goes as far as describing life itself as 'wetware' (as 

opposed to hardware and software) that maintains itself against the 

disorder of entropy in its environment by operating constantly on the 

boundary between complexity and chaos (Langton, 1991). Perhaps the real 

question to be asked is "Why are the boundaries there in the first place?" 

An exploration of cellular automata may provide some insight on this 

fascinating question. 

Simulated Evolution by Life Science Associates (Bayport, NY, 1989) 

uses a true cellular automata genetic algorithm. The program was written 

by David Palmitre, a high school biology teacher from Temple City, 

California. It is quite similar to the sharks and fishes in the WA-TOR 

world of Dewdney (Dewdney, 1988; Dewdney, 1989a; Dewdney, 1989b). In 

Simulated Evolution two species of "microbe", a predator and a prey, 

inhabit the screen move through a grid based on specific rules. The rules 

that govern their motion are simple. The prey wanders randomly on the 

screen. Each move consumes a fixed amount of energy. The predator has 
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an eight bit genetic "code" that determines its motion. The first four bits 

code the probabilities that the organism will move one square up, down, 

right, or left. The next four bits code the organism's probability of making a 

"hard right up", "hard left up", "hard right down", "hard left down". 

These "hard" moves are defined as two steps in one direction and one to the 

side, much like a knight’s move in chess. To calculate the move of the 

organism at any one turn, the probabilities are summed and normalized, 

then results of a random number generator select what move the organism 

will make. For example, an organism with the genome (1,1,0,0,2,0,0,0) 

would have a 25% chance of going up, with the same chance of going down, 

and a 50% chance of making a hard right up. The sum of the probabilities 

is 4, of which 2 units are in the hard right up gene. Initially the genes of all 

predators are seeded randomly. Motion of all organisms is random. 

A particularly interesting and novel feature of Simulated Evolution is 

the predator microbe's ability to evolve. This feature is possible only 

because of the use of a cellular automata algorithm; each automata is 

treated individually. When the microbe is old enough, and has gained 

sufficient "energy" by capturing enough food microbes, it reproduces. The 

"genetic" code that determines the probabilities of the parent microbe's 

turning in any given direction (up, down, right, left, hard right (like a 

knight's move in chess), or hard left) is passed onto the daughter. When a 

specified age is reached, or the parent runs out of energy, it dies. The 

"daughter" microbes receive a copy of the parent's motion probabilities plus 

a random mutation placed on one of the probabilities of motion. According 

to Darwinian theory, the "probability" genes that obtain the most food for 

the organism should have a reproductive advantage and increase in the 

population. Effective genes should propagate through the population. 
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Palmitre's organisms begin to evolve slowly as the program runs. 

The random mutations of the direction probabilities begin to show their 

effect on the behavior of the organisms. The design is particularly clever in 

that the observable phenotype directly represents the unobservable 

"genotype” (the motion probabilities of each organism). Initial motion is 

random, but patterns of motion slowly begin to evolve after several hours 

and a few thousand generations of organisms. It seems that there is an 

advantage if the organism develops what is called a "looper" strategy. 

"Loopers" make wide, slow looping paths across the screen. This seems to 

provide the organism with a greater chance of meeting "food" organisms in 

its path. The "looper" feeding strategy is stable, once it evolves. The 

random mutations induced on the offspring seem to converge on the set of 

values that specifies a "looper". 

How are Palmitre's organisms related to the "real world"? Clearly 

these "strategies" represent a kind of optimal behavior based on the 

limitation of the automata's world. Evolution of hunting behavior in the 

real world is clearly a very complex process dependent on a multitude of 

factors. The similarity of these artificial microbes to real motion patterns is 

remarkable. Some real microbes are loopers, others gliders. It is more 

than remarkable that such seemingly complex behavior can be mimicked 

by simple commands and rules of a simplistic cellular automata model. 

I am very much intrigued by the possibilities offered by Simulated 

Evolution. Clearly it was written by an educator with a firm grounding in 

classroom dynamics. Yet the program is too narrowly conceived to be used 

as a general pedagogical tool or exercise. As the commercial version is 

formulated, I cannot see a use for it in any way other than as a limited 

demonstration of a system governed by a genetic algorithm. There is no 
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easy way for the student to "play God" and fiddle with the variables. There 

are no what if s" that the student can experiment with. The result is 

determined by stochastic processes. Oddly enough, it is the same every 

time: the evolution of "loopers". This point is well worth discussion in a 

biology class. Is evolution as we have it on earth, inevitable? There seems 

to be no natural follow up, within the limit of this program, to the beautiful 

conceptual problems posed by Palmitre's organisms. 

The next three simulations all, by Maxis Corporation of Orinda, 

California, though primarily based on cellular automata models, build 

substantially on the concept of randomness and random walks. I must 

digress slightly to introduce these ideas within the context of computer 

modeling of evolutionary biology. 

Random Walks and Simulating Evolution 

Several articles appearing in paleobiological and evolutionary 

biological literature during the 70's and 80's explored the possibility that 

some, or indeed a good deal of what biologists have thought to be the result 

of natural selection or evolutionary pressures may be the result of random 

selection processes (Cairns-Smith, 1985; Dawkins, 1986; Gleick, 1987; 

Packard, 1987; Partridge, et al., 1984; Pattee, 1987; Raup, 1977; Raup, 

Gould, Schopf, & Simberloff, 1973; Taylor, et al., 1987). An explanation 

based on random walks is just as plausible a theoretical framework as 

classical Darwinian evolutionary theory, if it can adequately explain the 

fossil record. Pioneered by David Raup, Steven Jay Gould, and Norman 

Packard, and others this approach represents a new view of biological 

process as possibly containing more random, non-deterministic elements 

that previously thought. It is a revision of the Neo-Darwinian perspective 

developed in the mid-century. These non-deterministic elements can be 

79 



readily modeled on a computer. This new approach promises to change 

significantly the standard view of natural selection by evolutionary theorists 

(Augros, et al., 1987; Avers, 1989; Gleick, 1987; Mayr, 1988; Packard, 1987; 

Raup, 1977; Raup, 1991; Raup, et al., 1973). 

The use of computer programs as tools to investigate theories is quite 

new in biology. More traditional methods were virtually Aristotelian in 

form: argument by analogy based on "type" cases or induction based on 

selected samples (Mayr, 1988). Minor changes in "type" or different or new 

information would change interpretations radically. The computer offers 

a new method of investigation and argumentation for biologists, one not 

available before the last decade (Augros, et al., 1987 ; Raup, 1991). It also 

provides educators models to explore some of the impact on genetics and 

evolutionary theory of new advances in molecular biology (Conrad, et al., 

1985; Price, 1985; Thompson, 1988). Versions of these "older programs" 

which explore stochastic explanations of extinction and speciation, found in 

specialists technical journals, were made available to general audiences in 

the late 80's by A.K. Dewdney in Scientific American (Dewdney, 1984; 

Dewdney, 1985; Dewdney, 1989a; Dewdney, 1989b). 

The topic of the cause of mass extinctions is certainly a fascinating 

one for career researcher and beginning student alike. It leads 

immediately to a discussion of some fundamental questions in biological 

science. Raup bluntly restates the problem as an inquiry into "bad genes or 

good luck?" (Raup, 1991) What caused the mass extinctions of the past? 

Are answers other than causal ones possible? The question was explored in 

the series of articles by Raup and Gould was "Can random processes 

explain the fossil record?" (Raup, 1977; Raup, et al., 1973). The 

evolutionary processes that lead some lines to new species, and others to 
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extinction, can be modeled mathematically by a Markov chain. A Markov 

chain or process is a series of events, each manifesting as one of a finite 

number of states, the probabilities for transition to the next state in the 

chain are either fixed, or determined by previous sequences in the chain or 

by external conditions. The Markov chain explored by Raup and Gould is 

quite simple. There are four states considered: 1) branch to a new species, 

2) continue without change, 3) branch to a new lineage, or 4) go extinct. A 

random number generator is used to create a model of an evolutionary 

process . The model starts with one species; monophylogeny is assumed. 

Each turn or cycle, every living organism has one of the four possibilities 

(states) open for it for the next move based on the results of the random 

generator. A random number is selected and that species has its state 

changed according to the interpretation of the value of the random number 

selected. A walk through of several cycles of the algorithm at the heart of 

the program will clarify this idea quickly. 

The symbols and values for each of the probability states set out in 

Table 1 represent the probabilities of extinction, adding, branching, and 

remaining unchanged over some arbitrary time unit. These values 

represent an equilibrium condition as the sum of the new species and new 

lineage probabilities equals that of the extinction probability. 

Table 1. Values of Probability States 

Pe = Probability of extinction of one species. .15 

Pn = Probability of adding another species .10 

= Probability of branching to a new lineage .05 

Ps = Probability of remaining unchanged. .70 
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Set in a linear order these probabilities of changes in the state of any 

species at any one cycle are set out in Table 2. 

Table 2. Ordered Probability States 

Extinction IF 0.00 < P < .15 

Add a new species IF 0.15 < P < .25 

Branch IF 0.25 < P < .30 

Unchanged IF 0.30 < P < .99 

The probabilities chosen in Table 2 were used by Raup and Gould as 

general first order approximations to similar events in the real world as 

recorded in the fossil record. Clearly the probabilities of extinction (here 

Pe=.15) and speciation (here Pn=.10 and Pb= .05 for a total of .15) ) should 

be about equal to have any chance at equilibrium. These probabilities are 

but one of many possible sets. Others can be arbitrarily generated under 

the conditions that the system should be at or near equilibrium. 

Table 3 shows a sample rim of the random number generator and the 

interpreted results following the speciation/extinction/branching rules 

outlined above. This stochastic process is applied to each species 

individually once for each simulated time unit. Please note that after the 

first cycle there is still only one species (as pl=.54). After the second cycle 

there are two species, as probability p2 was .19 meaning that the original 

species should add another species. The third cycle begins again with 

species one which adds another species (totaling three now). The 

probability on the second species was .28 meaning that a new lineage 
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should be added (totaling four species now with two separate lineages). 

The fourth cycle brings an extinction and another new species. 

Table 3. Sample Markov Process to Generate Clade Data 

Time RND# Result Total Species No. of Lineages 

1 .54 Unchanged 1 1 

2 .19 Add species 2 1 

3.1 .22 Add species 3 1 

3.2 .28 Branch 4 2 

4.1 .56 Unchanged 4 2 

4.2 .10 Extinction 3 2 

4.3 .69 Unchanged 3 2 

4.4 .24 Add a species 4 2 

In this example the rates of branching, extinction, speciation, and no 

change are constant during the run. It is possible to modify each 

probability to model "speciation blooms" that can occur after a random 

event that lowers the number of species below a specified level (Raup, 1977). 

The output of this process can best be illustrated using a diagram of a 

'clade" or cladogram or spindle diagram. A cladogram is a representation 

of an evolutionary tree or lineage with time on a vertical axis and the 

arbitrary horizontal axis showing the number of species extant at that 

particular time. Figure 2.1 shows what the associated cladogram for the 

above sequence would look like. 

Species are represented by boxes. Time is increasing in the vertical 

direction. Additions of species increases the number of boxes at a certain 

level. Likewise extinctions decrease the number. Branching to a new 

lineage is indicated by horizontal lines. 
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Figure 2.1 Simple Computer Generated Cladogram 

The articles by Raup and Gould (Raup, 1977; Raup, et al., 1973) give 

more details on models in which rates of speciation are variable in time. 

This extension of the model is in line with their interest in punctuated 

equilibria. Modifying the probabilities based on the number of species is 

certainly a valid modeling technique, one that may approximate more 

accurately the fossil record, but it is not needed to appreciate the 

fundamental approach to modeling evolution by a stochastic process. 

12 3 456 7 8 9 10 11 12 13 14 15 16 1718 19 20 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Figure 2.2 Two Runs of a Computer Generated Cladogram. 

The result of a run is stored internally in a large matrix with the ith 

row holding the number of species in it^ lineage. The jth column contains 

the data for all lineages in the jt^ time period. As such the matrix is almost 



impossible to read and interpret. It is much more helpful to translate the 

matrix into a clade or spindle diagram as shown above. 

Figure 2.2 is a computer generated clade diagram after Raup (Raup, 

et al., 1973). Two runs are shown, plotted as cladograms. It is surprising 

indeed to see how similar these artificial clades are to real clades from the 

fossil record. Some clades like B6 or A7 start about the time mid point and 

expand vigorously, much like the class insecta or phylum arthropoda of 

earth's fossil record. Others like B7, B16 and A16 or A17 show much initial 

"success" and then gradually die without issue, much like the trilobites. 

Some show initial success, then almost go extinct, only to have a second 

bloom before final extinction. Clades Bl, B4 show this pattern, much like 

the ammonites. 

Figure 2.3 is a clade diagram of 17 reptilian families taken from the 

best data to date of the fossil record (Raup, et al., 1973). 

1 2 3 4 5 6 7 8 9 10 11 12 1 3 14 15 16 17 

C reta c e o u s -T e rt iary 
Boundary 

Figure 2.3 Diversity of 17 Reptilian Clades from the Carboniferous to 

the Present. 

The clades in the above diagram are as follows: (1) Cotylosauria 

(primitive reptiles from the late Permian), (2) Chelonia (turtles and 

tortoises), (3) latipinnate ichthyosaurs, (4) longipinnate ichthyosaurs, (5) 

Sauropterygia (plesiosaurs), (6) Placodontia (aquatic reptiles from the early 
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Triassic), (7) "primitive" lepidosaurs (of which the tuatara is the last 

extant), (8) Sauria (lizards), (9) Amphisbaenia (blind snakes), (10) Serpentes 

(true snakes) (11) Thecodontia (Triassic socket toothed reptiles) (12) 

Crocodilia, (13) Saunschia (lizard-hipped dinosaurs), (14) Omithischia 

(bird-hipped dinosaurs), (15) Pterosauria (flying reptiles), (16) Pelycosauria 

(primitive Permian and Triassic reptiles), and (17) Therapsids (primitive 

mammal-like reptiles). The Cretaceous-Tertiary boundary is marked. 

Some comments on this graph are in order. Clearly, extinction is not 

uncommon. After the Cretaceous only turtles (Chelonia), the tuatara, 

lizards (sauria), blind snakes (Amphisbaenia), true snakes (Serpentes), 

and crocodiles survived. At the Cretaceous-Tertiary boundary five of the 11 

living reptilian clades at that time went extinct (two clades of ichthyosaurs, 

the Saurischia, Omithischia, and Pterosauria). Two of the clades show a 

distinct flat topped shape (#13 - the lizard-hipped and #14 - bird-hipped 

dinosaurs). Vertical dots in #2 represent missing elements in the fossil 

record. The long column in #7 represents the persistence to the present of 

one species, the tuatara from New Zealand, the last of the lepidosaurs. 

The general similarities between the computer produced clades and 

the clades from the fossil record is striking. Is there any difference between 

these two diagrams? Is it possible that massive extinctions such as those at 

the end of the Permian, or at the Cretaceous/Tertiary boundary have no 

'cause', but are statistical in nature? The query posed in the Raup, Gould 

articles is in the form of a null hypothesis: "There is no difference between 

observed clade diagrams and diagrams produces by stochastic processes". 

The idea behind the investigation is quite intriguing. It strikes at the 

core of a critical thinking investigation in the natural sciences. Is there 

only randomness in nature? How much of what we observe as natural 
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process or the product of natural law is really the result of stochastic 

processes. Clearly the shapes of snowflakes, river drainage patterns, and 

biological mutations call on randomness as their origin. Is there more 

such randomness in nature? The "Argument from Design" is brought into 

inspection; all things do "seem" to have a purpose under heaven. But how 

much of this is our own minds projecting order where there is none? The 

question here is coldly put to both scientific theorists as well as creationists. 

Conversely, how much of what we consider random is, in fact, according to 

one pattern or another? 

The mathematics behind the test of this Null hypothesis is beyond 

secondary students. One must use the Kolmorogov statistic to test 

randomness in Markov processes (Raup, 1977). The result from Raup and 

Gould is that, interestingly, the null hypothesis cannot be disproved based 

on the data we have. We only have one example, our earth; and the fossil 

record is very incomplete. 

It is not necessary, I feel, to introduce such elegant mathematics as 

Kolmorogov statistics on Markov processes to guide secondary students to 

analysis of this data. Nor is such an approach pedagogically fruitful. One 

can approach it in a concrete and pedagogically sound fashion by 

performing many trials obtained by pooling data from the whole class' 

efforts, then simply counting it. Several hundred "alternate worlds" can be 

produced in the space of one hour even in a small class. The results of 

these "alternate worlds" can be analyzed and tallied. During this process 

students learn a great deal about the fossil record, geologic time, 

extinctions, mass extinctions, and principles of phylogony. All of these 

topics are dry as dust without a context that connects them and brings them 

to life. Use of a random walk program can do that. Students compare their 
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"worlds" with clade diagrams of real fossil families. They come up with 

conjectures about the relationships between the fossil record and the 

computer generated clades. 

Six conjectures that can be investigated by this method are: (1) What 

is the probability that a massive extinction (50%) like that at the end of the 

Cretaceous would occur as a random event? (2) What is the probability of a 

"speciation bloom" like the one that occurred at the start of the Cambrian? 

(3) What is the probability of a flat topped clade like that of the dinosaurs? (4) 

What is the probability of a random occurrence of two extinctions of 30% to 

50% of species. The fossil record on earth shows at least two such massive 

extinctions. Do we really need to invoke meteor collisions to explain these 

events? (5) Several specialized shapes of extant clades do not appear often 

in the computer produced clades. An example is the Coelocanth. It is a 

genus of only one species that has remained unchanged for 300 million 

years. Another is the tuatara of New Zealand. What is the chance of such 

an event? (6) What percentage of extinctions can be explained by random 

events as opposed to more standard causal explanations? 

This process of student involvement with the subject through 

manipulating and conjecturing shows clearly how technology can open 

new exciting methods of approaching previously difficult areas of the 

curriculum. The method I have set out here also shows clearly that the 

computer is a powerful tool. It is important to build up students reasoning 

abilities if they are to use the insights made possible through technology. 

Here is a fine example of use of the statistical argument as well as the 

argument from analogy like the Argument from Design: The world is like 

a fine watch, the work of the Master Watch Maker (Barrow, 1988; Botkin, 

1990; Dawkins, 1983; Dawkins, 1986). 
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One commercial program employs a modeling strategy much like 

that in Raup and Gould. It is The Blind Watchmaker by Richard Dawkins. 

The Blind Watchmaker is a program distributed by Norton with the 

purchase of a copy of Dawkins book, The Blind Watchmaker (Dawkins, 

1986). Dawkins presented the program at the first conference on artificial 

life at Los Alamos (Langton, et al., 1988). The chromosome' of the 

organisms in The Blind Watchmaker contains 16 elements that control 

horizontal and vertical gradients, number of segments, scale, symmetry, 

and mutation rates. Each element controls some aspect of a recursive 

routine that generates the images of the biomorphs in the world governed 

by The Blind Watchmaker. Below is a figure showing some of the 

biomorphs created by Dawkins program. Some resemble insects, others 

plants, still others starfish. The diagram is from Dawkins' book. 

Figure 2.4 Sample Biomorphs from The Blind Watchmaker by 

Richard Dawkins. 
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One can also randomly generate biomorphs and then select any one 

to selectively breed it. This is done through the 'Pedigree Screen’ shown in 

Figure 2.5. The ancestor of all the biomorphs on the screen is the arachnid¬ 

like beast at the center bottom. Varying any of the 16 parameters in the 

chromosome produced the effects on the biomorph shown. The parameters 

can be varied by choice of the user (genetic engineering) or by a random 

drift for each of the parameters from a mechanism in The Blind 

Watchmaker program itself, the analog of genetic drift in biomorphland. 

Playing with these biomorphs can be very addicting. Asserting a British 

sense of the absurd, Dawkins even offered a prize for any player who, 

through random mutation, or genetic engineering could come up with the 

best image of the Holy Grail. Two years later a second prize went to anyone 

who could breed the best 'human' biomorph from the 16 biomorph genes. 

Figure 2.5 Pedigree Screen from The Blind Watchmaker 
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Dawkins book is a delight to read. Bold, carefully argued, it 

explores the argument from design from many aspects. The computer 

program is an aid, and a fascinating supplement to the ideas in the text; it 

is not an essential part of the exposition. The title and central theme derive 

from the famous argument in Thomas Paley's Natural Theology (1802) in 

which the great theologian formulates an argument for the existence of 

good by considering a walk in the heath. Kicking a stone he notes that it 

could be there by some random action. Paley then finds a watch and 

marvels at its intricacy and craftsmanship. Paley concludes that watch 

must have had a maker (Dawkins, 1986). Likewise the works of nature are 

a manifestation of a design "in a degree which exceeds all computation." 

Dawkins takes the "Argument from Design" apart piece by piece and 

concludes that the natural world can be explained by Darwin's mechanism 

natural selection and there may be a watchmaker, but he or she is blind. 

Of note in commenting on Dawkins' program in comparison with 

that of other researchers at the conference is its intentional lack of any 

mechanism for selection. There is no fitness function. Dawkins' 

biomorphs do not interact with their environment or each other. They are 

not really cellular automata, the biomorphs are really points in a state 

space described by the data structure of the 'chromosome'. Dawkin's text 

in The Blind Watchmaker extensively discusses natural selection and the 

multiple meanings of fitness and relationships to evolutionary theory. 

The Evolutionary Tool Kit takes many elements of Dawkin's work 

and adds ways to define the fitness of each organism. As set out in the 

introduction to this dissertation, these functions can be based on 

reproductive success, or on physical, social, or metabolic constraints, all 

under the control of the user. 
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Simulations bv Maxis: SimEarth and SimAnt 

SimEarth, SimAnt, and the unnamed, unpublished simulation on 

fish, by Maxis Corporation of Orinda, California, have incorporated the 

Markov process modeling into the cellular automata models in a most 

skillful way. First I shall discuss SimEarth. 

Published in late 1990 and distributed through Broderbund, 

SimEarth represents the first commercial package to use cellular automata 

as an instructional medium. Its predecessor by one year, SimCitv. is 

designed in a similar manner, with a focus on urban planning. The 

general design of the program borrows heavily from James Lovelock's work 

on the Gaia Hypothesis (Lovelock, 1979). The prototype of SimEarth was 

"DaisyWorld", a model made by Lovelock in the mid 80's to demonstrate the 

interconnection of life on the planet and the environment (Lovelock, 1991). 

"DaisyWorld" is a spherical body populated by daisies of different 

reflectance. They have shades from white, through gray, to black. The 

solar source for "DaisyWorld" is a star that is gradually maturing to a red 

giant phase. Its energy output is increasing. Randomly seeded daisies on 

"Daisyworld" cover the planet, changing its albedo to maintain an 

acceptable temperature range for daisies to grow. When output is low, in 

the youthful age of the star, it is advantageous to have black daisies cover 

the planet. As the sun heats up lighter shaded daisies evolve that reflect 

more sunlight. Darker daisies remain near the poles. In the final stages 

white daisies cover the planet. "DaisyWorld" is an elegant model for 

natural selection under a simple fitness function. As the energy output 

increases whiter and whiter daisies evolve to reflect more of the sun's heat. 

The process stabilizes the planet for a considerable time until the solar 

output becomes too great and all life dies. 
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Similarly the planet in SimEarth starts out lifeless. Life develops 

when the planet has cooled sufficiently. Evolution proceeds to develop a 

variety of creatures to populate the planet, changing its atmosphere and 

climate by their interaction with the environment. The source of energy for 

the planet is a star much like our sun. It is getting increasingly hotter. 

SimEarth is a game whose goal is to guide one of the sentient life forms that 

evolves to a stage where they have both the technology and energy for inter¬ 

stellar travel to colonize another world before their home world dies. It is a 

remarkable intricate, accurate, multi-disciplinary model investigating and 

evolving ecosystem on a planetary scale (Derrick, & Derrick, 1991). 

SimEarth is also targeted at the home market; not the educational 

one. There is much to be learned by educators from this marketing 

decision. Investigations on SimEarth lead the user through inquiries in 

paleobiology, climatology, atmospherics, geology, ecology, social 

interactions, plate techtonics, and astronomy. Each discipline is 

approached by the student, this is most important, in a context that makes 

sense in relation to other disciplines and the specific problems with which 

each discipline concerns itself. The approach taken by SimEarth. a world 

view that is really a world view, may not neatly fit into science curricula as 

currently conceived. It certainly won’t fit into the bells of forty-five minute 

time blocks that drive our current instructional system. Investigations take 

several hours in SimEarth. 

In spite of these draw backs, it has remained in the top 5 of 

educational software sales since its introduction almost two years ago. It 

ranked #1 for the last quarter of 1991. There is a market for a quality 

educational product, it seems. Many parents and students have already 

bought it and enjoy it. Its approach is very non-linear and unconventional 
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from the point of view of standard pedagogical software. I strongly feel that 

educational specialists, curriculum planners, and textbook developers 

must rework their conception of the format of education and the use of 

computers and multi-media tools in it. I have no doubt where the current 

'chalk-talk' presentation of these topics would rank if it were reduced to a 

talking screen (probably a relatively easy job), shrink wrapped, and 

marketed on the shelves of bookstores or software emporia. I suspect that 

in two weeks it would hit the remainder bins, discounted and sold by the 

pound to clear the shelves for something buyers really want. There is no 

lack of citations of the failure of our standard curriculum and presentation 

formats. SimEarth shows that there are viable alternatives. 

Unfortunately the marketing of educational software and textbooks 

follows very different rules. Review and selection by committees, as well as 

review and editing by publisher’s staff with an eye to a national market, 

produces a much different product and perceived buyer profile. I suspect 

that, given the choice, the vast majority of educators would choose the 

shrink wrapped version of the same materials and methods they are 

currently using, and then claim to utilize the "new" technology and "new" 

methods to "restructure" their curricula in light of the much publicized 

national goals. Deep rooted change in education is so badly needed. With 

very few exceptions, it is not done. 

In parallel with SimEarth's entry into the home market, The 

Evolutionary Tool Kit attempts to provide for young people, through the 

educational market, a quality multi-disciplinary, student centered learning 

environment for life science in the 21st century. 

In SimEarth. cellular automata are used at six concentric shells or 

levels: plate tectonics, landforms, the hydrosphere, atmospherics, 



planetary biomes, and the life forms shell. The first level, that of plate 

tectonics, divides the surface of the planet into tens of thousands of cells 

each stationary or moving in one of eight compass directions. These cells 

interact with each other and heat and magma upwellings from the core to 

form ocean basins or continental masses. They can collide to form 

mountains on land masses above them, as well as earthquakes and tidal 

waves. The user can also control the motion of these cells to literally make 

mountains, ocean trenches, land bridges, or new continents with a "Terra- 

Former Tool" to aid the development of SimEarth's inhabitants. 

The automata shell above the plates are the landforms. This can be 

either ocean plain, continental shelf, shallow bay, sea shore, swamp, 

forest, grassland, rocky, or polar region. Each landform automaton also 

has an elevation and climate associated with it. Elevations can be changed 

by the user, either by earthquakes or direct manipulation. The landform 

automata have a global influence. For example, a world with too much 

swamp will produce an excess of methane and heat will build up rapidly. 

The hydrospheric cells occupy areas above landforms that have the 

lowest elevations. The amount of water available for oceans is determined 

by the mean temperature of the planet. Under bad management and a run¬ 

away greenhouse effect, the oceans can evaporate. Hydrosphere cells also 

carry information about ocean currents. The currents flow around the 

planet under constraints imposed by the landforms, incoming energy from 

the star and the planet's atmosphere. 

The biome cells hold information about the particular geologic 

condition of the cell at each location, such as barren rock, arctic, boreal 

forest, desert, temperate grassland, forest, jungle, or swamp. The state of 
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the landform cells are determined by states of neighboring cells in the 

tectonic, hydrospheric, and atmospheric layers. 

The atmospheric cells hold information about temperature of the cell, 

direction of air flow, and moisture content. This information, along with 

feedback loops dependent on information from cells in the hydrospheric, 

landform, and tectonic cells determines the amount of rainfall at that 

particular region. 

The life form automata hold information about what kind of life form 

occupies each cell. There are fifteen classes of life represented in 

SimEarth. The classes are: Prokaryote, Eukaryote, Radiate, Arthropod, 

Trichordate, Mollusk, Insect, Fish, Amphibian, Reptile, Dinosaur, Avian, 

Cetacean, Mammal, and Camifern (Derrick, et al., 1991). Each class has a 

preferred climate and landform. Fish like open ocean, or continental 

shelves. Amphibians like swamps but will not live in polar regions, etc. 

Trichordates are a long extinct group of three chorded creatures that the 

designers of SimEarth decided to give a second chance. Carnifems are 

mobile carnivorous plants that may or may not evolve after the appearance 

of insects. Eight classes are land dwelling, seven live in the seas. 

Each class on SimEarth has sixteen species. The species are not true 

species as taxonomists would define them. Each is really a level of 

development. The sequence of development within a class are fixed, as is 

the sequence of appearance of each species within the class. If a class has 

reached the sixteenth level, it is said to have attained sentience. At the level 

of sentience civilization can develop in any class except prokaryotes or 

eukaryotes. 

There are seven levels of civilization: stone age, bronze age, iron age, 

industrial age, atomic age, information age, and nanotech age. Any class, 
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other than prokaryotes and eukaryotes can evolve intelligence. Once 

civilization has developed it is the job of the user to guide the beings to wise 

use of the planet's resources to permit inter-planetary migration. It is 

possible to speed this process up by employing the "monolith", after Arthur 

Clarke's movie 2001. At considerable expense to the energy budget of the 

user, a monolith can be placed near any biome. The monolith has a 30% 

chance of accelerating that life form to sentience or to a much higher level 

of civilization. 

The development of the life forms in SimEarth cannot be said to 

model evolution or any natural selection process very closely. The units of 

life are not individuals, rather they are considered to be ecosystems. There 

are no genetic elements to the life forms, only properties assigned to each. 

These properties are very general, such as habitat likes or dislikes, 

potential for evolution. The algorithm governing the time sequence 

development of the life is fundamentally not adaptive. It is a Markov 

process much like that used by Raup and Gould (Derrick, et al., 1991). 

Probabilities for evolution within each class, or probabilities of the 

development of a new class from existing ones are fixed by internal 

constraints of the program. For example, the class Arthropod can evolve 

from any of the first eight species of Radiates. The next four species of 

Radiate can possibly mutate into Trichordates. The first four species of 

Arthropod can mutate into Mollusks, the next eight can mutate into 

Insects. The last species of these classes are reserved for sentient forms of 

that class. It is possible to have intelligent Mollusks or Trichordate cities in 

the Atomic Age on SimEarth. The Monolith is simply a subroutine that 

alters the probabilities of mutation for a very short time in favor of leaps to 

sentience for organisms encountering it. The rate at which species can 
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evolve is determined by a global variable called the "mutation rate". It can 

be modified by the user. 

Graphs of the Life Class Ratio are available from a MAP WINDOW 

that provide counts of the numbers of classes and numbers of species in 

each of 16 classes of life. These maps are bar graphs of numbers of species 

of each of the 16 life forms. No evolutionary history for any class is 

provided. Under the stochastic conditions that the life forms evolved, such 

information would make little sense. Because there is no passing of any 

genetic information, this really is not evolution in any conventional sense, 

rather it is successive replacement of ecosystems. 

Modeling evolution by a random walk in SimEarth is certainly very 

elegant, and probably accurate. In agreement with the work of Raup and 

Gould there is not enough information to determine if the fossil record, as 

we currently know it, is different from a sequence produced by a Markov 

process. The model is adequate, but not instructive. Some important 

elements of evolutionary theory are omitted. There must be some form of 

natural selection. 

The cellular automata in my design, The Evolutionary Tool Kit do not 

use of Markov processes to model evolutionary change, and the biological 

unit in the Tool Kit can be either the gene or the organism. This marks a 

significant difference between SimEarth and The Evolutionary Tool Kit. 

Because the unit of selection is neither the individual or the gene in 

SimEarth. it is not possible to define a fitness function at the level of the 

organism in SimEarth. The Evolutionary Tool Kit does permit the 

definition of fitness, as well as a model for natural selection. It can provide 

a platform for a student to explore possible definitions of such a function 

and examine the feedback through global consequences of the individual's 
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action on the population and the environment. As such it provides a 

powerful complement to the educational potential of a program like 

SimEarth. 
v* 

The user of SimEarth is provided with a bewildering variety of 

pathways and interactions to explore. One can add, at some energy 

expense, nitrogen, oxygen, or carbon dioxide generators to correct 

atmospheric problems. One can change the tilt of the planet to explore the 

effect of modifying the angle of insolation has on thermal regulation. 

Meteors can be made to impact to create lakes or lagoons. Ice meteors can 

provide needed water. Earthquakes or volcanic eruptions can be 

manufactured to release some atmospheric or tectonic bottleneck. 

Several scenarios are provided to more experienced user of SimEarth 

to test their skills as planetary managers and their understanding of the 

intricate feedback mechanisms involved. One is a model of Earth in the 

Cambrian era. The tectonic cells follow a fixed course of development, 

starting with the first multi-cellular life in the seas around the super¬ 

continent Pangea, ending in the present day distribution of land masses. 

In another, more difficult scenario, the user is assigned to be the 

planetary manager of Mars. One has 50 years to make the planet habitable. 

The landforms on the model are those on the real red planet, constructed 

from NASA maps. In the most difficult scenario, one is set the challenge of 

making Venus habitable. Venus' surface in SimEarth is also a state of the 

art facsimile. The run-away greenhouse effect must be brought under 

control. The atmosphere consists of almost totally of green house gases and 

the surface temperature will melt lead. 

In general SimEarth is an absolutely stunning package. The 

amount of planetary science, ecology, and paleobiology that a student can 
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simultaneously learn from this package is remarkable. Perhaps "learn" is 

the wrong term. Most importantly, the package is constructive, rather 

than instructive. The ideas from all these disciplines are presented in a 

context that supports the need and utility of each. Also, it is important to 

note, it is the student who defines the problems, makes the connections, 

draws the conclusions in all of these disciplines while planet managing in 

SimEarth. Students build and deepen their understanding instead of 

digesting already existing knowledge from books. 

The SimEarth manual is an aid to students' learning in this 

environment, but it is not intended as a bible. The program serves as a 

dynamic inquiry vehicle for ideas in planetary science from any resources 

the student wishes to use. One hopes that such a novel and powerful 

instructional design can find a place in school curricula. SimEarth does 

not lend itself to a linear "table of contents" approach so common in many 

classrooms. 

The approach taken in SimEarth represents a quantum leap from 

the previous generation of software simulations on natural selection and 

evolutionary biology. The difference, I feel, deserves comment. The 

technical differences stem from two sources. First, the power of modeling 

with cellular automata became evident through the work of Christopher 

Langton and others at the Institute for the Study of Complexity at the Los 

Alamos National Laboratory. This work was disseminated to a larger 

audience through two conferences on the developing field of artificial life 

held at Los Alamos in 1988 and 1990 (Langton, 1989; Langton, 1991). 

Second, the general style of programming changed from a linear 

style fostered by languages like BASIC, Fortran, to an object oriented style 

made possible by C, Lisp and other more specialized languages. 
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Programs, instead of being confined to linear executions, were able to 

define computational objects, with variable properties and relationships 

with other objects permitting very complex interrelationships to be the focus 

of the algorithms. Pedagogical changes in the decade of the 80's, a 

movement toward student centered instruction, individualized learning, 

seem to coincide nicely with this newer programming style. SimEarth 

exploited both changes quite well. 

A second program by Maxis, SimAnt, was released in mid-November 

of 1991. Its theme is taken from the work of Harvard Sociobiologist E. O. 

Wilson. It is not a simulation of either evolution or evolutionary, but its 

content and method do deserve discussion. In SimAnt. the user is the 

mastermind behind several species of ant that populate a back yard. The 

user is personified as one of the ants, not as a god-like creature outside the 

simulation. The goal of the simulation is to gain access to the inside of the 

house of an increasingly desperate suburbanite. The "objects" manipulated 

are behavior patterns of the red and black ant colonies. There is no explicit 

attention paid to Mendelian inheritance in the sense of manipulating a 

gene's dominance, recessiveness, number of alleles, linkage etc. Non- 

genetic inheritance by shared, group behavior "mimetic" inheritance is a 

major focus of exploration (Dawkins, 1976; Dawkins, 1983). It is a very 

successful implementation in an educational, commercial package of some 

of the research done by Taylor, Jefferson, Collins, and Werner of the 

artificial life group at UCLA (Collins, et al., 1991; Jefferson, et al., 1991; 

Taylor, 1991; Taylor, et al., 1987; Werner, & Dyer, 1991). 

"In SimAnt you are the intelligence of the ant colony. The individual 

ants are like the individual brain cells of your being. You will hop into and 

out of individual ants, using them as tools."(Bremer, 1991) The user, 
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perceiving danger from one of many sources such as spiders, ant lions, 

lawn mowers, humans with insecticides, can lay down pheromone trails to 

guide other ants to safety. Ants can also be recruited by the user by 

sending pheromone signals to bring groups of ants together to accomplish 

jobs that one ant could not do alone. 

Images of the ants and their movements in their burrows are very 

realistic. Considerable care went into rendering three dimensional images 

of the insects as they crawl through the burrows or engage in foraging, 

hunting, breeding, housekeeping, or communicating activities. The 

carapaces and thoraxes shine, as if they were reflecting real light. Each 

ant is cycled through a series of images so that a realistic simulation of 

motion and activity is achieved. One could definitely start 'thinking' like an 

ant after a few hours at this simulation. SimAnt certainly does fill a void 

in secondary curricula; the importance of the interaction between social 

organisms, their society as a whole, and the environment is too often left to 

'chalk talk' techniques. 

A particularly effective and innovative feature of SimAnt is the 

"yellow ant" construct. Ants that find large sources of food or enemy 

invasions "recruit" help. These ants that call for assistance are called 

initiators; they spur other ants to action. The yellow ant is the initiator for 

the black colony. The yellow ant is the user's way of communicating with 

and teaching the other ants in the black colony. "It is the ant you 

personally inhabit and control."(Bremer, 1991) It is the alter-ego of the 

user. The yellow ant is always of member of the black colony. 

The "yellow ant" construction is a particularly clever pedagogical 

innovation. It permits the user to interact directly with the automata 

within the "rules of the system simulation", at the same time learning the 
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constraints of the simulation and the rules on which it is based. While 

playing the simulation a very interesting sensation develops; one starts 

feeling like an ant. The simulation is designed to facilitate, in part, the 

insights enabled by a physio-kinetic learner in Gardner’s multiple 

intelligence theory. 

Similar algorithms to those in SimAnt for exploring how organisms 

and societies interact using models from sociobiology are open for direct 

manipulation in The Evolutionary Tool Kit. Pedagogical constructs like the 

"yellow ant" in The Evolutionary Tool Kit will be described in the 

discussion of the work of Karl Nicklas on forms of trees and extensions of 

the work of Werner and Jefferson on evolution of language, as well as in 

chapters three and four of this dissertation. Importantly the Tool Kit 

algorithms permit both genetic and mimetic flow of information. 

At a conference at M.I.T. in October 1991,1 was privileged to view the 

first demonstration of a new simulation from Maxis. This one is several 

years from release. It’s theme is evolution and genetics. In the fish 

simulation beautiful multi-colored tropical fish swim around the tank 

(really the screen). The image is three dimensional, with the fish twisting 

their bodies and fins to propel themselves. They swim around, in front of, 

and behind other objects and fish in the tank. The illusion of a real fish 

tank is startling. The imaging process employed elegant ray tracing 

algorithms so that the surface of the fish had color and texture as a real 

organism would. The effect was not unlike some of the screen saver 

programs from After Dark except the images are very high quality and the 

illusion of depth is almost perfect. 

It is possible to breed the fish. Parents are selected and some traits 

are selected with a percentage of dominance given to each. The new fish is 
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hatched and swims with its parents. A problem surfaces, so to speak, 

when breeding two fish is attempted. The memory requirements for the 

program are quite large. The version demonstrated had a fish population 

of about a dozen. The program ran under OS/2 on a 33 mHz 386 processor 

with a requirement of 6 megs of RAM. Once a fish was bred, it took the 

program approximately ninety to one hundred and twenty minutes to 

create, render, ray trace, and shade the hundred odd views of the new fish 

that are needed to create the illusion of swimming in three dimensions. 

The rendering could be done in the back ground. Two hours per fish is 

quite slow. This time is only for one fish not a generation of them. Having 

seen the skill of the programmers at Maxis through their other work, I 

have no doubt that this fish simulation will be a fine product. There are 

considerable problems to be faced before a marketable version is available. 

The approach taken in The Evolutionary Tool Kit. I feel, is more 

general. Organisms are not limited to an aquatic environment. The 

program does not spend a great deal of time or computer memory allocation 

on three dimensional renderings. Versions of The Tool Kit running 

populations in the tens of thousands can be piloted in classrooms in three 

or four years. As noted in the above discussion, it is also more faithful to 

the biological aspects of automata simulations. 

The last commercial cellular automata simulation, BIOSIM was 

written by Paul Deal of Moriarty, New Mexico. It was first published in 

1988. Paul Deal is a microbiologist at NASA. He markets the simulation as 

shareware. BIOSIM is unique in that it is concerned mainly with the 

interaction of organisms or systems of organisms with their substrate. It 

specifically addresses cellular biochemical pathways such as 

photosynthesis, respiration, and fermentation. The experimenter can 
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observe the effect of each pathway, or combination of pathways in single 

organism systems or dual or triple organism ecosystems. It is also possible 

to introduce metabolic inhibitors or mutagens. 

The simulation permits the experimenter to keep track of the mass 

flow in oxygen, carbon dioxide, soluble substrate, sediment, and biomass. 

It is possible to permit mutations of each organisms genome to study 

population dynamics and changes such mutations cause on the sample 

ecosystem. The number of organisms in the simulation is at most in the 

low thousands. It also takes place in a rectangular world with a top and a 

bottom. Gravity acts on non-soluble substrate to move it to lower layers. 

Unlike other automata simulations, there is no control given over 

breeding times or maturation rates in BIOSIM. After each 'turn' all the 

organisms breed by fission, if they have enough energy, and pass genetic 

information to the daughter cells. Then they all die. In the next turn the 

daughter cells interact with the substrate biochemically, breed, and die. 

This model may be applicable to some microbial communities, but it is not 

generalizable. 

The following description of the automata and their biochemical 

properties in BIOSIM draws heavily on the users manual. The interaction 

of the organisms with the substrate can be rather complex. The reader is 

referred to the BIOSIM manual for a fuller explanation of these 

mechanisms. 

There are eight biochemical pathways available to organisms in 

BIOSIM . Using short hand notations of (C2/0) and (C2/02) to represent a 

product with a fixed carbon/oxygen ratio, not any specific molecule, the 

pathways are shown in Table 4. 

105 



Table 4. BIOSIM's Metabolic Pathways 

PI: light + 4 C02 —> 302 +2 (C2/0) classical' photosynthesis 

P2: light + 2 C02 —> 02 + (C2/02) classical' photosynthesis 

P3: light + 2 (C2/02) — > 02 +2 (C2/0) 

P4: light + 3 (C2/02) ~> 2 C02 +2 (C2/0) 

P5: light + (C2/0) --> C2/0 

Rl: 3 (C2/0) + 3 02 -> 4C02 + (C2/0) 

R2: 2 C02 + 2 (C2/0) ----> 3 (C2/02) anaerobic fermentation 

R3: 2 C02 + 3 (C2/0) -—> 3 (C2/02) + (C2/0) anaerobic fermentation 

R4: 6(02/02)+ 302 — > 8C02 + 2 (C2I0) 

R5: 2 (C2/0) + 02 --> 2 (C2/02) 

It is important to note in the generalized pathways above that (C20) 

can appear on either side of the equation. If it is on the right side of the 

equation, the substance is part of the living biomass (indicated by italics). If 

it is on the left side of the equation it is part of the substrate. After each 

generation all organisms die and their biomass (minus that given to 

daughter cells) is added to the substrate. It is possible for (C20) as well as 

other waste products to accumulate in the substrate as a by product. 

Pathways PI and P2 represent the analog of classical 

photosynthesis. Pathways P3, P4, and P5 represent light mediated 

reactions of unspecified mediating steps in which carbon dioxide is taken 

from the substrate and fixed into the biomass. 

Pathways R1-R5 do not require external energy. Certain of these 

must be combined with photosynthetic pathways to permit biosynthesis. 

Pathways R2 and R3 are anaerobic fermentive reactions. These result from 
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the accumulation of soluble substrate. The byproduct could be oxidized 

through other pathways if oxygen is present. 

Efficiency of light mediated pathways are dependent on the relative 

intensity of light. If more than one photosynthetic pathway is available, 

light is shared with order of priority as in the list above. The second 

pathway is more efficient at low light levels. The respiratory pathways are 

also not equally effective. For example, R4 is much more effective than R3, 

as one is an oxidative pathway, the other being fermentive. Twelve 

inhibitors, each targeting a specific pathway, or substrate component, are 

available for the experimenter. Inhibitors can be used singly or in 

combination. 

The genome and its decoding in BIOSIM. unfortunately, is quite 

complicated. Organisms in BIOSIM have a 13 element genome. The 

elements are further organized into 6 determinant pairs. The thirteenth 

element holds morphology information. To decode the genome these pairs 

of each element are added together, base four, to determine the total weight 

of that pair. These pairs, together with the 13th element determine the 

organism's general biochemistry and morphology. The biochemical 

pathways are enabled, through this coding, by an algebra on the weights of 

these pairs. For example, pathway PI is enabled if the total weight of pair 6 

minus the total weight of pair 3 is greater than zero. Pathway R4 is enabled 

if the weight of pair 5 minus the total weights of pairs 2 and 1 is greater 

than zero. The amount by which a pathway rate exceeds zero also 

determines the efficiency with which the organism can utilize that 

pathway. Selective pressure to use the substrate more efficiently can be 

applied by introducing mutagens, or changing mutation rates during 

reproduction. 
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The result of this elaborate coding system is that, given the genome of 

an organism, it is not at all easy for a student to see what exactly its 

metabolic properties would be. I am reminded of the tale of King Alfonso 

the Wise of Castile and his astronomy instructor. Curious to see how the 

heavens were organized, Alfonso hired the finest astronomer in the land to 

tutor him. After several lessons, and the presentation of Ptolemy's five 

spheres with its 92 epicycles rolling on the spheres or on each other, 

Alfonso leaned back in his throne and remarked, "This is indeed a 

wonderful creation, but if I were around at the beginning, I would have 

advised something simpler." 

Clearly the model set out by Dr. Deal has a great deal of potential. 

Very possibly BIOSIM can bring learning about metabolic pathways 'alive' 

for the student. Giving the student a grasp of the metabolic links between 

an organism and its substrate is a most important goal of life science 

education. The BIOSIM manual is quite helpful, even overcoming some of 

the problems caused by the arcane coding scheme. A sample investigation 

from the BIOSIM student manual can illuminate some of that potential. 

Sample Investigation (condensed from BIOSIM student notes): 

Consider an ecosystem with two organisms, both phototrophs (the genome 

is explicitly given for both organisms). Organism one has only PI available. 

Organism two has available pathways P2 and P3. Try experiments with 

one organism at a time, then try both together. Try varying the levels of 

light or carbon dioxide. 

Commentary (condensed from BIOSIM student notes): Both 

organisms alone can continue alone indefinitely. When the two organisms 

are put together one observes a phenomenon called competitive exclusion'. 

With high carbon dioxide concentrations organism one gradually takes 
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over the system. With low carbon dioxide concentration, it is organism two. 

The organisms do not form a balanced ecosystem. The shared substrate is 

carbon dioxide. Each differs in the rate of assimilation. Note that 

sediment, usable by neither organism, accumulates indefinitely. Processes 

similar to this have produced deposits of coal and peat. 

Other BIOSIM experiments from the manual illustrate evolutionary 

adaptation, mutualism, commensalism, and parasitism. All in all the 

package is very well conceived. It is designed to rim on a MS/DOS platform 

with VGA graphics. Execution time on commonly available machines, 

especially in more demanding experiments, can become rather long. Runs 

of many hours can be expected with evolutionary or adaptive experiments. 

Graphic output is also limited. No provision is given to export any data to a 

spreadsheet or database for further manipulation. The energetics of the 

reactions are also not explicit. There is no way to look at energy flow 

through the whole system. It may be possible to design the simulation so 

that the student is more "inside" the simulation, much like SimAnt. 

A particularly useful model that is not explored with BIOSIM is the 

role of symbiosis in evolution. The data structure in BIOSIM is rather 

brittle. It will not permit properties of one organism to be assimilated to 

those of another. Given some of the remarkable work that has been done by 

Lynn Margulis on the origin of the eukaryotic cell, a simulation that can 

model the metabolic pathways enabled by this process, and the consequent 

selective advantage, would be a powerful instructional tool (Margulis, 1970; 

Margulis, 1981; Margulis, et al., 1986). The data structure in The 

Evolutionary Tool Kit is specifically designed to be flexible enough to permit 

modeling of symbiosis, as well as the modeling of metabolic pathways like 

the organisms in BIOSIM. 
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Professional Literature on Evolution and Cellular Automata 

It is not within the domain of a dissertation on science education to 

review and analyze the work of the highly skilled researchers in the 

developing fields of simulated evolution and artificial life. In the 

proceedings volumes of the two international conferences on artificial life 

at Los Alamos Christopher Langton has provided an expert's overview of 

this fascinating and highly technical new area of research (Langton, 1989; 

Langton, 1991). The guide to discussion of the elements of the work of these 

researchers are the three themes in investigating automata modeling in 

life science education set out in the introduction to this dissertation: 

accuracy and appropriateness of content through the work of Thomas Ray 

and Mary Clark, new methodologies for teaching through the work of 

Charles Taylor, David Jefferson, Gregory Werner, and Kristian Lindgren, 

and new modes of thinking through the work of Christopher Langton, 

David Akley, and J. Doyne Farmer. 

Accuracy and Appropriateness of Content 

Appropriateness of the role of informatics in evolution education is 

openly discussed in the Project 2061 Panel Report on Biological and Health 

Sciences in a chapter called "A Conceptual Framework for Biology ". Mary 

Clark writes: 

If we are to meet the goals of familiarizing all 
adults with the living world on which they depend, of 
making them feel at home with the workings of their 
own bodies, and of giving each a sense of humankind's 
evolutionary place in cosmic time, we shall need to 
develop a mental vision of reality, a conceptual 
framework for biology that incorporates several all- 
pervasive principles. Among these principles are the 
role of information in organizing matter into discrete 
living and reproducing entities; the need for energy to 
animate and maintain life; and the necessity for 
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adaptive changes in organisms to meet new conditions, 
including changes in other life-forms with which they 
directly or indirectly interact (Clark, 1989). 

The target population for the work of this dissertation, as for that of 

the conceptual framework for biology set out by the 2061 Panel, is all 

students. My goal is not to cleverly translate the recent work of theoretical 

biologists into a form digestible by some percentage of secondary students, 

putting our 'best' on "the cutting edge". Though not excluding the needs of 

a small group that will go on to professional work in this area, the duties of 

science educators are much broader. It is most significant that the first of 

the organizing principles cited by the 2061 panel was the "role of 

information in organizing matter into discrete and reproducing entities". 

The type of information cited (italics in the quote are Clark’s) is specifically 

not classificatory or descriptive; rather it is information at the genetic level, 

information contained in individual cells. 

This role, I feel, is beautifully illustrated by modeling with cellular 

automata, as in The Evolutionary Tool Kit. Flow of information is the core 

of its modeling structure. As Langton states, "biologists cannot rewind the 

tape of evolution, and are stuck with a single, actual evolutionary trace out 

of a vast, intuited ensemble of possible traces. Although studying computer 

models of evolution is not the same as studying the real thing,' abilities 

such as free manipulation of computer experiments, potential to 'rewind 

the tape,' to perturb the initial conditions, and so forth, can more than 

make up the their 'lack 'of reality (Langton, 1991)." 

The pedagogic advantages of such computational tools are obvious. 

Use of tools like SimEarth or The Evolutionary Tool Kit will permit, as the 

Rationale for a new curriculum by the 2061 Panel states, "a curriculum 
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that will clearly depart from the usual catalog of facts, with an occasional 

experiment thrown in for good measure. Not only will it build concepts as 

much as possible by using historical and inquiry methods; it will also apply 

those concepts to current issues, asking ’What does it mean to know this?' 

Biological understanding will become connected in students’ minds to 

questions that are generally labeled 'social'; ’economic'; or 'ethical' (Clark, 

1989).” 

The question of accuracy or suitability of cellular automata modeling 

of evolutionary phenomenon has been a central concern for researchers in 

this field. The problem is generally restated as a concern for the problem of 

openness of the simulation process itself (Collins, et al., 1991; Jefferson, et 

al., 1991; Langton, 1989; Langton, 1991; Pattee, 1987; Ray, 1991; Taylor, et 

al., 1987). Computers are finite objects, their coding is digital, finite as 

well. How can they be said to permit anything like evolution? Can a 

computer simulation be truly open? Can it have sufficient freedom to 

model in any small aspect the phenomena of the real world? A related 

point is raised by philosopher Errol Harris (Harris, 1991) in asking whether 

even if a self-reproducing, self-programming computer is conceivable, 

"would it not have required a human (or divine?) programmer?" Harris 

claims that the contention that genetic machines could evolve by random 

processes fundamentally begs the question. 

By asking such questions we are sailing into very deep waters indeed. 

It is very important to do so. Anyone with classroom experience of the 

questioning, authority-hostile mind of adolescents will know that the 

discussion will get to this level soon enough, with little or no directed 

inquiry. If we are to develop the "mental vision of reality, a conceptual 

framework for reality" spoken of by the 2061 Panel, this is exactly where the 
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discussion should go. Central to the question being asked is: "What kind of 

framework for explanation can be accepted in biological science?" The 

question is legitimate and deserves exploration (Barlow, 1991; Collins, et 

al., 1991; Jefferson, et al., 1991; Margulis, 1988; Margulis, et al., 1986; 

Maynard Smith, 1986; Mayr, 1988; Rasmussen, Knudsen, & Feldberg, 1991; 

Ridley, 1983). 

A tale from the a set of short stories called The Aleph by Brazilian 

writer Jorje Luis Borjes, cited in the context of discussions of evolutionary 

theory by both philosopher Dorian Sagan (Sagan, 1988) and mathematician 

Rudy Rucker (Rucker, 1988) can illuminate the central features of what 

could be a rather abstruse analysis. 

The story is about a fabulous creature called Oomano, that was 

discovered on another planet in the first years of space travel. Oomano was 

a both a delightful and strange beast. It was highly intelligent, non- 

agressive, and friendly toward human kind. It had one very remarkable 

property: it's memory. Oomano could remember everything in its life 

exactly, not just the general details of where it went and who it saw or what 

it said or was said to it. Oomano remembered everything, including the 

color and shapes of the clouds at each instant, the feel of breezes, the scents 

it experienced, the lapses of its mind in daydreams, breaths it took, as well 

as exact words of conversations and feelings that accompanied them. 

Oomano had another remarkable property, if one held any of its hands, a 

visitor could experience, along with the creature itself, any one of these 

days from its long life. One could ask Oomano to replay any one of these 

days and the experience, exactly as the original would begin. There was 

only one problem. The replay of one day took as long as the day itself. The 
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result of this wonderful capacity was also unusual: Oomano had no future. 

Its tomorrow was a yesterday. 

Both Rucker and Sagan remark, from very different perspectives, of 

the similarity of Oomano with any theory or vision of the world. There is a 

necessary process of abstraction that must accompany any sense of 

memory, any characterization of events, or any theory. Some elements 

must be seen as important or determining, others are insignificant, 

therefore forgettable. Oomano's memory provides a mere exact copy of 

events, there is no transfer, no learning from them. The relative 

significance or insignificance of any happening is highly dependent on the 

mind set or theoretical perspective one brings to any situation. The drab 

finches of Galapagos, or the darkening moths of Birmingham were 

completely unnoticed until an individual with insight saw meaning in their 

appearances. It can even be argued that Captain Fitzroy of the 

H.M.S.Beagle and Charles Darwin did not visit the same islands in the 

Pacific; what each saw was entirely different (Gould, 1977). Fitzroy was 

horrified by the place. Its billowing lava flows, now cold and spottily 

covered by cactus and oddly colored, grotesque iguanas, reminded him of 

scenes from Dante's Inferno. Darwin was fascinated. An odd place, 

indeed, so different from his English homeland, yet one whose starkness 

revealed the beauty of natural law, ever present, but subtly hidden in the 

lusher climate of the British Isles. 

From Boxes' subtle tale one can easily see that there is some thing 

fundamentally wrong with a "theory of every thing," even with a 

"complete" theory of a particular thing. Oomano's exactitude is caught in 

an infinite regress; today could be a copy of yesterday, or tomorrow even a 

copy of time long past. Even the naturalists' perception of the world around 
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them is subject to this disconcerting observation. A total view of knowledge 

of the past precludes learning about both the present and the future. 

Ornstein's insistence that perception is, and needs to be, interpretation is 

with us at all times, in all disciplines (Omstein, 1986; Omstein, et al., 

1989). 

Simulating evolutionary processes in computer micro-worlds 

provides an ideal situation to examine this conceptual limitation and use it 

for pedagogical advantage. Micro-worlds must be fragments, abstractions 

from the real world, or, perhaps more properly, artifacts of our mind's 

perception of it. These computer worlds also have the advantage of a semi¬ 

independent existence. Through these computer micro-worlds we can 

watch the interactions of many of our ideas, "in real time" as it were. We 

can even examine counterfactual cases, impossible in the laboratory, to test 

ideas and their relationships. In the specific case of this study, the micro¬ 

world is an analog of stored coded information (the genotype) and its 

relation with the rules governing the interaction of the organism with its 

community and its environment (the phenotype) and the interaction of the 

natural and social environment on the organism through time (natural 

selection). To explore this concept further and its relation to the unfinished 

discussion of openness or necessary closure of computer evolution 

simulations, I must discuss more specifically the work of Thomas Ray, a 

biologist at the University of Delaware. 

Trained formally as a tropical ecologist Ray has extended the micro¬ 

world of evolutionary automata modeling to where it has been referred to as 

"digital Darwinism" (Travis, 1991). Ray defines life in a most general 

sense, restricting it to carbon based forms. For him a system is living if it is 

"self-replicating and capable of open-ended evolution (Ray, 1991)." Without 
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self replication the mechanisms of selection would be limited by the 

simulator. Most evolution simulations, including that in The Evolutionary 

Tool Kit, are specially designed data structures with certain pre-defined 

genes with various allelic forms (Dawkins, 1986; Dewdney, 1985; Dewdney, 

1989a; Dewdney, 1989b; Jefferson, et al., 1991; Packard, 1987; Werner, et al., 

1991). Importantly the organisms are not free to invent their own fitness 

functions. The model that Ray has constructed permits just that, an 

extremely flexible evolution simulation called the Tierra Simulator. 

Most other simulations attempt to use data structures, machine 

codes, or operating systems to emulate organisms. Such approaches have 

many drawbacks. The first is that they tie the model to specific hardware. 

A second very important reason is that machine languages of Von Neuman 

type machines are very "brittle". The ratio of possible code written in them, 

to the number of viable programs is essentially zero. The slightest change 

in machine code causes programs to crash. Ray's ingenious method 

around this problem was to design a parallel virtual computer with each 

CPU as an organism. The Tierran virtual machine resides inside a very 

large computer, its CPU and operating system governing the changes in 

the Tierra Simulator. The Tierran organisms use a robust language, one 

tolerant of variations as their instructional code. The language of the 

virtual machine is very limited. It is intended to have similar structural 

and functional properties of RNA molecules. It uses 32 instructions, 

analogous to the 64 DNA codons. 

Importantly, the Tierran language uses "address by template", a 

digital analog of the biochemical phenomenon wherein the surface of 

protein A, for example, must find the complementary protein A* with 

which it fits like a key, before any process can continue. In the Tierran 
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dialect a jump instruction (JMP) followed by an address 0 0 0 1, would 

function for the organism (really a miniature parallel CPU) as an 

instruction to look in the local memory or in a neighboring cell for a 

sequence 1110, and then begin executing there when it has found the 

match. If an error condition occurs, the JMP is ignored. Tierran 

organisms can rewrite their own code or read and execute that of any of 

their neighbors. 

Tierra occupies a block of RAM in a large computer. The block of 

RAM is referred to as the "soup". The inhabitants of the Tierran soup are, 

in fact, computer viruses, separated from each other by "the semi- 

permeable" membrane of the memory allocation. Mutations occur at a rate 

selected for the soup as a whole (analogous to errors caused by cosmic 

rays), as well as a fixed rate copying errors common in any replicating 

process. The soup is seeded with an ancestor, a self replicating program 80 

instructions long. The developments in Tierra parallel the second great 

event in the history of life, the origin of diversity. Ray makes the important 

distinction between an inquiry into the origin of fife and the origin of 

diversity, which first occurred with Cambrian explosion of life about 600 

million years ago. Modeling of the origins of self-replication is not 

attempted in Tierra. 

The combination of the simplicity and robustness of the Tierran 

language, self replication, and address by template produces some 

remarkable results. As the soup evolves, many variations in the organisms 

are observed. Parasites develop that steal computer time from their hosts, 

or interfere with the replication instructions. Parasites in Tierra are 

programs in a neighboring space that do not have a self replication code of 

their own. Their instructions jump to the self-replicating code of one or 
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more of their neighbors and use this to make copies of themselves. They 

are smaller programs than their hosts and therefore more efficient in 

using memory space (the analog of environment). Immunity to parasites 

also evolves. Later on, more complicated parasites circumvent the 

organisms' immunity. Hyper-parasites evolve that subvert the energy 

metabolism (here CPU and reproductive cycle time) of parasites. These, in 

turn develop hyper-hyper parasites. Of special interest is the observation of 

phenomena that look very much like the punctuated equilibria of Eldredge 

and Gould (Eldredge, & Gould, 1972). Quite often there are long periods of 

stasis or equilibria when one or several forms of organism dominate the 

soup. A random change introduces a new property that disturbs the 

balance and a period of rapid change ensues, followed by another period of 

relative stasis. Other researchers in artificial life have noted similar 

phenomena (Brockman, 1988; Conrad, et al., 1985; Farmer, Lapedes, 

Packard, & Wendroff, 1986; Jefferson, et al., 1991; Langton, 1991; Taylor, et 

al., 1987; Werner, et al., 1991). 

Ray's Tierran model does provide an example of open evolution 

within a community of cellular automata. It has no direct application in 

life science instruction at the pre-college level. No secondary computer 

administrator in his or her right mind would permit a program like Tierra 

to run on a school system, no matter what protections the author could 

supply about the containment of its products. A program whose sole 

purpose is to breed thousands of generations of rapidly mutating computer 

viruses is too dangerous to be put in the hands of anyone but experts. Ray's 

work does show the requirements of a simulation that would permit an 

organism to evolve freely and even define its own fitness function. It does 

provide an answer to Professor Harris' question. Yes, such a "self- 
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replicating", "self-programing" simulation does require a skilled 

programmer, but it is not in the same sense as the Divine Watchmaker 

from the Argument from Design (Dawkins, 1986). Given a simplified, 

robust language, "address by template", and a self-replicating seed, 

generation upon generation of unlimited complexity can evolve all by itself. 

The problem of the origin of diversity is separable from that of the origin of 

life. Ray's work seems to show that Harris' objection does not apply to the 

first problem; clues to the origin of diversity can be obtained through 

computer models. It remains unclear what his objection means for the 

second, the problem of the evolution of evolvability (Dawkins, 1986; Farmer, 

& Belin, 1991; Rasmussen, et al., 1991). 

The data structure in The Evolutionary Tool Kit is much too brittle to 

permit open evolution in the sense of Ray's Tierra. The investigator with 

sufficient computer knowledge is not limited to options presented by menu 

screens. If a student has access to a C Developer’s Tool Kit, it is possible 

for a user to append their own routines onto the Tool Kit shell and add their 

own designs for genes or their own fitness functions. 

New Methodologies 

New methodologies for science education is a popular topic these 

days. Professional educational journals are filled with articles on how to 

teach, package, or present science better, faster, or more effectively. Some 

of this effort is inspired by the numerous scholarly reports by one national 

committee or another on how bad the state of education really is. Others 

find inspiration in the unpreparedness of students in their classrooms and 

their own efforts to remedy the situation. My sympathy lies, admittedly, 

with the grass roots classroom innovator. The classroom teacher is where 

the rubber hits the road, as Carl Berger said. It is with these people and 
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the students that they contact that any real innovation in education must 

begin. The metaphor I wish to employ to explore this topic of new 

methodologies in science education is that of the "knowledge hacker", first 

coined by David Thornburg (Thornburg, 1991). 

Computer hackers have received a lot of press, mostly bad, in the last 

few decades. Unwashed, anti-social, and obsessive, these junk food addicts 

squirrel themselves away working on perfecting skill in the latest computer 

game or finding ways to break into other people's networks. They certainly 

do not fit the "brave, clean, and reverent" stereotype of youth of old. "A few 

did manage to become millionaires, put on clean clothes, and dine at 

elegant sushi bars." One feature does characterize their lifestyle: a 

dedication to the pursuit of knowledge. David Thornburg observes that 

what we need is "more hackers - not just computer hackers of course, but 

hackers in all areas of knowledge. We need to find ways to keep kids' 

intrinsic love of learning alive well into high school so that it never gets lost 

(Thornburg, 1991)." Computer simulations like SimEarth and SimAnt 

represent the beginnings of a new type of software and instructional design 

that encourages knowledge hackers in the life sciences. 

Thornburg gives three advantages of instructional design of this sort 

(Thornburg, 1991). First, hackers are self motivated. They willingly spend 

hours interacting with these simulations, testing them in all sorts of ways, 

all for the pleasure of the experience, not for grades. Second, hackers are 

very often introduced to the subject by another. This gives room for a 

teacher to guide students to an understanding of why some subjects have a 

potential for excitement, ways in which they can love learning and not find 

it drudgery. Third, the acquisition of knowledge is constructive, not limited 

by instructional constraints. Hackers are very likely to chart their own 
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course through the study, developing capacities perhaps far beyond a 

teacher's expectations. Clearly the role of the teacher in such an 

environment is much more that of a knowledge facilitator than master or 

expositor of what is to be learned. 

With The Evolutionary Tool Kit students can investigate the potential 

of individuals and species, and their interactions with each other and the 

environment in worlds much like those studied in SimEarth but on a global 

scale. Sample investigations were described in the introduction of this 

dissertation. These can easily be generalized. "Is there an advantage (or 

disadvantage) to parthenogenic reproduction?" "Why is sexual 

reproduction so common in plants and animals?" "How does social 

behavior effect inheritance?" "How can altruism, which can be harmful to 

individuals but helpful to populations, evolve?" These are wonderful 

questions cutting right to core meanings in biological science. They have 

also all been asked in the context of cellular automata simulations by 

researchers (Barlow, 1991; Brockman, 1988; Collins, et al., 1991; Farmer, et 

al., 1991; Hofstadter, 1991; Jefferson, et al., 1991; Langton, 1989; Lindgren, 

1991; Lovelock, 1991; Maynard Smith, 1978b; Maynard Smith, 1986; 

Maynard Smith, 1989; Packard, 1987; Taylor, 1991; Travis, 1991; Werner, et 

al., 1991). Why can't similar questions be posed and explored with 

automata of their own construction by "life science hackers" as part of their 

own investigations? 

As a sample of the phenomena opened for investigation by secondary 

"life science hackers" by use of cellular automata modeling, I will discuss 

briefly the work of Kristian Lindgren, incorporating elements of game 

theory, and the work of Charles Taylor and the UCLA Artificial Life Group 

on modeling insect behavior. 
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Lindgren s work builds on the work of Axelrod and Maynard Smith 

in the application of Von Neumann's theory of games to models in the life 

sciences (Axelrod, et al., 1981; Maynard Smith, 1974b; Maynard Smith, 

1982; Maynard Smith, 1989). The simplest model to understand the 

framework of this application is the Prisoner's Dilemma. 

The Prisoner's Dilemma is a two person non-zero sum game. The 

original problem was stated in the form of two prisoners suspected of 

having committed a crime. There is not enough evidence to convict either, 

unless one confesses. Neither knows the choice of the other. If both stay 

quiet (called 'Cooperation'), they will be released. If one confesses (called a 

Defect'), he goes free and the other is imprisoned. If both confess, there is 

a short prison sentence for both. The interaction is generally quantified by 

assigning weights to each outcome. If both cooperate each receives a 3. If 

both defect, each receives a 1. If one cooperates, and another defects, the 

defector receives a 5 and the cooperator receives a 0. 

Is there a strategy that is optimal for both players? In the case of a 

one game only, clearly the optimal strategy is to defect (inform on the other 

fellow). This won't work if one plays the same opponent again and again, 

as the opponent will begin to defect often and both will receive the low score 

of 1 per round. The problem gains greater depth with consideration of the 

Iterated Prisoner's Dilemma (IPD) where the same players meet again and 

again at the same game. The IPD problem was extensively analyzed by 

Axelrod (Axelrod, et al., 1981). From results of a computer tournament 

Axelrod found that "Tit for Tat" (TFT) provides both prisoners the optimal 

strategy, giving a score of 3.0 over long iterations. With TFT a player never 

initiates a defection; it is not an aggressive or 'hard' strategy. Also the 

player will defect only after the opponent has defected in the preceding 
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round. The TFT player has no memory other than the last round. It is 

forgiving. In general, strategies that were more forgiving', rather than 

punitive' or 'hard' performed the best (Axelrod, et al., 1981; Barlow, 1991). 

A biological analog of the IPD can be easily found in hunting 

behavior. Cooperative hunting gives much greater chance at downing a 

prey, with both sharing a meal. Stealing the prey from the partner 

(Defecting) gives immediate personal gain, but at a cost of disrupting 

cooperative behavior. The analog of a dual defection would be a pair of 

hunters that trap a prey and argue over it until it escapes. In The 

Evolutionary Tool Kit the user populates the world with organisms of 

specified strategies and runs trials to see which strategies are stable over 

long runs, or beneficial to the population as a whole. The question asked is 

"Is it possible for cooperative behavior to evolve under Darwinian 

constraints?" The model can be constructed with a genetic inheritance of 

the behavior or a Lamarkian model, where newborn hunters take on the 

behavior pattern of those near to it. 

Lindren's organisms do not move in the sense of organisms in The 

Evolutionary Tool Kit. Each round Lindgren’s organisms play the IPD with 

each other based on rules from a genome each contains (Lindgren, 1991). 

The genome contains the game theoretic strategy used by the organism 

coded in binary form. For a one memory genome (meaning that the 

organism remembers only the last move of the opponent) there are four 

possibilities for the strategies; 

I. Always Defect: This is encoded positionally in the genome as 

{0 0}. The first position in the bracket gives the response if the 

opponent defects. The second position gives the organism’s 
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response if the opponent cooperates. In the bracket 

symbolism cases are coded 

{ action if opponent defects, action if opponent cooperates} 

II. Follow the Opponent or "Tit for Tat" (TFT): If the opponent 

defects, the organism defects. If the opponent cooperates, the 

organism cooperates. The genome {0 1} encodes the Tit for 

Tat strategy. Note that TFT will not initiate a defection. 

III. Anti-Tit for Tat or ATFT: ATFT does the opposite of what the 

opponent does. If the opponent defects, it cooperates. If the 

opponent cooperates, it defects. The genome {1 0} encodes the 

Anti-Tit for Tat strategy. Note that ATFT will always initiate 

a defection. 

IV. Always Cooperate or A£: AC is a very forgiving strategy. If 

the opponent defects, the organism cooperates. If the 

opponent cooperates, the organism cooperates. The genome 

{1 1} encodes the A£ strategy. 

On each play, a parser reads the organism's genome and selects a 

response based on the genetic code and the behavior of the opponent it is 

playing. Lindgren's organisms can also mutate. A point mutation can 

turn a 1 in any area of the genome into a 0. The organism can also have a 

duplication mutation where {0 1} becomes {0 10 1} with a two step memory 

as a result. A two step memory codes, in binary form, appropriate 

responses for any of the 4 possible interaction histories. The genome {0 10 

1} is basically "Tit for Tat" with a memory. A split mutation will randomly 

remove the first or second half of the genome. A two step genome sets its 

responses from the last two opponents it has played. Table 5 displays four 
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possible strategies for a two step memory and the genome that encodes 

each. 

In each run all Lindgren's organisms play the IPD against all 

others. The organisms receiving above average scores receive more 

offspring in the next generation. Population size is kept constant. It is 

during the reproduction that the mutations bring new strategies. The 

capacity to lengthen the genome and randomly vary the strategies give 

Lindgren's simulation an openness much like Ray’s Tierra. Genomes can 

evolve to arbitrary length, thereby putting no limit on the number or kinds 

of strategies the organisms can use. These organisms do not self replicate, 

however. Table 5 shows sample genomes of memory length two. 

Table 5 Strategies for a 2-Memory Prisoner's Dilemma Genome 

HISTORY OF PLAY 
Always 
Defect 

TFT Avg. 
Forgiving 

Avg. 
Non-Forgiving 

(Defect, Defect) 0 0 0 0 

(Defect, Cooperate) 0 1 1 0 

(Cooperate, Defect) 0 0 1 0 

(Cooperate, Cooperate) 0 1 1 1 

GENOME {0000} {0101} {0 111} {0001} 

The results of Lindgren's simulations are interesting. Populations 

evolve rapidly and then reach periods of stasis, much like Eldredge and 

Gould's punctuated equilibria. It is possible to have pair of mutually 

supporting strategies that dominate the population, an analog of 

polymorphism. The pair can resist exploitation by other strategies. This 

mutualism naturally emerges from the model. In general, strategies that 

dominate the periods of stasis are cooperative. 
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Explorations of such game theoretic models of cooperation are easily 

included in The Evolutionary Tool Kit. These are described in chapters two 

and three of this dissertation. Students are able to design their own 

strategies from buttons on pull-down menus on the gene menues. They 

could select 1, 2, or 3 level memories and determine the behavior pattern 

they wish for their organisms case by case. They can then see how their 

strategies fare against other strategies they construct, or against other 

students' strategies. It is possible, on a network, to have students play one 

another. Questions that can be explored are: "Are there optimal 

strategies?" "Which strategies are stable against invasion by others?" 

"Can cooperation naturally evolve?" 

Modeling Plant Growth 

In work begun in the '70's and early 80's Karl Niklas and others used 

computer models to investigate evolution and selective pressure in herbs 

and woody plants (Aono, & Kunii, 1985; Fisher, & Honda, 1977; Honda, & 

Fisher, 1978; Honda, & Fisher, 1979; McMahon, 1975; McMahon, 1976; 

Niklas, 1984). In a 1986 article in Scientific American Niklas gave an 

account of his work for a general audience (Niklas, 1986). Given a few very 

simple assumptions about the growth of plants and strengths of structures, 

some remarkable properties and evolutionary processes can be 

demonstrated. 

Niklas assumed that only three variables (probability of branching, 

rotation angle, and branching angle) were needed to develop a very wide 

variety of models for woody plants. The three variables, and their physical 

associations are shown in the figure below. The rotation angle is y. It 

determines the amount of rotation the branch undergoes before the growth 

of the next segment. The branching angle is ((). It determines the 
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branching angle between two new segments. The probability of branching 

is simply a probability of bifurcation after a segment has elongated a 

specified amount. Figure 2.6 displays the two branching angles. The 

process of generating the tree is much like the Monte Carlo technique used 

by Raup and Gould in generating cladograms. 

The simplified diagram in Figure 2.6 assumes axial symmetry of 

branching at each node. Niklas’ model added another feature to include 

the possibility of apical growth (growth from the apex) as in a pine tree 

(Niklas, 1984). In a more realistic model here are two branching angles 

possible at each node, one which controls the secondary branch off vertical, 

another which controls the angle of the primary. 

Figure 2.6 Parameters of Tree Growth after K. Niklas (1986) 

The article in Scientific American describes the fitness function 

Niklas used, as well as his method of modeling the process of natural 

selection (Niklas, 1986). Niklas assumes that "the majority of plants can be 
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seen as structural solutions to constraints imposed by the biochemical 

process of photosynthesis." Branched patterns gather more light. The 

plants must also be able to stay erect. Niklas also assumes "that the 

evolution of plants was driven by the need to reconcile the ability to gather 

light with the ability to support vertical branching structures." He also 

assumes that evolution of plants is also driven by "the extent to which they 

are successful at reproduction, placing a premium on branching patterns 

that allow for better dissemination of seeds or spores." 

Early plants lacked leaves. They were basically vertical 

photosynthetic, branched, cylindrical frame structures (Scott 1984). The 

light gathering potential for such structures can be modeled easily by static 

three-dimensional branching structures in a computer. The structures 

generated by the stochastic processes look remarkably similar to early 

vascular plants like cooksonia. The computer can calculate the amount of 

light any rigid structure can gather as the sun goes over it in a daily arc. 

The computer can also calculate the first moment of inertia of these 

structures to give an estimate of the load inherent in any branching 

pattern. 

Shading was certainly a factor in early evolution of vascular plants. 

Since there is a wide variety of modern shade tolerant plants, it is assumed 

that some early plants were also shade tolerant. Self-shading was also a 

factor. The issues of shading, and self shading are very difficult to handle 

computationally. Niklas' model did not address them; nor did it address 

any problems of fluid flow and capillarity. 

The universe in which Niklas' plants evolved could be represented as 

a cube with its three axes representing one of the variables determining the 

plants structure. The world' would start out with a plant with a low angle 

128 



of branching (much like a primitive plant would have had) and arbitrary 

values for the other two variables. Because of the random nature of the 

branching variable any unique number triplet would produce plants with 

different morphologies. The computer would generate a specified number 

of plants at each triplet and also a number of plants from local regions 

around the triplet. The size of the region investigated was constant 

throughout the run. It was initially set by the user. This 'investigation' 

region is analogous to a mutation rate in a natural system. 

Figure 2.7 Universe' of Possible Branching Patterns 

Each of the hundred odd plants generated would be analyzed 

quantitatively for light gathering ability, strength, and reproductive 

potential (number of nodes for spore production). Natural selection was 

modeled by the selection of a plant in the region of 3-space that was the most 

successful as measured by the three criteria. This new plant would serve 

as a basis of analysis for the next round. 
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The model would describe a trajectory through the state space with 

each point representing a general plant structure. The trajectory and the 

associated plant structures are shown in Figure 2.7. The figure is from the 

1986 Scientific American article. 

Starting from what looks like a fungus (A), the path of natural 

selection (here, a type of optimization) leads to shapes not unlike the odd 

cycads (B) and fern trees (C) of the Carboniferous to shapes that look much 

like pine trees (E, F). It seems that, from the crude perspective of this 

model, pine trees, with apical growth represent an optimal form. 

The Evolutionary Tool Kit will model vascular plant growth and 

selection much like Niklas' work. The automata in The Evolutionary Tool 

Kit can have motive or non-motive properties. A non-motive automaton 

with a gene structure that gives a branched morphology can be set up as the 

focus of an investigation. The Niklas model is not really based on cellular 

automata; it is a discrete Monte Carlo simulation. As the diagram shows 

his method really shows a solution to an optimization problem using a 

genetic algorithm. Only groups of plants around a special point in the 

phase space are considered at any time. 

With the gene structure associated with an automata in an 

environmental grid much more realistic modeling can be attempted. Once 

can change environmental conditions, such as specifying periods of 

dryness, heavy snow, or low levels of light. It would be possible to vary 

latitude of the region in which the plant grows. Browsing by animals on 

lower branches could be modeled as well. The shape of African acacia 

trees is just as much a result of browsing by long necked herbivores as by 

demands for light and structural strength. 
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Using analyses suggested by Vogel (Vogel, 1981; Vogel, 1986), it is 

possible to factor in aerodynamic drag. Plants in windy regions may evolve 

very differently from those in calm air. All of these conditions can be set up 

and potentially investigated by the user of The Evolutionary Tool Kit. 

A interesting experiment possible in The Evolutionary Tool Kit would 

involve a student setting up a spherical world, seeding it with primitive 

plants, setting polar regions with a heavy snow load, and then observing 

the effects of natural selection on plants in the different regions. The 

success' of each plant automata would be quantitatively measured much 

as in Niklas' model, photosynthetic capacity, structural strength, and 

reproductive success. In any automata neighborhood the lowest fitness 

score would die on that round. Its space would be taken by offspring of any 

automaton with above average fitness. "Does selection drive upper latitude 

plants to a different morphology than equatorial ones?" "What is the effect 

of prolonged periods of dryness, or snow?" "If the force of gravity were 

different, what plant shapes would evolve?" Questions of these nature could 

be investigated with automata modeling with The Evolutionary Tool Kit. 

At this point it is possible to investigate a particularly useful 

pedagogical construct of The Evolutionary Tool Kit which I shall call "The 

Designer". It is similar in function to the "yellow ant" of SimAnt. The 

Designer permits students to alter the genotypes of single organisms or 

groups of organisms in the middle of a run. The mutations of groups or 

individuals under the Designer are totally under the user's control. Other 

organisms in competition with the Designer's organisms can evolve under 

a genetic algorithm. A sample investigation using the Designer in the tree 

world' will illustrate the constructs features. 
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After a period of experimentation in an 'explore mode’ in a tree world 

in The Evolutionary Tool Kit a student would decide on initial values for 

"his or her" species of tree. The students would set their species tree in 

competition with other species of tree generated by the computer. The 

computer would seed the world with its species (with parameters chosen to 

lie in the same region of Niklas' cube as the student's choice, but closer to 

the trajectory curve). Students could see the morphology of both initial 

populations. The game would be to beat natural selection by evolving a 

'fitter' tree. The competition between the two species would be shown by 

tallies and by displaying each in different colors on the world grid. The 

game is really "playing" the Argument from Design, with the student as 

the omnipotent Creator, against a Darwinian natural selection model. 

Mutations in the computer's species are random fluctuations in 

parameters. 

A student's initial setup may perform well for a short time, but then 

the random changes, aided by selection, throw the advantage to the 

opponent's trees. The Designer must alter the 'recipe' for a successful tree, 

or see his or her species go extinct. In fact they must continuously improve 

their creation with considerable planning and foresight just to stay in even 

competition. It is a shock to find that the Darwinian model does quite well, 

thank you, with the Blind Watchmaker at the helm. The fact that random 

variations in these parameters can continually produce successful trees is 

an important point to learn. The analog of the mutation/breeding process 

embodied in the computer model produces cumulative selection, a powerful 

force indeed. 

This Designer/selection experiment also provides students a first 

hand demonstration of a fascinating idea in modem evolutionary theory, 
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the Red Queen hypothesis (Dawkins, 1986). It is so named after the 

famous queen from Lewis Carroll’s classic. A confused Alice, while she 

was hurriedly dragged through the country side by the Queen, yet all the 

time remained in the same place, remarked, "In our country you'd 

generally get somewhere else - if you ran very fast for a long time as we've 

been doing." The Red Queen answered, "A slow sort of country. Now, 

here, you see, it takes all the running you can do, to keep in the same place. 

If you want to get somewhere else, you must run at least twice as fast as 

that." The process of natural selection is continuous. One good design just 

won't do, it seems; as the competition with tree design in The Evolutionary 

Tool Kit shows. One can evolve more and more successful life forms with 

little or no change in the success rate against any competition, as the 

competition is evolving at the same rate as the life form itself. Automata 

modeling puts the student right in the center of the process. 

One of the most important aspects of Darwin's theory, and most 

difficult to get across to students, is the cumulative effect that very small 

changes can have on a group of organisms. Much like their carbon based 

counterparts, the automata are constantly changing. The dynamic nature 

of cellular automata modeling can provide a wealth of experiences from 

which the life science hacker can learn. Exercises like these also widen the 

front on which students can approach materials in life sciences. The 

intuitions needed in designing trees go far beyond the linguistic and 

mathematical and call upon resources from spatial and physio-kinetic 

intelligences in Gardner's model. 

UCLA Artificial Life Groups 

I shall briefly discuss the work of three groups at the UCLA Artificial 

Life Group. The work of these groups is very complex. The code is 
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implemented on a large Connection Machine using a dialect of parallel C. 

One of the reasons for reviewing this technical material is to show the 

original sources that the designers at Maxis have adapted to write the 

commercial product SimAnt. The second reason is to explore some 

approaches, similar to those taken by these researchers, that have direct 

application in life science pedagogy. These technical sources also can give 

a hint at some of the potential for artificial life as a modeling and teaching 

tool in the classroom. 

David Jefferson and other researchers at the Artificial Life Group at 

UCLA have developed a very interesting model of evolution in the 

Genesvs/Tracker System (G/TS) (Jefferson, et al., 1991). The 

Genesvs/Tracker System is a refinement on the earlier RAM evolution 

emulator built by Taylor (Taylor, et al., 1987). The creatures modeled in 

G/TS are ants that leave and follow pheromone trails. G/TS ants are the 

prototype for the SimAnt creatures created by Maxis. 

In the attempt to model the evolution of behavior, the authors of the 

Genes vs/Tracker system faced the same problem of openness as Ray's 

Tierra model. They solved the problem in a similar fashion. The automata 

in G/TS use a simplified language that is robust when subjected to 

mutations. G/TS ants have four behavior's coded in their genome: Move 

(the ant moves forward one cell); Right (turn 90° right); Left (turn 90° left); 

No-Op (stay in place, a null-state). The ant can 'see' ahead only one square 

directly in front of it. It has a sensor that tells it if that square is marked as 

part of the trail. The program of the ants themselves is subject to evolution, 

much like the viruses of Tierra. The behavior of the ant is encoded in the 

genome as either a cellular automata or a neural net. Which 

representation is used is determined at the start of the experiment. 
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The G/TS ants move on a 32x32 toroidal grid. Only one ant is on the 

gnd at each trial. The test ant is placed at the beginning of a pheromone 

trail, whimsically dubbed "the John Muir Trail". The trail winds round 

the gnd, making several right and left turns. It is interrupted in several 

spots. Pheromone levels at some cells are faint. 

START 

Figure 2.8 The "John Muir Trail" from the Genesys / Tracker System 

The ant’s task is to move from cell to cell and traverse as much of the 

trail as it can in 200 steps using the behavioral program in its genome. One 

135 



point is given to an ant each time it reaches a cell on the trail. After an ant 

steps on a marked cell, its scent is removed to prevent the ant from circling 

and getting points for tagging the same square many times. 

A G/TS ant has only one sense organ, a nose’ that can only smell the 

cell immediately preceding it. The sensor returns a 0 or 1 depending on 

the absence or presence of pheromone in that cell. The sequence of moves 

coded by the genome evolves so that the succeeding ants can use the 

information from the one sense organ to follow the trail. 

Figure 2.8 shows the "John Muir Trail" traversed by ants in G/TS . 

The numbers on the grid give the number of points that an ant has 

accumulated if it reached that spot. The black marks the trail. The grey 

spots are not part of the trail. They are visual aids to the reader to mark the 

fastest route of travel. These grey spots would appear white to the ants. 

Note that after the 70 marker the trail gets harder. There are many 

"Knight's" moves (two or three unmarked then left or right one cell). 

1/M 

Figure 2.9 Five state automaton that can traverse the trail in 314 

steps and gets a score of 81 in 200 time steps. (Jefferson, 1991) 
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The behavioral program' of a G/TS is not unlike a LOGO program. 

Pappert s LEGO/LOGO turtles move around the floor under programs 

much like that of G TS ants. Below is a sample G/TS ant program 

expressed as a cellular automaton. 

The notation in figure 2.9 encodes moves of the ant as follows. At the 

start, if the ant senses a trail in front of it (sensor input is 1) then it Moves 

onto that square (coded '1/M'). The automaton’s condition then returns to 

the START state. If the square is not a trail square (input code 0), then the 

ant s internal mechanism moves to 'State 2' and it makes a Right turn 

coded 1/R). Now in the second state of the five possible, it executes 

instructions given by its genome for this state. In State 2, for this 

automaton, it checks for the trail in front of it. If there is no trail, it makes 

a right /remember turns just affect direction, the ant does not move) and 

goes to the third state. If there is a trail marker in that direction, it moves 

onto it and the state of the automaton goes back to START. Programs very 

much like this one have been written in LOGO and programmed into 

LEGO/LOGO robots for use in middle school classrooms at the MIT 

Learning Lab (Resnick, 1989). The example given is a five state automaton. 

Automata of up to 32 states are permitted. The rules governing the 

automaton are stored as a look-up table in the genome. The look-up table 

gives the appropriate response after whatever condition the ant encounters. 

The ant's genome is long, 453 bits. How much of the genome is actually 

used is highly dependant on the code of the particular ant. 

The initial loading of the ant's genome (rules governing its behavior) 

is random, so that over 40% of the first ants are non functional. They never 

find the first square. Another 20% only find square one. Over 90% get 

scores of under 10. The population evolves using a genetic algorithm in 
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which the genotype's score determines its representation in the next 

generation. In each run there are 64,000 ants, each with a different 

genome. At the end of a run all ants are killed. Only the top scoring 10% 

are reserved for breeding. Mutations occur only at breeding. The 

mutations are always blind to the part of the genome on which they operate. 

Pairs of parents are chosen at random from the top scoring ants. These are 

bred to produce the next generation of 64,000 ants. From each parental pair 

an offspring is produced first by a crossover mutation (usually at a 1% rate) 

on each element of the 453 bit string. For example, consider parent A and 

parent B. The algorithm takes the first element of parent A's genome to 

construct the first element of the genome of the offspring. But 1% of the 

time it uses the first element of parent B instead. Parent B's genome is not 

disadvantaged in this process, as it could be the first parent in another 

random pair. A second point level mutation (usually again at 1%) will 

invert a 1 into a 0 or visa versa at each element of the 453 bit genome of the 

offspring. The new generation of 64,000 ants is tested on the trail. It takes 

the hardware approximately two hours to execute 100 generations of ants. 

Even starting from initial random states, after one hundred 

generations the genome of the G/TS ants evolved to a level where they can 

exhibit the behavior of following accurately a "broken trail" in a grid 

environment, achieving mean scores in the 50's. A small fraction of ants 

actually reached a perfect score of 89 in this short time. The structure of 

some of the most efficient organisms was remarkable. "Such efficient logic 

seems exquisitely adapted to the features of this particular trail, and 

suggests that evolution has had the effect of 'compiling' knowledge of this 

environment into the structure of the organism (Jefferson, et al., 1991)." 

The meaning of theoretical studies of the evolution of behavior of individual 
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cellular automata like G/TS for students of science educators can be best 

seen through the work of the successor to the Genesvs/Tracker System. 

AntFarm. 

AntFarm by Robert Collins and David Jefferson is a massively 

parallel, micro-analytic, evolutionary simulation. It focuses on the 

evolution of behavior of a whole colony of automata. Each colony of ants in 

AntFarm has a single chromosome with a 25,590 bits. There are 16,384 

colonies of 128 ants each. Each colony occupies its own 16X16 grid 

environment. The genome of the ants in AntFarm differs from the 

structure used in G/TS in that each ant in the colony has the same genome 

(haploid genetics). Their behavior is encoded as a neural net, not a finite 

state cellular automata. The size of the genome, as well as the number of 

ants and the number of colonies gives the reader some idea of the 

computing power needed for this simulation. A run can take days to 

complete. 

The AntFarm ants also wander around their world leaving or 

following pheromone trails, finding food and bringing it back to the nest. 

There is no fixed 'trail' to follow as in G/TS . Each ant has four options: 1) 

move to any of the eight neighboring locations, 2) pick up a unit of food, 3) 

drop a unit of food, 4) drop from 0 to 64 units of pheromone. The ant also 

has more senses. It can sense: 1) presence of food, 2) presence of the nest, 

3) the amount of pheromone, 4) whether it is carrying food or not, 5) 

direction to the nest, 6) random noise that disturbs other signals. The 

response to sensory input is determined by the genome. Fitness is 

determined primarily by the number of bits of food that ants carry back to 

the nest. Because metabolism is included in the assessment of fitness, 

there is a pressure to evolve streamlined foraging strategies. 
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The genome of the initial population, like that of Genesvs/Tracker is 

set randomly. A great many initial ants are non-functional. After 500 

steps by each ant, a generation is considered complete. All ants die and a 

new generation is hatched. Frequency of a genome in the new population is 

determined by its success in the last generation. Mutations occur in the 

genome during reproduction. As in G/TS they can be both point mutations, 

or crossovers. Over the course of a run the ants in AntFarm evolve very 

complex search and foraging behaviors. Like the ants in G/TS these ants 

'learn' to follow pheromone trails to food, but to become more efficient at 

foraging they also 'learn' to leave trails that may aid other ants. The word 

'learn' may not carry the proper meaning in this context. It is the neural 

nets in the 16,000 different ant colonies that is evolving after each 

generation. 

^ NEST 

111 FOOD 

PHEROMONE 

Figure 2.10 Section of a Grid from AntFarm 

Collins and Jefferson chose not to attempt to model navigation in 

AntFarm. The ants are provided with a "sense organ" that performs some 

tasks of navigation. The organ indicates the direction back to the nest. 

They still must evolve the ability to use it. Real ants use a very complex 
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system of tracking the sun or moon, polarized light, and perhaps 

magnetism to determine the direction to the nest. It was not realistic to 

attempt to model this behavior in such a simple simulation. Figure 2.10 is 

a schematic of a section of one colony of ants in AntFarm. 

Each run of AntFarm lasted 500 generations. The time for a run on 

the Connection Machine was one or two days. The ants developed very 

complex, and reasonably efficient foraging behaviors. The evolution of 

cooperative foraging has not been observed as yet. The programmers at 

Maxis have taken some of the more successful genomes from AntFarm and 

used them to represent the behavior patterns of the ants in SimAnt. The 

ants in SimAnt don’t evolve like those in AntFarm. The genomes (neural 

nets) that govern the behaviors of workers, queens, and soldiers are fixed 

over time. While playing SimAnt these artificial creatures do show the 

seemingly purposeful behavior exhibited by these 'evolved' neural nets. As 

stated previously the 'yellow ant' construct is a very clever method of 

introducing the human player into the world of these neural net ants, as 

well as a chance for the human to explore ways in which cooperative 

behavior may be initiated. The human now becomes the initiator ant, the 

element of the colony that precipitates cooperative behavior. SimAnt is a 

very successful adaptation of the technical work done by the Artificial Life 

Group at UCLA to a home/educational environment. 

Gregory Werner and Michael Dyer, also of the UCLA Artificial Life 

Group, used another variation on the Genesvs/Tracker System to 

investigate the evolution of communication in artificial organisms 

(Werner, et al., 1991). Their work does bear directly on pedagogical use of 

modeling in The Evolutionary Tool Kit. 
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Werner and Dyer’s organisms (W&D) occupy a 200x200 toroidal grid. 

Females of the species are non-moving; they emit calls that are heard by 

the males. Females also have limited vision'; they can see males up to two 

squares away horizontally or vertically. The eye can detect the location and 

orientation of a male. Males roam about listening for females. The males 

share the condition of Eros in legend; they are blind. They do have an 'ear' 

which can hear the signals of nearby females. The male’s hearing is not 

directional; it can only sense the signal. The problem that the W&D 

organisms set out to solve is the age old one of mating. Can a type of 

communication between the organisms evolve that will assist in this 

process? 

The females can produce eight different signals. The male has only 

five outputs: forward, back, left, right, and still. When a male in the visual 

field of a female that is one right turn and two forward moves away, the 

female may emit sound 4. The neural network genome of both males and 

females determines initially what sound is emitted, or what movement is 

taken, in response to any condition it encounters. To that female, sound 4 

carries the meaning of "right, then forward two". Other females may use 

different signals for the same condition. Furthermore the neural networks 

of the males are also arbitrary. The neural network of the male that 

receives that signal may interpret it as "go left then forward two" or some 

other arbitrary pattern. The networks are initialized randomly. The 

environment puts evolutionary pressure to evolve efficient communication. 

The best strategy for two animals to find each other is for the female to 

direct the male to herself. "As the males evolve a search strategy, the 

females will have to evolve a corresponding signalling protocol for the 

males to follow." 
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When a male finds a female, the two mate and produce two offspring, 

one male, one female. The genome of the offspring is produced by 

combining the neural networks of the parents, using crossover and 

mutation as described previously. The offspring and the parents are then 

moved to random locations in the grid. Mutation rates are set at about .01% 

per gene, with crossover at 2% per gene. Organisms have a fixed time in 

which to reproduce or they die. Reproduction is asynchronous, permitting 

overlapping generations. This procedure differs from more traditional 

genetic algorithms, but it is suited to studies in the evolution of language 

where inter-generational communication is important. The task may be 

restated as a co-evolution of populations of males and females who agree on 

a dialect or protocol to interpret the signals sent and received. The dialect 

may be completely arbitrary. A control group of totally deaf males was 

sometimes used for comparison purposes. 

Results of Werner and Dyer's work were very interesting. Up to 1500 

cycles the 'deaf males reproduced more efficiently than 'hearing' ones. 

Presumably confusing signals from females with random dialects caused 

confusion. After 1500 cycles the hearing males reproduced with double the 

frequency of their deaf brethren. In all runs one particular communication 

protocol eventually took over the entire population. Werner and Dyer also 

tried introducing barriers in the grid. The barrier could be impermeable or 

semi-permeable. As one would expect, if the barrier was impermeable, 

different dialects evolved on each side. Interestingly, if the barrier was 

semi-permeable (up to 80% chance of crossing when approached) separate 

dialects could be maintained on each side. At rates higher than the 80% 

permeability one of the protocols would consistently take over the 

population. 
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Werner and Dyer wish to extend their model to include metabolism 

and deaths by starvation, predation, and more detailed modeling of vision 

and listening. The random placement of the parents and offspring is also 

unrealistic. The authors plan to have offspring placed nearby parents. 

This may encourage both speciation and altruism." Werner and Dyer note 

that several species of frogs that can interbreed in nature, never do. Their 

calls are so distinct as to insure such cross species mating never happens. 

Calls of male frogs attract only females of that species (Blair, 1958; Blair, 

1964). Werner and Dyer also state, "We believe that communication 

protocols could provide a natural way of establishing genetic barriers that 

spontaneously emerge. This could be useful in exploring a wide variety of 

biological problems in the origin and maintenance of distinct species in an 

ecological setting, including kin selection, altruism towards kin, genetic 

drift, gene flow, mimicry, and parasitism." 

It is investigations of this sort that The Evolutionary Tool Kit is 

setting out to facilitate at the secondary level. Werner and Dyer believe that 

modeling with artificial organisms can play a role in theoretical 

understandings of these phenomena. I am convinced that modeling with 

cellular automata has great pedagogical potential in the life sciences. As 

set out in their 1991 paper, the inaudible digital chirping (the calls were all 

in binary, no real sound was made) of Werner and Dyer's organisms may 

have no immediate application to secondary education. The approach is 

very abstract. Recent work on frog calls by Michael Ryan, and reported by 

Steven Jay Gould (Gould, 1991a; Ryan, 1990) and on moth antennae by 

Steven Vogel (Vogel, 1986) can be modeled relatively easily in The 

Evolutionary Tool Kit for secondary life science students. 

144 



The beautiful singing and exquisite plumage of birds or the nightly 

chorus of frogs are often seen as a hymn of praise to the earth, or to life 

itself. To the evolutionists' eye and ear, they are prime examples, in fact, of 

the great Darwinian struggle, a challenge to other males and an 

advertisement to females to ensure their reproductive success. In frogs the 

female choice model of sexual selection seems to apply. Michael Ryan 

noted that a particular Panamanian frog, Physalaemus pustulosus, has 

an unusually complex two part call. The call consists of a whine at about 

400 Hz to 900 Hz, then a chuck with a base frequency of 220 Hz but with 90% 

of its energy in very high level harmonics starting at 1500 Hz, peaking at 

2000 Hz. Direct anatomical examination of the inner ear of females reveals 

that it is most sensitive to about 500 Hz, but it also has other fibers that are 

maximally sensitive at about 2100 Hz. Ryan makes the hypothesis that the 

complex call evolved from an ancestral one, now including the additional 

chucks. These high frequency sounds take advantage of hereto unused 

properties of the ear. This phenomenon is called pre-existing sensor bias. 

Successive choices over thousands of generations of female Physalaemus 

pustulosus, is sufficient to cause an evolutionary pressure in favor of calls 

with high frequency chucks. As Gould states "the pre-existing bias in frogs 

is a basilar papilla tuned to high frequencies, not an irresistible urge to 

hear a chuck. Again this bias might have been exploited in many other 

ways, but P. pustulosus, evolved a chuck (Gould, 1991a)." 

This tale of whines and chucks is beautifully adapted to modeling 

with cellular automata in The Evolutionary Tool Kit. Methods to do this 

will be explicitly explored in chapters three and four. Experiments with 

evolution of frog and bird vocalizations will call upon the abilities of 

students who may be dominant in the musical intelligence in Gardener's 
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Multiple Intelligence Schema. Students will set a sensory bias in females. 

The bias will consist of one or two maximal excitation levels for the 

hearing organ of the female automaton. Number of sensitive regions 

and which frequencies of greatest frequency will be chosen by students in a 

"design” phase of their frog call engineering. They will also set up a style 

preference: short bursts, long notes, octave jumps, fifths, or trills etc. 

Much as in the "Designer/selection" described previously with competition 

among Niklas' trees, another group of students (with no knowledge of the 

pre-existing bias) would design a "male frog call" would enter a natural 

selection competition with a species under an genetic algorithm. This 

could easily be done over a network. The question that may be asked is 

"Who can design a frog call that females find the most attractive?" The 

males of the species that produce the most sensory "excitement" would be 

chosen by females for mating. As the competition proceeds, and after the 

students' species starts to lose, they would be permitted to listen with a 

"microphone" to selected frog calls from the species undergoing "natural 

selection". Students could then go back to their design, and genetically re¬ 

engineer the calls of their male frogs, based on analyses of what they think 

works for this group of females. Can they design their frog "genes" good 

enough to take over the swamp? 

As described above, the natural selection model is based on 

Mendelian patterns of inheritance. There is considerable evidence of a 

"cultural" or at least social component of animal calls (Csikszentmihalyi, 

1988; Dawkins, 1983; Gould, 1988; Mayr, 1988). In the case of canary songs, 

there seems to be a genetic component of the song. Males raised in isolation 

will sing a certain series of notes; it is a greatly simplified version of the 

song of an adult canary. Much of the texture of the song, its swoops, trills, 
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repetitions etc. seems to be learned from contact with other canaries. This 

Lamarkian form of inheritance seems especially important in higher 

animals and primates (Dawkins, 1983; Dawkins, 1986; Maynard Smith, 

1978a; Maynard Smith, 1989). Learned behavior can be modeled with 

automata in The Evolutionary Tool Kit. Students can set up a competition 

between a fully genetically determined species, and another species whose 

males "learn" the stylistic component of the song from other males. The 

genetic component of the second species would still have to be engineered 

continuously by the student. 

Another interesting set of experiments with automata that can 

appeal to students who think physio-kinetically is suggested by Steven 

Vogel's work in biomechanics (Vogel, 1986). The antennae of many moth 

species are very specialized structures. Males of many species are very 

short lived. Some are hatched without any mouth parts. They must find 

females and mate very quickly before the die. Their antennae are 

exceedingly sensitive to the pheromones of the females. Some are able to 

detect concentrations down to one in ten trillion parts. The sensors on the 

antennae may be only able to detect the presence of pheromone. The shape 

of many moth antennae is fern like, very similar to the fractal patterns 

generated by simple replacement operations. 

Models for antennae as arrays of cylinders could be constructed in a 

computer and subjected evolution through a genetic algorithm. There 

would be both structural constraints, as with Niklas' trees, and a factor 

estimating aerodynamic drag of the structure. The problem would be to 

develop, or evolve through natural selection, a structure that provides the 

maximal surface area to trap particles of pheromone, while giving 

minimal weight and drag in flight. Calculation of drag coefficients is both 
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computationally intensive and error ridden for anything but the simplest of 

shapes. The intermediate values that the computer generates could be 

tested against data drag coefficients could be gathered from student's own 

experiments with models of branched shapes placed in the air stream of 

fans. 

In summary, the approach taken in The Evolutionary Tool Kit 

represents a new way of introducing and developing concepts in the life 

sciences. Building on the work of Werner and Dyer, students can 

investigate the patterns of inheritance of mating calls in both a genetic and 

memetic frame. Utilizing the work of Lindgren and Maynard-Smith, they 

can investigate effects of cooperative and non-cooperative strategies on 

populations. They can pose hypotheses on the structure and growth of trees 

and put themselves at the center of a Darwinian competition as modeled by 

Niklas. Students can explore at the level of the organism the effects such 

variables as breeding time, scarcity of food, metabolism of energy, have on 

predator prey relationships as modeled by Jefferson and Taylor. 

New Ideas 

As stated by Jefferson et al. (Jefferson, et al., 1991), "modern 

biologists have only a few ways to study macro-evolution: 1) mathematics of 

population genetics, 2) lab and field experiments, 3) examination of 

molecular relationships among modern species, and 3) examination of the 

fossil record." Each method poses unique problems, especially from the 

point of view of an educator attempting to give students an understanding of 

the beauty, and the claim to validity of evolutionary theory. The 

mathematics of population genetics is formidable, especially in non¬ 

equilibrium cases. Field studies, though close to ideal learning 

environments, are impractical in most school settings. The fossil record is 
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notoriously incomplete, and generally inaccessible to students learning 

modern life science. Also, both the molecular and fossil records tell us 

about how evolution proceeded historically, not about the principles of 

evolution and how it might have been. Computer simulation provides a 

new tool. Jefferson (Jefferson, et al., 1991) further states that "We hope 

some day that biologists may use simulation to help resolve some of the 

outstanding foundational problems in evolution, including perhaps 

questions about modes of speciation, the evolution of cooperation, the unit(s) 

of selection, and the evolution of sex." Computer simulation will prove to 

be a valuable tool for research biologists in the coming years (Farmer, et al., 

1991; Frenkel, 1991; Lander, et al., 1991; Langton, 1991). In addition to the 

pedagogic value, students will gain familiarity with the technology and 

techniques of computer simulations in the life science. 

For science educators the newest and perhaps the most useful idea 

presented in The Evolutionary Tool Kit is ability to open up the global and 

local feedback loops of organisms and their environment for inspection and 

even manipulation by the learners themselves. Langton writes (Langton, 

1991), that the important thing about life is "that the local dynamics of a set 

of interacting entities (molecules, cells, etc.) supports an emergent set of 

global dynamical structures which stabilize themselves by setting the 

boundary conditions within which the local dynamics operates. That is to 

say, these global structures can "reach down" to their own, physical bases 

of support and fine time them in the furtherance of their own, global ends. 

Such LOCAL to GLOBAL, back to LOCAL, inter-level feedback loops are 

essential to life, and are the key to understanding its origin , evolution, and 

diversity." 
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The Evolutionary Tool Kit permits secondary students, without any 

knowledge of programming, a window, rather a multitude of micro-worlds 

to create and investigate the effects and relationships immanent in these 

global/local relationships. The ability of automata based simulations like 

The Evolutionary Tool Kit to "rewind" the history of its life and evolution, 

permits students to examine at close hand a model of evolution and natural 

selection based on that interplay between global and local (genotype and 

phenotype/environment) levels. Figure 2.11 attempts to graphically show 

the conceptual model. Individual 'genes' or local quantities collectively 

determine how each organism interacts with the environment and change 

it. The global variables, both the environment and the observable 

phenotypes, then interact through the non-random process of natural 

selection to influence the next generation of local variables, the new 'genes'. 

With software like The Evolutionary Tool Kit students can tally results after 

each generation, look at global parameters and evaluate them. They can 

even intervene at the level of the genes (or memes) in an attempt to change 

an outcome or modify a trend. 

Figure 2.11 Model of the Evolutionary Process after Langton (1989) 
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A second new' idea, rather a new representation of an old one, is the 

emphasis of the modeling in The Evolutionary Tool Kit on change, and the 

dynamics of change. As Omstein states (Omstein, et al., 1989), "Since the 

world now changes more in a decade than it once did in millennia, the 

most important concept to get across in school is that of whatever is taught 

will soon probably become obsolete. That the rate of change is, if anything, 

increasing; therefore adapting to change must be the center of any new 

kind of teaching." The Evolutionary Tool Kit emphasizes heavily the 

curiosity, and self motivation of the learner; it is the 'life science hacker' 

ethic. The world in which our children will live will be very different than 

our own. It is most important for them, and for our human species, that 

they retain a life-long love of learning. We must provide an education that 

promotes a style of interacting with the world that encourages learning and 

growth from their experiences. 

The third new idea is a challenge to the old ways of presenting 

materials in life science. For centuries the dominant mode of presenting 

knowledge has been text or lecture. Computational media provide a new, 

and potentially revolutionary way of reaching students at their own level, in 

terms that the students themselves define, an honest 'individualized' 

approach to learning. The Evolutionary Tool Kit takes a few faltering steps 

in that direction. 

Adapting the three level distinction of knowledge from Andrea 

DiSessa (Disessa, 1988) of low level knowledge, middle level knowledge, and 

higher level knowledge, I wish to make a case for the general importance of 

the student centered, interactive approach taken by The Evolutionary Tool 

Kit in life science education. DiSessa defines low level knowledge as 

familiarity with facts, theories, language, terminology. Higher level 
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knowledge brings with it an expertise in a particular field. DiSessa notes 

that one of the problems of "higher level knowledge" is that, the higher the 

order, the weaker the knowledge. It tends to be very powerful, but only in 

very limited domains of applicability. There is a case to be made for the 

importance of middle level knowledge. 

According to DiSessa (Disessa, 1988) there are five characteristics of 

middle level knowledge. It is orienting: giving the student a broad view of 

what is going on in a field. It is strategic: saying more about what can and 

should be done with particular knowledge than is inherent in a 

presentation of the knowledge per se. It is synthetic: joining multiple 

points of view, providing ways of seeing them as the same. It is generative: 

easily extending to other ideas and genuinely new ideas the student might 

invent, not closing or limiting to particular ideas, sequences, or formats. 

And finally, it is sensitive to Relative Importance: providing a sense of 

relative importance, not just asserting truth or prescribing action. 

The approach and design of The Evolutionary Tool Kit explores 

knowledge of life science along all of these dimensions. The development of 

a citizenry with sufficient middle level knowledge of problems and theories 

of life science is the socially overarching concern of our generation of 

educators. To serve our society's needs, each individual's needs, and the 

needs of the planet as a whole, we need citizens that can take responsibility 

for their own health, as well as support biologically sound decisions and 

policies, and object to biologically shortsighted ones (Clark, 1989). 

Approaches like that taken in The Evolutionary Tool Kit can aid educators 

to bring about future generations of such citizens. 

As an example of the kind of "new" learning encouraged by this 

approach can be seen in the work of David Ackley and Michael Littman of 
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the Cognitive Research Group in Morristown, New Jersey. Ackley and 

Littman's artificial life forms (called agents) live in a grid much like those 

of AntFarm or Genesvs/Tracker (Acklev. & Littman, 1992). The simulation 

ran on workstation class machines. There are mountains that block them, 

food packets for nourishment, trees for shelter, carnivores that chase and 

eat them. In short, a world not unlike our own. For each object (rocks, 

wall, empty tree, occupied tree, carnivore, dead agent etc.) the agent has a 

genetically determined behavior. The agent, upon encountering these 

objects, would climb, turn, move, eat, avoid, depending on their particular 

code. They also had status variables for health and energy that could affect 

behavior with objects. The agents evolve by a genetic algorithm using 

crossover and point mutations as described previously for other programs. 

As with the other artificial life studies, Ackley and Littman seeded their 

world with random agents, usually 100 at a time. These would evolve 

behavior patterns that would succeed, to some degree, in this limited world. 

Ackley and Littman's agents were also permitted limited learning. The 

approach is called ERL (Evolutionary Reinforcement Learning). Agents 

could modify their own behavior tables based on its "experiences". Once 

relatively successful agents evolved, standard predator prey oscillations 

would appear; and the number of agents vs. carnivores would continue 

within a fixed range. 

Of particular interest is that these relatively successful agents did not 

display optimal strategies. One rather successful agent showed no concern 

for its health status, and would exhibit avoidance behavior for the approach 

of a carnivore for all directions except south. If the carnivore came from 

the south, this agent turned and met it. The researchers analyzed its code, 

fixed a few of the errors to make it "better suited" to its environment and 
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then tried the new agent in the gnd. The result was not what was expected. 

The population of both agents and carnivores became very erratic. Instead 

of averaging in the forties or fifties with lows in the twenties, these 

populations averaged much lower, with some lows in the single digits. By 

replaying the simulation, the researchers were able to see what happened. 

Super agent was so efficient at stripping the environment of food and 

resources, it was out-competing itself. Plants and trees were eaten before 

they had time to regrow. Predators were deftly avoided, and many 

generations of young were spawned, only to die quickly in an environment 

continuously striped of its resources. The surprising conclusion drawn by 

Ackley and Littman was that there may be an advantage in the clumsiness 

of nature's Blind Watchmaker algorithm. Optimal solutions may not mean 

what we originally thought they did. This simulation may be more like real 

life than originally intended. Such a discovery would be a fine learning 

experience for any student or citizen of our world. 

The educational challenge set out by software like SimEarth. 

SimAnt. and The Evolutionary Tool Kit is ambitious. But these are very 

special times. "More than any time in history we have the possibility to 

engage students' own goals and aesthetic senses in what is taught 

(Disessa, 1988)." There is nothing wrong with ambition especially in fields 

as important as education, and if the goals are within reach with consistent 

quality effort. Approaches like these show new ways to conceive of 

instruction beyond the printed page. Computers offer a new approach to 

knowledge through a new computational medium that can reach out and 

help to develop the individual talents of students in many new and different 

ways. The decision to change our "currency of representing knowledge" 

(Disessa, 1988) is not for one individual to make, but a highly social choice 
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involving may constituencies, researchers, domain experts, textbook 

publishers, curriculum brokers, teachers, and the public. It is a decision 

that can be made after all parties have set educational goals in to build for 

the future of our species and our planet, and after we have summoned the 

will to pursue them. 

A concluding note to this chapter is fittingly centered on the great 

biologist of the nineteenth century, Charles Darwin. Darwin is, according 

to Ornstein, above all others, the central scientist of the modem age 

(Omstein, 1991). His work overturned much of the bases of Western 

philosophy. It showed that both humanity and the animals evolved to adapt 

to their world, with both a physical and a mental apparatus. This 

dissertation explores ways to adapt evolutionary thinking to an effective 

pedagogical form. Ornstein says, "Adaptation, which begins blind, 

organized around only one environmental niche, turns creative, and 

human organisms adapt the world to suit themselves (Ornstein, 1991). 

Evolution, once strictly biological, can become, in us, conscious." 

With computational media like SimEarth. SimAnt. and the design 

set out in The Evolutionary Tool Kit educators can place students in an 

environment where they can explore, even invent, concepts like 

adaptability, selection, fitness, and other key constructs in the modern view 

of life. They can explore, among artificial life forms, and discover what is 

the meaning of a natural law. In their explorations, perhaps they can 

discover singly, or in groups the beauty and power of the processes that 

Darwin first saw and described. We can give them the platform on which 

they can experience for themselves what Darwin called "these laws acting 

all around us." 
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These laws, taken in the largest sense, being 
Growth and Reproduction; Inheritance which is almost 
implied by reproduction; Variability from the indirect 
and direct action of the conditions of life, and from use 
and disuse: a Ratio of Increase so high as to lead to a 
Struggle for Life, and as a consequence to Natural 
Selection entailing Divergence of Character and 
Extinction of less improved forms. Thus, from the war 
of nature, from famine and death, the most exalted 
object which we are capable of conceiving, namely the 
production of the higher animals, directly follows. 
There is a grandeur in this view of life, with its several 
powers, having been originally breathed by the Creator 
into a few forms or into one; and that, whilst this planet 
has gone cycling on according to the fixed law of gravity, 
from so simple a beginning endless forms most beautiful 
and most wonderful have been, and are being evolved 
(Darwin, 1859). 

156 



CHAPTER 3 

STRUCTURE AND INSTRUCTIONAL DESIGN OF 

THE EVOLUTIONARY TOOL KIT 

The micro-world of The Evolutionary Tool Kit (hereafter referred to as 

TETK) builds on some ideas from the world of sharks and fishes in WA- 

TOR game as popularized by Dewdney (Dewdney, 1984; Dewdney, 1988; 

Dewdney, 1989). Earlier accounts of similar simulations exist in the 

technical literature of biomathematical modeling (Barto, 1975; Burks, 1970; 

Burks, 1974; Conrad, & Pattee, 1970; Conrad, & Strizich, 1985; Stahl, 1967). 

TETK also incorporates some ideas from the descriptions of the RAM model 

described in the previous chapter (Jefferson, et al., 1991; Taylor, Jefferson, 

Turner, & Goldman, 1987). 

As a concrete introduction to cellular automata modeling for readers 

unfamiliar with the technique, I shall briefly describe the ocean world of 

WA-TOR and the properties of the sharks and fishes that inhabit it. 

Cellular automata occupy ’grid worlds' defined as a specialized data 

structure. The topology of the world grid can be varied. The grids of 

SimEarth are spherical. Those of BIOSIM are rectangular with the 

vertical direction indicating the upper areas of the 'pond'. The ants in 

SimAnt live in a three dimensional cube. The ocean grid of the creatures in 

WA-TOR is toroidal. Figure 3.1 shows the analogical relationship of a 

cellular automata 'world' with a schematic drawing of a school of sharks 

feeding on fishes. 

Following common convention, the two dimensional grid of the WA- 

TOR world is wrapped on both top and bottom edges to form a toroidal 
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surface, hence the "TOR" in the name. It is possible to run the simulation 

without wrapping but effects due to the corners can produce anomalous 

results due to traping of organisms in the comers. 
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Figure 3.1 Grid world of WA-TOR 

Figure 3.2 demonstrates the wrapping of the upper edges of the grid 

(A) into a cylindrical shape (B). The upper and lower edged are joined 

forming a cylinder. Importantly, the cell grid in WA-TOR is isotropic, 

there is no inherent directionality or global property to make any one cell 

different than any other. It is possible to generalize on the topology of this 

model, as the authors of SimEarth did, to include a spherical grid. Beyond 

the appeal of spherical worlds to students, this option permits the modeling 

of grids with different properties that depend on latitude, insolation for 

example. Future versions of TETK will include spherical grid models. 

SimEarth and TETK grids are not isotropic. Neighboring cells can have 

very different properties, which properties can affect the behavior of 

automata in them or moving onto them. 
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The cylindrical grid is then warped around an external center and 

joined at the date line to form a toroidal surface. Figure 3.3 demonstrates 

this warping. The right diagram in Figure 3.3 demonstrates the horizontal 

wrap of WA-TOR and the "real" world it represents - a toroidal ocean. A 

shark or fish on the left column of the gnd moving left will appear on the 

rightmost column of the grid due to the "horizontal wrap around". 

Equator 

R B 

Figure 3.2 Vertical wrapping of the WA-TOR grid 

Inspection of Figure 3.3 will show why these two wrapping 

conditions describe a toroidal surface. 

Figure 3.3 Toroidal world of WA-TOR 
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Please in Figure 3.3 not© that a shark or fish on the top row moving 

up will appear on the bottom row of the grid due to the " vertical wrap 

around". 

The rules governing life on Dewdney's WA-TOR are simple. 

1. Only one occupant to a square. 

2. Sharks can only eat fish. (Cannibalism can be permitted in 

more advanced versions, but it does not significantly alter the 

results.) 

3. Fish eat plankton produced by the ocean. 

4. Sharks and fish can breed only after they have reached their 

respective breeding ages. 

5. Breeding is permitted only if there is an empty square 

adjacent to the parent fish or shark. The offspring occupies 

the square left by the parent. 

6. The species are parthenogenic. (Single parents only on WA- 

TOR!) 

7. During each time unit, each shark or fish must move (if 

there is a square available). Squares are selected randomly. 

8. Hunting fish takes precedence over moving for sharks. 

9. Each shark must find and eat a fish during the time given by 

the STARVE variable. Otherwise it dies and disappears from 

the screen. 

To begin the simulation the player inputs five variables: 

NFISH the initial fish population 

NSHARK the initial shark population 

FBREED the age at which fish begin to breed. 

SBREED the age at which sharks begin to breed. 
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STARVE the time during which a shark must catch a 

fish to avoid starvation. 

The challenge to the student using WA-TOR is to find the most 

important variables and then combinations of values for these variables or 

regions of relative stability for the fish/shark population. Behavior can be 

chaotic; population crashes in either species can occur. An arbitrary 

definition will be made for stability of the population for creatures in the 

WA-TOR world. We will consider the population stable if it has cycled eight 

or more times. For those with time to spare watching simulations, or, 

alternatively very speedy CPU's, a stronger condition can be asserted. 

Populations have a tendency to crash as sharks surround the fish easily. 

The WA-TOR simulation was very popular after its introduction. For 

a short time there was even a newsletter entitled Running WA-TOR 

published by an aficionado in Vermont. A few enthusiasts extended the 

range of properties of the inhabitants of WA-TOR. One derivative world, 

Palmitre's randomly evolving bugs, demonstrated some of the educational 

potential of this form of simulation. 

Two serious pedagogical problems surface in attempting to extend 

Dewdney's WA-TOR. The first and most formidable is the technical skill 

demanded to perform any modifications on the world of WA-TOR or on the 

properties of its inhabitants. A secondary student needs direct knowledge 

of programing to attempt even the slightest modification beyond changing 

initial values of the fixed list of variables. The same difficulty arises with 

the bugs of Palmitre's world. The simulation can only be changed by 

attempting to alter the code directly. 

The second problem is its lack of power to investigate the effect of 

change or mutation. The bugs of WA-TOR do not mutate. Palmitre's bugs 
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do mutate but the analogy with natural organisms is only one dimensional. 

It is not easily extended to other properties and behaviors. 

There is also a third problem that is more conceptual in nature; it is 

also at the heart of the difficulties students experience in attempting to 

study natural selection. The both the sharks and fish are treated 

typologically. Each shark or fish has the same properties as that of any 

other of its species. The organisms in WA-TOR do not form a population as 

evolutionary biologists would define it. The variables set by the user at the 

start of a run affect all sharks or all fish equally. Mutations would also 

affect the species as a whole. Palmitre's bugs are true populations, as each 

bug has its individual code determining its behavior. Descendants of 

successful bugs in Palmitre's world eventually comprise the total 

population. There no way is provided to watch the frequencies of the 

'alleles' changes as Palmitre's bugs mutate into more successful hunting 

strategies. 

An Overview of The Evolutionary Tool Kit 

TETK attempts to address the first two problems by a design that 

permits students with little or no knowledge of programming to build their 

own micro-worlds to explore the dynamic interactions of automata and 

basic concepts of evolution and population genetics. The interface of TETK 

is very graphic oriented. Icons, instead of words, are used to represent the 

various life processes, traits (phenotypes) or characteristics assigned to the 

automata. The computer randomly constructs the genotypes for each 

individual, in a manner consistent with the choices of the user. Genotypes 

themselves are not visible to the student. It is possible to obtain, through 

reporting functions, tallies of allelic frequencies. They are 'represented' as 

unspecified patterns of l's and 0's on linear structures called 'C-somes', 
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the analog of chromosomes in this microworld. Mutations are permitted. 

Only point mutations are modeled. Textual information is kept to a 

minimum. The traits and reproductive strategies that can be given to the 

organisms and the environmental conditions that can be set up permit the 

user to perform hundreds of investigations. 

The second and third problems are addressed by the data structure of 

the organisms in TETK. Each organism has its own ’genetic' code. 

Organisms are part of interbreeding populations that are the functional 

equivalent of species. The user can define the species either typologically 

(with all individuals identical) or populationally (with as much variation 

as he or she wishes). The rules governing the behavior of the cellular 

automata (organisms) are directly controlled by the student through their 

choice of traits, reproductive strategies, genetic systems, and 

environmental conditions. 

The Evolutionary Tool Kit is intended as a support tool for 

introductory life science students. It is intended as a 'conceptual lab' in 

evolution and natural selection. Following the suggestions of Bishop, 

Clough, Hallden, Johnson, Ploger, and Slack (Bishop, & Anderson, 1990; 

Clough, & Wood-Robertson, 1985b; Hallden, 1988; Johnson, & Stewart, 1990; 

Ploger, 1991; Slack, 1990) cited in the previous chapter, the lab format of 

TETK starts with student conceptions (or misconceptions) of inheritance 

and evolution and encourages them to explore, to build models of how traits 

would, or could, be passed on to later generations. A model or investigation 

that a student builds based on a misconception, say 'blending of inherited 

characteristics', may not perform as he/she expects. The instructional use 

of the modeling strategy is similar to that described by Ploger (Ploger, 1991) 

which used DiSessa's Boxer program as a medium. TETK is a more 
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specialized tool, permitting students to model evolutionary phenomena with 

populations of tens of thousands of individuals with many selectable traits 

and several different inheritance mechanisms. 

Exercises or explorations in TETK are intended as platforms for 

students and teachers to explore thoughts on these areas in attempt to build 

a bridge between what Hallden calls "the students’ questions and the 

school's explanations." The schools explanations, even the rationale 

behind what is being explained and the choice of language in which it is 

explained, makes very little sense to students as a response to their 

inquiries (Hallden, 1983; Hallden, 1988). Through a series of models within 

TETK cellular automata environment, each with progressive explanatory 

power, students can make what Gardner called a "Christoforian voyage" 

(Gardner, 1991) and build a rationale for new concepts and new types of 

explanations where others had failed. 

The instructional model built into TETK is that of 'constructivism' as 

opposed to the a traditional 'transmission' model so commonly used 

(Mestre, 1991). A constructivist model recognizes that the students' 

knowledge of the world is the result of a process of mental construction over 

many years. The views they bring to class are tried and tested many times; 

from their perspective the views are consistent and provide meaningful 

interpretations of events. As Mestre states, "constructivism contends that 

students are not sponges ready to absorb and use transmitted knowledge; 

the knowledge already written in their mental slates affects how they 

interpret new observations and how they accommodate newly acquired 

knowledge." A scientist, however, may view these models as naive, 

incomplete, and self-contradictory. Some of the greatest advances in 

science have come from planned observations or experiments that refute 
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these same mental models. Unfortunately talking to the students, or 

having them read or study materials does not sufficiently engage their 

mental apparatus to provide meaningful conceptual shifts. As Mestre 

states, "the transmission model does make a pivotal assumption about 

learning, namely that the message the student receives is the message the 

teacher intended." All of the educational research cited in the previous 

chapter attests to the folly of this assumption. 

John Jungck and Nils Peterson have explored similar instructional 

strategies in genetics education (Jungck, & Calley, 1985; Peterson, & 

Jungck, 1988). Jungck's Genetics Construction Kit is designed much 

along these lines. In the visionary article, "Problem Posing, Problem 

Solving, and Persuasion in Biology Education", Jungck and Peterson 

describe a transmission based, algorithmic pedagogy, with cookbook labs 

and dry lectures that has "metastasized throughout biology courses." They 

propose an alterative approach that is fundamentally motivated by a respect 

for the learner, were students are treated as co-learners, not infantilized. 

The authors noted that phrases like "design of a hypothesis" or 

"construction of a meaning" may not seem appropriate to many science 

educators, but this is exactly what students must do in order to be involved 

personally in making their own science. They asserted the importance of 

"self-education through research" and noted that "a good deal of 

knowledge of biology involves experiencing first-hand the production and 

application of scientific knowledge. "If hidden assumptions are ignored 

during problem-posing, it is all too difficult to eradicate them at the 

problem-solving and persuasion stages of scientific practice." 

Of special importance in the consideration of the topics explored by 

TETK are Jungck's and Peterson's remarks that "problems do not come 
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pre-posed to scientists." There is often a historical thread woven in. 

Frequently, a problem’s solution is much easier, if it were posed more 

clearly initially. Textbook problems pose a particular difficulty; "they could 

stand in the lab or field forever, and no text book stated problems would 

come to them out of thin air." Importantly, the authors state, "Students 

can only begin to appreciate the tremendous agenda-setting issues in 

problem posing if they are encouraged to pose problems themselves." 

The third issue addressed by Peterson and Jungck, persuasion, is 

especially relevant for the explorations set out in TETK. The research by 

Bishop, Clough, Hallden, Jungwirth, and Greene (Bishop, et al., 1990; 

Clough, et al., 1985b; Greene Jr., 1990; Hallden, 1988; Jungwirth, 1986) has 

revealed a two-fold problem. Naturalistic and Lamarkian explanations 

dominate student thinking, even after several courses in evolutionary 

biology using conventional pedagogy. Second, students do not change their 

views on the validity of evolutionary explanations, even if they can 

demonstrate that they understand them (Bishop, et al., 1990; Greene Jr., 

1990). TETK provides an educational platform on which students can pose 

problems and conjecture, then demonstrate their solutions, and attempt to 

persuade based on their investigations. 

It is well known that Darwin's theory on evolution by natural 

selection was elaborated many years before any realistic mechanism was 

know for the transmission of inheritance. Unaware of the papers of 

Mendel, Darwin himself did not have any realistic explanation. I am 

convinced that this fact may be of considerable pedagogical as well as 

historical significance. Smith and Millman suggest exactly that in their 

use of Darwin’s notebooks as instructional tools (Smith, & Millman, 1987). 

TETK permits students to design models and test hypotheses as if they were 
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primary investigators during the times in which the early theories of 

evolution and natural selection, and particulate genetics were formulated. 

Students could create models that parallel arguments faced by Darwin, 

Huxley, and Weissman in the early years of the exposition of these theories. 

"Blending vs. particulate inheritance", which is the case? "Can there be 

change with blending inheritance?" "Won't dominant alleles eventually 

take over the whole population?" 

With The Evolutionary Tool Kit students have in their hands a tool to 

do many of the thought experiments that fill his notebooks. Lab 

investigations could be designed by students as well as modeled after 

investigations or discussions from the history of biology. On a personal 

level students can explore the underlying issues, formulate questions about 

what the nature of the difficulty is, and, most importantly, discuss what 

kind of explanation would be satisfactory response to these questions. 

The underlying assumption of TETK is that introductory life science, 

or any science for that matter, should be taught using a critical thinking 

model. One should examine an issue from all sides, including the naive 

concepts of biology that students bring to class. As the studies by Brumby, 

Clough, Stewart, Bishop, and Greene, cited previously show, these same 

students leave their classrooms at the elementary, secondary, and college 

level with these naive belief systems and misconceptions about inheritance 

and natural selection very much intact. 

The approach taken by The Evolutionary Tool Kit is not intended as 

an introduction or a primer in genetics. As the studies of Halld^n, Bishop, 

and Clough cited previously show, their difficulties in understanding 

natural selection are independent of their understanding of genetics. TETK 

is not a structured exploration of inheritance patterns as are the fine works 
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of Judith Kinnear and John Jungck. Neither does it attempt to incorporate 

any advances in artificial intelligence or tutoring systems like the work of 

Streibel and Stewart on the computer program MENDEL (Streibel, Stewart, 

Koedinger, Collins, & Jungck, 1987). The students already have naive ideas 

about inheritance as well as instruction in modern theories of inheritance 

provided by their instructors. TETK attempts to provide a computational 

instructional medium which can give a context to explore the interaction of 

the naive ideas and the school's explanations. Every attempt has been 

made to keep the terminology used in TETK consistent with modern theory 

in genetics. Terminology has been limited to 'allele', 'gene', 'locus of the 

gene', 'trait', 'phenotype', 'genotype', 'dominant' and 'recessive'. Through 

interactions with their textbooks, other computer simulations designed to 

introduce genetics, and, above all, interaction with their peers and with 

their instructor in a community of inquiry, students build working 

definitions and knowledge of these terms and their relationships as seen by 

modem evolutionary biology. 

There are several fine computer programs that can be used to 

introduce topics in genetics and inheritance quite well; perhaps in parallel 

with explorations in TETK. MacFlv is an artificial laboratory that permits 

students to breed and investigate the common fruit fly, learning the rules of 

inheritance from an electronic image of the beast that gave humans their 

first look at genes themselves. Jungck's Genetics Construction Kit is 

designed primarily for college level students. Mendelbugs. Heredity Dog, 

and Judith Kinnear's delightful efforts, Catlab. CatGen. Birdbreed. and 

Kangasaurus are but a few other fine pieces of software usable at the 

secondary level. The Biology Explorer: Genetics is a very new package 
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designed for use for upper level secondary classes. Heredity Dog can be 

used easily at lower level classes. 

TETK also does not address the pedagogical problems of evolution at 

a molecular level. This topic is not appropriate for the population intended. 

There are a few programs, mostly tutorial in design, that explore 

molecular aspects of inheritance and evolution at a rudimentary level. 

Students could learn the technical terms and get a simplified 

understanding of the process of reproduction at the molecular level. None 

of these programs can be called 'simulations'. 

Some recent theoretical work has been done on automata and 

artificial life in modeling the emergence of metabolic activity and self 

reproducing automata (Ackley, & Littman, 1992; Bagley, Farmer, & 

Fontana, 1992; Fontana, 1992; Schuster, 1992). This work is far beyond the 

level of current secondary pedagogy, though in the not too distant future it 

may be possible to permit students to make their own 'artificial soup' and 

watch the emergence of the analog of biological order from random 

elements. 

Evolution via natural selection and evolutionary biology are very wide 

topics indeed. In fact, some authors state that all biology can be subsumed 

under the title 'evolutionary biology'. What specific topics does TETK 

address? There are three central pedagogical concerns addressed in TETK. 

The first is instruction in the concept of variation within a population and 

its importance in any discussion of natural selection. Studies by Bishop, 

Brumby, Clough, Greene, Hallen, Jungwirth, and Ploger (Bishop, et al., 

1990; Brumby, 1984; Clough, et al., 1985b; Greene Jr., 1990; Hallden, 1988; 

Jungwirth, 1986; Ploger, 1990) have shown that concept has been shown to 
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be very troublesome for life science instruction at both the secondary and 

college levels. 

The second instructional concern is the development of a feeling for 

the random nature of mutation. Students very commonly associate the 

word 'mutation' with a complex of ideas from science fiction. Mutations 

are bad, deforming, lethal, and not-'natural'. The realization that 

mutation is the raw material that drives natural selection is far from their 

minds. Another problem arises when one considers students from 

different cultures or non-English speakers in our classes. In a study of 

native speakers of Catalan, Albaladejo & Lucas noted that in Catalan 

'mutatio carries much different connotations than the cognate English 

word 'mutation' (Albaladejo, & Lucas, 1988). In English, the word 

'mutation' has come to be almost completely associated with extensions of 

its scientific meaning. In Catalan, a scene change in a play, an insect's 

metamorphoses, puberty, and chemical phenomena like rusting can be 

properly called 'mutations'. If the constructionists arguments are correct 

the confusions that such a wide meaning of this word can cause are much 

in evidence in studies of students' interpretations of the terms 'mutation' 

and 'adaptation' when non-native speakers of English study evolutionary 

biology. TETK provides an environment in which students can refine and 

redefine the term in an evolutionary context. 

Mutations in TETK are of two sorts: saltation and point mutations. 

To model saltation a student can stop a simulation at any point, introduce a 

new individual in the population with a specific characteristics, and then 

set the simulation in motion again. It is a "What if X happens?" In a 

second form, the computer, using output from a random number 

generator, can make point mutations on the genetic code of any species, or 
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specific trait. The mutations can be either advantageous, non- 

advantageous, or neither. Which description obtains is not under control of 

either the computer or the user. Fitness, or advantage incurred by the 

change, is determined by the interaction of that genome with the population 

and the environment. 

The third concern is the production of an environment in which the 

student can clearly explore the two fold nature of evolution via natural 

selection: the necessary variation of the population (which must be 

random) and the non-random action of the process of natural selection. 

The recognition of the two-fold nature of the explanation is the key to 

understanding Darwin's vision (Futuyma, 1983; Ghiselin, 1969; Mayr, 1988; 

Mayr, 1991). It is even possible to put two populations in competition for a 

single resource, one with different amounts of variation than another, in 

order to isolate the effects of both processes. 

The student must first have a concept of population based on 

variation of individuals with a mechanism for the production of the 

variation that is random, and closed to external influences (will, goal, need, 

etc.). The second step, the process of natural selection, can then be 

demonstrated, both logically and functionally with organisms in the 

microworlds, as a directional, but not directed process by which some 

individuals with some characteristics die or produce fewer progeny than 

other individuals with other characteristics. 

Certainly all of this is old hat. Any adequate instructional unit on 

evolution and natural selection will take these ideas as starting points and 

proceed with a logical exposition using a transmission instructional 

strategy. What is new is that the TETK permits a biology instructor to do is 

to create a learning environment, an evolution lab, that recognizes that the 
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students' approach to the topic is not logical. The 'naive biology' they bring 

to the study of the discipline seriously distorts their understanding of the 

best logical,'crystal clear' presentations. With an instructional strategy 

modeled much after Pappert's micro worlds described in Mindstorms a 

decade and half ago and the student centered investigations of Judah 

Schwartz and Michal Yerushalmi's Geometric Supposer , TETK attempts 

to put the student in the position of playing with building blocks, adding, 

combining, changing patterns, except that the blocks are now traits, 

inheritance patterns, reproductive strategies, and environmental 

conditions. The 'blocks' also are dynamic elements, changing in response 

to internal (genetic) and external (phenotypes interacting with the 

environment). 

A basic question that a student might ask is "Assuming a random 

mutation takes place that is beneficial to the organism, how is it propagated 

through the population?" "What happens when a sexually reproducing 

population competes for resources with an asexual one?" "What is this 

'natural selection' actually acting on? Who is struggling? Species or 

individuals or genes?" "Are some traits immune to natural selection?" 

"How does the pattern of distribution of properties change over time in a 

sexually reproducing population or in an asexual one?" "How does this 

change affect the species involved, as well as the substrate that supports 

them?" Students can explore this central feedback loop of information at 

the genetic level; how populations change, which effect the environment, 

which, in turn affect information at the genetic level, which effect the 

populations. 

These questions are all fine, but what does the program do? TETK. in 

its pilot form, models specifically micro-evolution. It attempts to provide an 
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environment in which students can see the crucial importance of variation 

in populations in any process of natural selection. It also attempts to 

provide an environment in which a student can directly experience the 

interaction of random changes and non-random natural selection which 

produces directional, but not directed, change. 

Evolution by natural selection is a big topic. One cannot hope to 

model accurately the whole or even a small part of any living system in 

codes on silicon chips. Computer simulations cannot be mirrors of reality. 

Several important elements are missing. The program does concentrate on 

the temporal or Vertical' aspect of evolution, the modeling of changes 

through time to the exclusion of other views of evolution. The second 

'horizontal' aspect, a geographical, or ecological dimension, which 

includes competition for niches, geographic speciation, and many other 

very important topics are not currently modeled. Suggestions on how to 

modify the program to do this are presented. The current focus on 

competition, reproductive competition, and sexual selection is probably 

misleading in its narrow context. The program also does not attempt to 

model macro-evolution, nor any of the more modern interpretations of 

neutral evolution or punctuated equilibria. It attempts to deal with 

conceptual basics first. It is not usable in a classroom or for teacher 

training until many of the missing elements have been added. 

Importantly, preliminary investigations with a concept simulator 

like TETK can provide a conceptual framework for introductory students for 

ideas and the various kinds of explanations and explorations attempted in 

later topics like inheritance, cell theory, metabolism, mitosis and meiosis, 

and classification. 
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The audience targeted by TETK are all secondary life science 

students, not just students talented enough to reach AP classes. Some may 

characterize any effort to introduce natural selection and populational 

reasoning and argumentation in evolutionary theory at such a level as 

being very ambitious indeed. I am firmly convinced that many of the 

experiments and concepts modeled in TETK are well within the scope of 

upper level middle school students. The popularity of games like SimEarth 

or SimAnt, both aimed at upper elementary and middle school children, as 

well as adults who have retained the capacity to learn as they play, 

demonstrate well that students and adults alike are very interested in 

complex ideas and relationships if presented in an accessible and 

entertaining manner. 

SimAnt is particularly interesting case. If someone had told me a 

few years ago that they intended to present E. 0. Wilson's views on 

sociobiology and their applications to individuals and to social behavior in 

insect societies to middle school students, I would have thought them 

crazed. I was wrong. It works, and quite efficiently too. 

In Technology in Education: Looking Towards 2020 Raymond 

Nickerson comments on one author's remark lament of the passing in our 

age of even the potential for the Renaissance Man. The author claimed that 

the cruel truth is that it is impossible for one individual to gain competence 

across a wide area of domains. Nickerson responded: 

"The cruelty may reside more in the limitations of 
our educational know-how and techniques than in the 
limitations of our minds. Our current primary 
means of knowledge acquisition - reading coupled with 
library access - is excruciatingly slow. We really do not 
know what we are capable of learning and cannot rule 
out the possibility that, with much more powerful 
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techniques of storing, accessing, and representing 
information, for assessing what people know, and for 
combining instruction and exploration in mutually 
reinforcing ways, that capability might be very much 
greater than our experience to date would lead us to 
believe. Given the proper teaching and learning 
methods, might not individuals be able to acquire deep 
knowledge (at least by today's standards) in several 
areas? In the absence of compelling evidence to the 
contrary, I would argue that this assumption should 
motivate our efforts to exploit technology for educational 
benefit. It will be more important in the future than in 
the past, in my view for a significant fraction of the 
population to be well informed in a variety of domains 
both technical and nontechnical. The challenge to 
educational researcher is to develop the methods that 
will make this possible and it is not clear that this is a 
futile quest." (Nickerson, 1983) 

I firmly believe that Dr. Nickerson's statements must be taken very 

seriously if educators are to make real changes in our schools. We must 

design curricula that respect the minds and capabilities of our students for 

what they really are and can become, and provide students with 

educational environments that permit them to develop the skills and talents 

that will be needed to approach properly and solve the problems that will 

face them as citizens in the coming century. The design of TETK is an 

attempt to apply this vision to the problem of instruction in the fundamental 

theories of life science for all secondary students. 

Screens and Interface of The Evolutionary Tool Kit 

The opening screen of TETK , "World Specifications ", is shown in 

Figure 3.4. From this screen the student selects the type of world the 

automata will inhabit. Choices include planar, toroidal, and spherical (not 

yet implemented). Size of the grid is also selected. The size of the world is 

limited only by RAM. It may be advantageous to select a small grid, 

limiting populations, for some effects to appear more easily. The size of the 
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representation is also selected. Several megabytes are needed even for 

relatively small simulations, as each organism has its own code, and some 

reporting functions keep track of all organisms that have lived and died 

during the simulation, a running paleontological record. Computational 

speed is roughly proportional to the number of automata present. Some 

analyses are very computation intensive and can take a great deal of time to 

complete. 
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Figure 3.4 World Specification Screen 

Only two dimensional worlds are considered in TETK. The 

commercial program Sim Ant by Maxis is unique in that the ant automata 

occupy a three dimensional space. Although the space modeled in SimAnt 

is limited to a small section of a suburban backyard, the visual and 

psychological effect of the dimensional modeling while playing the game is 

remarkable. With additional computational resources it may be worth 
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attempting to extend TETK models to three dimensions to permit 

examination of trophic effects. 

Layered worlds offer many possibilities but present heavy demands 

on the hardware platform. SimEarth does simulate layers of automata. It 

is possible for more than one automata to occupy a cell in SimEarth. The 

atmospheric, hydrologic, geologic, and tectonic 'layers’ are sets of status 

registers which hold information at the bit level about conditions at each 

cell, such as climate, temperature, continental drift, atmospherics, etc. 

TETK holds information about the automata in parallel arrays. Besides 

the parallel arrays for the automata, TETK does provide a second layer, a 

set of status registers holding information about the substrate. These 

entries encode information about the local substrate and accumulations of 

metabolic byproducts. In future models the byproducts will be subject to 

diffusion processes. In the current version this array is used in a crude 

way. There is only one element of the substrate, very loosely labeled 

'energy' on which the herbivores feed. Future versions, incorporating 

genes for metabolic reactions like those in Paul Deal's BIOSIM can be very 

useful pedagogic tools. There should be other elements of the substrate as 

in Deal’s model. 

The following sections attempt to describe the user interface for 

TETK. This is not an easy thing to do in words. Much of the interface based 

on mouse motions and placement of graphic icons in various parts of the 

screen. Described in words, it may seem unnecessarily complicated. The 

ease of its use will hopefully be made more clear after the discussion of 

some of the mechanisms of inheritance properties of the traits and some 

simple demonstrative examples. 
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Genetic 
System t- Traits: 

Figure 3.5 The TRAIT PALLET 

The core of TETK. and one of its major innovative features, is the 

TRAIT PALLET shown in Figure 3.5. The first of the eight boxes holds 

information about what kind of genetic system the organism is using. The 

next seven boxes represent the genome of the organism. In the current 

version there are only seven possible traits for each organism. The user 

'creates' individuals or species at the phenotypic level. The 'TRAIT 

PALLET' is the set of boxes containing various icons that appears below the 

organism’s 'Genetic System' and its 'Traits’. The icons that represent the 

organism's traits are selected from the trait pallet that can be viewed by 

clicking on any unfilled element of the seven possible traits. 

The trait icons are divided into two sections, 'Genetic System' and 

Traits'. The user must first select the genetic system under which the 

automata he or she is creating will reproduce and pass on genetic 

information. This choice will determine the pattern of inheritance for that 

individual or group of individuals that the user is creating. 
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The first column of the trait pallet shows the four icons of the four 

different options for 'Genetic System' currently available in TETK. One of 

these first column icons must be in the first box for the user to make any 

further selections from the trait pallet. To assign a genetic system to an 

organism the user simply clicks on the open box in 'Genetic System’ and 

then slides down to the system they wish to choose. That box will then 

appear in inverse, indicating that it has been selected. The user then drops 

that icon in the box representing genetic system. Likewise the user chooses 

other traits for the individual or group of individuals being created by just 

clicking on them and dropping them into the empty trait boxes. 

The current version supports four 'Genetic Systems’: ASEXUAL, 

SEXUAL , PAINT POT (mixing of characteristics), and GAME 

THEORETIC. These icons are in the first column of the pallet. The icons 

are respectively: 'a cell splitting', 'male female symbols', 'paint buckets 

mixing', and 'a pair of dice'. 

The trait choices available for the organism's traits are in the boxes 

on the right side of the pallet. The traits depicted in the right side of the 

pallet are, in row order: AGE, HUNGER, MOVE, HUNT, HIDE, (row 2) 

FLEE, MALE TAG, FEMALE TAG, VISION TWINS, (row 3) BRANCHED 

TREE, AXIAL TREE, male FROG CALL, female FROG EAR, (row 4) 

butterfly WINGS, predator MEMORY, and STRATEGY. Each of these will 

be described in greater detail later. They are intended as demonstrations of 

investigations possible with a modeling structure provided by TETK. 

Some of the traits will function only with specific genetic systems. 

For example, the STRATEGY trait is intended to model the Iterated 

Prisoner's Dilemma. It will function only with the GAME THEORY 

genetic system. If any other system is chosen (by being dropped in the first 
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box), the STRATEGY icon becomes greyed, and cannot be placed in the trait 

description of an organism. In a parallel fashion, the MALE TAG and 

FEMALE TAG traits make sense only within a sexually reproducing 

population. If systems other than SEXUAL are chosen, these traits become 

greyed and cannot be placed among the organism's traits. 

The mechanisms by which each of these traits affects the behavior of 

the organism and how they can be used by a student to investigate evolution 

and population genetics will be discussed in this chapter in a condensed 

format, their use in investigations or lab exercises will be discussed in 

chapter four, the draft of a teacher's manual for The Evolutionary Tool Kit. 

A special note should be made on the use of concepts from genetics in 

this simulation. As stated previously it is not intended as a genetics 

primer. The interactions at the genetic level are hinted at. Students can 

even 'zoom' in on the analogs of chromosomes, the C-somes to see strings of 

l's and 0's suggestively spiraling in helices. They cannot change or even 

interpret what is on these 'holders of information'. They cannot read' the 

information. This is very much like the position of Darwin himself and the 

first three generations of evolutionary biologists. One only needs a source 

of variation and a bit of knowledge about sexual and asexual inheritance. 

As Ernst Mayr states, 

"On the whole Darwin treated genetic variation as 
a 'black box'. As a naturalist and reader of the animal 
breeding literature, he knew that variation was always 
present and this is all he had to know. He was also 
convinced that the supply of variation was renewed in 
every generation and this was always abundantly 
available as raw material for natural selection. In other 
words, a correct theory of genetics was not a prerequisite 
for the theory of natural selection (Mayr, 1991)." 
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There is much pedagogical import in this paragraph. Darwin's 

position is not unlike the position of many students entering our secondary 

or post-secondary classrooms. They know very little about genetics. This 

should not stop them from learning the basic ideas of evolution by natural 

selection. With support from other software specifically designed to teach 

topics in modem genetics, the students themselves could come up with the 

arguments that built the evolutionary synthesis of the 1930’s and 1940's. 

r Genetic Systems :- 

9a #6 
Asexual Sexual Paint Pot GameTheory 

Figure 3.6 Genetic Systems 

The ASEXUAL genetic system models the simplest mechanism of 

inheritance, that of cell splitting, or fission. Except for random mutations, 

mechanisms for which are described later, the genetic information of the 

parent organism reproducing asexually is identical to that of the daughter 

cells. The same genetic information is passed along, expressing the same 

traits as the parent. The transmission of traits is explicitly Weismannian. 

The current version of TETK will not support the other mechanisms 

of inheritance employed by one cell creatures as outlined by Lynn Margulis 

(Margulis, 1986). The goal is to model for introduce students the simplest 

forms of inheritance and investigate their dynamic relationships entailed 

by this form of reproduction. 

TETK also does not model symbiosis. The genes chosen for modeling 

do not make much sense within a context where a symbiotic event may 
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occur and increase the symbiont’s fitness with respect to either of the 

previous organisms. With the inclusion of metabolic properties, such as 

the five oxidative reactions and five reducing reactions described in Paul 

Deal's BioSim. modeling symbiotic events makes much more sense. It is 

possible to model such events a new genetic system would have to be added, 

ASEX-SYM. In this system, cells would divide and share information as 

standard asexual organisms, except at random times (set as a percent by 

the user) an adjacent organism, or a predator, would attempt to consume a 

neighbor as food, but the 'prey' would not be dissolved. It would share some 

of its genetic information with the predator. 

The SEXUAL genetic system (its icon is the male and female 

symbols), demands two parents. Selection of this genetic system will cause 

half of the individuals of that species, both when populations are initialized, 

and at any reproductive event, to be male and the other half female. Each 

organisms holds a marker determining if it is male or female. The marker 

does not change during the organism's lifetime. Hermaphroditic 

organisms are not explicitly modeled. As genetic information is passed on 

only through the female line in this reproductive system, its effect can be 

modeled with the fission system. Organisms will breed only with other 

organisms of the same species. The genetic system is peculiar to each 

species. It is possible to have sexually reproducing organisms and asexual 

organisms competing for the same resources. 

When sexual organisms breed, the offspring is randomly assigned a 

sex. In the current version, mating in a sexual population is assumed to be 

panmictic. All members of the population are assumed to be candidates for 

mating. Admittedly this is a rather unrealistic approximation to sexual 

breeding in general. Only sea urchins, oysters, clams, a few other aquatic 
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invertebrates approximate this type of mating. In future versions females 

will be able to select mates from a region (specified by the user) around their 

current location. Because individuals can move, the amount of computer 

resources spent in creating look-up tables of potential mates is much too 

great. This option was omitted from the first version of TETK. This version 

also assumes a male/female sex ratio of 1:1 ; future versions will permit 
\ 

experimentation with skewed ratios. 

All traits in TETK are naturally modeled by expression of genes with 

serial multiple allele systems. In the current version all traits sort 

independently. Each of these species can have several allelic forms giving 

each trait different expressions. In the case of the sexual species, the 

properties are potentially shared through the population. It is not possible 

to have subspecies of the same species of automata with different genetic 

systems. How all of this is modeled will be clearer when several sample 

populations of organism are constructed later in the text. 

The PAINT POT genetic system, its icon is a pair of paint buckets 

mixing, is really not a genetic system at all viewed by modern biological 

standards. It is used as a pedagogic device intended to represent the 

common sense view of inheritance that dominated humanity's thinking for 

millennia. Some say it still does, through the 'naive' world views students 

both bring and carry away from their biology classes. It once was 

considered a viable explanation of inheritance, hence a scientific 

explanation in its day. 

Paint pot inheritance is non-particulate and non-Mendelian; it is not 

unlike several of the unsuccessful inheritance mechanisms proposed by 

Darwin. Like the sexual case, individuals and offspring are assigned a 

sex. The traits of the offspring are simply the average of the traits of the 
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parents. For example, if one parent has a 20% chance of fleeing, and the 

other parent is a non-fleeing individual, the offspring will have a 10% 

chance of fleeing. The question to be explored with Paint Pot genetics is: 

"Can there be any passing on of an advantageous trait at all, even if the 

trait is very advantageous?" 

There is another, more sophisticated, use of the paint pot or blending 

system in evolutionary argumentation suggested by one of the reviewers, 

Dr. Wickender. Traits such as those represented in TETK are really 

expressed by gene complexes, phenotypically one would observe what 

amounts to a continuous variation, though the underlying system is 

particulate. This suggestion can be taken up in the modeling of mimicry in 

butterflies. 

The GAME THEORY system is not really a natural biological system 

either by modem biological standards. Its icon is a pair of dice. It is used 

to model processes that are fundamentally stochastic, where populations 

compete and the fitness can be immediately reduced by computation to a 

single number. This fitness determines the representation of that 

individual's genes in the next population. All organisms die after each 

cycle. If the fitness of the individual, as measured by the computation falls 

in the lower quartile, that individual produces no progeny. Its space is 

taken up be descendants of other individuals with higher 'scores'. The 

genome of each offspring is a copy of its parent, except for those species 

which can mutate. The mutation rates are set by the user at the start of the 

simulation when they are building each automata. Consequently, in time, 

forms with favorable characteristics (achieving higher fitness measures) 

should be represented more frequently in the population. 

184 



GAME THEORY use is limited to a few specific traits from the pallet, 

such as STRATEGY, the tree growth simulation, and the frog call 

simulation. The game theory genetic system does not permit organisms to 

move. Depending on the trait chosen, a specific computational process 

defines a numerical value for the 'fitness' of the organism. There is no 

predation. The classic example is the STRATEGY gene which models the 

'Prisoner's Dilemma'. If the results of the strategy chosen the individual is 

in the bottom quarter compared to ranking of the results of all other 

individuals, that individual is eliminated. Likewise, in the frog call 

simulation a fitness function measures 'attractiveness', and in the tree 

simulation the fitness function measures a combination of light gathering 

ability, structural strength, and reproductive potential. 

The discussion has so far been rather abstract and a bit scattered. 

More understanding can be brought to this discussion by outlining, step by 

step, how the user would build an individual, a population, or a species. 

The 'New Automata' screen is the method by which a user creates or 

modifies organisms. The 'New Automata' screen is accessed by pulling 

down the 'Automata' menu. 

Figure 3.7 shows the first screen of the 'Automata' menu, New 

Automata' screen. It should be noted that considerable planning must be 

done before the user constructs organisms under the 'New Automata' 

screen. The following screens and discussion will show how a user can set 

up a simple predator/prey system using four simple traits, AGE, 

HUNGER, MOVE, and HUNT. The automata being designed here was 

given the SEXUAL genetic system by the user. The user simply clicked on 

the icon for fission from the trait pallet and dropped it in the first box. The 

trait pallet window then closed. The SEXUAL icon appeared in the 
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GENETIC SYETEM box, and the SEXUAL icon remaining on the trait 

pallet became greyed. It cannot be duplicated in the traits of that organism; 

it may be used for other automata, however. The sexual genetic system will 

govern the process of inheritance for all traits in individuals of this species 

of automata. 

Once any icon has been placed in a trait list it becomes greyed in the 

trait pallet and cannot be duplicated in that organism's trait list by any 

further selection. A gene can be 'Cut' from the trait list by using the 

standard Macintosh 'Cut' function from the main menu. 

Clicking on the ASEXUAL icon while it is in the GENETIC SYSTEM 

box, will open a special 'Values' window beneath the icon. The term 

'values' is not truly appropriate for living systems, it is borrowed from 

models of artificial life. Another term, analogous to the function will be 

chosen in the next version, perhaps 'trait form' may be appropriate. This 

window is shown in Figure 3.7. The 'Values' window gives the user the 

opportunity to change some conditions or constraints on the reproductive 

processes of the organism. 

Most traits have 'Values' windows that permit the user to modify 

their effects on the organism. In the Values' box for the ASEXUAL 

system, the user must specify "Breed Period"; "Breed Age"; and 

"Probability". The Breeding Period is a variable that determines the 

number of cycles that must elapse between breeding of the organism. If the 

value is set at 1, then the organism will breed on each turn, provided that it 

is able. Setting the Breed Period to 2, and selecting Random' will effectively 

divide the population into two different breeding groups, one that will breed 

on odd cycles, the other on even ones. The 'random' option means that 

when the population is initialized random breeding periods will be 
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assigned. It is possible to make all individuals breed in the same cycle, 

with the other cycle/s used a food gathering periods, by using the non- 

random distribution property. The Breeding Probability is just what it says, 

it is the probability that the organism will successfully breed if it has the 

opportunity. If an organism breeds it divides its energy with its daughter 

cell (or male/female offspring if sexual reproduction is selected). There is 

no energy penalty if the organism does not breed. 

ID! New Species 

Pattern: Name: prey 

Initial Population: 

Genetic 

500 

System -r-Trait: 

AsexuaI 

I OK 

Remoue Cancel 

r- Ualues:- 

Breed Period: 50 

Breed Rge: 10 [x] Random 

Probability: 100 

Figure 3.7 Sample NEW AUTOMATA SCREEN 

The possibility of multiple births is considered in the discussion of the 

TWINS trait, later in this text. Similar variables effecting breed periods 

and probabilities are set for the sexual and paint pot genetic systems. The 

game theoretic genetic system is treated as a special case, as it is 

fundamentally a statistical modeling process. 
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In Figure 3.7, the user named the species "prey", gave it an initial 

population of 500. The pattern that represents the organism on the world 

grid (as a black square) was also set. The 16 different alternative patterns 

for organisms. These are displayed by clicking on the 'Pattern' button. 

Moving the mouse and clicking on any of these patterns selects that one and 

assigns it to the organism. On a color monitor the patterns have different 

colors. Different cross hatchings are used on monochrome monitors. 

Most importantly it is the 'Pattern' of the organism that determines 

whether one organism can breed with another. Patterns effectively define 

species of organisms in TETK. Organisms of the same pattern are 

considered to be part of the same gene pool, eligible for potential mating, if 

this is possible under constraints of the experiment, or the type of genetic 

system chosen. It was stated previously that it is natural for organisms in 

TETK to have genes with multiple alleles. It is through this menu that 

populations with varieties of traits and 'values' for these traits is 

constructed. One can set up the analog of multiple allelic forms 

expressing 'values' of a single trait of one species by choosing the 'New 

Automaton' menu repeatedly, retaining the same pattern, but choosing 

different values for the traits. 

The current version assumes serial dominance with smaller values 

recessive to larger values. Future versions will permit users to change this 

order. The user can create true analogs of populations with variations in 

this manner. Up to eight different automata species (patterns) are 

permitted in this version of the program. 

The user also sets the initial population of the automata in the run of 

the simulation. Here 500 individuals was selected. At the start of the run 

500 individuals with that identical genotype will be randomly seeded on the 
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world grid. Alternatively the user could have created five groups of 100 

individuals (the population total still at 500) with breeding ages of 8, 9, 10, 

11, and 12, respectively. The user could also have created 10 groups of 50 

with breeding ages of 6, 7, 8, 9, 10, 11, 12, 13, 14, respectively. As an 

example of the power of this menu, it is also possible to create two 

populations (each with a different pattern, of course), with one defined 

typologically and the other defined as a population with variation, as with 

the last two examples. These populations can be put in competition with 

each other for the same resources provided by the substrate. All have the 

same average breeding age? Will any out compete the other? Why? It is 

possible to set just one individual with a different value for a trait, and see if 

that trait can propagate through the population. This discussion gives a 

glimpse of some of the conjectures and investigations that students can 

make. "What is the value of variation in a population?" "Are there 

processes that will limit natural variation?" 

The SEXUAL genetic system could also have been selected. Selection 

of SEXUAL inheritance system changes the appearance of many of the 

submenus on other traits such as HIDE, FLEE, BAD TASTE, or VISION. 

If sexual inheritance is selected, an additional box will appear in the 

Values' menu below and to the right of variables used for the selected 

trait. This box will permit the user to determine, with buttons, whether the 

trait is to be inherited in a 'dominant' or recessive' pattern. The trait will 

be passed on to progeny in a Mendelian fashion according to ratios for these 

two cases. When the population is initialized genotypes will be assigned to 

the organisms randomly. 

In the current version either Dominant' or 'Recessive' must be 

chosen. It is possible to extend the choices, but I am unsure of the 
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pedagogic value, especially for the intended audience. The program is not 

intended to teach genetics. A second problem arises when considering the 

first simple extension. A seemingly natural extension would be to add 

Codominant. Because both the traits and the genotypes are both digitally 

coded, the only way to express codominance would be to postulate an 

intermediate phenotype which expresses the 'average' of the parental 

alleles. This is misleading. Codominance is not averaging; both alleles 

are expressed not averaged. I have omitted this genetic interaction in the 

model. The interactions between the organisms through their phenotypes 

on the world grid would make interpreting results of more complex 

inheritance patterns exceedingly difficult. 

It is possible to do simple investigations centered on the Hardy- 

Weinberg principle. Generally the model itself violates two of the Hardy- 

Weinberg conditions; there is mutation and natural selection. It is 

possible to turn the mutation generator off. Also the effects of natural 

selection can be removed by selecting traits like 'COLOR' (used with 

butterfly wings) that are selectively neutral, if not used in combination with 

'BAD TASTE'. Mitchel Resnick at the Learning Laboratory at MIT 

reported a Logo model on a work station using multiple turtles which 

demonstrated a pattern that the researchers later found to be the Hardy- 

Weinberg equilibrium (Resnick, & Silverman, 1991). Using TETK there is 

no reason that beginning secondary students can't 'discover' this law 

themselves as well. 

Pedagogically more important, I feel, is the program's ability to 

model the propagation of an advantageous or disadvantageous trait, or 

more basically, to inquire what is an advantageous trait and how would be 

passed on in a sexual or asexual population. Particulate inheritance will 
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eventually fix such a trait in the population. The student can then see why 

mutation is so important as the engine that drives natural selection. 

Genetic 
System 
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Trait: 
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10 Random 

Figure 3.8 The AGE TRAIT 

Continuing the explanation of constructing an organism from the 

trait pallet, Figure 3.8 shows the same asexual system with the AGE trait 

selected as the first trait. The AGE icon is now highlighted. Two variables 

must be set to initialize the population, 'Maximum Age', and Original 

Age'. The 'Maximum Age' is the age at which the organism will die. In 

the current version of the program, this is an absolute limit. The organism 

dies when it reaches the maximum age, and half of its 'energy' is added to 

the substrate at that location. The 'Original Age 'refers to the initial 

population. If 'Random' is selected, the ages of the initial population will be 

randomly selected from values between 'Original Age' and 'Maximum 

Age'. If 'Random' is not selected, all individuals will have the same age, 

the value of 'Original Age’. In this example, in which there are 500 prey 

organisms, the population will consist of individuals with randomly 

chosen ages from 10 to 50. Some experiments will require populations that 
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age, reproduce, and die as a group. Such cases can be modeled by not 

selecting the 'Random' option. 

Several very interesting inquiries into the evolutionary biology of 

aging are outlined after this introduction to modeling with The 

Evolutionary Tool Kit. 

Genetic 
System 

AsexuaI 
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Hunger flge: 

Original Hunger: 

Figure 3.9 The HUNGER trait 

Figure 3.9 shows the selection of the HUNGER trait. Its icon is a 

bowl of soup. This property determines whether the organism has eaten 

recently, and how the status of its nourishment determines its health. 

Each time the organism eats, the hunger trait is decremented by a quantity 

determined by the user in the ENVIRONMENT menu in the world set up. 

If the automata is a carnivore (this is indicated by another trait not yet 

discussed), this is the food value of one of its prey. Automata that are not 

carnivores obtain food from the substrate at a rate determined by the user. 

The amount of food available in each individual cell is determined by 

the substrate matrix. This matrix holds values of four nutrients for each 

cell in the world grid; values are integers. The current version uses only 

50 

10 
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one nutrient, the analog of an algae that everywhere pervades the world 

grid and feeds the herbivores. After each round the food supply in the cells 

is replenished by an amount set in the environment section, as poor, 

average, rich. In future versions it will be possible to set regions to have 

rich substrates, and other regions with substrates that are poor in 

nutrients. When an organism dies, a two thirds of the 'hunger' value of 

that organisms is added to the food level at the cell it occupies to represent 

the amount of nourishment returned to the substrate. 

The interaction of the environment with the hunger trait is one of the 

weakest areas of the model. As stated previously there should be more than 

one substrate to feed organisms. There also should be a mechanism to 

isolate or restrict entry or egress from certain regions to permit inbreeding, 

or encourage an analog of allopatric speciation. With the current 

panmictic mating mechanism for sexually reproducing organisms none of 

these additions makes much sense. These points should be addressed in a 

future version. 

The value of the hunger trait is also affected each time the organism 

gives birth since it must share the nourishment it has obtained with the 

daughter cells. The value of the hunger trait is also decremented each 

time the organism moves. The value of the hunger trait is the analogue of 

energy of the organism. The variable "Hunger Age" represents the value 

at which death from starvation would occur. "Original Hunger" is the 

setting of the hunger value for organisms at the start of the simulation. In 

future versions the behavior of carnivores will be affected by status of the 

hunger trait. "Eat only when hungry." should be an option. 
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Figure 3.10 The MOVE trait 

Organisms can move about the grid if they have the MOVE trait. 

Figure 3.9 shows the MOVE trait and its icon, a moving van. If the 

organism has the MOVE trait, it can move one square each cycle. 

Automata models of predator-prey cycles can be unstable. To partially 

alleviate this problem, the MOVE algorithm incorporates a 10% random 

function that permits herbivores, if there is a predator species, to move 

from three to five squares in any direction to land on an empty square. This 

additional possibility functions much like the 'refugium' in Mac Arthur 

modeling. Cellular automata predators have a tendency to form 'predation 

rings' that encircle prey and cause population crashes. 

The MOVE trait is influenced by three other traits, the HIDE, 

VISION, and FLEE traits. These are described more fully below. There are 

no additional variables with the MOVE trait. Additional functions are 

handled through auxiliary traits like HIDE, VISION, and FLEE. A 

herbivore with only the MOVE trait performs a random walk on the screen. 

If a carnivore possesses the MOVE trait does give the organism a 'sensor' 

in the sense that it will prefer to move onto an adjacent square that contains 

a prey organism, rather than onto an empty square. 

The traits and modeling strategies possible with The Evolutionary 

Tool Kit are very versatile. There may be investigations in which one does 

not want a carnivore to move about. If one wishes to study the effects of 
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predation without introducing the often chaotic swings of Lotka-Volterra 

cycles, one can set up populations of non-moving carnivores with long lives 

and breeding ages just one year shorter. They will breed just once, 

replacing only themselves, keeping the number of carnivores constant. The 

hunting pattern of the carnivore can be set to be larger than simply the 

adjacent squares. This will simulate the behavior of a territorial hunter. 
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Figure 3.11 Trait list of a predator 

The trait list of a simple predator is shown in Figure 3.11 above. The 

icon for predatory behavior (HUNT) is a bow and arrow. The user can 

specify which, of two species of automata, is the prey for this predator. 

Predation of a species on other members of the same species is permitted. 

In the current version of TETK. a predator can have only two species of 

prey. It is possible to have one predator prey on another, however. The 

user can also select a preference for the predator that depends on the age of 

the prey. Setting the preference makes the preferred prey 50% more likely 

to be taken than other organisms that do not share the preference attribute. 
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Normally the predator can eat a prey only by occupying a square 

adjacent to the prey, and on its turn to move, moving onto the square 

occupied by the prey organism. It is possible to change the hunting pattern 

of a predator to include a larger search area. The predator automata 

predates in a rather methodical way; it makes a list of adjacent squares 

that contain prey. If there are none it moves randomly. If there is a prey in 

its search area it makes a list of all such prey. The list is weighted 

according to any preferences set, and a random selection is made of which 

prey will be taken. 

When a predator eats, an fixed amount of energy is decremented 

from the organism's hunger value. The order of preference of a predator, in 

the current version, is eat a prey, move, stay still (if no other move is 

available). Future versions of TETK will incorporate a trait for predation 

that eats only when hungry, an altruistic hunter. Is such a trait 

advantageous to the individual, to the population as a whole? If predators 

prefer older prey, natural selection predicts that individual prey that 

produce earlier in life and have multiple offspring will be favored. Students 

can make hypotheses about this relationship and try this out with 

organisms in TETK. 

With the descriptions of traits so far it is possible to give a quick 

outline of some sample conjectures and investigations students can make 

with TETK. Given the simple trait lists as set out in Figure 3.10 for the prey 

and Figure 3.11 for the predator, it is possible for the user to pose many 

questions about evolutionary fitness and inheritance through time. A 

simple conjecture would be: "Is the ability to live longer advantageous to an 

organism?" The user would design a micro-world in which two asexual 

species of prey, each one with different preset life spans. Both would be 
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preyed upon by a single predator. One run of the simulation would most 

likely be inconclusive. A whole class should pool their data. Runs will 

show that half of the time the short lived prey dominates, the other half it is 

the longer lived one. This should lead to a lively discussion about the 

meaning of 'advantageous' in an evolutionary context. This is a very useful 

and enlightening activity on the meaning of 'advantageous'. Do we mean 

'advantageous' to the individual organism, to the group of organisms 

commonly bearing this trait, or advantageous to the propagation of the trait 

itself? Students themselves can become sources for arguments very much 

like those in Richard Dawkin's Selfish Gene. Questions are raised about 

natural selection and what it is actually operating on. 

Are there other variables that can be changed so that long life is 

advantageous? The variables of 'Breeding Age' or Breeding Period' are 

possibilities. The user could also change the "Environment" section so that 

there are long periods of stress, or periods of abundance. Importantly, the 

"answers" to the experimental runs come as probabilities. TETK 

introduces students to probabilistic reasoning in a concrete natural setting. 

What is the meaning of the fact that equal numbers of the runs in the 

previous experiment ended up with long lived or short lived organisms 

winning? If breeding periods are changed, the results will be skewed, with 

perhaps 6 out of 10 times having the long lived organisms dominate (if they 

had a slightly shorter breeding period). 

A whole series of experiments is suggested by the delightful article 

"On the Nature of Aging" by Steven Austad (Austad, 1992). Austad coins a 

term, "the one-hoss shay" mutation, after Oliver Wendell Holmes' poetic 

carriage that "was built in such a marvelous way/ It ran a hundred years 

to a day." The AGE trait in Tool Kit organisms functions much like the 
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design of this famous vehicle. Once the organism reaches the fixed age set 

in its AGE trait, it dies. Natural selection will act powerfully against one- 

hoss shay genes that effect organisms in their youth. Austad claims that 

the power of natural selection wanes as organisms grow older. One-hoss 

shay mutations are not selected heavily against if they only affect older 

organisms. Experiments with TETK support this conclusion. Austad then 

applies this logic to give a possible explanation for the evolution of aging 

(Austad, 1992). "Since most new mutations are harmful and since 

mutations with effects late in life tend not to be weeded out, late-acting 

harmful mutations can accumulate over time. They are virtually immune 

to elimination by natural selection, which may be why certain diseases, like 

cancer, occur predominantly in old age." 

In the above example, the student played the role of the Creator, 

designing organisms with various properties, and setting them in a world 

to compete against one another. There are obvious pedagogical advantages 

to this approach, especially for introductory lessons in the evolutionary 

process. The word 'design' has connotations of planing, of purpose. 

During the experiments, many unexpected and even counter-intuitive 

results emerge. The student's 'designs’ often don't work. These 

unexpected results form the grounding of the insight, indeed Charles 

Darwin's insight, that what we view as design could possibly be the work of 

another process, one whose operation is random, but whose product can be 

finely tuned. 

It is possible within the mechanisms of TETK to set up automatic 

mutations for specific traits to test conjectures in this fascinating area. If a 

more advanced student selects the mutation option from a special submenu 

on the 'Values' box, a random mutation will occur at each birth, effecting 
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the value or values of the particular traits of the daughter cell. The 

mutation rate can be set as 2%, 5%, or 10%. These values represent the 

probability that the value of the 'Maximum Age' variable (in the case of the 

AGE trait) will increase, or decrease by one unit. The user could set up a 

micro-world where the genes expressing AGE trait are permitted to mutate 

in order to find out if there is a 'Maximum Age’ that will dominate, or 

whether there will be an evolutionary pressure toward longer lives, or 

shorter ones, or perhaps neither. Is there an optimal age for a predator, or 

a prey to begin breeding? On what other variables may this depend? 

The discussion of the genes controlling the age traits of the organism 

is particularly rich in raising novel questions and opening up many 

different avenues of inquiry well suited to a multi-media educational tool. I 

wish to extend the discussion of the modeling of aging to demonstrate the 

educational potential of investigations made possible by a combination of 

automata modeling and multi-media access. It is most important to note 

that the modeling permitted by TETK is not conceived as a substitute for 

experiment or inquiry into the beauty and wealth of complexity of the 

natural world. It is at best a schematic representation of natural events; 

but it is a representation in a form that can have great pedagogic impact for 

many students for whom many of these ideas remain inaccessible in the 

format we currently instruct. 

I envision a program similar to TETK embedded in a CD-ROM 

format which can give students access to a host of other information, 

textual, audio, and visual. In such an investigation the students could 

search a database on the CD for information on thousands of animals with 

their habitats, maximum life spans, reproductive rates, and metabolic 

rates. By selecting groups of animals and plotting metabolic rate times age 
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vs. age (clearly other plots could be attempted), students could discover for 

themselves the almost linear graph for mammals (excluding marsupials 

and monotremes). This plot historically gave rise to the "rate of living" 

theory of aging at the turn of the century. Theory was proposed by German 

biologist Max Rubner in 1908, and extended by American Raymond Pearl. 

It basically says small animals are, in some fashion, biochemically living 

more rapidly than larger ones. This follows directly from a constant slope 

of a (metabolic rate) x (life span) vs. (life span) graph. Rubner calculated 

that each mammal species expends approximately the same amount of 

energy per gram during its life time. A popularization states that all 

animals have the same number of heartbeats allotted; some use the supply 

up faster than others. 

The modern version of this idea associates the accumulation of 

imperfect metabolic byproducts, defective proteins, and collision damaged 

molecules with the general deterioration we call aging. Austed asks 

whether this makes sense. Inclusion of other families such as marsupials, 

monotremes, and birds alters the data considerably. Birds and bats are 

relatively long lived creatures, even with their high metabolisms. Many 

marsupials live short lives with metabolic rates of only 70% to 80% of that of 

mammals. The linear relation is not linear at all. It may not reveal any 

fundamental connection. The explanation for the origin of aging lay, 

according to evolutionary biologists, in inquiries into the inheritance of 

"one-hoss shay" genes that effect young and old differentially. This process 

can be easily modeled with TETK as described above. Similar experiments 

can be performed on values of the HUNGER trait. 

A thorough exploration of the meaning of the word advantageous' is 

most important for any student of evolutionary theory. TETK provides three 
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traits designed to assist students in this exploration. These are illustrated 

in Figure 3.12. 
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Figure 3.12 VISION, HIDE, and FLEE traits. 

Three of the traits shown in Figure 3.12, VISION, HIDE, and FLEE, 

affect the function of the MOVE traits. The VISION trait is used only in 

predatory organisms. It permits the organism to 'look' two squares beyond 

its own position for the presence of prey organisms. An organism with the 

VISION trait will move in the direction that has the most prey. If there is 

no prey visible, the predator moves randomly. 

The HIDE trait is possessed only by prey. If an organism has the 

HIDE trait it has 50% chance of escaping a predator. This is accomplished 

by modifying the predator's list of available meals. If a predator is nearby 

and hunting, any organism that has the HIDE trait has a 50% chance of not 

appearing on the predator’s available to eat list. 

The FLEE trait is also possessed only by prey. Possessors of the FLEE 

trait can move more than one square, if they sense a predator in an 

adjacent square. It really is two sequential executions of the MOVE 

algorithm. As the move algorithm is really a random walk for a herbivore, 

it is possible that the prey can move right back to the square from which it 

started. If this is modeling a squirrel crossing a road, perhaps the 

algorithm is rather accurate. 
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A probability is set by the user for the exercise of the FLEE trait. 

Setting the value at 25% means that one quarter of the time a prey will flee 

when approached by a predator. The direction in which it moves is 

random. If there are no empty squares in which to move, the prey will 

move only one square. There is an energy penalty for the extra movement. 

Naturally the energy cost to the fleeing prey is double that of a single square 

move. 

The VISION, HIDE, and FLEE traits are used to explore the effects of 

mutations on predator/prey dynamics, as well as to observe how 

advantageous traits, or disadvantageous ones will propagate, or fail to do 

so, through populations. A user would presumably set up a predator/prey 

micro-world in which the predatory species has two allelic forms, one with 

the VISION trait, the other without it. 

Sexual organisms have an additional variable associated with all 

traits. The pattern of inheritance of the trait can be set as dominant' or 

'recessive'. Patterns must also be supplied for values expressing breeding 

such as percent of fertility, breed age, and breed period. The 'dominance' 

or ’recessiveness' will be interpreted by cellular automata's "reproductive 

machinery" in either of two manners. For mating with an organism of the 

same species with a trait to one without the genes that express that trait, 

the pattern will be as if the partner had an allele that did not express that 

trait. If there are multiple alleles for any trait, they will be interpreted as 

simple series dominance based on the value of the trait expressed by the 

allele. Higher numbers are dominant over lower ones. This, admittedly, is 

very primitive. In future versions the user will be able to select different 

patterns for the allele series such as 'lower values for dominance' or 

’random assignment' in the series for dominance. In the latter case, as 
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new alleles are generated, through mutation, or user intervention, they 

will be assigned a random position in the series. 

For a sexual organism, the user would set initial populations of each 

form, and also determine if the trait is passed on in a dominant or recessive 

pattern. The VISION trait should be advantageous, permitting the 

predator to stalk its prey much better than its blind brethren. The sexual 

genetic system is particulate. One could set up a population with two 

alleles for such a trait. One allele with no vision, another with a limited 

amount. If no mutation is selected, these would be the only alleles in the 

gene pool for that trait. As noted in chapter one, the student will note a 

counter-intuitive result: the advantageous dominant trait will propagate 

through the population, but never reach 100%. A recessive advantageous 

trait will propagate slowly, but it will reach 100%. Similar experiments can 

be performed with the HIDE and FLEE traits. 

In the case of asexual inheritance the process is one of competitive 

exclusion. If one trait is indeed more fit than another, individuals of that 

line will eventually overcome the descendents of other lines. Paint Pot 

inheritance proves an interesting pedagogic illustration. Even if given a 

very advantageous trait, such as the HIDE trait, there will be little or no 

change in the gene pool of the population. The effect washes out; unless 

there is continuous re-introduction of the same mutation. The idea of "tall 

father, short mother, average height kids" will not permit any evolutionary 

development. It is the particulate nature of Mendelian inheritance that 

preserves diversity. 

TETK also includes some specialized traits used only in the sexual 

genetic system, the sex tag markers shown in Figure 3.13. Their icons are 

tags with the symbol for either male or female. They are not really traits', 
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rather they are markers placed on the component of the trait that 

determines sex. The markers can be read by the user and tallied for 

various reports. These tags are useful in studies of genetic drift or 

investigations of the analog of inheritance of mitochondrial DNA. When 

any of the tag traits are selected, the user must specify a numeric value to 

be set for each tag. For example a user can set up an initial population of 

200 individuals, half of whom are male. Each of the 100 males could have 

an individual tag, each with a unique identifying number, 1 to 100. After 

100 generations of breeding, the experimenter could make a report on the 

number and values of the tags on the remaining males. A similar 

experiment could be performed on the female tags. Daughter cells of 

tagged female organisms will have tag numbers identical to that of their 

female parent. 

r- Traits:- 

9Ta9 cfTa9 Twins 

Figure 3.13 The TAG and TWINS traits 

There are some counter-intuitive results even in such a simple 

reproductive patterns as inheritance of male or female genetic material. 

The least expected is the result that in an sexual reproductive scheme, 

eventually all individuals are descended from one individual. Which 

individual of the initial population, is not predicted by the theory. It is true 

that one of the originals is necessarily the progenitor of the whole 

population. The lines of all the other organisms will die out. 
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An analogy of this phenomenon can be found with inheritance of 

surnames through the male side according to English and Continental 

customs. As surnames are inherited through the male line, a surnames 

die out if there is a generation of only female progeny, as well as a 

generation with no progeny at all. This effect has been observed many 

times in isolated human populations. The descendants of the mutineers at 

Pitcairn are all surnamed Christian, from Fletcher Christian, the famous 

first mate of the Bounty. The 20 odd other names from the original 

crewmen died out in the century and a half of occupation on the island. 

Surnames on several Scottish and Irish remote isles also showed similar 

lack of variety in surnames before population shifts and ease of transit 

disturbed the patterns in the 19th century (Dewdney, 1988). The conclusion 

is that all males from Pitcairn have the same Y chromosome as Fletcher 

Christian, plus whatever mutations have occurred along the way. 

A planned addition to the TAG genes for the next version of TETK is a 

'genetic error'. Associated with the TAG genes will be a string of l’s and 

0's that would be subject to mutation. The string would start out at all 

zero's. Any l’s would be introduced by mutations. The fertility of the 

organism would depend on the sum of the l's and 0's in that string. The 

string would be used as a reservoir of 'defects', permitting the students to 

do their own investigations of Muller's ratchet and genetic drift. Students 

could easily model the genetic effects of population bottlenecks and their 

effect on fertility as seen in animals like the African cheetah (O'Brien, 

Wildt, & Bush, 1986; O'Brien, et al., 1987). It seems counter intuitive, but 

genetic defects, even those that can severely affect reproduction, do 

accumulate. 
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Two recent articles, usable as sources of explorations with TETK 

with secondary students show the extent of the problem. Craig Parker 

describes the difficulties faces by a group of lions that recently moved into 

the Ngorongoro Crater National Park in Tanzania (Parker, 1992). The 100 

square mile Ngorongoro Crater Park occupies the floor of an extinct 

volcano. Its walls are sufficiently high to serve as a barrier to most 

immigration. A plague of flies in 1962 wiped out almost all of the lions in 

the park. There was one resident male remaining. Seven male lions 

entered the park in the mid 1960's. These were from three coalitions, 

probably siblings. These males deterred all other males attempting to enter 

the park since 1969, five generations of lions ago. Less competitive prides 

died out quickly. Only six prides remain. Measurements indicate that 

these lions have only half the genetic diverstity of Serengiti. Their level of 

sperm abnormality was twice that of the lion population outside the crater 

walls; all of this in five generations. 

A study of the Florida panther reported by Jon Luoma paints a 

bleaker picture (Luoma, 1992). The Florida panther is a subspecies of the 

cougar that formerly roamed over Florida, Georgia, and Alabama. There 

are approximately 30 to 50 of the creatures left, mostly in the Big Cypress 

Reserve (1985 figures). In the early 1980's approximately 15% of the male 

cats had a genetic defect that gave them only one testicle. Now 70% have the 

trait. Sperm counts are dismal. Over 90% of the sperm are abnormal with 

serious defects like dual heads, thickened heads, or missing or cork-screw 

tails. Heart valve defects have begun showing up in kittens. 

TETK can model this process rather easily. Figure 3.14, a diagram 

adapted from Maynard-Smith, Evolutionary Genetics, illustrates the 

concept. Starting with four male individuals, the entire gene pool 
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eventually is occupied by descendants of organism A. On the next run of an 

automata simulation, it may be organism B whose descendents dominate 

the population. Probabilities of dominating the population will be equal 

assuming equal "fitness" of the four initial types. An analogous 

phenomenon occurs with asexual inheritance as well. 

If the population is sufficiently small, after sufficiently long runs, all 

organisms carry the same number on their male tags. An extension can be 

made to human inheritance. If the planet survives long enough (and male 

surname inheritance prevails), all earth's inhabitants will probably be 

either Smiths or Changs, or perhaps Patels. 

<n 

c 

Figure 3.14 Surname Inheritance 

There is an analogous phenomenon in the female line as well. This 

is the recent discovery of mitochondrial DNA which is passed only through 

the female line. Sperm have no mitochondria. The mitochondrial DNA in 

all modern humans is remarkably similar, so much so as to show that all 

humans are descended from the same woman. When the pattern and 

frequency of mutations of this DNA is overlaid on a map, the area showing 
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the least isolation and inbreeding is Central Africa. This strongly points to 

an African origin of the species, an African 'Eve'. Explorations with TETK 

can show that, rather than providing support for the stories of Genesis, the 

phenomenon is at least partly statistical in nature. The African origin may 

be real; which woman was the real 'Eve' was not determined by which of 

them was first made from a rib, but by a genetic lottery. 

The TWINS trait effects reproduction in sexual, asexual, and paint 

pot systems. If an organism has the TWINS trait, it has the potential to 

have two daughter cells upon fission or mating. This potential is set by the 

user in the form of a percentage. A TWINS variable of 50% means that half 

of the births for that organism will be double. The energy of the non¬ 

twinning parent is initially divided equally among the parent and the 

offspring. For organisms with the TWINS trait, it is possible to change the 

division of energy leaving fixed fractions for the parent. An interesting 

question is, "Is the TWINS trait advantageous?" The TWINS trait is very 

useful in investigating the effect of any changes on the Breeding Age’ 

variable and its relation to predation. 

r Traits: 

Tree.= Tree.Axis MeMory BadTasTE Uings FrogCall Frog Ear Strategy 

Figure 3.15 Other traits available 

The experiments, instructional methods and traits discussed so far 

are similar to many text based approaches to the same material in that they 

predominantly address logico-mathematical, intrapersonal, interpersonal, 
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and linguistic intelligences as defined in Gardner's model. Figure 3.15 

gives eight other traits available for experimentation. These traits employ 

innovative pedagogical methods that address individuals who learn or 

approach the world through Spatial, Musical, and Physiokinetic 

intelligences. Some of the traits must be used in combination. Some 

function only with certain genetic systems. 

The two tree growth traits model the growth of plants much like the 

work of Niklas described in chapter two. The simulation is intended to 

model the adaptations made by primitive land plants in the Silurian and 

Devonian, like cooksonia, in any attempt to take advantage of the new 

resources the land provided. Andrew Scott in a recent article in the 

Journal of Biological Education gives a careful examination of the problems 

faces by early vascular plants (Scott, 1984). The simulations permited by 

TETK give students an opportunity to explore this important but very often 

overlooked chapter of evolutionary history. 

The word 'tree' is used very loosely in this context, as in the gaming, 

a time frame of many millenia is assumed. The early productions may not 

look like trees, but later ones bear considerable resemblance, as Nicklas 

remarks, to the odd fern palms and cycads of the great coal forming 

forests. 

In the pilot version these tree routines are non-functional. They are 

very computation intensive. Models based on these traits are intended to 

appeal to the spatial and physiokinetic intelligences. The following 

description is rather mathematical, the mathematics involved in drawing 

the tree and computing its 'fitness' based on structural analysis, light 

gathering ability, and reproductive potential are invisible to the student. 

The actual interface used by the student is very graphic rather than. The 
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TREE.- and TREE.AXIS traits very generally model the two major forms of 

plant growth, sympodial and monopodial. 

Genetic _ & 
_ System T- Traits: 

GameTheory Tree.= 

r uaiue 

|11 qo| Branching 

.20 

Bngle 

Probability of 
Branching 

20 Rotation Rngle SamP,e Tree 

Mutation 
Rate 

® None 
S M F 
o o o 

Draw a 
Tree 

Figure 3.16 Sample Sympodial Plant 

Figure 3.16 shows a sample screen for a sympodial plant. To 

investigate the pattern of tree growth and how physical constraints effect 

the evolution of plant structure, students would select a type of plant 

growth. The sympodial growth rule was selected for the sample. In the 

values window the student sets the three parameters for that model and 

can "try out" the effect of these parameters on some plants. Importantly, 

the growth is in three dimensions; only a two dimensional representation 

is shown on the screen. In the current version, the user cannot rotate the 

tree around its axis to see what it looks like. Also, only lines are used to 

represent the branches; volume of the branches is not represented. 
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When the user has found some pleasing parameters, he or she could 

take the creation' to the micro-world of the Tool Kit and let it compete 

against other designs made by other students, or designs made randomly 

by the computer. The computer made trees undergo mutations at fixed 

rates. The student designed trees would, in this case, be competing against 

an opponent that is always changing. As the simulation proceeds, graphs 

of the population of different species of tree in the forest would show which 

species of tree is winning. If the student designed tree begins to lose, the 

student could halt the simulation and make changes in his or her design. 

The student needs to mutate the variables that determine the shape of his or 

her species of tree to keep pace with the adaptations of the computer 

generated one. The student and his or her 'tree' become the Alice in the 

race with the Red Queen. Judging what is wrong with a design is not at all 

easy. Very often it is a sense of balance or stability that is not easily 

quantifiable, but can be assessed from a drawing of a tree formed under the 

given parameters. 

The TREE.= trait used in the sample models sympodial branching 

plants, like most bushes, some cactus, elms, or cauliflower. At each 

branch the plant divides symmetrically with the angle between the 

branches set by a variable within the trait. The TREE.AXIS trait models 

monopodial plants with axial symmetry, like conifers. For a tree growing 

with the TREE.AXIS trait, at each division one branch is designated as the 

central one, the trunk. It is the one closest to the normal to the plane. 

There are two different branching angles, one for the main trunk, the other 

for the branch. Sympodial plants have only one branching angle, all 

branches have equal angles from the parent branch. For a monopodial 

plant, the smallest branching angle is closest to the main trunk of the tree. 
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Both growth patterns have a 'Rotation Angle' variable. This variable 

determines the number of degrees the growing tip is rotated clockwise 

before setting off new shoots. 

The Probability of Branching' variable determines the probability 

that the growing tip will branch after growing out a unit distance. Because 

the probability applies to each growing tip separately, the structure of 

sympodial trees, even with evenly divided branching angles, is not 

symmetric. The model also follows another convention used by Niklas. 

Another variable, dependent on the level of the branch, and the probability 

of branching, determines if the branch segment is terminal or not. 

The representation of the tree in the first version is very primitive; 

lines represent branches. For purposes of computation of fitness of the 

structure, the branches do have volume. As each tree grows, the branches 

decrease in diameter. The cross sectional area of the branch is divided 

among the new branches by two different rules; one for sympodial growth, 

another for monpodial growth. If the plant is sympodial, the new branches 

have diameters equal to the parent branch divided by the root of two. This 

operation preserves the volume of the plant as it lengthens. This division 

gives the tree constant volume by level as it grows. If the tree is 

monopodial, the radii of the branches are unequally divided. The axial 

branch receives two thirds of the cross sectional area of the parent branch. 

The user sets three variables for TREE.= : Probability of Branching, 

Branching Angle, and Angle of Rotation. Figure 3.15 shows how these 

variables are set up in the Values' box. For the TREE.AXIS trait, two 

Branching Angles are needed: Trunk angle, and Branch Angle. Both are 

measured from the previous branch axis. The user also sets the maximal 

angle of the sun to the plane. In a future version, students will be able to 

212 



control the force of gravity. They could experiment to see what trees would 

look like on the Klingon planet with twice earth's gravity. 

Figure 3.17 Monopodial plant growth 

Figure 3.17 will clarify the geometry and notation for monopodial 

growth. A four level tree is show. Theta is the branching angle. Theta 3.1 

is the smaller angle closer to the trunk in the branching at level three. It is 

approximately 20 degrees. Theta 3.2 is the larger angle, about 30 degrees. 

Students can experiment with drawing trees using these angles in an 

experimental mode before continuing with any investigations involving 

competition among species and any differences in relative fitness of the 

structures. Please note that the branch on the left side does not continue to 

the small branches at level one, as does the structure on the right. The left 

side of the tree stopped growing after level two as the termination 

probability for that branch determined that it could not continue. 
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The tree modeling traits must be used with the Game Theory genetic 

system. These traits do not function with a toroidal world. The fitness 

function determined by these traits is used by the game theory system to 

determine ratios of offspring for the succeeding generations. Fitness in the 

tree simulations is determined by the sum of the rank order according to 

three analyses. These analyses are based on those done by Niklas. First the 

computer calculates the ratio of the surface area exposed to the sun, divided 

by the total surface area. This calculation is done, in this simulation, 

under the assumption that the plant is growing near the equator. The 

machine calculates the ratio for morning (45 degrees insolation), noon 

(vertical insolation) and afternoon. The three are averaged. Plants are 

rank ordered. Second, the machine calculates the cumulative first moment 

of all branches as a measure of the integrity of the branching pattern. 

Plants are rank ordered. Third, the machine calculates the sum of the 

heights off the ground of the branch tips. It is assumed that the tips would 

bear flowers and hence higher placement would give better seed 

distribution and more aggressive shading of neighbors. Again plants are 

rank ordered. The ranks are added for each plant, and a cumulative rank 

order is made. The lowest quarter do not reproduce. 

The modeling of trees is computationally intensive. To avoid 

bringing the simulation to a grinding halt while thousands of trig functions 

are calculated, several short cuts are employed. First, the arguments of 

the trigonometric functions are evaluated in increments of 2 degrees only. 

This means that 12.5 degrees will have the same trigonometric values as 

13.9 degrees. With this short cut, trigonometric calculations can be 

reduced to a look up table for these values. Second, though thousands of 

trees could be shown on the world grid, the trees at each cell are not 
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modeled for every cell in the grid. To reduce the burden of computation a 

square of one hundred trees is used as a sample. Trees are 'grown' in cells 

in that strip and and the rest of the gnd is randomly filled from populations 

of that sample populations. 

As described above fitness is determined. Some are eliminated. 

Randomly, one quarter of the remaining trees are selected for the spots held 

by these 'unfit' trees. Mutations, if they are permitted, occur only at 

breeding. The mutation rate is set by buttons shown in Figure 3.16. The 

mutation rate can be set at 'Slow' (2%), 'Average' (5%), 'Fast' (10%). The 

computer will randomly mutate any of the growth parameters when 

creating a new generation for species it controls. The mutation rate 

determines the chance that any one parameter will undergo change. A 

'Slow' mutation rate means that each parameter has a 2% chance of going 

up or down between one and five units. The unit of the variables measured 

in degrees is 1°. The unit of probability is 1%. The current version will 

model only two species of trees competing. 

A special feature of the game theory system is the control over 

mutations by the computer, or by the user. This control is set up at the start 

of an experiment. If a species is put under control of the computer, the 

machine will mutate the values of the parameters of the tree in a random 

fashion. Any change in the growth parameters for species controlled by the 

user will be done by the user by altering the species' trait list through the 

AUTOMATA screen. 

If one species is under control of the computer, and the other is 

controlled by the user, the effect of this structure is to put the user in 

competition with the computer running a genetic algorithm that 

determines the fitness of the trees. It is an evolutionary 'war game', as 
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Niklas remarks (Niklas, 1986). It is also possible to have the computer 

simulate two species of trees in competition for resources. The simulation 

can be stopped after any cycle and the shapes of the trees of either species 

examined. 

On a spherical world (not yet implemented) the angle of insolation is 

dependent on the latitude of the cell. Snow loading can also be added. Cells 

on the equator will have the sun overhead most of the time, with little snow 

loading. Cells in the mid to upper latitudes will have increasingly acute 

insolation with increasing snow loading. The sample computational 

population on a spherical world will have to be larger so that it can be 

grouped in latitudinal strips. This structure will model competitive 

exclusion based on responses to light gathering ability and morphological 

constraints. Most tropical trees are sympodial, to gather the maximum 

light with little stress from weather factors. Temperate and north latitude 

trees are generally conifers which have monopodial growth patterns. Their 

morphology is a response to the mechanical stress of heavy winter snows. 

The MEMORY, WINGS, and BAD TASTE are all associated with the 

butterfly simulation. These are functional in the pilot version. This 

simulation is intended to appeal to students whose dominant intelligence is 

spatial; it is also very appealing aesthetically. The butterfly simulation 

models the evolution of Mullerian and Batesian mimicry among tropical 

butterflies. 

Figure 3.18 shows the windows associated with the butterfly trait, 

WINGS. This simulation works only with sexual inheritance. In this 

simulation the WINGS trait is given to all prey. In the setup windows of 

the WINGS trait the user determines the color of the wing for each species 

of organism. It can be any of 128 different colors. It is also interpreted as 
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cyclic (both 127 and 2 are the same 'distance' from 0). The circle is a color 

wheel; on a color monitor it appears as a circular rainbow. The color is 

determined by placing a circle tool on any part of the color wheel. The 

corresponding number of that color appears in the color box. Here a 

primary blue was chosen; it is number 27. The butterfly appears in the 

same color as that chosen by the user. 

Genetic 
System -r Traits: 

9, a 
Sexual Uings 

r uaiue : 
Vellow 

Mutation 
Rate 

® None 
S M F 
o o o 

Figure 3.18 Choosing a Butterfly Color 

The color of the wing may be subject to mutation, if the mutation 

button is activated. With the mutation option selected, the number 

specifying the color of the wing can change with each generation. The 

rates are the same as in the tree growth option option: 'Slow' (2%), 

'Average' (5%), 'Fast' (10%). The number specifying the color can increase 

or decrease. 

A feature not yet incorporated into TETK is an examine pointer that 

will let the user examine how any organism 'looks' by just pointing at it on 
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the world grid. The examine pointer will not interrupt the game 

simulation. 

The BAD TASTE trait (its icon is a grimacing face) is given only to 

prey. It can be set as either 'Recessive' or 'Dominant'. The BAD TASTE 

trait in a prey alters the method by which a predator prepares its potential 

meals list from organisms adjacent to it. If an organism has the BAD taste 

trait it has a chance at being rejected as a meal by a predator with a 

memory of a meal that tasted bad with a color similar to that of the prey. 

The MEMORY trait is given only to a predator. Its icon is the head of 

an elephant. In the current version it is functional only as part of the 

butterfly simulation. All predators in the butterfly simulation should have 

the MEMORY trait. A predator, with the MEMORY trait remembers the 

color of its last five distasteful meals. If the meal was distasteful, it has a 

special mark in its memory. After each new meal the predator forgets the 

oldest one. The selection rule used by the predator is simple: the closer a 

color is to any of the distasteful memories, the better the chances the prey 

can escape being eaten. 

If the predator encounters a potential meal, it checks its memory for 

marks of distasteful memories associated with that color. The code 

governing the predator's selection process is quantizes as follows. If the 

color number exactly matches, the prey has a 50% chance of being taken off 

the potential meals list. Distasteful butterflies are not free from predation, 

they just have a higher chance of escaping. For every five units difference 

from a 'distasteful' color, the chance of the prey escaping the potential meal 

list decreases by 10%. Roughly this means "the closer the color of a 

butterfly is to a distasteful meal, the greater the chance of escaping." 
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The structure of the WINGS, BAD TASTE, and MEMORY traits 

permit TETK to model Mullerian and Batesian mimicry in tropical 

butterflies. Both Mullerian and Batesian mimicry are dependent on 

predators having memories of which meals tasted bad. In Mullerian 

mimicry several unpalatable butterflies share similar color patterns 

(aposematic colors). These Mullerian rings, as tropical ecologists call 

them, are named after the nineteenth century German naturalist Fritz 

Muller. Muller reasoned that if distasteful butterflies shared common 

patterns, the young, inexperienced birds would kill many fewer butterflies 

before learning which ones to avoid, than if each species had different 

markings. A detailed method of setting up a model of the evolution of 

Mullerian mimicry is described in chapter four. 

Named after nineteenth century British naturalist, Henry Bates, 

Batesian mimics are palatable butterflies that take advantage of the 

avoidance predators show for some patterns. These mimics share wing 

patterns with unpalatable species. To experiment with Batesian mimicry 

the user would design a species of distasteful butterfly with a color on one 

side of the color pallet. A tasty species that can mutate would be placed on 

the other part of the color wheel not too far from the color of the distasteful 

butterfly. It helps to speed the simulation up if the tasty species breeds 

frequently. The unpalatable organisms are non-mutating. After a few 

hundred generations both the palatable and unpalatable organisms will 

share the same color. Natural selection will favor tasty butterflies that have 

similar colors to the distasteful one. 

A similar experiment with two unpalatable species, one mutating, 

the other not, will demonstrate the evolution of the analogue of Mullerian 
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mimicry in cellular automata. There will be an evolutionary pressure on 

the mutating species to have the same color as the fixed color species. 
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Figure 3.19 Prisoner's Dilemma Strategies 

The STRATEGY trait, whose icon is a flow chart, can only be used 

with the game theoretic genetic system. It models relative fitness of 

behavior in the form of the Prisoner's Dilemma. Figure 3.19 shows the 

menu of the STRATEGY trait. This should be the only trait in the trait list 

for modeling this simulation. Only strategies with one unit memory are 

modeled. In this version also only pure strategies are permitted. One 

cannot play 'Tit for Tat' 50% of the time and 'Always Defect' for the rest. 

Future versions of TETK will include the option of employing mixed 

strategies. 

Under the GAME THEORY system for this trait, every organism 

plays every other one 100 times. All squares must be occupied. A user 

would set up a world with two or more species, each playing only one 

strategy. Population is held constant. The pay-off matrix is set as in 
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Axelrod's simulation discussed in chapter two (both cooperate = 3, both 

defect =1, cooperate/defect = (0,5), and defect/cooperate = (5,0)). Only single 

memory strategies and pure strategies are modeled in the first version of 

TETK. 

Fitness of the strategies is determined by a statistical process. After 

each round scores for each strategy are summed and averaged for each 

strategy (species), as well as for the population as a whole. Individuals 

whose scores fell in the bottom quarter are killed off. The remaining 

individuals are permitted to duplicate with a probability of .25 in order to fill 

the squares vacated by the poor performers. A graph displays the average 

score for all individuals, as well as average scores of the species. There are 

several questions that a student can explore. "Which is the best strategy for 

an individual to play?" "Can one strategy displace another through the 

whole population?" "Which strategy is stable against challenges from 

others?" The counter-intuitive result is, only "Tit for Tat". 

The FROG CALL and FROG EAR traits are used only with the game 

theory system. These model the effects of female selection analogous to that 

shown in the work of Michael Ryan on the tungara frog (Ryan, 1990). This 

simulation is designed to appeal to individuals for whom Gardner's 

musical intelligence is dominant. It models female selection as with a 

basis in sensory bias. In this simulation female frogs are given a sensory 

bias in the form of sensitivity to two bands of frequency, and a 

predisposition for certain modulations of sound, such as trills, beats, 

pulses, or throbs. The frog call for this species consists of four notes that is 

repeated three times. The male frogs make sounds to attract the females. 

Males that make the sounds that are most attractive to the females are 
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those chosen for breeding. The cycle repeats with the least attractive songs 

(to the ears of the female frogs) eventually dying out. 
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Figure 3.20 FROG CALL screen 

The voices of the male frogs are either under the control of students 

or under random mutation by the computer. The student designed male 

frogs can be in competition with the randomly mutating male frogs. A 

pointer will let the user hear what any frog sounds like. 

Automata that are given the FROG EAR trait act as females. FROG 

EAR trait sets the sensory bias of the female. Figure 3.20 shows a how the 

user would select the frequency of sensitivity of the female, the "melody" 

that she likes, and the kind of inflection that gives the greatest stimulus. 

The ear of the female frog in Figure 3.20 has been designed to be 

sensitive to two regions, 50 Hz to 100 Hz and 400 Hz to 800 Hz. She also likes 
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the pattern, Low, High, Low, High. The inflection which is most 

stimulating is beats on the high note and trills on the low note. The user 

can "PLAY" the sound to see what sounds such sensory bias would find 

stimulating. Another user or group of users would then attempt to design 

the male frog that would make sounds that would maximally attract such a 

female. The user would compete against other male frogs that are 

randomly mutating. In the current version female frogs cannot mutate. 

All variables from the Value' box are encoded in binary form. 

Mutations in this simulation are simply changes of 0's to l's. These take 

place at each element of the genes that express the traits at the same rates 

specified previously, 2%, 5%, and 10%. The attractiveness of a male frog is 

simply the number of matches with the sensory bias of the female. The 

lowest scoring quarter of the male frogs do not breed; their traits are not 

represented in the next generation. 

The set up for the MALE FROG CALL trait is very similar. There 

are 768 different possible calls or sensory bias combinations. 

Mathematically the problem is one of finding an optimal fit in a finite field 

of possibilities. The problem is solved, in this case, by a genetic algorithm. 

It is surprisingly effective. Just as with the growth pattern of trees, and the 

color patterns of butterflies, students can be put in competition with the 

computer in an 'evolutionary war' with the computer running a randomly 

mutating process. From graphs or rough pictures of the world grid 

students would be able to assess if their frogs were losing . The problem is 

finding what is wrong with their design. They would not be able to look at 

its genotype. They can use the 'Examine Tool' to 'listen' to any of the 

mutating frogs made by the computer in order to see what kinds of sounds 
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it is making. They could then redesign the song of their frog in an effort to 

make it more successful in breeding. 

Future versions of TETK will permit mutation of the genes which 

express the traits of the ear of the female frog. With such mutations, and a 

large enough gnd it is possible to model allotropic speciation. By placing 

semi-permeable natural barriers in the environment and permitting 

mutating females to breed with only the most stimulating 'local' frogs, it is 

possible to evolve 'dialects' that enforce separate gene pools (Werner, 1992). 

The 'REPORT' menu is greatly simplified in the first version of 

TETK. It is by far the weakest part of the program. Currently it permits 

the user only to write an external file with populations of the automata 

species in the simulation that is running. A simple graph of the population 

of each species through time can be presented simultaneously with a view 

of the world grid from within the 'REPORT' menu. It does not currently 

permit the user to make reports on frequencies of allelic forms, or average 

values of variables in 'Values' boxes. 

Improvements like these are planned for future versions of TETK. 

Operating under systems with dynamic data exchange it is possible to have 

elegant graphing or spreadsheet programs such as Wingz or Excel display 

the file generated by the report writer in any manner the user wishes. For 

the butterfly simulation, for example, it would be possible to produce a 'live' 

three dimensional plot of time vs. 'value of the color' vs. number of 

organisms that have that color. This would demonstrate time slices' of the 

evolutionary process as, at each graph there are equal numbers of 

butterflies around a central value (showing the randomness of any 

mutations at any one time), but the central value is in motion. It is a 

directional evolution towards the color of the distasteful butterfly. 
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A second very useful feature that is only partially implemented in 

this version is what I have called the 'MORGUE'. It is an external file that 

the computer writes that holds information (traits and values, age, species, 

reason for death) of every organism as it died. The morgue file could also be 

read into a database for quick and graphic analysis. Obviously the morgue 

file gets big very quickly. This is the current problem. Some sampling 

techniques must be employed. The sampling could either be random, or 

biased geographically (information from one region only). A regional 

sampling system can give the student an insight into the 'horizontal' aspect 

of evolutionary theory discussed by Mayer. If an advantageous mutation is 

introduced, and one sets up several 'observation' sites, one can see the trait 

propagate through the population both temporally and spatially by viewing 

the morgue files from each of the regions. 

Another feature I would like to incorporate in TETK is the use of 

'agents’ to gather information about the population. An agent would be a 

cellular automata 'observer' who would go and observe and collect data 

about inhabitants in regions the user would specify. The agents would 

furnish random samples of portions of the population. The agent strategy 

may prove more useful than the morgue file, or perhaps a good supplement 

to it. 

When using the simulation at this level, the user would be 

introduced to problems created by sampling. It is possible for the machine 

to make global tallies of populations and compare them with the tallies and 

estimates made by the student's agents. A cost would be associated with 

the use of an agent, $x.xx dollars per observation of an automaton and 

$y.yy for each cycle each agent spends in field work. The task given the 

student would then be to design an experiment to verify a certain conjecture 
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to a specific measure of certainty, all within the constraints of a fixed 

budget. Besides adding some realism to their research, placing a cost limit 

on their activities can force students to invent novel sampling and 

investigation strategies, as well as verify that they are accurate to the limits 

that they claim. 
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CHAPTER 4 

DRAFT FOR A TEACHER'S MANUAL FOR 

THE EVOLUTIONARY TOOL KIT 

The task of writing a complete teacher's manual for this software is 

well beyond the scope of this dissertation. This chapter provides a 

document intended to serve as the core of a user's manual for a commercial 

product based on the ideas of The Evolutionary Tool Kit. It will focus on the 

projected use of the program, the change needed in curricular sequence, 

and the classroom strategy that the approach taken by The Evolutionary 

Tool Kit will require. The exposition of the manual follows the three themes 

set out in the rationale for the dissertation: 

Accurate and Efficient Pedagogy: restructuring the order of topics, 

integrating the 'big ideas' of modem biological thought in an active, 

guiding fashion at the outset of studies, actively making connections 

between different parts of the subject matter. 

Student Centered Learning: students experience ideas, rather than 

passively receives information; instruction addresses the 'Multiple 

Intelligences' and develops the critical thinking skills of students. 

New Ideas: the role of information in living systems must be a 

central concern; use of technology to extend their senses and perceptions to 

previously unseen and unperceived mechanisms of dynamic change. 

Introduction 

In 1868 Darwin published The Origin of Species. The dust has not yet 

settled. It was not till 1968 that the Tennessee legislature saw fit to repeal 

the anti-evolution law and Man was permitted to be classified as a mammal 
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in the curricula of that state. Some see here a victory for enlightened 

educators and a vindication of the modern scientific view. There are other 

lessons to be learned. Why did it take over one hundred years, more than 

five generations of students and teachers, for these ideas to gain even a 

minimal standing in a state curriculum? There is nothing dynamic, no 

mention of the possibility of mutability, in this classification of man as a 

mammal. The challenge set to science education is a very difficult in the 

light of historical precedents like this one. 

In any attempt to rise to this challenge it may be helpful for science 

educators to ponder the following quotations from two great scientists of our 

time. 

The theory of evolution by natural selection was certainly 
the most important single scientific innovation in the 
nineteenth century. When all the foolish wind and wit that it 
raised had blown away, the living world was different because 
it was seen to be a world in movement. 

Jacob Bronowski (1973) 

Nothing in biology makes sense except in the light of 
evolution. 

Theodosius Dobzhansky (1951) 

The problem is indeed a large one; it is also two fold. There is a 

unifying principle to modern life science, but it is a principle that is based 

on change. In Kuhnian terms Darwin's thoughts and the evolutionary 

synthesis brought about by paleobiologists, geneticists, naturalists, and 

molecular biologists in the 30's to the 50's brought a new dynamic vision of 

the living world around us. For many it is not a comforting one, it is a view 

of life in constant motion. The whirlwind of change in not at all over. 

Discoveries in the life sciences over the next several decades promise to 
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advance our knowledge of living systems far beyond all that has been 

discovered previously. As science educators this means that acquisition by 

our students of information, or even systems of information is not enough. 

We must go far beyond the level of information and learn to teach for 

understanding and to find ways to develop the synthetic and analytic skills 

students will need in the world in which they will learn and live. 

Classroom teachers must feel comfortable and be able to learn and to teach 

with new methods, new ideas they have never seen in a classroom 

themselves. All of this presents a considerable challenge on many levels. 

The pedagogical design of The Evolutionary Tool Kit represents an 

effort to address this difficulty in two ways. First it provides a practical 

model in life science education of the new constructivist epistemology 

(Gardner, 1989; Gardner, 1991; Howard, 1990; Perkins, 1987; Perkins, 

Lochhead, & Bishop, 1987; Posner, 1983; Resnick, 1987). It provides a 

modeling environment in which students at the beginning of their 

secondary studies in life sciences can experiment in an open ended manner 

to investigate and, indeed, discover for themselves some of the key ideas and 

relationships of evolutionary biology. Secondly it demonstrates the impact 

of new ideas springing from the information sciences on modern biological 

thought. Central to the development of these ideas, and the pedagogical 

vehicle that presents them, is the use of the computer as a tool for 

reasoning in the science curriculum. The Evolutionary Tool Kit attempts to 

model at the secondary level in a qualitative manner some of the spirited 

pedagogy pioneered at the college level by Jungck, Kinnear, and Streibel 

(Jungck, & Calley, 1985; Kinnear, 1986; Peterson, & Jungck, 1988; Streibel, 

Stewart, Koedinger, Collins, & Jungck, 1987; Watkins, 1992). 
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Rationale for the Design 

The core of the instructional design of The Evolutionary Tool Kit is a 

radical reworking of the approach to teaching evolution to secondary 

students, with suggestions of extensions of materials to the middle school 

grades. Importantly the target audience is secondary students beginning 

their studies of life science at the general level, not just advanced sections 

or AP students. 

Traditional methods of instruction in life science has always relied 

on "a firm grounding in the basics". This conservative approach has not 

doubt considerable merit, but there is a negative side as well. In the past 

the development of a 'sound knowledge base' meant a concentration of 

arbitrary, or at best conventional, distinctions such as classification, 

terminology, and not on the large unifying ideas of the discipline. 

Lectures, demonstrations, 'hands-on' labs, texts were the standard 

medium of transmission of this knowledge. The emphasis on sequential 

topics without a unifying conceptual thread left the curriculum was 

fragmented (Cho, Butler, & Nordland, 1985; Hill, 1986; Jungwirth, 1986; 

Nussbaum, 1983). Also the concentration on development of a knowledge 

base made the student essentially a passive recipient of information. The 

underlying assumption of transmission pedagogy is that if the topic is 

presented clearly or persistently enough, in small enough units, or at an 

acceptable pace, then the student will learn. Recent research on 

misconceptions in both physical and biological sciences (Brown, 1990; 

Browning, & Lehman, 1988; Brumby, 1984; Clement, 1982a; Faucher, 1983; 

Greene Jr., 1990; Halld6n, 1983; Kargbo, 1980; Mestre, 1991; Novak, 1987; 

Scharmann, 1990; Simmons, 1987; Stewart, 1983), as well as first hand 
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evidence from classrooms shows that this is neither a necessary or 

sufficient condition for learning. 

The constructivist view, which has emerged over the last decade, 

provides a new model of instruction based on a view that all of our 

knowledge is constructed. Meaningful learning requires significant 

engagement by the learner with the material if any conceptual change, or 

're-construction' of the students' views is to take place. Constructivists 

claim that the student's mind is not a blank slate on which the instructor 

can imprint the latest scientific theories. The student very often brings to 

their learning some naive world views or misconceptions that serve as 

filters for their experience. These naive world views can be very resistant to 

change indeed. 

Recent research on the robustness of misconceptions and naive world 

views that students bring to life science classes has cast serious doubt on 

the effectiveness of standard instructional techniques even for some of our 

most able students. Margaret Brumby studied the understanding of 

evolution and natural selection of Australian second year medical students 

(Brumby, 1984). She found that over 80% used Lamarkian or naturalistic 

(adaptation because of 'need') explanations to evolutionary problems posed 

to them. College level biology students show a strong preference for 

invoking teleological explanations (Bishop, & Anderson, 1990). One 

startling result was that "the amount of previous biology instruction had 

little or no effect on student conceptions" and their understanding of 

evolutionary processes (Bishop, et al., 1990; Greene Jr., 1990). Even after a 

course specifically designed to produce conceptual change fewer than one 

quarter understood the underpinnings of the theory . Half of those who 

demonstrated understanding also stated that they did not believe it (Bishop, 
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1990). Students have a great difficulty understanding the undirected 

nature of evolution, "preferring to see later-evolving species as in some way 

better, more closely approximating an ideal of perfection (Gardner, 1991)." 

Remarkably similar results were obtained by several other 

researchers in evolutionary theory as well as in genetics at both secondary 

and college levels (Brown, 1990; Browning, et al., 1988; Hallden, 1983; 

Hallden, 1988; Johnson, & Peebles, 1987; Jungwirth, 1975; Longden, 1982; 

Martin, 1983; Simmons, 1987; Slack, 1990; Stewart, Hafher, & Dale, 1990). 

In all of these studies the number of students demonstrating 

understanding at the conceptual level of either of the topics was under 25%, 

sometimes considerably so. Among secondary students of genetics who 

could solve Dihybrid and Trihybrid crosses as well as those who could not, 

there was the "almost total lack of student perceptions to how meiosis and 

Mendelian genetics are related (Stewart, 1983)." Students of genetics 

Students' own preconceptions strongly influence the way they view the 

world as well as the kinds of misconceptions that they have of scientific 

concepts (Hatano, & Inagaki, 1987; Rowe, 1990). Many succeed, much the 

same way they do in mathematics, by following algorithms with out 

understanding the conceptual knowledge underlying them (Rowe, 1990; 

Stewart, 1983). 

The importance of placing such emphasis on developing students' 

perception and the importance of cognitive research to teachers is the 

central theme of Howard Gardner's book, The Unschooled Mind 

(Gardner, 1991). Gardner asserts that the raft of books and reports 

lamenting failing of the schools does not go far enough. "Even when school 

appears to be successful, even when it elicits the performances for which it 

has apparently been designed, it typically fails to achieve its most important 
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missions." The "smoking gun", Gardner claims can be seen in the studies 

of researchers in physics education in the early 1980’s at Johns 

Hopkins, and the University of Massachusetts. The gaps in comprehension 

of even highly educated technical students can be stunning. 

Large percentages of undergraduate, even graduate students at 

highly respected institutions, were found to use non-Newtonian paradigms 

in problems just slightly out of 'text book form' (Clement, 1982a; Clement, 

1982b; DiSessa, 1983; Faucher, 1983; McCloskey, 1983; Mestre, 1991). John 

Clement of the University of Massachusetts reported that over 70% of 

mechanics students, after one year of college physics, gave incorrect 

answers to inquiries about forces on a tossed coin at the top of its arc 

(Clement, 1982b; Clement, 1983). Their answers were the same as those of 

untrained non-science majors. Questions about tides, phases of the moon, 

and other phenomena revealed the persistence of a naive view of the world 

even among 'scientifically' sophisticated audiences (Novak, 1987). 

Andrea DiSessa's work with a computer model of dynamics is 

particularly instructive (DiSessa, 1982). DiSessa studied the dynamical 

conceptions of middle and secondary school students, and also those of 

freshman physics students at M.I.T. DiSessa built a simple computer 

game in a Logo-like environment. The game was called Target'. Target 

was really a game with a few very simple rules, and a few hidden variables. 

The goal of the game was to get an object called the 'Dynaturtle' into the 

circle at the upper right of the screen. The Dynaturtle moved like a 

Newtonian point mass; it had inertia and obeyed Newtons laws. The M.I.T. 

physics students were perfectly knowledgeable about vector addition and the 

mathematics it entails. They also tested very well in their knowledge of 

Newtonian motion; yet they had a great difficulty understanding how to 
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control the Dynaturtle. This technical information was simply not part of 

their problem solving strategy outside the very specific context of textbook 

examples. The naive Aristotelian world view was surprisingly persistent. 

Most high school students and almost all younger students insisted quite 

vocally that 'the turtle was broken'. 

The naive understanding of biology is much less researched but 

Howard Gardner suggests that "once one probes more thoroughly into the 

subject matter of biology, one finds primitives and misconceptions that 

align quite closely to those encountered in physics. The understanding of 

evolution seems to harbor as many land mines as the understanding of 

Newton's laws of motion (Gardner, 1991)". The studies cited above 

demonstrate but a few of these problems . 

Unfortunately, even accurate understanding of science concepts does 

not at all mean that these ideas are part of a students' repertoire of problem 

solving strategies in real world situations (Gabel, 1989; Rowe, 1990). Bishop 

and Anderson concluded that "the concepts of evolution by natural selection 

are far more difficult for students to grasp than most biologists imagine." 

"Over half of the well educated population possess naive conceptions about 

evolution." They also concluded that "many students can change their 

naive conceptions on the subject if instructors are aware of them and are 

prepared to confront them (Bishop, et al., 1990)." 

How can educators confront students' naive conceptions or 

misconceptions and put the insights of this research into a classroom 

environment? Gardner proposes a possible way: the inclusion of 

'Christopherian' encounters (after the navigator, Colombus). 

Christopherian encounters are "situations where students' earlier models 

or misconceptions are brought into sharp focus because of an experience 
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that directly challenges the viability of the model they have been favoring 

(Gardner, 1991)." The The Evolutionary Tool Kit is such a focussing tool. It 

attempts to provide secondary students with an active computer modeling 

environment, a tool for exploration of Christopherian voyages in the life 

sciences. It permits students to model and manipulate micro-worlds 

where organisms share and pass on information dynamically, worlds 

which present direct evidence that contradicts their intuitive theories. 

Let us consider what the traditional, 'transmission' approach to 

instruction in evolution and natural selection has been at the secondary 

level. First, evolution labs were non-existant, especially for students not in 

the accelerated tracks. In lower level classes a discussion of evolution was 

accompanied by the standard photos of dull British moths that became dark 

gray in the 1800's in coal mining and smelting regions, dull gray finches 

from Galapagos, and some black and white photos of long dead, two and 

three toed horses. It is small wonder that students leave such experiences 

with their naive views of biology and inheritance and alternative 

explanations for natural variation so intact. The central idea of modem life 

science, the theory of evolution via natural selection, generally got short 

shrift. 

For upper level students similar demonstrations and readings were 

given, including a dose of genetics presented within a context of an 

algebraic formalism. Those students who remained in life science classes 

long enough would be introduced to the theory that ties together the treads 

of modern biological thought. This sequence is simply not adequate and the 

connections or understandings occur much too late in a student's career. 

This swift caricature may seem very unfair to the efforts of some 

earnest publishers, and most certainly to that of many energetic and 
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talented teachers. Despite heroic efforts by some members of the teaching 

profession to create understanding and give meaning and unity to the life 

sciences for their students, there is something missing from the traditional 

instructional design in life science - an interaction of the students' minds 

with the materials. If the constructivists are correct, as recent studies of 

students understanding of genetics and evolutionary theory reveal the 

ineffectiveness of much of this effort, a way must be found to bring these 

ideas alive for students' minds to experience first hand. The Evolutionary 

Tool Kit attempts to proved students with an evolutionary lab using 

artificial organisms whose genotypes and phenotypes, as well as the 

mechanisms of inheritance, are directly manipulated by the student. 

Computer modeling of genetics has had a long and rather 

distinguished history. Several commercial packages, inspired by the work 

of research geneticists, have enjoyed considerable classroom success with 

this topic both at the secondary and college levels (Jungck, et al., 1985; 

Kinnear, 1986; Simmons, 1987; Streibel, et al., 1987; Watkins, 1992). The 

Evolutionary Tool Kit attempts parallel these efforts to bring students in 

contact with the basic ideas and explorations of the founders of modem 

evolutionary biology within the confines of a computer simulation using 

artificial organisms derived from techniques of research on the new 

discipline of Artificial Life. With software like The Evolutionary Tool Kit it 

is possible to bring about three important changes. 

First, the concept of dynamic change and the importance of variation 

in living systems should be actively introduced very early in a student's 

study, as a central, guiding theme. Some programs succeed at this effort 

within a context limited by textual presentation and school lab facilities; 

but even if the student understands the importance of dynamic change and 
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variation, a most important hurdle remains. Does this new 

'understanding' change the way the students view the world? Research 

says "No." (Bishop, et al., 1990; Carey, 1985; Gabel, 1989; Gardner, 1991; 

Hatano, et al., 1987; Kinnear, 1983; Rowe, 1990). Naive views of biological 

phenomena, much like the Aristotelian views described by DiSessa 

(DiSessa, 1983), dominate their every day reasoning (Brown, 1990; Carey, 

1985; Halld^n, 1988; Kargbo, 1980; Novak, 1987; Simmons, 1987; Stewart, et 

al., 1990; Thomson, & Stewart, 1985; Wandersee, & Mintzes, 1987). 

Students must be given an environment in which they can actively 

investigate the nature of inheritance, the nature of variations in the gene 

pool and its effects on a population, and the nature evolutionary change and 

its mechanisms. Students must have an environment in which they can 

'do' evolution. The micro-worlds of The Evolutionary Tool Kit populated by 

species of artificial organisms can provide that environment. 

Second, the student must be at the center of the learning. Each class 

discussion should approach the discipline through the core questions that 

define it in a manner that actively engages the mind of the student and 

fosters a Community of Inquiry that is critical, reflective, and self- 

correcting. Students must become the active focus of his or her own 

inquiry. This is the goal of the critical thinking movement, to which I 

firmly subscribe. We have new methods and new technologies that can 

deeply change the environments in which students learn and teachers 

teach. As Richard Paul states that we must "re-design instruction so that 

students in biology courses do more than simply rotely memorize random 

biological facts and principles, so that students themselves engage in 

disciplined biological thinking, over the course of a semester or more, 
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leading to a deep and long term internalization of biological concepts (Paul, 

1992)." 

John Jungck has designed and piloted a genetics package called The 

Genetics Construction Kit in which he advocates a new approach to 

computer use in biology classrooms. He calls it the 'strategic simulation'. 

The program 'creates an experimental universe in which most of the 

professional tools are available to perform open ended experiments" in 

genetics (Jungck, et al., 1985). Jungck gives several criteria for such 

strategic simulations which include: novelty each time it is run, realistic 

outcomes, unlimited opportunity to perform experiments, facilitating 

hypothesizing and several others (Jungck, et al., 1985; Peterson, et al., 1988; 

Watkins, 1992). 

Jungck states that strategic simulations "allow a major revision, if 

not a revolution, in science laboratory education." The teacher and student 

are put on similar footing; neither knows the answer before hand. Also the 

processes and tools available to solve the problem are very much like the 

professional tools of the discipline. Jungck claims that these simulations 

transform the student teacher relationship as he or she is a co-participant 

in solving a problem. The teacher becomes a facilitator rather than a 

disseminator. Their authority then comes from their facility or problem 

solving expertise, rather than as a dispenser of facts. The Evolutionary 

Tool Kit is designed in this tradition of "post Socratic pedagogy." 

Third, the instructional environment in the life science class must 

also take into account individual learning styles and modes of learning. 

Howard Gardner's 'Multiple Intelligence' framework provides a guideline 

for planning and constructing instructional sequences that are accessible 

and intelligible to a wide range of student interest. An innovation piloted in 
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The Evolutionary Tool Kit permits students to use the computer to generate 

arguments. Its approach is novel in that it provides a visual representation 

of a line of argument. The design also provides visual (and sometimes 

spatial and aural) illustrations of theoretical outcomes, permitting students 

to experience and express complex ideas in a non-verbal way. 

The Evolutionary Tool Kit uses a new instructional design based on 

recent technical work in artificial life and cellular automata in an attempt 

to accomplish these goals. * 

What are Cellular Automata? 

Cellular automata were invented by the great mathematician John 

von Neumann in the late 1950's. They are 'creatures' that occupy cells in a 

grid that is modeled in the memory of a computer. Rules govern the 

manner in which each automata changes through time. The rules can 

depend on conditions of neighboring automata, or on global conditions for 

the whole grid, or on internal conditions specific to that automata. Initially 

automata modeling was used on physical systems such as fluid flow, 

annealing of metals, or atmospheric modeling. The mathematics of each of 

these applications is notoriously very difficult. If conditions are changed 

even slightly, the new phenomenon is totally different than that which 

preceded it. Recent studies have shown that many systems studied in these 

fields are chaotic in behavior; it is theoretically impossible to obtain general 

models for phenomena in fluid flow, metallurgy, and atmospherics for 

other than very simple cases (Briggs, & Peat, 1989; Gleick, 1987; Langton, 

1991; Morrison, 1991; Stewart, 1989). 

Von Neumann attempted to bypass the problems presented in finding 

differential equations that would predict global properties of these 

dynamical systems from initial conditions by attempting to model them 
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locally. The cells would represent regions of a flowing liquid, a cooling 

metal, or a small region of the atmosphere. Based on these local events , 

and known physical laws, each cell would interact with neighbors, and the 

global pattern of interaction could be extracted by massive computation at 

the cellular level. In general the effort was successful. Much climatic 

modeling is based on von Neumann's insights. Automata modeling also is 

subject to chaotic behavior under certain conditions, but it is more easily 

understood and modeled than current alternatives. 

In the early to mid 1980's research in cellular automata took a turn 

that even von Neumann had not predicted. Scientists began to use 

automata to model natural systems (Barlow, 1991; Barto, 1975; Burks, 1975; 

Hogeweg, 1988; Langton, 1986; Margolus, 1984; Preston, & Duff, 1984; 

Wolfram, 1983; Wolfram, 1986). Cellular automata had properties, or could 

be defined to have properties, much like natural organisms. Each 

automata could be set up with a 'genetic code', a packet of data, analogous 

to a genome. The information in the code determines the physiological or 

social behavior or physical properties of the automata, its 'phenotype'. 

Each automata would interact with other automata, or its environment 

according to the rules set up by the programmer. The modes of inheritance 

of information from one 'generation' to another can be modeled by rules 

governing the cellular automata. Mutations in the pseudo-genetic code can 

be provided by a random number generator. 

Based on research in this new area, a new discipline sprang up 

called "Artificial Life" (Brockman, 1988; Langton, 1986; Langton, 1991; 

Packard, 1987; Pattee, 1987). With the new discipline also came more 

questions (Augros, & Stanciu, 1987; Barlow, 1991; Margulis, 1988), "Is this 

life at all?" "Is this biology or computation?" For an educator the question 
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is a side issue. If these artificial organisms have properties and behaviors 

analogous to living organisms, they can be very useful indeed. With micro¬ 

worlds based on these models students can have complete control over 

environment, inheritance mechanisms, mutations, agents and effects of 

natural selection, long range studies of effects of mutations, and many 

more key constructs of modern evolutionary theory. 

A most important difference between modeling natural systems with 

cellular automata and modeling with other systems like spread sheets, 

specialized languages like Stella, or methods based on probabilities or 

differential equations. Cellular automata are fundamentally local 

phenomena, locally determined. Each occupies a 'space', from which it 

may move. It carries its own unique information, its 'genome'. The 

genome can carry information about a great many 'life-like' properties like 

type of heredity, number of offspring and breeding period, life span, 

predatory behavior, ability to camouflage and many others. Mutations also 

are localized to individuals; they are not expresses as 'Let 1% of the 

population mutate." The fundamental unit of analysis and interaction is 

the individual, not a global variable holding information about the group as 

a whole. 

In a remark that may prove most helpful to educators attempting to 

use these newest techniques Christopher Langton comments (Langton, 

1991) that the signal feature of life is not the carbon-based substrate that 

supports the naturally occurring forms but a system of local dynamics of 

interacting entities (molecules, cells, etc.) which supports the emergence of 

global dynamic features (populations, resource use, substrate degradation 

or enhancement, etc.) that can reach down' to the physical basis of support 

and 'fine time’ the local entities to further global ends. It is the inter-level 
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feedback loops, LOCAL (genes) to GLOBAL (phenotypes/environment) then 

back to LOCAL (genes) that "are essential to life, and are the key to 

understanding its origin, evolution, and diversity." 

The instructional design of The Evolutionary Tool K\t pprmits 

students explicitly to see this LOCAL to GLOBAL, back to LOCAL 

interaction, as well as to explore personally the features of the interaction 

and modify any parts or variables that can effect its processes. The 

elegance that first attracted mathematical modelers to cellular automata 

also provides educators with a new way to present complex, dynamic 

relationships. Examples of new teaching strategies, emphasizing the 

potential for modeling with cellular automata, are discussed in the section 

on sample projects. 

Gardner’s Theory of Multiple Intelligences 

and its Application to Pedagogy 

The second theme in the instructional design of The Evolutionary 

Tool Kit is the use of technology to accommodate student's learning styles. 

A key element is the incorporation of ideas from Harvard psychologist 

Howard Gardner's 'Theory of Multiple Intelligences'. 

Gardner's theory provides a framework for restructuring curricula 

for individual learning (Nickerson, 1983). He sets out seven 'intelligences’ 

by which humans learn and interact with their surroundings: Linguistic, 

Logico-Mathematical, Intrapersonal, Spatial, Musical, Interpersonal, and 

Kinesthetic. Gardner believes that all of us have a dominant mode with 

capabilities in the other six. He calls them 'intelligences' rather than 

modes or abilities because there is a 'stand alone' quality to many of the 

mind's systems, including cognitive ones. This quality probably reflects the 

evolutionary processes that formed its structures (Omstein, 1991). 
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Unfortunately most classrooms and instructional techniques rarely 

go beyond the first three (Linguistic, Logico-Mathematical, and 

Intrapersonal-mentation), with much science instruction assuming a 

Logico-Mathematical mode continually. There are many students who 

understand and interpret information spatially, or through interactions 

with people or surroundings, by sensitivity to sounds, or through active 

physical involvement. It is no accident that the first three intelligences fit 

well with educational practice; one can put these kinds of activities very 

easily on a worksheet. Pedagogy of this sort creates what one educator 

described as "the worksheet disabled student (Thomberg, 1991)." 

Limiting educational practice to these modes fails students in two 

ways. First, it ignores the needs and abilities of students whose dominant 

intelligence is not one of these three. Secondly, it fails other children in the 

class whose intelligence and experience are not validated in these modes. 

Computers offer educators an invaluable tool in opening up their 

classrooms to multiple paths to learning. In the pilot version of The 

Evolutionary Tool Kit I have specifically designed model experiments that 

address spatial, musical, interpersonal, and physio-kinetic intelligences. 

In these experiments students must evaluate both the process and the 

outcomes based on non-verbal, non-mathematical representations of 

change. The object undergoing mutation, and natural selection, is 

sometimes a shape, a pattern, or a sound. 

A novel feature of the instructional design of The Evolutionary Tool 

Kit is that uses computers to generate arguments in which the computer 

provides a visual representation of the line of argument. The Evolutionary 

Tool Kit also provides visual (and sometimes spatial and aural) 

illustrations of theoretical outcomes. It permits students to experience an 
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exposition of complex ideas in a non-verbal way. One of the new 

pedagogical techniques that permits this experience is what I have called 

the Designer/Selection' strategy. Using an experiment conceived by the 

student, several species are set in competition in a micro-world. One of the 

species is under control of the student. All changes in its genome must be 

made by conscious decision of the operator of the simulation. The genome 

of one or more of the other species is mutated randomly by the computer. 

The effect is to put the student in competition in an evolutionary 'war game 

with a randomly mutating process with both judged by the same fitness 

function. The fitness function may evaluate a sequence of sounds, the 

functional morphology of a shape, or the effects of a pattern on predation. 

The student is free to change any design depend on finding a better 

sequence of notes, a more functional shape or pattern. It is remarkable 

how effective the computer’s random mutations can achieve the same 

effect. With interactive designs like the 'evolutionary war' game the 

student is able to ’experience' personally the power of natural selection 

based on random variations in way not possible through verbal discourse. 

Instructional designs like the "Designer/Selection" strategy also 

empower students whose dominant intelligence is neither Linguistic or 

Logico-mathematical. Words can only hold and get across a limited 

amount of information before they fail in both quality and quantity. The key 

concepts of both evolutionary theory and population genetics are dynamic. 

The computer is able to capture the quantity of information necessary for 

understanding the concept, to telescope parts of history onto the screen, and 

to display dynamic relationships within the disciplines. The 

"Designer/Selection" approach is unique in life science education in that it 
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takes advantage of the computing power of the computer simultaneously 

with student interaction with students exploring the subject area. 

New Wavs of Thinking 

The problems that the current generation of students will face in the 

21st century threaten our species as well as the planet itself. The Biological 

and Health Sciences Panel of Project 2061 states that "The socially 

overarching need is for citizens in a democracy to take responsibility for 

their own biological health and support biologically sound social decisions - 

as well as to object to biologically shortsighted decisions. This practical 

goal presupposes a general understanding of Nature and of humankind’s 

place in it, which is the primary and greater goal of teaching biology 

(Clark, 1989)." 

A central problem for educators in bringing our youth to this general 

understanding is that many of the processes that have formed the patterns 

of the living world are completely invisible. Many of the root causes of the 

dangers the youth will face are not perceived as problems at all. Our 

minds and sensory apparatus cannot sense toxic chemicals, nuclear waste, 

ozone depletion, green house gases, or urbanization. Inhabitants of smog 

filled cities do not notice the irritating pale that covers their homes. Their 

lacrimal tissues have become accustomed to the pollutants. Third world 

farmers, and some politicians, look on the hardwoods of the rainforests as 

cash crops to be harvested rather than the source of much of the oxygen and 

atmospheric humidity for themselves and the rest of the world. The list is 

virtually endless. Our mental apparatus, our habitual ways of thought, 

does not perceive long term change. Ornstein has called this the 'boiled 

frog’ syndrome. Frogs can only sense differences in temperatures over 

short periods of time. If a frog is dropped in boiling water, it will 
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immediately hop out. If a frog is left in a pan and heat is gently applied, it 

will not jump out even when the water becomes too hot for the animal to 

live. The frog just remains placidly in the pan until it is boiled. 

The disciplines of evolutionary biology and population genetics 

fundamentally deal with dynamic, long-term processes, all but invisible to 

the eye. As such they are particularly well suited to demonstrate the 

cumulative effects of very long term, seemingly minute changes. The 

myriad of variations in living system surrounding us is the mark of these 

evolutionary processes, but our perceptual and conceptual frameworks are 

not well equipped to observe the changes. 

Psychologist Robert Ornstein attributes this difficulty to "old mind" 

mental mechanisms that have dominated our thought patterns since our 

Hominid ancestors found them so useful on the African plains that first 

supported them (Ornstein, 1989). One such mechanism is "fight or flight"; 

others tend to concentrate our attention to perceived immediate causes, the 

snapping twig, the unseen sound. As advantageous as these mechanisms 

were in our past they pose mortal peril for us in the modern world. The 

world is changing in a decade more than it changed in a millennium; the 

rate of change is ever increasing. "Adapting to change must be the center 

of any new kind of teaching (Ornstein 1991)." Disciplines like Evolutionary 

Biology and Population Genetics, where dynamic change is a central 

element, are most important in forming perceptions that will aid a student 

in understanding the world in which they must live. Students 

investigating with computers through cellular automata modeling can 

gain precious insights that can help mankind solve the problems in the 

next century. Models like this can extend encourage the development of 
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new mind' mechanisms that can give them a way to see the effects of 

constant change. 

Central to this pedagogical problem of developing new ways to look at 

the world providing a metaphor, a new a gestalt„ that not only 

demonstrates to the student but also permits them to experience how the 

forces of natural selection, operating on random variations, can produce 

ordered structures. Students need an environment in which they can 

actively participate, or even compete, while Richard Dawkins’ 'Blind 

Watchmaker using random processes under natural selection makes a 

watch. The Evolutionary Tool Kit attempts provide such a learning 

environment by modeling, in a schematic format, the long term dynamics 

that shaped the natural world. It provides a 'micro-world' in which the 

student can explore, without reliance on complex verbal arguments or 

mathematical formalism, the central ideas of evolutionary theory and gain 

some grounding to consider at least the plausibility of its central tenets. It 

provides a platform which challenges naive' conceptions and supports an 

environment in which students can build for themselves a knowledge of the 

interaction of organisms, genetic information, and their surroundings. 

Mark Ridley in The Problems of Evolution (Ridley, 1983), masterfully 

frames, for the general reader, the main lines of inquiry of evolutionary 

biology in the form of ten Great Questions'. The first four are: "Is 

evolution true?", "What is the nature of heredity?", "What is the 

mechanism of evolution?", and "How does natural selection work in 

nature?" Why can't students ask the same questions and explore them 

within an environment that will support their active involvement in the 

inquiry? The exploration of these questions can provide the themes for 

many Christopherian experiences. 
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Ridley gives other questions that explore the nature of molecular 

evolution, principles of classification, 'What is a species?', 'What are forces 

that drive speciation?, rates of evolution, and problems of macro-evolution. 

Professor Ridley asserts that almost all biologists are firm in their belief 

that the answers to the first four questions are settled. The answers to the 

last six are less certain; some lend themselves, even in professional 

circles, to heated discussion and very diverse opinions. Why not give 

students similar opportunities and experiences? 

The model for student interaction with the models in The 

Evolutionary Tpol Kit is the conjecturing strategy of Michael Yerushalmi 

and Judah Schwartz in The Geometric Supposer. There is a key difference 

in the approach, however. With The Geometric Supposer students are 

given a figure, or a description of that figure, with some specific 

relationships among the elements. They are asked to explore the 

mathematical environment with the computer as a tool and arrive at some 

conjectures they believe are true. Other elements of the environment can be 

changed to see if the conjecture can be extended. If they find their 

conjecture true for as many cases as they have tried, the students then seek 

a 'proof of the conjecture in other ways. One way could be the traditional 

two-column format. The Geometric Supposer turns geometry into an 

inductive science. The intellectual investment the students have put in the 

problem gives them a reason to find out why it is true in the general case 

through a deductive method. 

Science is not mathematics. There is little need to spend a great deal 

of time in convincing the student for the need for either the deductive or 

inductive method. The model of interaction and understanding through 

personal experience of the nature of the key ides is similar. The Geometric 

248 



SugPQSer values the insight and experience of the student and allows 

students to do mathematics themselves. In parallel with this approach, 

The Evolutionary TqqI Kit permits students to work as biologists, not just 

become biology students. It parallels at the early secondary level the efforts 

of John Jungck and the BioQuest program at the college level (Peterson, et 

al., 1988; Watkins, 1992). 

Contrary to common belief, in science the majority of student's errors 

and misconceptions lay not in any misapplication or misunderstanding of 

induction and deduction (Carey, 1985; Lockhead, & Mestre, 1990). 

Analogical thinking lies at the core of the discipline. The basis of many 

students' problems with understanding many concepts were based in use of 

faulty or inappropriate analogies (Gabel, 1989; Hatano, et al., 1987; Rowe, 

1990). It is in this direction, methods of clarifying analogous concepts and 

patterns, that the efforts of science educators should be directed (Novak, 

1987). 

In Evolutionary Tool Kit models students can explore interactions of 

micro-worlds of artificial organisms, operating under rules that are closely 

analogous to those constraining living organisms. Students are 

encouraged to explore possible mechanisms by which inheritance can be 

transmitted from one generation to another. The design of The 

Evolutionary Tool Kit permits students to explore counterfactual situations. 

It is possible to design experiments using organisms with non-Mendelian 

inheritance to see what the result of competition between species would be 

in this case. Future versions of the program should permit students to set 

their own rules for the inheritance of characteristics. They can then 

modify the rules, make hypotheses, and falsify or verify them. In the 

course of their investigations seminal terms like, mutation, population 



sample, natural selection, evolutionary pressure, gene pool, and gene 

frequency will appear in a natural context, as descriptions of phenomena 

they encounter. Students can experience the need to use abstract terms 

like evolutionary pressure . How can a student experience or become 

convinced of the validity of the "forces" of evolution, or unless he or she can 

actually see these forces drive changes in organisms before their eyes? 

Another powerful pedagogical advantage of modeling with cellular 

automata is the personal interaction with the subject matter associated 

with investigations of their own 'micro-worlds'. Students need "hands- 

on", also "eyes on" and "ears on" time to manipulate and work with 

complex ideas before they can really be said to have any deep understanding 

of them. The conjecture format actively actively involves the student from 

inception of the conjecture to the design of the experiment, to the 

interpretation of the results. 

Classroom Strategies 

It is most important to note that The Evolutionary Tool Kit is not 

intended as an introduction or a primer in genetics. The student should 

already be familiar with the basic laws of inheritance from other sources, if 

only on an introductory level. There are several fine programs that 

introduce these topics quite well. MacFlv is an artificial laboratory that 

permits students to breed and investigate the common fruit fly, learning the 

rules of inheritance from an electronic image of the beast that gave 

humans their first look at genes themselves. Mendelbugs. Heredity Dog, 

and Judith Kinnear's delightful efforts, Catlab. Birdbreed, and 

Kangasaurus are but a few other fine pieces of software. The new 

simulation entitled Biology Explorer-Genetics marketed by Wings for 

Learning also provides a excellent introduction to elementary concepts in 
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genetics. The Evolutionary Tool Kit is a complement to the approach taken 

by these programs. Though excellent in their own context none of these 

programs addresses the question of fitness of an organism, nor the 

changing proportions of any gene or set of genes in a population 

undergoing natural selective processes. 

The Evolutionary Tool Kit does not, however, address the pedagogical 

problems of evolution at a molecular level. There are a few programs, 

mostly tutorial in design, that explore inheritance and evolution at a 

rudimentary level. Students can learn the technical terms and get a 

simplified understanding of the process of reproduction at the molecular 

level. None can be called 'simulations’; none provide an interactive 

experience of the ideas. Some recent theoretical work has been done on 

automata and artificial life in modeling the emergence of metabolic activity 

and self reproducing automata (Ackley, & Littman, 1992; Bagley, Farmer, 

& Fontana, 1992; Fontana, 1992; Schuster, 1992). This work is far beyond 

the level of current secondary pedagogy, though in the not too distant future 

it may be possible to permit students to make their own 'artificial soup' and 

watch the emergence of the analog of biological order from random 

elements. 

The question addressed in TETK is the dynamic nature of 

inheritance. Why is variation needed for natural selection to operate? 

Assuming a random mutation takes place that is beneficial to the 

organism, how is it propagated through the population? Can harmful 

mutations propagate through a population? Are some traits immune to 

natural selection? How does the pattern of distribution of properties 

change? How does this change effect the species involved, as well as the 

substrate that supports them? Students can explore this central feedback 
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loop of information at the genetic level; how populations change, which 

effect the environment, which, in turn affect information at the genetic 

level, which effect the populations. TETK addresses directly the central 

pedagogical issue of the importance of the role and flow of information in 

biological systems as set out by the Panel "Education for the 21st Century", 

cited in the previous chapter. 

The audience targeted by TETK is all secondary life science students. 

Some characterize any effort to introduce population genetics and 

argumentation in evolutionary theory at such a level as very ambitious 

indeed. Many of the experiments and concepts modeled in TETK are not 

generally taught at the secondary level, but, with sufficient support and 

careful introduction are well within the scope of secondary students and 

even many middle school students. Support for this claim can be found in 

the popularity of games like SimEarth or SimAnt. both aimed at upper 

elementary and middle school children, as well as adults who have 

retained the capacity to learn as they play. These commercially successful 

programs demonstrate well that students and adults alike are very 

interested in complex ideas and relationships if presented in an accessible 

and entertaining manner. 

SimAnt is a particularly interesting case. If someone had claimed a 

few years ago that they intended to present to middle school students E. O. 

Wilson's views on sociobiology and their applications to individuals and to 

social behavior in insect societies, most educators would have thought them 

crazed. They would have been quite wrong. SimAnt and its layers of 

behavioral modeling is captivating, accurate, and quite efficient at 

imparting subject area knowledge as well. In Technology in Education: 

Looking Towards 2020 Raymond Nickerson comments on one author s 
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remark lamenting the passing in our age of even the potential for the 

Renaissance Man. The author claimed that the cruel truth is that it is 

impossible for one individual to gain competence across a wide area of 

domains. 

"The cruelty may reside more in the limitations of 
our educational know-how and techniques than in the 
limitations of our minds. Our current primary 
means of knowledge acquisition - reading coupled with 
library access - is excruciatingly slow. We really do not 
know what we are capable of learning and cannot rule 
out the possibility that, with much more powerful 
techniques of storing, accessing, and representing 
information, for assessing what people know, and for 
combining instruction and exploration in mutually 
reinforcing ways, that capability might be very much 
greater than our experience to date would lead us to 
believe. Given the proper teaching and learning 
methods, might not individuals be able to acquire deep 
knowledge (at least by today's standards) in several 
areas? In the absence of compelling evidence to the 
contrary, I would argue that this assumption should 
motivate our efforts to exploit technology for educational 
benefit. It will be more important in the future than in 
the past, in my view for a significant fraction of the 
population to be well informed in a variety of domains 
both technical and nontechnical. The challenge to 
educational researcher is to develop the methods that 
will make this possible and it is not clear that this is a 
futile quest." (Nickerson, 1983) 

All educators should take Dr. Nickerson's statements very seriously, 

if they are to make real changes in our schools. We must recognize the 

inefficiency of our current methods, and learn to respect the minds and 

capabilities of our students for what they really are and can become, to 

provide them with educational environments that permit them to develop 

the skills and talents that will be needed to approach properly and solve the 

problems that will face them as citizens in the coming century. The design 
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of TETK is an attempt to apply this vision to the problem of instruction in 

the fundamental theories of life science for all students. 

The questions posed for exploration in TETK should be fundamental 

and bold. Questions like those posed by Mark Ridley are a good start. Much 

like the conjectures used in The Geometric Supposer. there should not be 

just one answer for any of them. It is important to understand that the 

investigations students make in TETK are generative, not diagnostic, 

prescriptive, and certainly never closed in conclusion or format. The 

results of any investigation in TETK should be seen as only part of any 

investigation or argument either for, or against, any conjecture or theory 

about biological systems. The following pages give some sample 

conjectures and suggestions for including them in a life science 

instruction. Only a few sample explorations are given. The spirit of 

inquiry required by The Evolutionary Tool Kit demands that students come 

up with their own conjectures or hypotheses to investigate with automata 

micro-worlds. 

Clearly any teacher's manual would have a description of the 

interface used in the program as well as a description of the genetic 

systems modeled and the use and function of the genes in the gene pallet. 

This description is omitted here as it has already been given in chapter 

three. 

It must also be noted that The Evolutionary Tool Kit is generative in 

its approach. It is not intended as a review, nor a form of computer aided 

instruction. Ideally beyond a description of the interface and short 

descriptions of the genetic systems and each gene and its effect on the 

organism, no student manual should be needed. Questions to be 

investigated with The Evolutionary Tool Kit should arise from class 

254 



discussion or interpretation or exploration of ides from the textbook used in 

the class. 

The sample explorations given below are organized to demonstrate 

the ability of The Evolutionary Tool Kit to support student explorations in 

three different areas: Misconceptions involving populational thinking, 

randomness, and directed evolution; Misconceptions involving inheritance 

and change; and Specific examples of types of evolutionary change. 

Populational thinking, randomness, and directed evolution: The 

studies by Brumby, Bishop and Anderson, and Greene show that the 

development of a populational view of organisms is a major stumbling block 

for students of evolutionary theory. Students need an environment that they 

can control, that can demonstrate to them the value of variation in a 

population and the necessity of variation for any evolution to take place. 

They can construct worlds that model the changing proportions of 

individuals with discrete traits. The origin of new traits in the worlds in 

TETK is random, yet the population may show a trend in one direction as 

some traits are favored over others. The randomness of the source of the 

origin, and the non-random nature of the process of natural selection can 

be directly modeled. Random processes account for the appearance of the 

traits. Natural selection accounts for their survival or disappearance. 

Preconceptions about inheritance and change: TETK is unique in 

that it is specifically designed to model counterfactual cases. It is intended 

as a concept simulator so that students can try out ideas about inheritance 

and see what the results would be of such genetic systems. "What if 

blending of characteristics were the basis of inheritance?" "Could a 

favorable trait be passed on?" Students can actually set up competitions 

between organisms with blending inheritance and particulate inheritance. 
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Teleological views can be directly challenged by the Designer/Selection 

mechanism in which organisms piloted by the student directly compete 

with organisms undergoing random mutations controled by the computer. 

This mechanism functionally puts the argument by design in competition 

with evolution by natural selection. Adaptation without any teleological 

mechanisms can be demonstrated to be a rather effective process. 

Exploration of specific areas or particular cases of evolutionary 

change: TETK permits students to explore models of Mullerian and 

Batesian mimicry, selection by female choice, genetic peril, and evolution 

of cooperative or altruistic behavior. 

Sample Explorations 

The following conjectures illustrate explorations of each of these 

three main topics. General teacher s notes are given to provide alternative 

ways to explore the ideas, as well as suggestions on methods to encourage 

student interaction with the ideas. 

Exploration One: A visit with Malthus - Darwin's Study, September 

28, 1838 at Downs Cottage in Surrey, England. Focus: Developing 

Populational Thought. 

Ernst Mayr cites those three days starting September 28, 1838 as a 

turning point in Darwin's thought. "The one sentence of Malthus" acted 

like a crystal dropped into a supercooled fluid (Mayr, 1991). Darwin had 

read previously about the prolific reproductive abilities of bacteria, with 

their populations increasing exponentially. "He did not appreciate the 

fierceness of this struggle before reading Malthus." Malthus described the 

outcome as a continuous struggle, a maintenance of an equilibrium in 

conflict. Darwin recognized smother dynamic element: if it is the 

individuals who are struggling, rather than the species, any minute 
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variation in the individual may give that organism some advantage. The 

key element is the view of the population as composed of individuals with 

differing characteristics. It is these differences that give rise to adaptation 

through natural selection. The point is a very subtle one. Mayr notes that 

"Even a small deficiency, like defining the word variety' typologically 

instead of populationally, might be sufficient to prevent the correct piecing 

together of the components." 

Using the 'NEW AUTOMATA' menu the student can create species 

of organisms defined typologically (all with the same properties) and set two 

or more in competition for the same resources. Particulate (Mendelian) 

inheritance should be selected, specifically asexual' reproduction. If the 

grid is small, random effects will cause one or the other to dominate after a 

relatively short amount of time, particularly if the substrate is not fertile. 

As a variation on this model, the student can make just one organism of 

one of the species different in one of the variables governing reproduction. 

Descendants of that organism will prevail in any competition. The scene 

can be changed to set species of different degrees of variation in competion. 

Each could have the same average reproductive rate, but different 

distributions of values. The species with the greater variation will be more 

successful in the competition. 

TETK permits students to separate the two parts of evolution by 

natural selection. Here the selective process itself is modeled. The source 

of the variation is totally in the hands of the student. The student can be 

challenged to answer "What is competing? The individual, the species, or 

the trait, or the gene?" What is the 'natural selective' process operating 

here? Is it random? Is the result of the competion the fixation of one of the 

traits, if there is no mutation permitted? The digital nature of the creatures 
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is a pedagogical advantage. "Is there a way for the automata to know' that 

some traits are advantageous and others are not?" 

Exploration Two: Origin and survival of new traits. Focus: 

Developing Populational Thought. The previously cited study of Bishop and 

Anderson highlighted one of the major misconceptions that students held 

concerned the origin and survival of new traits in populations. Biologists 

recognize that there are two distinct processes at work. They are different 

in both cause and effect. The first process is the origin of the changes in a 

random manner over time or through sexual recombination. The second 

process determines the survival or disappearance of the mutation due to 

environmental factors. Students do not recognize the distinctness of the two 

processes. "Rather they think that there is a single process in which the 

characteristics of the species gradually changes (Bishop, et al., 1990)." 

Students also believe "that the environment, (rather than random processes 

and natural selection) causes the traits to change over time (Bishop, et al., 

1990)." The inability to see how change "can result from the combined 

effects of random mutation and non-random selection is an especially 

persistent problem." 

Consider two asexually reproducing species. One has several 

hundred members. Another is a mutation of the first; they do not 

interbreed. Both have the same reproductive potential. The second permits 

the organism to persist on the average about 10% longer in a hungry state 

than the first organism. Can you predict what would happen in a world 

populated by these creatures? Model the interaction and see what happens. 

Try changing the environment from very supportive to average, to poor. 

What happens if mutations are permitted on this trait? 
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The Evolutionary Tool Kit has a special option under the REPORT 

menu called The MORGUE'. This is a file that holds information on all 

organisms that died by natural causes, or were killed and eaten. The 

entries in the Morgue can be exported to a database for examination and 

hypothesis testing. It functions much like a complete fossil record for the 

automata world. The Morgue file is subject to sorting, grouping, and 

totaling by a database for use in supporting or falsifying conjectures. 

"Using the MORGUE can you make a graph through time of the numbers 

of individuals with specific traits in each population?" 

In this experiment, in a very supportive environment, there is little 

or no advantage to efficiency in food usage. The mutant will stay a small 

percentage of the population or it may be eliminated. If the environment is 

poor, the mutant form will gradually take over the whole grid. If the 

populational variation is defined with one organism with a very large 

spread of values, it can dominate, even though its 'species hunger 

tolerance' is on the average lower. Students, themselves, can work out the 

language needed to describe these events, in Mayr's terms 'selection of and 

'selection for'. 

Questions to explore and present answers before the class are: 

"What is the origin of the mutation?" "What role does the environment play 

in any population change?" "What does natural selection mean in this 

case? Can you support your argument with data from organisms in the 

morgue?" "Are there any trends?" "Are the 'pattern' in the morgue data 

random or non-random?" "What changed over time in this study?" 

Exploration Three: The Role of Mutation - Focus: Developing 

Populational Thinking. The two part nature of the process of natural 

selection demands that there be an inexhaustible source of variation within 
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the population. Historically this demand caused considerable conceptual 

difficulty. Lacking an infinite source of variation, natural selection will 

bring about the fixation in the population of a favorable gene. 

Consider mutating species with little variation in competition with a 

non-mutating one with considerable variation. What can be said about the 

result? Is the result the same with sexually reproducing organisms? 

The morgue file is very useful in this case. Consider the HUNGER 

gene as the subject of the mutation. The number of increased hunger 

values will be just the same as the number of decreased number values. 

The mutation is random. But more of the decreased hunger values will be 

in the morgue. The effect will be a non-random direction, an evolutionary 

pressure' to increase the value of the HUNGER gene. 

Exploration Four: Meaning of evolutionary terms - Focus: 

Preconceptions about inheritance and change. The meaning of 

advantageous' is well worth considerable discussion. It can lead to a fuller 

understanding of the evolutionary meaning of the 'fitness' of an organism. 

As Bishop and Anderson note, 'fitness' is used to denote health, and well¬ 

being, strength and intelligence in common parlance. An evolutionary 

biologist uses the term much differently. It denotes, in this technical sense, 

"the relative capacity of individuals (or genes) to produce surviving 

offspring." Bishop and Anderson note that "students often recognize only 

'desirable' traits such as health, strength, and intelligence as contributing 

to fitness (Bishop, et al., 1990)." This exercise challenges students to come 

up with their own definition of 'fitness' in an evolutionary sense. 

A sample investigation in this area is: "Is the TWINS gene 

advantageous? Does it make any organism more fit to survive?" 
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There are many contexts in which this conjecture can be explored. 

Clearly the answer depends on many factors such as nature of the genetic 

system, environmental factors, values of other genes like HUNGER or 

BREED PERIOD. The student would be expected to find evidence to support 

his or her conclusion, or general theory of fitness. 

In chapter three, some very interesting conjectures relating to the 

evolutionary theory of aging were discussed. "Is long life advantageous (in 

the evolutionary sense of the word)?" The answer, oddly enough, is no. It is 

possible to accumulate many factors that limit the life of an individual, yet 

do not significantly affect its ability to pass on its genetic information to the 

following generations. 

Exploration Five: Teleological views vs. random processes under 

natural selection - Focus: Preconceptions about inheritance and change. 

The origin of life is always a fascinating topic. A very interesting question 

is "How many times did it originate?" The question is not life on other 

planets, but life here on earth. The evidence from DNA shows a surprising 

similarity of coding for all animals and plants. Could there have been other 

coding systems in the past, quite different from the triple codons of modern 

DNA? This investigation was suggested by some comments in David 

Jefferson's article in Artificial Life II (Jefferson, et al., 1991). 

"How many times could life have originated on earth?" The natural 

response is once. Some may respond "A great many times." Both answers 

are incorrect, in that they are incomplete. By setting up several asexual 

species in competition for the same resources, the stochastic processes 

driving their interaction will bring about a condition much like the 

following diagram. 
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Figure 4.1 Multiple Origins of Life 

The result is not intuitive. If the grid is chosen to be sufficiently 

small, and the substrate is poor, random fluctuations in populations will 

eventually cause the descendants of one organism to eventually dominate 

the whole grid in a relatively short amount of time. Which organism is the 

progenitor is not predicted. There is no advantage given to any one 

organism. The probability of organism 'A' winning is .25, as is that of any 

other one. Interestingly enough the argument has nothing to do with 

fitness. There is only one form of life on this planet, if one considers the 

commonality of the DNA code in all earthly organisms. There may have 

been other, alternative formulations that did not make it into the Cambrian. 

Darwin's theory of common descent may have a statistical basis, as well as 

a physiological and cytological one. 

Students can try a similar setup with a very slight advantage in 

reproductive success for one of the species. Is the result determined by this 

advantage? Not in every case. 

This exploration provides a fine introduction to some recent work on 

the explosion of life during the late Pre-Cambrian, and early Cambrian 
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eras. Steven Jay Gould s popular book, Its a Wonderful Life gives a 

fascinating laymen's account of the unraveling of the mysteries of the 

fauna of the Burgess shale (Gould, 1989). The common belief is that life, 

once it began, started on a long road of divergence giving rise to the many 

species of the past, and those of today. Evolutionary forces caused species 

branched off the evolutionary tree' making it wider and wider as time 

passed. That belief is false. The fauna of the Burgess shale show more 

diversity, over 24 phyla, in that one lens of soldidified clay than in all other 

deposits over the world combined. Instead of a branching of the 'tree', there 

has been a process of severe pruning. This newer view deserves careful 

explanation and discussion. 

Exploration Six: Alternative genetic systems - Focus: 

Preconceptions about inheritance and change. A major pedagogical 

difficulty surfaces when attempting to support evolutionary theory with 

demonstrations based on Mendelian inheritance. Demonstrations of the 

underlying algebra of Baysian probabilities by drawing colored marbles 

from jars are insufficient. The natural process is dynamic, not algebraic. 

Under Mendelian inheritance there is no directing process that could bring 

about evolution. Students sense this problem immediately: how can 

randomness bring about any change other than some organic smearing? 

The relationship is not obvious; but it is exactly this random change, 

random mutation that is required by natural selection to bring about 

adaptive states. 

The randomness of heredity provides only the raw material. The 

particulate nature of Mendelian inheritance actually conserves variation 

while natural selection operates on it. Mendelian particulate heredity is an 

all or nothing affair, the traits produced by the genes do not blend. It is 
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very easy to hold the idea that, in a large population, one mutation, 

advantageous or not, will naturally "wash out"; this idea is also quite 

wrong. Conjecturing with cellular automata can be a strong first step in 

providing a student with hands-on experience that particular inheritance 

will actually preserve variation. Using automata operating under 

alternative models of heredity, for example, "paint-pot" genetics, students 

can explore the counterfactual environments. As an example, students 

can explore the conjecture that under "paint-pot" genetics where the 

offspring are a blend of the characteristics of their parents. Such an 

inheritance system does not preserve diversity. It will function to remove 

variation from the population so that no evolution, even of highly 

advantageous traits, can take place. 

So often we think of inheritance as a blending of traits. "Tall father, 

short mother means average size kids" Or, "Light colored hair mated with 

dark colored hair should give an intermediate result for the offspring." If 

inheritance were a blending, a "Paint Pot", could a highly advantageous 

trait be passed on to the following generations? 

There are many ways to model this in The Evolutionary Tool Kit. One 

method is to choose a gene that should be advantageous in a poor 

environment, a high value for the HUNGER gene. Either a sexually 

reproducing population should be chosen. It is even possible to put a 

sexually reproducing population in competition for resources with a species 

with Paint-Pot inheritance. The beneficial effect of the mutation is washed 

out very quickly in a Paint-Pot system. 

It is also instructive to place an asexual population in competition 

with a sexually reproducing one. If there is no environmental change 

during the time span of the simulation, the asexual population will 
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dominate. Why aren't there more hermaphroditic species? In the next 

version of TETK there will be a way to change the environment so that 

different colorations of the HIDE trait can operate. The sexually 

reproducing populations can hold a reservoir of different traits and 

exhange genetic information between individuals to share that 

information. This reproductive strategy, though half of the population 

cannot produce young, is very plastic in response to change. 

Exploration Seven: Meaning of 'advantageous', Focus: 

Preconceptions about inheritance and change. This exploration was 

already discussed in chapter three. That longer life should be 

advantageous to the organism seems intuitive; it is not advantageous in an 

evolutionary sense. As discussed previously, the investigation gives 

perplexing results. It is not predictable which organism will win. The 

result is much like figure 4.1. Long life is neither advantageous or 

disadvantageous. Why? 

Exploration Eight: Predation and Predator/Prey Cycles. Focus: 

Meaning of evolutionary terms. Predation is clearly an important aspect of 

natural selection. There is a very delicate balance maintained between the 

life cycles of the predator and prey. This exercise permits students to 

explore this relation. It also permits students to explore some of the ideas 

in Dawkin's Extended Phenotype at an introductory level. Do some genes 

of the prey have an effect on the genes of the predator? 

Can you find values of the AGE, HUNGER and BREED variables 

that will give a stable cycling of predator/prey for five or six generations? 

Can you 'fine time' the values to get more cycles? 
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Additional Notes: Modeling with automata is much different than 

modeling with continuous variables or with Systems Dynamics tools like 

Stella. With these systems it is relatively easy to make systems that 

oscillate in very un-biological ways. Negative populations, unbounded 

growth, or neat cyclic patterns are all possible with these approaches. 

Automata models are stochastic, they will not repeat their pattern. They 

are also subject to random fluctuations that can cause population crashes. 

There is a region of relative stability for choice of variables in predator/prey 

models. This region should be mapped out by the class. It will be used 

extensively in later modeling. 

Exploration Eight: A Glimpse at Hardy-Weinberg, Focus: 

Examples of Natural Selection. One of the landmarks of modern life 

science was the development of the foundation of population genetics in the 

early part of this century. A very interesting and counter-intuitive result 

can be demonstrated with organisms in TETK. If a trait is expressed by a 

recessive allele possessed by 10% of the population, and if the trait is neither 

advantageous or disadvantageous for the survival of the individual in 

heterozygous or homozygous forms, will it be bred out of the population and 

replaced by the dominant allele? 

Exploration Nine: Genetic Peril, Focus: Examples of Natural 

Selection. It is also true that an analog of asexual inheritance occurs in 

sexual populations. Some genetic material is passed on by one parent only. 

This is clearly true of the Y chromosome in mammals. The line for any 

particular Y chromosome can die out for the same reason that all other 

names besides Christian died out on Pitcairn. A generation of female 

children effectively removes a Y chromosome from the gene pool. Very 

serious problems can develop from dilution of the Y chromosome pool. 
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Because the pool has a tendency to shrink, yet it is still subject to random 

mutations at the molecular level, as are all other chromosomes, deleterious 

or even potentially lethal mutations tend to collect in haploid genetic 

material (Eldredge, & Gould, 1972; Maynard Smith, 1986; Maynard Smith, 

1989). 

It is possible that the African cheetah is a victim of just this kind of 

genetic garbage collection (O'Brien, Wildt, & Bush, 1986; O'Brien, et al., 

1987). It was known for quite a while that cheetahs were not very fertile. 

Infant mortality was very high, even for large cats. Examination of sperm 

revealed that over 80% were non-motile. Of those that could move 60% had 

serious abnormalities: doubled, twisted, or right angled tails, misshaped 

or thickened heads. Any of these abnormalities would make the sperm 

incapable of fertilizing an egg. 

A further shock came when sample skin grafts were made between 

cheetahs in the early 1980's. Skin from any cheetah could be grafted onto 

any other cheetah without rejection. Animal trainers had long remarked 

that the temperaments of all cheetahs was remarkably similar. Genetic 

studies revealed that all cheetahs were effectively fraternal twins. The 

dangers of such a small gene pool are very great indeed. Besides decreased 

fertility, reduced immune response is quite common. A single virus, not 

lethal to other cats, could wipe out all of them. Data is not yet in, but the 

great whales, because of severe hunting at the turn of the century, could be 

in similar genetic peril. The northern elephant seal and the Florida 

panther are also in peril. In 1864 there were only 24 northern elephant 

seals left. Its breeding habits, with huge alpha bulls dominating the 

mating sites and all females for a whole season, may cause dilution of 

whatever diversity is left in the population. The population of Florida 
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panthers went as low as 14 in the 1970's. Now over 70% of the male cats 

have only one testicle. Sperm counts are very low. 

What could cause such a drastic shrinking of the gene pool in 

cheetahs? There is evidence that cheetahs underwent at least one, and 

probably two 'bottle necks' (O'Brien, et al., 1987). This is an evolutionary 

biologists' term for a period of extreme population pressure wherein the 

population was reduced to fewer than a dozen individuals world wide. 

Using the Male TAG genes, this exploration models one mechanism 

of dilution of the gene pool. Conjecture: The Y chromosome is carried only 

by males of the species in mammals. Can you investigate the inheritance 

pattern of this chromosome in non-predated organisms, in prey, in 

predators? 

The result of many generations will be much like the diagram in 

Figure 4.1. Most of the male organisms will be descended from one 

individual or at most just a few individuals. Populations with such limited 

gene pools are very vulnerable to diseases. Feline viruses from domestic 

cats almost wiped out several captive cheetah breeding programs in the 

mid 1980's. The current version of The Evolutionary Tool Kit does not 

permit either the modeling of effects of inbreeding, or the effects of viruses 

or other diseases on populations. The next version will contain these 

additions. 

Exploration Nine: Competition between genetic systems, Focus: 

Meaning of evolutionary terms. Grasping the meaning of dominant and 

recessive' is very difficult for students. As Stewart s study suggests, even 

successful genetics students do not understand the mechanisms 

underlying meiosis and the variations permitted by sexual recombination 

(Stewart, 1983). This exercise attempts to build a micro-world which 
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challenges the naive interpretation of 'dominant' as 'overpowering' or 

'stronger'. There are many genes available for this kind of investigation. 

For non-predatory models, birth rates can be changed, the HUNGER gene 

can be given favorable values in relation to an environment. For 

predator/prey models, students can use the FLEE or HIDE genes for prey, 

or the VISION gene for predator. 

Conjecture 1: Descendants of a mutation that gives rise to a 

dominant advantageous trait will out compete a non-mutant competitor 

species. Eventually, all organisms will carry the dominant trait. 

Conjecture 2: Descendants of a mutation that gives rise to a recessive 

advantageous trait will out compete a non-mutant competitor species. 

Eventually, all organisms will carry the recessive trait. 

Conjecture 3: In a single species experiment descendents of a 

mutation that gives rise to a dominant advantageous trait will take over a 

population. Eventually, all organisms will carry the dominant trait. 

Conjecture 4: In a single species experiment descendents of a 

mutation that gives rise to a recessive advantageous trait will NOT take 

over a population. Eventually, NO organisms will carry the recessive trait. 

Carrying the trait is very different from displaying the phenotype that 

permits the organism with that trait to interact with its environment with 

the functions a trait enables. Conjecture #1 is true, but all individuals will 

not have the phenotype associated with the function. Homozygous 

recessives will remain in the population. The current version of the 

software does not allow the user to color the homozygous recessives 

differently from others of its species. Data can be obtained from the 

"Report" menu, or the "Morgue" file. 

269 



Conjecture #2 is also true. Counterintuitively, every member of the 

population will be homozygous recessive, as the advantageous phenotype 

will be expressed only with a homozygous recessive genome. 

Conjecture #3 is false. Homozygous recessive individuals will 

constantly appear in the population. 

Conjecture #4 is false. A recessive advantageous gene will take over 

a population. In fact 100% of the individuals will eventually have the gene. 

It takes much longer for this kind of mutation to propagate, however. 

Exploration 11: Selection by female choice, Focus, Examples of 

natural selection. Female choice was recognized by Darwin and other early 

evolutionists as a very powerful force in natural selection. The FROG 

CALL genes model both female choice and sensory bias as factors in 

selection. A fuller description of the FROG CALL genes is given in chapter 

three. A possible classroom strategy is to have one group of students set the 

sensory bias of the female frog, while another group is not present. The 

second group of students would now compete with an initial group of male 

frogs randomly generated by the computer and subject to random 

mutations as the simulation progresses. Because the GAME THEORY 

genetic system is functioning, one quarter of the frogs are not permitted to 

reproduce each turn. A favorable mutation will gain any individual a 

higher score as judged by its match with the female preferences. This 

mutation will be in the group that is permitted to breed next round. The 

students or group of students playing against the mutating species is 

permitted a finite amount of time to listen to the songs of the other male 

frogs and then program' the genome of their species with what they believe 

is a more pleasing song. The optimizing power of the random mutation is 

considerable. 
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Conjecture: Can you find a song that the female frogs like before a 

random mutation in the genome of the computer frogs stumbles on a most 

pleasing frog love song'. 

Feedback on what songs the female likes can only be obtained by the 

observation tool, listening to songs of successful frogs. Students with 

discriminating ears are at an advantage in when deciding what elements 

of the songs of other frogs are in common' and probably close to the 

patterns that the female finds most pleasing. The digital coding of the song 

is rather crude in the pilot edition. In future versions I would like to have 

students draw wave forms or place icons for kinds and pitches of notes that 

would be "played" by the frogs. A Fast Fourier Transform (FFT) could 

reduce the song to a digital form that can be stored and used as a basis for 

comparison as well as a source for mutation. 

Exploration Twelve: Mimicry, Focus, Examples of Natural 

Selection. The evolution of mimicry in tropical butterflies is powerful 

evidence of the validity of the theory of evolution. The function of the 

butterfly genes is described in chapter three. The simulation is particularly 

rich in that it obviously presents students with organisms that have no 

existence outside the computer. The 'organisms' are only binary strings 

within a program that assigns shape and color to certain numbers. There 

is no sense of 'will' or 'need' in any of these creatures. This semi-reality' 

of the organisms can be used to set up a dissonance with a common 

misconception, according to Bishop and Anderson, that students see traits 

developing as organisms need' them to survive. For example: "Because 

they (cheetahs) needed to run fast for food, so nature allowed them to 

develop faster running skills (Bishop, et al., 1990)." The butterflies in the 

computer do evolve under a selective pressure without any need' on the 
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part of the organism. One can keep predation constant by defining the 

predators as asexual reproducers with breeding periods just one unit short 

of their maximum life span. With this condition, they need not move. One 

can define their hunting zone as being three squares in any direction. 

A helpful addition to the program to enforce the randomness of the 

mutations would be a "Mutation log". The mutation log would keep track of 

each mutation in each cycle. It would also automatically beep when a 

mutation appeared, displaying that organism and its phenotype in a special 

window. This log, and the individual display would enforce the idea that 

mutations occur only at breeding and that natural selection operates on a 

population composed of individuals, not on the species as a whole. 

Conjecture #1: Can you model the process in which one species of 

butterfly would be a Batesian mimic of another? What happens if more 

tasty species are added? 

Conjecture #2: Can you model the process in which two species of 

butterfly would form a two species Mullerian ring. What happens if more 

than two species is in the system? 

Exploration Thirteen: Teleological vs. random processes under 

natural selection, Focus: Examples on Natural Selection. The description 

of the TREE genes is fully set out in chapter three. It is intended to appeal 

to students with Gardner's physio-kinetic and spatial intelligence. The 

evaluative procedure used by the student to determine what morphology is 

better involves both spatial and physical evaluation. The light gathering 

ability of the plant, as well as its strength must be evaluated from an image 

of a sample plant that 'grew' under parameters set by the students. The 

current program only shows the structure as a stick drawing, the branches 

do not have volume. It also does not render the image to show how light 
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would fall on it at various times of the day. Algorithms calculate its 

phototaxic ability internally. Also the student cannot rotate the tree around 

an axis to see what it really looks like. 

With all of these limitations, the simulation is quite interesting. 

Students design a 'primitive' plant, much like a fungus with random 

branching angles. The computer starts with a similar design. Under 

selection rules that kill off one quarter of the population each round, the 

trees compete and evolve. As Niklas work shows, some of the plants in the 

evolutionary path followed by these artificial organisms are startlingly 

similar to that found in the fossil record. Andrew Scott's 1982 Darwin 

Lecture at the Royale Society gives some good material suitable for inquiry 

by students (Scott, 1984). 

The simulation is also unique in that it depends on 'real time' 

computation by the machine in the 'evolutionary war game with the 

students' species. 

Conjecture: Is there a fixed path that the evolution of plant forms 

follows? Is there an optimal form? What would 'optimal' mean? The 

Klingon home world has gravity 2.5 times that of earth. Can you model 

what some of the vegetation would look like on that world? 

Exploration Thirteen: Evolution of Cooperative or Altruistic 

Behavior, Focus: Examples of Natural Selection. In the 1980's the theory of 

games was applied to natural phenomena in an attempt to explain some 

perplexing biological behavior. How could altruistic behavior that brings 

harm, even death, to an individual (thereby destroying any possibility to 

pass on genetic information) but beneficial to a community have evolved? 

The evolution of cooperative behavior is also puzzling. If hunters can hunt 

better in teams, why doesn't one hunter, once the kill is made, claim the 
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kill for itself and frighten off its hunting companions? This behavior 

certainly would be advantageous to the hunter which would now not have to 

share its meal with others. The STRATEGY gene permits students to 

explore game theoretic modeling at an elementary level. Poundstone 

(Poundstone, 1992) gives a fine account of the history of game theoretic 

modeling in biology and social science for the general reader. 

Conjecture: A crocodile lies on a mud bank, its jaws gaping wide. A 

bird enters its mouth to feed on parasites. The crocodile does not eat the 

bird. 

A large grouper swims into a special spot on a reef. Several brightly 

colored blennies come from the rocks and begin to groom the much larger 

fish. They enter its mouth, its gills, and comb its body, eating parasites and 

dead tissue. Why doesn't the grouper eat the blennie? Its natural food is 

quite similar in size? 

Can you explain how such behavior could evolve using the 

STRATEGY gene and the game theoretic modeling system? 
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CHAPTER 5 

VALIDATION OF THE EVOLUTIONARY TOOL KIT 

The design of the validation procedure for The Evolutionary Tool Kit 

follows directly from the three areas of inquiry set out in Chapter Two: 

accuracy of concepts presented; efficient and innovative use of new 

pedagogy; and new ideas extended to include classroom applications of 

recent developments in computers and instructional strategies. The format 

of the design is a two level review procedure through experts in 

evolutionary science, science pedagogy, and curriculum development and 

staff training. Two interviews were conducted separately with each of the 

reviewers. Interviews were each approximately two hours long. At the 

first interview each reviewer was provided with a packet describing the 

goals, instructional strategies, and draft of a teacher's and students' 

manual for the program. The curricular goals and general strategies to 

bring them about were discussed and sections of the manuals for The 

Evolutionary Tool Kit that addresses these issues were pointed out. The 

reviewers were asked to comment freely on The Evolutionary Tool Kit from 

the perspective of their areas of expertise. Each was also requested to 

respond in writing to a series of questions about specific aspects of the 

instructional design and curricular content. Suggestions from the 

reviewers remarks and comments were incorporated into a revision of the 

code of The Evolutionary Tool Kit. The revised version was taken to the local 

reviewers for a demonstration and further comments at a second interview. 

Phone interviews were held with the out of state reviewer. In response to 

suggestions, revisions were made to the program. The code is still rather 

finicky and crashes often. The review version was designed to run on a 
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Mac II with a minimum of 8 megabytes of memory. This is still 

insufficient for some experiments, as populations of organisms must be in 

the tens of thousands to exhibit adequate stability. All Traits except the 

Tree, Frog Call, and Strategy are functional. It still crashes frequently. 

Considerable work on the coding must be done before the program is 

suitable for use in a beta test site, or as a tool for research in science 

education. 

Dr. Richard Wickender, an evolutionary paleobiologist trained at the 

University of Massachusetts, and Paul Deal, research microbiologist for 

NASA and author of the only other cellular automata simulation BIOSIM, 

reviewed the program for accuracy of content. Dr. Seymour Itzkoff of 

Smith College reviewed the program for its use of new pedagogy and 

potential for innovation in science education. Dr. Neil Davidson, Sci-Net 

Coordinator for the State of Massachusetts and Science Curriculum 

Resource person at the State Department of Education, reviewed the 

program for its potential as a curriculum development tool and as teacher 

training vehicle. 

Accuracy of the Content 

The reviews from Dr. Wickender and Paul Deal were both positive. 

Dr. Wickender graciously pointed out several points of terminology that 

were either incorrect or misleading. The original version was intended to 

permit students to model investigations or carry out thought experiments 

that Darwin himself may have made or envisioned. The students could try 

different interpretations of evolution' or inheritance and the meanings in 

each of 'selection'. The initial design of the interface of The Evolutionary 

Tool Kit was sufficiently vague to permit students to supply their own 

theories how traits are passed on. Students have very little knowledge of the 
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scientific basis of inheritance (Clough, & Wood-Robertson, 1985; Deadman, 

& Kelly, 1978); yet the naive concepts they do have show remarkable 

robustness. The specific intention was to provide an environment in which 

students could attempt to formulate more precisely their own naive theories 

and 'try them out' to see how organisms would interact under these 

hypothetical rules. 

One must remember that Darwin had no cytological basis on which 

to draw to explain inheritance. His own theory or, rather, theories of 

inheritance were wrong (Mayr, 1991; Smith, & Millman, 1987); yet he did 

arrive at a precise definition of the mechanisms of evolution through the 

process of natural selection. In retrospect the first implementation of this 

pedagogical strategy was laudable in that it tried to provide a conceptual 

environment much like that at the turn of the century, but it was much too 

vague. This approach could not lead, without considerable teacher 

intervention, to experiences in which students could sufficiently 

distinguish between the concepts of traits and the structures within the 

cells like chromosomes, and the concepts of genes, alleles, and loci of the 

genes. The language of modern genetics, in a very limited form, was made 

much more explicit in the revised version. This approach makes the 

program much more consonant with common practice in life science 

instruction. The language of evolutionary biology was left more open. 

Students must construct and explore for themselves the ideas and 

consequences of traits passing from generation to generation under several 

genetic systems. 

The pallet in the revised version is expressed as a trait' pallet 

instead of a gene' pallet. In general the student interface was moved to a 

phenotypic level from a genotypic one. 
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The student generates populations of organisms with specific traits. 

These traits are then associated with patterns at positions on structures 

called C-somes. The C-somes are to be conceived as physical entities that 

carry 'genes' that express the traits. The new term 'C-somes' was chosen 

rather than 'chromosomes' to reflect the artificial nature of the inhabitants 

of these micro-worlds. The 'C-some' is a physical entity that carries 

information. It is through the 'some' that information is passed on to the 

next generation - Weismannian inheritance. There are different 

mechanisms by which the inheritance can be passed. In the next version of 

The Evolutionary Tool Kit the user will be able to request to see the C- 

somes' of an organism. The display of the C-somes will show the locus of 

the genes schematically. This is. a most important feature needed to 

prevent a common misconception. There must be a way for the student to 

see that natural selection can bring about a strengthening of the trait at a 

phenotypic level, but the gene does not get 'stronger'. Computer 

simulations necessitate the use of numeric values. The numeric values are 

associated with the trait, not the gene. To enforce the distinction between 

the 'genotype' of the micro-world organisms and their 'phenotype', in the 

next version the user should be able to get a list of an organism's phenotypic 

properties/behaviors. It is available now only through the trait pallet, 

individually by trait. 

The reviewers noted other some problems with the presentation most 

of which have been addressed in the revision. In the SEXUAL genetic 

system only diploid organisms are modeled; this was seen as a minor 

problem. In the Mendelian model only simple dominance and multiple 

allele inheritance is modeled; again this was seen as a minor problem. A 

more serious difficulty is that the current version can leave the impression 
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that traits are carried by entities (genes) which each lie on separate 

structures (chromosomes) and sort independently. A graphic mechanism 

to suggest that a trait may be the result of the action of a combination of 

genes on separate chromosomes, gene complexes (Deal, 1992), should be 

incorporated in the next version. 

Dr. Wickender remarked favorably on the instructional sequence 

made possible by The Evolutionary Tool Kit. Using an environment like 

that provided by The Evolutionary Tool Kit, students at the beginning of 

their studies can explore and integrate ideas in life science much in the 

same order as the actual historical sequence. Evolution through natural 

selection preceded the development of the theory of Mendelian particulate 

inheritance by more than half a century. Standard pedagogy places 

classification, metabolic studies, cell function, cell division and 

reproduction, anatomy, and genetics as part of a long 'inductive' sequence 

at the end of which evolutionary theory allegedly synthesizes and unifies 

these topics into a grand picture. The end is the just the wrong place to 

provide the unifying threads; besides being too late, too few make it to the 

end. Evolutionary theory should be immanent all along, much like the 

exposition of natural selection and modem biological thought in Ernst 

Mayr's One Long Argument. (Mayr, 1991). 

Another difficulty in the teaching of evolutionary biology noted by 

Wickender relates to its dynamic nature. "Paleontology, as a static, 

descriptive discipline, and genetics as applied to individuals and 

populations, were combined after decades of mutual antagonism only in the 

early 1950's (Wickender, 1992)." Developments in the 70 s and 80 s have 

brought even greater changes. Textbooks, especially those at the secondary 

level, have retained a frozen' inductive sequence of topics with little or no 
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evidence of the dynamism of the field. Educational opportunities are 

missed, perhaps even misleading the students, if the field is presented as 

known and well surveyed. 

The great questions' set out by Mark Ridley are more problematic 

than it seems. Wickender noted that there has been some quite recent 

evidence that a form of Lamarkian inheritance may operate in some 

spheres. I intended to have a mode in future versions of the program in 

which the artificial organisms could 'learn' from neighbors, much like 

juvenile male canaries take what seems to be a genetic imprint of a simple 

tune and learn to embellish it by listening to other mature males sing 

complicated songs. The capacity to learn these embellishments, and the 

complex songs themselves are both passed on from generation to 

generation. The addition of a somatic form of inheritance (Mayr, 1991) to 

the range of models provided would certainly be pedagogically 

advantageous. 

Wickender pointed out a major weakness in the ENVIRONMENT 

section. In the current version there is only one substrate provided for 

nourishment for herbivores. This severe artificial limit makes all 

herbivores competitors for the same resource, only one will prove the fittest, 

with others becoming extinct. The model focuses on direct competition. 

Effects of mutualism, commensualism, or symbiosis cannot be modeled 

with this constraint. A richer environmental substrate should be 

incorporated in the next version. Also this exclusive formulation based on 

competition may be misleading. 

There is a duality to evolutionary thought (Mayr, 1991). A vertical 

evolutionism "deals with adaptive changes in the time dimension ; this 

has been studied by paleontologists and geneticists. Horizontal 
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evolutionism deals with the origin of new diversity in the space dimension"; 

this has been studied by naturalists. The model presented deals almost 

exclusively with change through time. Environmental tracking plays a 

very significant evolutionary role. The environment is static in the current 

model, the substrate is replenished at a constant rate at each grid location 

at each cycle; this is an undesirable feature. An option to modify features 

of the substrate through time should be included. Wickender noted that 

because there is only one substrate, there is a very limited ability to model 

niches. If barriers could be set up, with grid sections that provided 

different substrates that could vary replenishment rates with time, much 

richness could be added to the model. 

Wickender made several suggestions that would modify the MOVE, 

and HUNT traits. The MOVE behavior in herbivores should at least be 

partly associated with the HUNGER trait. Also the HUNT trait is much too 

indiscriminate. This trait was modified in the revised version to permit 

predators to show a preference for prey in terms of AGE. Later versions 

could perhaps add 'health' of the prey as measured by the analog of energy 

in the HUNGER trait as a variable affecting interaction with predators. I 

will try to incorporate these modifications in the next version. 

For both Deal and Wickender the PAINT POT and GAME THEORY 

genetic systems demanded comment, both favorable and adverse. The 

mechanism for determining fitness in the GAME THEORY genetic system 

was unclear. The sections describing it in chapters three and four have 

been completely rewritten. The intention of the GAME THEORY system 

was to provide a generalized model in which students could explore 

competition and interaction in a population that did not involve motion of 

individuals. Individuals, under constraints of the traits given them 
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initially, interacted with all others in the population and achieved a single 

relative 'score' based on their performance against the mean for the 

population. The method of computing the single score varied with the 

traits chosen; the text was unclear on this point. Individuals in the lowest 

quartile were removed from the population and replaced randomly by 

descendants from more 'successful' organisms. 

The representation of the game theoretic model was a highly graphic 

adaptation of the mathematical work by Axelrod and Maynard Smith. The 

classic study in this area, 'The Prisoner's Dilemma’, was included as the 

first example. The intention was to provide a graphic, non-mathematical 

way to explore topics like the evolution of altruism, or the advantages or 

disadvantages of cooperative or exploitive behavior. Students do come to the 

study of evolution with some culturally accrued images of evolution by 

natural selection as 'nature, red in tooth and claw'. I had hoped to use this 

simple mechanism to help them explore and dispel this myth. I hope to 

extend the model to more realistic situations in a future version. 

The PAINT POT system brought the most comment. Wickender 

noted that the phenotypic expression of the genotype frequently 

approximates what can be called a "paint pot". "Inheritance is particulate, 

but phenotype expression isn't (Wickender, 1992)." In later discussions 

with him, we realized a further richness in this paint pot option. I had 

intended the paint pot strategy as a schematic representation of a naive 

view of inheritance, a blending of characteristics - the classic wrong way'. 

The initial instructional strategy was to show that species with paint pot 

systems (e.g. with an average fertility of 50%), when set in competition with 

species with particulate inheritance systems (e.g. with an average fertility 

of 50%), given the same initial amount of variability, always lose. 
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Descendants of individuals with more fertility will crowd out the others. 

The experiment can be repeated with other traits as well. 

Any point mutation, or even a mutation of a group of individuals, in a 

paint pot system gradually gets diluted until there is no net effect on the 

population of even a highly advantageous change. Experiments with the 

paint pot systems were intended to show the inherent problems with 

typological thinking, as paint pot is an averaging process. It averages 

towards a typology' of the species. Specific discussions of exactly this 

process are found in Darwin's work as well as in analyses by historians of 

biology (Mayr, 1988; Mayr, 1991; Smith, et al., 1987). Variation is 

eliminated; natural selection is brought to a halt. Certainly it is a valuable 

experience for students to see such a counterfactual inheritance schema 

play itself out before their eyes. 

Wickender's discussion put a new and very positive light on this 

process. In initial experiments such investigations can and should be 

made. Once a student is comfortable with the particulate nature of 

inheritance, he or she can begin to propose investigations conceiving the 

traits as expressions of 'gene complexes’ resident at multiple loci at several 

C-somal sites. The trait expressions can produce a continuous 'blend' of 

the traits considered with this model. If random mutations are introduced, 

for example in the Batesean mimicry simulation, values of the color trait 

closer to the color values of distasteful butterflies will prove advantageous. 

Values further from these colors will suffer more predation. The average 

value of the color trait will change in time in the direction of the color of the 

distasteful butterfly. This is a rather realistic example of a gene complex 

undergoing directional evolution. It should be noted that it is not directed 

283 



evolution, mutation both towards end away from the more advantageous 

color are happening all the time. 

The MORGUE feature is very useful in this example. It can be seen 

from the MORGUE files in a database (listings of all dead organisms along 

with their phenotypes, through predation or otherwise, along with the cycle 

in which they died and the traits and values they carried) that at all times 

the mutations were random. Examination of the list reveals that an equal 

number of mutations occurred in a direction away from the value of the 

distasteful species. It is clear that natural selection is composed of two 

separate processes: a production of a large amount of variation through 

random genetic recombinations and mutations, and second, a non-random 

retention (survival) of new variants. 

In speaking to both Deal and Wickender about their reviews of the 

program, it is in the active modeling of typological world views and 

populational world views that The Evolutionary Tool Kit shows its greatest 

potential. Ernst Mayr takes great pains to point out that the first step 

toward understanding natural selection must be the abandonment of 

typological thought based on essentialism and commonality of 

characteristics and the acceptance of populational thinking where the 

uniqueness of the individual is critically important. Through Darwin's 

vision, Variation, which had been irrelevant and accidental for the 

essentialist, now became one of the crucial phenomena of living nature 

(Mayr, 1991)." Before any student can be said to assert a belief in the 

validity of evolution through natural selection, they certainly must 

understand its two step nature, and be convinced of its plausibility. In 

setting out to clarify the mechanisms of necessary variation (population 

thinking) and non-random selection, both agree that the approach shows 
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much educational potential. In this assessment I am greatly pleased; it 

was the main goal of the design of the program. 

The program does not address deeper aspects of heredity, mutation, 

molecular evolution, variability of rates of evolution, systematics, species 

and speciation (sympatric or allopatric), and levels of evolution (e.g. species 

selection) (Wickender, 1992). The important issue of completeness must be 

dealt with with other resources besides The Evolutionary Tool Kit. As 

presented the program is highly schematic. "It models inheritance as one 

component of the complex we call evolution via natural selection 

(Wickender, 1992). Inheritance is only one aspect of evolution." Organisms 

exist as parts of communities, of dynamic ecological systems. More 

materials are needed to provide an adequate and accurate introduction to 

this topic. 

Deal raised some serious questions about the genetic systems' 

especially the 'paint pot' mechanism. His concerns centered around the 

perception of the relative explanatory power of all four of the systems to a 

naive user. "Is it possible all four will be though to be legitimate 

alternatives? What chance might there be for a biased teacher 

(unconsciously) to use this system to lend credence to the notion of 

inheritance of acquired characteristics?" The concerns, I feel, are very 

real. 

The core of the instructional strategy of The Evolutionary Tool Kit is 

very much a generative exercise, much like the approach taken by 

Schwartz and Yershalmi's The Geometric Supposer. Students are 

encouraged to discover their own mathematics. The program permits 

geometry instruction to treat the student as a serious inquirer in the 

discipline. Paralleling the reliance on inductive inquiry in geometry, The 
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Evolutionary Tool Kit relies on inquiry into a problem by formulating 

conjectures based on different analogies. It is a concept simulator. The 

student is encouraged to make conjectures like: "What if a trait were 

inherited this way? It will/ will not propagate through a population." 

"Over time, with inheritance and environmental conditions of such and 

such a trait will do X through the population." "Disadvantageous 

mutations will/will not be eliminated from a population over time in a 

particulate inheritance system." It can provide a framework where a 

student can observe and hopefully reinvent, explore, and resolve the 

problems and solutions that led to the synthesis of evolutionary thought in 

the '40's and 50's. 

This pedagogical approach is certainly not without its perils. How 

does a teacher assist a student in conjecturing and designing experiments 

to test the conjecture out? How does one know if a conjecture is refuted or 

supported by an experiment or series of experiments? These are questions 

whose answers are not found in textbooks. These are also the same 

questions that are faced when students are put at the center of their own 

learning. The Evolutionary Tool Kit does provide students an alternative 

way to textual exposition to explore and learn this fascinating discipline. 

Following the path set out in mathematics by Judah Schwartz and 

Michal Yerushalmi (Schwartz, & Yerushalmy, 1987), and by Judith 

Kinnear (Kinnear, 1983; Kinnear, 1986) and John Jungck in genetics 

(Jungck, & Calley, 1985), The Evolutionary Tool Kit places the student and 

teacher on more equal footing. It is intended that topics be explored using 

the program as they arise in discussion. The teacher is a facilitator, a 

collaborator with the student in investigating a conjecture. The greatest 

source of difficulty with this approach is the level of understanding of the 
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instructor. Instructors must be knowledgeable and confident in their own 

discipline to work with this think on your feet' approach. Several studies 

confirm that many university students, including those about to enter the 

teaching professions harbor serious misconceptions about some basic 

processes in life science, including genetics and evolutionary theory 

(Bishop, & Anderson, 1990; Brown, 1990; Brumby, 1979; Brumby, 1984; 

Greene Jr., 1990; Jimenez Aleixandre, & Fernandez Perez, 1987; 

Jungwirth, 1975; Jungwirth, 1986; Kinnear, 1986; Martin, 1983; Simmons, 

1987; Stewart, Hafner, & Dale, 1990). Brumby's study shows over three 

quarters of first year medical students using Lamarkian explanations of 

adaptation. The case in life science is not at all unlike the 'smoking gun' in 

physics education cited by Howard Gardner in The Unschooled Mind 

(Gardner, 1991). The students can perform well, even in a superior 

fashion, algorithmically, but their understanding of fundamental ideas can 

be weak indeed. The cited studies by Bishop, Brumby (79), Jimenez- 

Aleixandre, Jungwirth, and Greene show that a large majority of those 

who are very probably the secondary science teachers of the future hold 

serious misconceptions about natural selection. 

The situation is not as difficult as it seems; despite its unorthodox 

approach and strong demands on the teacher, The Geometric Supposer 

and, to a lesser degree, the two genetics simulations mentioned have made 

a positive impact on secondary education. Teachers are not immutable 

species; they can learn too. Further comments on this topic will be made 

in the discussion of curriculum development and staff training. 

A second, perhaps more daunting, problem was raised by Deal 

relating to the perceived role of natural selection in the creation of 

successful (surviving) genomes. He writes, "I know it is the main thrust of 
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the work, but in so many cases the user is involved in designing genomes 

(there is an element of that in BIOSIM too, so I don't deny its utility) and 

then the testing of their survivability (evolutionary war-gaming) that the 

impression might be gained, especially by naive or unconsciously biased 

users, that genomes must be designed if they are to have any chance of 

making it (Deal, 1992). I offer these comments only as a cautionary note 

and not to suggest any serious flaws in the approach." 

The point is an excellent one; for micro-world builders, where does 

teleology stop and natural selection begin? It is most important to note that 

programs like The Evolutionary Tool Kit and BIOSIM are not intended to be 

run by students unassisted and in isolation. The teacher is very much a 

part of the investigation, as a collaborator, as a resource, as a facilitator. 

As such the teacher must be be both free, and knowledgeable enough to 

intervene and assist students in formulating and interpreting the design 

and results of their investigations. What is being investigated is the process 

of change, students are seeking a metaphor, an explanation for the 

processes that are appearing in their micro-world organisms. Labeling 

some processes 'natural selection', 'adaptation', 'typological or 

populational' thinking, or 'teleological explanation' is just not enough. 

They must internalize the meanings of these terms. 

The Evolutionary Tool Kit is constructed so that students can sharpen 

their own naive theories and even contrast them against other more 

scientific ones. Questions like "Where is this mutation coming from? 

"How did the organism (or the user) know' to make that change? should 

be encouraged. The fact that all of these organisms are fabrications is a 

pedagogical advantage not to be squandered. All the traits, the genes that 

express them, and the C-somes' that hold the genes are just strings of bits 
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inside a core memory. One 'gene' does not 'know' anything about the 

contents of another gene in the same organism, or in any other organism. 

Christopher Langton's perceptive description of the strength of cellular 

automata modeling, in that they automata at a local' level (here C-somes' 

and ’genes’) interact with 'global' properties (here phenotypes, 

environments, populations, substrates) that, in turn, influence the 'local' 

quantities, is most appropriate. 

The instructional strategies in which species controlled by the user 

compete with species controlled by the computer under a random mutation 

with both under natural selection can effectively point out the parallels and 

important differences between the two models, random mutation with 

selection vs. direction with teleology'. Any further inquiries into the 

effectiveness of this approach must wait for field tests of the software. 

Deal's cautionary notes on this point must be well considered. The 

computer is a co-investigator with the student in this model; the novelty of 

this approach must be made clear to students using it. 

Both Deal and Wickender found suggested investigations in the draft 

of the teacher's notes about "Why sex at all?" to be, though of compelling 

interest, of fairly narrow scope and somewhat technical in nature. "I can 

see some dangers in designing a simulation to address the question if that 

simulation incorporates too many assumptions that are poorly 

substantiated. One could end up inadvertently provide an erroneous 

answer' where it is only intended to provide a conjecture. Simulations are 

limited to the logic that is build into them and cannot be expected to embody 

all the factors that exist in the real world. They might lead us to 

astonishing and wonderful insights, but also to bizarre and misleading 

conclusions as well. It may not always be possible to distinguish these, 
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even by the experts! The notion that sex might have evolved as a response to 

parasitism is thought provoking to say the least, but I doubt it should be 

considered proved at this point. ... I'm not sure that questions of such an 

advanced level are useful at the secondary level (Deal, 1992)." Viewed in 

this light I totally agree. One can set sexually reproducing species in 

competition with asexually reproducing ones, and perhaps vary the 

environment or add parasites but any conclusions would be worthless from 

such investigations. The student and teacher’s draft manuals were 

rewritten to reflect these concerns. 

The series of investigations centering around the AGE trait provided 

in the draft teacher's manual was lauded by both reviewers. "I was 

especially, and very favorably, impressed by the wonderful experiments 

that were outlined around aging and the use of the AGE trait. The notion of 

the 'selfish gene' and what it means to how some of the seemingly 

disadvantageous characteristics of organisms have come about is, in my 

opinion, extremely important. You have shown here a convincing, 

relatively simple, and easily manipulated tool for exploring some of these 

questions. It would be exciting to see how well some of these concepts are 

garnered by students in an actual teaching setting using The Evolutionary 

Tool Kit (Deal, 1992)." He continues, "For the average students, who will 

not be making a career of biology, I think the greatest advantage to the 

simulation will be in giving them a change to grapple with the basic 

concepts of modern evolutionary biology. They should learn what is meant 

by evolution, how it is possible for simple systems to give rise to complex 

ones through natural processes, and why understanding such processes 

increases mankind's ability to deal with some of its problems. 
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Pedagogical Considerations 

In their general comments about the approach both Deal and 

Wickender noted that The Evolutionary Tool Kit should not be construed as 

a genetics simulator or primer; both agreed that this point should be 

stressed to potential users. Deal called the approach a concept simulator’ 

much like his program BIOSIM. Concept simulators like these represent 

in an schematic way the "sophisticated notions surrounding theories of 

population dynamics and evolution (Deal, 1992)." Deal noted that is true 

that the genes' in these systems are rather remote from what a biologist 

recognizes as genes but 'this is an inevitable consequence of the simulation 

process." The micro-world genes of cellular automata are not real 'things', 

nor can they ever be. 

Neither Deal nor Wickender thought that the generalizations or 

simplifications of 'pseudo-genes' obviated their utility in an educational 

package such as The Evolutionary Tool Kit. A similar conceptual hurdle 

exists with the concept of phenotype for organisms in computer micro¬ 

worlds. Certainly researchers in Artificial Life grappled at length with the 

question as noted in chapter one. If 'phenotype' is understood as 'an 

aggregate of properties and/or behaviors', then organisms in micro-worlds 

can have phenotypes. These phenotypes can then be the objects of evolution 

through an analog of natural selection. 

Seymour Itzkoff was pleased with the "novel and imaginative 

concept" of The Evolutionary Tool Kit. He stated that "The Evolutionary 

Tool Kit addresses an area of curricular ignorance that has long been a 

scandal in science education. Any innovative work in this area must be 

welcomed. Collison's contribution, when perfected and in place in the 

schools is imaginative - if not superior. I don't know that it will work -1 
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hope so - the learning possibilities for our secondary students is enormous 

(Itzkoff, 1992).” 

Itzkoff was also pleased by the variety of approach to topics enabled by 

the design of the simulation. "The visual relationships that could be 

generated probably could not be duplicated in verbal form or in books. I 

concur that many abstract relationships will here be underlined that 

developed in words could remain blurred and indistinct." He agreed that 

the approach piloted by The Evolutionary Tool Kit using "non-verbal 

narratives" has considerable pedagogic potential. "I can agree with 

Collison’s stipulation as a general principle. Such dynamic relationships 

set forth in concrete visual form would be worth much verbal discourse." 

The novel use of the computer has great potential for critical thinking in 

science education. 

In a gloss requested about the potential of The Evolutionary Tool Kit 

for teacher education Itzkoff writes, "Teacher preparation is a more 

difficult issue. I believe that a whole integrative domain of studies using 

computer simulations would have to be available to make this a practical 

teacher education pathway. On the other hand, here is no reason why such 

a program could not be learned as part of our in-service within the district 

effort." 

Teacher Education and Staff Development 

Issues relating to Teacher Education and Staff Development were 

addressed by Neil Davidson, Staff Developer and Sci-Net Coordinator for the 

Massachusetts Department of Education. Davidson was generally very 

please with the design of The Evolutionary Tool Kit. He had many concerns 

relating to the elliptic exposition in both the student and teacher draft 

manuals. His concerns were certainly well grounded, I feel. A great deal 
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of work needs to be done to make the goals and mechanisms of the program 

accessible to secondary classroom teachers. The draft manuals need 

radical restructuring. The mechanisms of the genetic systems and the 

actions of the traits are discussed much too early. The general 

instructional design of the program, its novel approach to use of the 

computer, and modeling of concepts needs more careful elaboration 

(Davidson, 1992). 

On encountering the program for the first time one asks, "Is it a 

learning tool, a reviewing tool?" The place that such a program would 

occupy in a curriculum and the needs it attempts to fill must be made 

much clearer. There will probably be a strong initial reaction to the 

complexity of the simulation. It is not at all like the common tutorials in 

life science education that most educators are familiar with. A related 

question an instructor may ask is "Has the student at the ability level 

necessary to work this program already considered the questions posed by 

it?" Exactly what is being modeled, especially the conceptual orientation, 

should be more clearly set out. 

The program shows several strengths. First is its unique ability to 

model historical evolutionary sequences. "I am familiar with other 

programs in life science like Birdbreed, Catlab. and Heredity Dog. The 

Evolutionary Tool Kit picks up on the dynamic nature of inheritance and 

moves the student to a higher level of understanding." A second strength is 

the use of the computer as a partner' in the simulation. "Many, many of 

our computer 'educational environments' miss the ability of a computer to 

compute and pass along to the student the benefit of such computations. In 

this area of study, were genetic patterns and mutations can be vast, the 

computer is a perfect choice for bringing concepts to the desktop. Having 
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these simple beings evolve at the student learning station is best done 

through simulation and most interesting to the student when they can 

impact on such evolution (Davidson, 1992)." He also noted the potential for 

use of The Evolutionary Tool Kit in computational environments like 

System 7 where machines can exchange data packets transparently. 

Networked machines could evolve micro-worlds in parallel. 

Davidson also noted that he thought the goals of the program were 

very ambitious, a sentiment echoed by other reviewers. The richness 

offered does have some drawbacks; it can be overwhelming to a student just 

sitting down and beginning to 'try out' the experiments. The environment 

seems well designed to illicit what if inquiries from students if sufficient 

background material and introductory material are provided in other 

contexts, perhaps through other media. Considerable staff development or 

inservice training would be needed to use the program effectively as the 

'live' quality of the conjecturing strategy puts students and teachers in 

challenging, but unaccustomed roles. He also noted that, as it stands, the 

program in not user friendly. He had reservations about using the design 

with middle school students; but a decision on this would have to wait until 

a more complete, polished version is available for field testing. 

He concludes, saying "I think that this program offers an 

exceptionally good learning environment for high school students, given 

adequate preparation in the subject area. They will be challenged with the 

concepts presented here and they will be capable of making "attacks" on the 

assumptions. Teachers will be asking their students to react to the subject 

of natural selection in a way that is dynamic and realistic. The computer 

will play a key role as the tool which gives the student the capability of 
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simulation evolutionary activities and gives the teachers the freedom to 

pose higher order questions." 

Further Developments 

Clearly more work must be done on both the coding and manuals. 

More review by biology educators and curriculum developers is needed. 

Field tests of the software are also in order. I initially designed the 

program as an instructional tool; two of the reviewers remarked at its 

usefullness as a research instrument. This area should also be explored. 

Beyond this developmental effort of software of this type, there also 

must be a change in attitude toward the way science, including the life 

sciences, are taught. We must work hard towards what Howard Gardner 

has called 'teaching for understanding' with the technological tools now 

available to us. An annecdote may be helpful in exploring this idea. 

Several years ago in other comers of the world there was much 

rejoicing at the announcements of the Nobel Prize Award in physics. The 

Pakistani researcher Abdus Salaam shared the physics prize with Steven 

Weinberg for their work on fundamental particles. Awards of this sort had 

been a long time in coming for Muslim peoples. The Twelfth Century had 

seen scientists from Spain to Eastern Asia erect the first modem 

universities, precisely map the heavens, build the first hospitals, establish 

the first clinical practices, explain the mysteries of light and optics, and 

invent the field of algebra and the theory of equations. In less than two 

centuries the centers of learning had moved elsewhere. The ceremony in 

1980 in Stockholm was a wonderful moment for Muslim science. After 

seven centuries a Muslim scientist again stood at the pinnacle of scientific 

achievement. At the presentation ceremony recipients can wear any 

clothing they feel appropriate. Dr. Salaam chose 13th century North Indian 
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courtly dress. A stately, bearded figure clad in a white turban and elegant 

white silk brocade, complete with silken upturned slippers, stepped 

forward to receive the award. In an interview after the ceremony he was 

asked many questions about his feelings at the moment, and about his 

choice of dress. He was also asked tellingly, "What happened to the society 

and culture that had developed excellence in science and learning so long 

ago that it took this many centuries to rebuild?" He responded simply. "The 

mullas." 

Though the analogy may not be appreciated by some, but we, the 

science educators of our society, are 'mullas' of a sort as well. The national 

committees and reform efforts, local committees (often with very different 

goals and visions from their national counterparts), the text book 

publishers, the curriculum and assessment specialists at national and 

local levels (including the media reporting the results’) all combine with 

the efforts of individual schools and classroom teachers as well as with the 

perceptions and potential of our students to present a very complex picture. 

It is a picture that, much like the world views students bring to classes, 

may prove resistant to change. Yet, I feel, there is much room for 

optimism. The constraints built into this system can serve as a guide for 

the development of understanding. Sets of these constraints define our 

goals, our disciplines, our theories of life and matter. The existance of 
t 

these patterns makes it possible to recognize the mullas' in all of us. It is 

by recognizing, appreciating, and perhaps removing, or redefining these 

constraints that we can overcome entrenched thinking and achieve a new 

level of understanding. It is my hope that the conceptual simulating 

environment provided by The Evolutionary Tool Kit can be of some use in 

this most important effort. 
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