
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 3, MARCH 2020 971

Identification of Cellular Automata Based on
Incomplete Observations With Bounded Time Gaps

Witold Bołt , Jan M. Baetens , and Bernard De Baets

Abstract—In this paper, the problem of identifying the cellular
automata (CAs) is considered. We frame and solve this problem in
the context of incomplete observations, i.e., prerecorded, incom-
plete configurations of the system at certain, and unknown time
stamps. We consider 1-D, deterministic, two-state CAs only. An
identification method based on a genetic algorithm with individu-
als of variable length is proposed. The experimental results show
that the proposed method is highly effective. In addition, con-
nections between the dynamical properties of CAs (Lyapunov
exponents and behavioral classes) and the performance of the
identification algorithm are established and analyzed.

Index Terms—Cellular automata (CAs), genetic algorithms
(GAs), nonlinear dynamical systems, system identification.

I. INTRODUCTION

CELLULAR automata (CAs) constitute an attractive and
effective modeling paradigm for a variety of prob-

lems [1]. In order to use CAs for a practical modeling
task, one needs to understand the mechanisms underlying the
phenomenon at stake, and translate them into a CA rule.
Additionally, the state space and neighborhood structure need
to be pinned down beforehand. This limits the use of CAs,
since there are problems for which manually designing a
local rule is hard. Moreover, in some cases only the ini-
tial and final states of the systems are known (e.g., [2]–[4]).
Research on automated CA identification is motivated by
such problems. Various methods have been studied so far
in this field: genetic algorithms (GAs) [5]–[8]; genetic pro-
gramming [9]–[11]; gene expression programming [12]; other
evolutionary algorithms [13]; ant colony algorithms [14];
machine learning approaches [15]; as well as direct construc-
tion algorithms [16]–[19]. Within these methods, two main
groups can be identified. First, there are methods for solving
specific, global problems. An example of such a problem is the

Manuscript received April 3, 2018; revised June 29, 2018 and
September 25, 2018; accepted October 3, 2018. Date of publication
October 29, 2018; date of current version January 21, 2020. This
work was supported by the Research Foundation Flanders (FWO) under
Project 3G.0838.12.N. This paper was recommended by Associate Editor
L. Rutkowski. (Corresponding author: Witold Bołt.)

W. Bołt is with the Systems Research Institute, Polish Academy of
Sciences, 01-447 Warsaw, Poland, and also with KERMIT, Department of
Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent,
Belgium (e-mail: witold.bolt@hope.art.pl).

J. M. Baetens and B. De Baets are with KERMIT, Department of
Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent,
Belgium.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2018.2875266

density classification problem in which only the initial condi-
tion and the desired outcome are known [20]–[23]. Second,
there are methods that exploit the entire time series of con-
figurations. Typically, it is assumed that all configurations are
known (i.e., observed completely). Only limited efforts have
been devoted to solve the identification problem in the absence
of complete information [5].

The main goal of the research presented in this paper is
to design a method capable of automated CA identification
in the case of incomplete information. The incompleteness of
the information, within the scope of this paper, is of twofold
nature. First, we consider the spatial incompleteness, which
relates to missing states of specific cells at one or more
time stamps. Second, we consider the temporal incomplete-
ness, which relates to missing CA configurations at certain
time stamps. In contrast to the spatial incompleteness, where
the location and therefore the amount of missing informa-
tion is known, these parameters are not known in the case
of temporal incompleteness, i.e., a certain, unknown number
of time stamps are missing in between every consecutive pair
of observed time stamps. Such a setting has not yet been dis-
cussed in the literature. In this paper, a detailed definition of
this identification problem is presented. Moreover, an effective
solution algorithm based on a GA is presented.

It is important to understand the motivation behind the
problem definition discussed in this paper. Essentially, spatial
incompleteness can be related to malfunctioning measuring
equipment or limited capabilities of observing real-world phe-
nomena. Such scenarios are very likely in many practical
applications [24]. Temporal incompleteness, on the other hand,
can be understood in two ways. First, similar to spatial incom-
pleteness, it can be related to limited observation capabilities,
i.e., the frequency of capturing the time stamps might be lim-
ited and unstable. Second, there is an issue of synchronization.
The clock of the phenomenon in question, and the one of
the prospective CA-based models, are not necessarily in syn-
chrony. Due to this, the number of CA time stamps in between
two consecutive observed time stamps might be unknown and
might be changing dynamically. Consequently, although the
problem is discussed in a theoretical setting of 1-D, two-state
CAs, the nature of the tackled problems relates directly to the
one of the practical modeling.

This paper is organized as follows. Section II introduces
the basic definitions. In Section III, the CA identification
problem is formally defined. Further, in Section IV, this prob-
lem is then reformulated as an optimization task. Section V
presents the algorithm for solving the identification problem.

2168-2267 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6787-2100
https://orcid.org/0000-0003-4084-9992
https://orcid.org/0000-0002-3876-620X

972 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 3, MARCH 2020

TABLE I
LUT OF LOCAL RULE n = (�8, �7, �6, �5, �4, �3, �2, �1)2

The experimental results are presented in detail in Section VI,
while Section VII summarizes the main results.

II. PRELIMINARIES

We concentrate on 1-D, deterministic, binary CAs with a
finite number of cells, defined by a local rule with a symmetric
neighborhood. Yet, the problem definition and the identifica-
tion algorithm can be extended to higher dimensions and more
complex state sets. Below, we give a definition of the CAs that
are considered in this paper. Let fA : {0, 1}2 r+1 → {0, 1} be a
function, where r ∈ N, then, for any integer N, we define the
N-cell global CA rule AN : {0, 1}N → {0, 1}N as

AN(s1, . . . , si, . . . , sN) = (
s′1, . . . , s′i, . . . , s′N

)
(1)

where s′i = fA(si−r, . . . , si+r) and the periodic boundary condi-
tions are assumed, i.e., si+N = si for any i ∈ Z. Such function
fA will be referred to as a local rule, while the integer r will be
referred to as the neighborhood radius or simply radius. Any
local rule can be uniquely defined by a lookup table (LUT),
listing all the possible arguments and mapping them to the cor-
responding function values. The ordering of the arguments in
an LUT is assumed to be lexicographic, thus only the second
row needs to be stored. Therefore, an LUT will be represented
as a binary vector of length 22 r+1. The general form of an LUT
describing a local rule with unit radius (r = 1) is shown in
Table I. Note that LUTs can be used to enumerate local rules,
as the coefficients �i can be treated as digits in the binary rep-
resentation of an integer n, i.e., the number of a local rule is
given by n = ∑8

i=1 �i 2i−1 = (�8, �7, . . . , �1)2. Clearly, this
extends to larger radii.

The set of all binary sequences of finite length will be
denoted by {0, 1}∗, i.e., {0, 1}∗ =⋃

M∈N0
{0, 1}M . The function

A : {0, 1}∗ → {0, 1}∗, satisfying A(X) = AM(X) if X ∈ {0, 1}M ,
where each of the global rules AM is defined by the same local
rule, will be referred to as a generalized global rule of a CA.
Since such functions will be frequently used throughout this
paper, for the sake of simplicity, we will refer to them as
global rules or rules. In this paper, a CA is identified with its
global rule. Therefore, a CA is technically a function, and by
referring to a CA we refer to its global rule and vice versa.
Note that a given local rule fA uniquely defines a global rule
A, but the opposite is not true when the radius is not fixed.
For a given rule A, there may exist many different local rules
defining it.

The set Ar, where r ∈ N is the radius, denotes the set of
all CAs that can be expressed using local rules with radius
r. All of the CAs in A1 are referred to as elementary CAs
(ECAs). This class is one of the most commonly studied
classes of CAs [25]. Fact 1 shows two important properties
of the sets Ar.

Fact 1: For any r ≥ 0, Ar ⊂ Ar+1, and |Ar| = 222 r+1
.

Let A be a CA, X ∈ {0, 1}M for some M and T ∈ N
+. The

finite sequence of vectors given by:
(

X, A(X), A2(X), . . . , AT−1(X)
)

where At denotes the t-th application of rule A, will be referred
to as a space-time diagram covering T time stamps. Each of
its elements will be referred to as a configuration of the CA
A, while the first element will be referred to as the initial
configuration. For any t = 0, 1, . . . , T − 1 and m = 1, . . . , M,
At(X)[m] denotes the state of the mth cell in the t-th row of
the space-time diagram.

Example 1: We consider the four ECAs defined by local
rules 40, 56, 150, and 110. Fig. 1 depicts their corresponding
space-time diagrams. All of them start from the same, random
initial configuration containing 69 cells. By convention, the
space-time diagrams are visualized as bitmaps in which every
row corresponds to a configuration at a specific time stamp.
Hence, the first row in the image is the initial configuration.
Furthermore, state 1 is visualized as a black pixel, while a
white pixel corresponds to state 0.

These four ECAs exemplify the behavior that can be found
among 1-D two-state CAs. More precisely, Wolfram conjec-
tures that there are four behavioral classes [25]. After a few
time stamps, ECA 40 evolves to a homogeneous configuration
(class I), ECA 56 reaches a periodic configuration (class II),
ECA 150 behaves chaotically (class III), while ECA 110
displays the complex behavior (class IV).

III. PROBLEM STATEMENT

In this section, we introduce the identification problem. Our
formulation is based on the concept of an incomplete observa-
tion of a space-time diagram, i.e., it contains only incomplete
information on the states of the underlying CA.

Let I ∈ {0, 1, ?}N×M . We interpret I as an array containing
symbols from the set {0, 1, ?}. The role of the symbol “?” is to
indicate that information on the actual state of a cell is lacking.
Additionally, let the first row I[1] be completely observed,
i.e., I[1] ∈ {0, 1}M . We will refer to such an array I as an
observation. An observation I ∈ {0, 1}N×M , i.e., an observation
that does not contain the symbol “?,” will be called spatially
complete.

Note that the assumption of a completely observed first row
is crucial for the construction of the presented algorithm and
cannot be relaxed easily. Yet, in many practical applications
there might be natural means of controlling the initial state,
for example, by repeating the laboratory experiments multiple
times, thus this assumption can be easily met.

Example 2: We will visualize the observations as space-
time diagrams where the cells of the configurations are colored
white if their state is 0 and black when it is 1, while gray is
used to color cells whose state is unknown. Following this
convention, Fig. 2(a) shows a complete observation, in this
case, a space-time diagram of ECA 57. In Fig. 2(b), some
of the states in the complete space-time diagram of ECA 57
are changed to “?,” resulting in a spatially incomplete obser-
vation. Finally, Fig. 2(c) depicts an observation, where some
of the states are changed to “?” and some configurations are

BOŁT et al.: IDENTIFICATION OF CAs BASED ON INCOMPLETE OBSERVATIONS WITH BOUNDED TIME GAPS 973

(a) (b) (c) (d)

Fig. 1. Space-time diagrams of ECAs, containing 69 cells and 69 time stamps each, illustrating the behavioral classes that can be found among ECAs.
(a) ECA 40 (class I). (b) ECA 56 (class II). (c) ECA 150 (class III). (d) ECA 110 (class IV).

(a) (b) (c)

Fig. 2. Observations of ECA 57 in (a) complete, (b) spatially incomplete, and (c) spatially and temporally incomplete form.

omitted from the complete space-time diagram, resulting in a
temporally incomplete observation.

Let I be an observation. The number of completely observed
states is defined as C(I) = #{I[n, m] 	= ?}. In our setting, it
holds that C(I) ≥ M, due to the assumption that I[1] ∈ {0, 1}M .
With a given observation I, we associate the set com(I) of all
of the spatially complete observations I′ satisfying I′[n, m] =
I[n, m] for all n, m such that I[n, m] 	= ?.

We will say that a CA A fits an observation I if there exists
an I′ ∈ com(I) and an increasing sequence of positive natural
numbers σ = (σi)

N−1
i=1 such that for any n ∈ {1, 2, . . . , N − 1}
Aσn

(
I′[1]

) = I′[n+ 1]. (2)

The meaning of a CA A fitting an observation I, is that the
rows of I correspond to configurations of A at some time
stamps, which are given by σ . The first row corresponds to
the initial configuration. Entries with the symbol “?” corre-
spond to unknown states. Examining I′, which is easy to obtain
once A and σ are found, allows to uncover these unknown
states.

Proposition 1: A CA A fits an observation I if and only if
there exist an I′ ∈ com(I) and a sequence of natural numbers
γ = (γi)

N−1
i=1 such that for any n ∈ {1, 2, . . . , N − 1}

A1+γn(I′[n]) = I′[n+ 1]. (3)

The sequence σ = (σi)
N−1
i=1 in (2) corresponds to the time

stamps in the CA evolution (which are assigned to the rows
of the observation), while the sequence γ = (γi)

N−1
i=1 in

Proposition 1 refers to the time gaps, i.e., the number of miss-
ing time stamps between two consecutive rows in the observed
diagram. Obviously, σn =∑n

i=1(1+ γi).
Example 3: Consider the following space-time diagram D.

It shows the evolution of ECA 150 from a single black cell.
For the sake of readability, rows have been labeled with the
corresponding time stamps.

0 0 0 0 1 0 0 0 0 t = 0
0 0 0 1 1 1 0 0 0 t = 1
0 0 1 0 1 0 1 0 0 t = 2
0 1 1 0 1 0 1 1 0 t = 3
1 0 0 0 1 0 0 0 1 t = 4

Let the observation I be given by

0 0 0 0 1 0 0 0 0 t = 0
0 1 1 ? ? 0 1 1 0 t = ?
1 ? 0 0 ? 0 0 0 ? t = ?

We see that the space-time diagram D and observation I share
the same initial configuration, i.e., D[1] = I[1]. Now, let I′ ∈
com(I) be given by

0 0 0 0 1 0 0 0 0 t = 0
0 1 1 0 1 0 1 1 0 t = ?
1 0 0 0 1 0 0 0 1 t = ?

It holds that D[4] = I′[2] and D[5] = I′[3]. We know that
A(D[4]) = D[5], since D is the space-time diagram of a
CA A, and so A(I′[2]) = I′[3]. Additionally, it holds that
A3(D[1]) = D[4] = I′[2]. Since I′[1] = D[1], it holds that

974 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 3, MARCH 2020

A3(I′[1]) = I′[2]. According to Proposition 1, this means that
CA A fits the observation I.

In practice, we want to use multiple observations to com-
plete the identification task. Therefore, we will consider a finite
set of observations I. We will say that rule A fits the observa-
tion set I if it fits all of the observations contained in this set.
We will write C(I) to express the number of observed states in
all of the observations belonging to I, i.e., C(I) =∑

I∈I C(I).
Moreover, we will use MI to denote the total number of
columns in the observations belonging to this observation set,
i.e., MI =

∑
I∈I MI , where MI is the number of columns in

observation I. We will denote the number of rows NI in an
observation I ∈ I by NI . For an observation set I, the set
R(I) denotes the set of all CAs fitting the observation set I.
With the above definitions, we can restate the identification
problem as finding all (or some) of the elements of the set
R(I). In this paper, we will restrict this formulation of the
identification problem to finding at least one of the elements
of the set R(I).

The following fact will be used in the design of the identi-
fication algorithm in order to reduce the computational burden
by considering only subsets of the observation set for the
calculation of the error, as such enabling a fast method for
estimating the values of the fitness function (this approach is
described in detail in Section V-B). Informally, this fact can
be understood by considering the set I as the set of conditions
that a rule needs to meet. Having fewer conditions, it becomes
more likely to find solutions. Yet, no solutions are omitted by
relaxing the conditions.

Fact 2: Let I and I ′ be the observation sets such that I ′ ⊆
I. Then R(I) ⊆ R(I ′).

We consider only finite observation sets, therefore, we know
that for every observation set I there exists a � > 0 which is
a common upper bound for all of the time gaps in all obser-
vations belonging to I. In other words, if a solution to the
identification problem exists, and γ I is the sequence of time
gaps of observation I ∈ I, then 0 ≤ γ I

n < �, for every I ∈ I
and n = 1, . . . , NI − 1. In the remainder, it is assumed that
the upper bound � is known. Hence, we consider the case of
bounded time gaps.

IV. FORMULATING THE IDENTIFICATION PROBLEM

AS GLOBAL OPTIMIZATION PROBLEM

In this section, we will reformulate the CA identifica-
tion problem as a global optimization problem. Let a, b ∈
{0, 1, ?}M . We define the disagreement between the vectors a
and b as

dis(a, b) =
∑

i:ai,bi∈{0,1}
|ai − bi|. (4)

If there is no i such that ai 	= ? and bi 	= ?, then
dis(a, b) = 0. Therefore, dis(a, b) = 0 does not imply
a = b. Obviously, dis(a, b) = dis(b, a). Note that dis
is not a distance function as the triangle inequality is not
fulfilled.

Let γ = (γi)
N−1
i=1 be a sequence of natural numbers, and let

A be a CA rule. The observation ĪA
γ defined as

ĪA
γ [n, m] =

{
I[n, m], if I[n, m] 	= ?

A1+γn−1

(
ĪA
γ [n− 1]

)
[m], otherwise

will be referred to as the A-completion of observation I with
time gaps γ . Note that any observation I satisfies I[1] = ĪA

γ [1]
for any A and γ . Moreover, ĪA

γ ∈ com(I).
Intuitively, the meaning of ĪA

γ is as follows. If I is an obser-
vation, then the spatially complete observation ĪA

γ agrees with
I on all positions occupied by values 0 or 1 in I. The missing
state values, denoted by “?” in I, are found by evaluating A,
taking into account the time gaps defined by the sequence γ .

Assuming that for every I ∈ I the sequence of natural
numbers γ I = (γ I

i)
NI−1
i=1 represents the time gaps in I and

γ = (γ I)I∈I , the error ẼI is defined as

ẼI(A, γ) =
∑

I∈I

NI−1∑

n=1

dis
(

A1+γ I
n

(
ĪA
γ I [n]

)
, ĪA

γ I [n+ 1]
)
. (5)

The identification problem can be expressed mathematically
as the minimization of the error Ẽ.

As we only consider the case where an upper bound for
the time gaps is known, we can define the error measure ẼI
independently of the selection of the time gaps γ as

ẼI(A) = min
γ

ẼI(A, γ) (6)

where the minimum only covers γ satisfying 0 ≤ γ I
i < �,

I ∈ I, i = 1, . . . , NI − 1.
Note that the minimum in (6) always exists, since there

is only a finite, yet huge, number of possibilities for γ .
Additionally, note that for a spatially complete observation I,
the choice of γ I

i is independent of the choice of γ I
j for any

i 	= j, and for observations I and J, the choice of γ I is inde-
pendent of the choice of γ J . Consequently, to find the value
of ẼI in the case of a spatially complete observation set, we
need to examine at most

∑
I∈I � (NI − 1) sequences of time

gaps.
In the case of spatially incomplete observations, the choice

of γ I
ni

is not independent of the choice of γ I
nj

for ni < nj.
This is due to the definition of A-completion of an observa-
tion, where the choice of the missing state values in the n1th
row may influence the choices in the following rows. Thus, in
order to find the exact value of the error measure, we should
examine all of the �NI−1 possibilities, which implies a sub-
stantial computational burden. For that reason, instead of an
exact value of the error, we compute an estimate by treat-
ing the time stamps as in the spatially complete case, i.e., we
ignore the dependencies between the rows and try to select
values of γ by analyzing the consecutive pairs of rows in the
observation. The only difference, as compared to the spatially
complete case, is that if for a given n, several values for γ I

n
lead to the same, minimal value of the error, one of those can-
didates is selected randomly. In such an approach, we might
overestimate the error, i.e., the calculated value can never be
lower than the actual error. Additionally, since the procedure

BOŁT et al.: IDENTIFICATION OF CAs BASED ON INCOMPLETE OBSERVATIONS WITH BOUNDED TIME GAPS 975

is stochastic, for a given CA that is a solution to the identi-
fication problem, recalculating the approximate error measure
multiple times and taking the minimum of all of the obtained
results increases the probability of finding the exact value.

This approach of estimating the error turned out be suffi-
cient for cases where the number of completely observed states
C(I) is relatively high, meaning that the spatial incomplete-
ness is limited. When C(I) gets significantly low compared
to the total number of entries in observations, the complexity
of the problem largely depends on the structure and origin of
the observations. In order to improve the performance in such
cases, we implement a filtering technique that eliminates rows
of observations for which the number of completely observed
states is smaller than or equal to a selected threshold τ ∗ ≥ 0.
If the nth row is eliminated, the maximal time gap allowed in
between the (n− 1)th and (n+ 1)th row becomes 2 �.

V. EVOLUTIONARY ALGORITHM

In this section, we describe the solution of the identifi-
cation problem, for which an evolutionary algorithm based
on a GA [26] will be used. GAs constitute a well-known
optimization method used in many domains of application,
including earlier research on CAs. For example, GAs have
been used in the construction of CA-based random number
generators [27], for finding CAs capable of image reconstruc-
tion [28] and for retrieving CA-based population models of
competing individuals [29].

For the sake of reproducibility, we formally define the
GA by clearly giving the individuals’ representation, structure
of the population, a fitness function, the genetic operators,
namely, the selection procedure for reproduction, and the
cross-over and mutation operators, and finally the halting
conditions.

A. Individuals and Populations

Here, the individuals that make up the population are CAs,
encoded through the LUT of their local rule, which is possible
since the LUT of any CA A ∈ Ar can be represented as a
bit-string of length 22 r+1 (see Section II).

The population is a collection of local rules with different
radii between r∗ and r∗, since the radius of the desired solution
might not be known in practice and one of the goals is to
detect it. Note that as a consequence of Fact 1, we might opt
to consider populations of local rules with radius r∗ only, but
by allowing diverse radii, populations can evolve quicker and
produce simpler solutions, i.e., local rules with smaller radii.

The number of CAs in a population is denoted by P > 0.
The symbol Pn, where n = 1, 2, . . . , denotes the popula-
tion of the nth generation of the GA. Population P1 is the
initial population, and is constructed by randomly selecting
P bit-strings. Let P1 = {L1

1, . . . , L1
P}, where L1

i is the ith
individual in the initial population, then |L1

i | = 22 ri+1 for
some ri ∈ {r∗, . . . , r∗}. This radius ri can change as the GA
evolves. Populations Pn for n > 1 are evolved by applying the
genetic operators described in the remainder of this section.
Individuals belonging to the nth population are denoted by Ln

i ,
for i = 1, . . . , P.

B. Fitness Function

The fitness function is directly related to the error measure
ẼI defined by (6). Let L ∈ {0, 1}22 r+1

be the LUT of some
local rule that defines a CA A. Then fitI(L) denotes the fitness
of A, and is defined as

fitI(L) = C(I)−MI − ẼI(A). (7)

The fitness function takes integer values from 0 up to
C(I)−MI which is the total number of completely observed
states excluding the states in all of the initial configurations.
Therefore, there are only finitely many values of the fitness
function. The goal of the GA is to maximize fitness, and a CA
leading to a maximal fitness is a solution of the identification
problem.

Initial experiments have shown that the fitness function
defined by (7) is effective. Yet, the computing time for finding
its values is unacceptable when large observation sets are con-
sidered, since the cost of computing an exact value is linear
in the size of the observation set. An approximation algorithm
is used to overcome this issue for a large observation set.
During the evolution of the nth population, we estimate the
value of fitI by using fitIn , where In ⊂ I is a nonempty sub-
set. Such an approach is justified by Fact 2, which assures that
the solution set is not being reduced. The set I1 is a subset of
0 < s ≤ |I| randomly selected observations of I, while the
set In+1, for n ≥ 1, is built from In by replacing one of its
observations denoted by Ir, with a new selection from I\In

denoted by Ia. There are two scenarios for selecting Ir and Ia,
depending on the contents of In, which are presented below.

Let B(n) yield the fittest individual from the nth population,
that is,

B(n) = arg max
L∈Pn

fitIn(L). (8)

If multiple choices of B(n) are possible, we pick one at ran-
dom. As described in more detail in Section V-H, for such
an individual, the fitness fitI over the entire set I is recal-
culated verifying whether the halting condition is satisfied at
every iteration of the GA. Consequently, we have access to
the values ẼI(B(n)) for any I ∈ I, and thus we can easily find
I∗ ∈ I such that ẼI∗(B(n)) ≥ ẼI(B(n)) for any I ∈ I.

If I∗ ∈ In, then Ir is selected randomly from In in such a
way that Ir 	= I∗ and Ia is also selected randomly from I\In.
On the other hand, if I∗ 	∈ In, then Ia = I∗ and Ir is selected
randomly from In. Formally, the goal of this procedure is to
assure that the observation resulting in the highest error I∗ is
included in In+1 and that exactly one observation is replaced
at every generation, i.e., |In ∩ In+1| = s− 1.

Let F(n) denote the highest fitness observed among the indi-
viduals that had the highest values of fitness estimation during
the GA evolution up to the nth generation. Let n ∈ N, then
F(n) is defined as F(n) = maxi∈{1,...,n} fitI(B(i)).

Obviously F(n) ≤ F(n + 1). In addition to this maximal
fitness F, we also define the age of this value as the number
of GA iterations during which the maximal fitness did not
change. Formally, a value F(n) has an age a(n) > 0 if and
only if it holds that

F(n− a(n)− 1) < F(n− a(n)) = · · · = F(n− 1) = F(n).

976 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 3, MARCH 2020

Algorithm 1: Up-Scaling of the LUT
Input: LUT given by variable L.
Output: Up-scaled LUT stored in variable L↑.

1 for i = 1, . . . , 22 r+1 do
2 L↑[2 i]← L[i];
3 L↑[2 i− 1]← L[i];
4 L↑[2 i− 1+ 22 r+2]← L[i];
5 L↑[2 i+ 22 r+2]← L[i];

C. Selection

We use a standard, random selection method. The prob-
ability of selecting a given individual is proportional to its
fitness. This is feasible, since the fitness function introduced in
Section V-B is bounded. The selection process is repeated with
replacement, so that each of the individuals can be selected
multiple times.

D. LUT Rescaling

Before describing the cross-over operator, we introduce a
rescaling operation in order to be able to define cross-over of
LUTs with different radii. Given Fact 1, each CA defined by
a local rule with neighborhood radius r, can also be defined
by a local rule with neighborhood radius r + 1. A simple
method for “converting” the LUT of a given local rule f , with
radius r, to the LUT of its corresponding local rule f ↑, with
radius r + 1, follows from the fact f ↑(s1, . . . , s2 (r+1)+1) =
f (s2, . . . , s2 r+2), for all s1, . . . , s2 (r+1)+1 ∈ {0, 1}. Note that
both f and f ↑ define the same CA. The operation of increasing
the radius by one will be referred to as up-scaling by one.
Let L ∈ {0, 1}22 r+1

be the LUT of f , then the LUT of f ↑,
denoted as L↑ ∈ {0, 1}22(r+1)+1

, can be constructed from L
using Algorithm 1.

Similarly to the up-scaling operation, we define the inverse
operation. Let f be a local rule with neighborhood radius
r, then the down-scaled local rule f↓, with radius r − 1, is
defined as

f↓(s1, . . . , s2 r−1) =
[

1

4

1∑

a=0

1∑

b=0

f (a, s1, . . . , s2 r−1, b)

]

where [·] indicates the rounding to the nearest integer (we
assume [0.5] = 0). The method of computing the LUT
of the down-scaled rule is presented in Algorithm 2. Let
L ∈ {0, 1}22 r+1

be the LUT of some local rule f , then this
algorithm constructs the LUT L↓ ∈ {0, 1}22 r−1

corresponding
to the local rule f↓. It is easy to see that, in general, f and f↓
define different CAs. Informally, f↓ should be understood as
the closest approximation of f with a smaller radius.

Using the up-scaling and down-scaling operations, we can
define a general rescaling operation from radius r to r′, by
applying up-scaling (when r′ > r) or down-scaling (when
r′ < r) operations multiple times.

E. Cross-Over

To produce offspring, two parents are selected according to
the selection procedure outlined in Section V-C. If the radii

Algorithm 2: Down-Scaling of the LUT
Input: LUT given by variable L.
Output: Down-scaled LUT stored in variable L↓.

1 Initialize C[i]← 0 for i = 1, . . . , 22 r−1;
2 for i = 0, . . . , 22 r+1 − 1 do
3 j← 1+ (i/2 mod 22 r−1);
4 C[j]← C[j]+ L[i+ 1];
5 for i = 1, . . . , 22 r−1 do
6 if C[i] > 2 then
7 L↓[i]← 1
8 else
9 L↓[i]← 0

of the selected parents are equal, we use uniform cross-over,
i.e., the result is a vector Lc with values that are randomly
selected from the parents L1 and L2 so that P(Lc[i] = L1[i]) =
P(Lc[i] = L2[i]) = 0.5. If r1 	= r2, then the LUTs are rescaled
before applying crossover. Assuming that r1 < r2, the radius r
of the resulting rule is selected randomly from the set {r1, r1+
1, . . . , r2}, after which the parents are rescaled to the radius r
and the cross-over operator is applied.

F. Mutation Operator

Finally, the offspring individuals are mutated. Here, three
types of mutations are used: 1) bit flipping; 2) decrease of
radius; and 3) increase of radius. The latter two mutations
simply rely on the down-scaling or up-scaling operations out-
lined in Algorithms 1 and 2, and introduce the diversity in
the length of the individuals, while bit flipping randomly flips
selected bits in the LUT of the individual.

Mutations are applied in a well-defined order. First, with
probability pu, up-scaling is applied. After that, we flip ran-
domly selected bits. The bit-flip mutation is applied bit-by-bit
independently. The probability pf of mutating a bit is defined
as follows:

pf (n) = e−α (R−a(n)) (9)

for some α > 0 and R ∈ N. The role of the parameter
R is described in more detail in Section V-G. For now, we
may assume that a(n) will never be higher than R and thus,
pf (n) ≤ 1. This formula is motivated by the fact that when
the age a(n) is low, the probability of mutation should also
be relatively low in order to give the algorithm a chance to
fine-tune the solution. If this fine-tuning fails, the age a(n)

increases and the population tends to freeze near a local opti-
mum. In order to escape from it, we then apply mutation with
a higher probability. Such a procedure is partially effective
due to the elite survival procedure introduced in Section V-G.
Finally, after applying bit-flipping, we apply down-scaling
with probability pd.

This order of application is chosen because the number of
possibilities to be affected by bit-flipping increases by first
applying up-scaling. Besides, performing the down-scaling at
the end of the sequence of mutation operators allows to evolve
simpler rules.

BOŁT et al.: IDENTIFICATION OF CAs BASED ON INCOMPLETE OBSERVATIONS WITH BOUNDED TIME GAPS 977

(a) (b) (c) (d)

Fig. 3. Space-time diagrams of (a) ECA 150 and (b) ECA 184 containing 69 cells and 69 time stamps each, and (c) and (d) corresponding temporally
incomplete observations with random time gaps of at most ten time steps.

G. Elite Survival and Population Reinitiation

After evolving a new population, an elite survival procedure
is applied, which has shown to be a prerequisite to reach the
convergence. The procedure is implemented by selecting the
PE � P fittest individuals from the previous population and
letting them replace randomly selected individuals in the newly
evolved one.

Including this elite survival procedure dramatically
increases the performance of the algorithm, though there
are cases where such an approach causes the population to
progress toward a local optimum. Our experiments showed
that the best way to overcome this is to apply a reinitiation
procedure. If for a given n it holds that the age a(n) = R, then
we reinitiate the algorithm by replacing the current population
with a new, randomly selected set of CAs. In other words, we
do not allow a situation where the age of the best individual
evolved so far is higher than R. Such an approach might
seem to contradict the evolutionary nature of the algorithm,
but the use of a dynamic mutation probability pf (n) and an
elitist survival procedure relates it to the evolution of multiple
separated genetic islands [30], out of which the one with
the fittest individual is selected after a predefined number of
iterations.

H. Halting Conditions

The GA evolves until a CA that fits the observation set is
discovered or a predefined number of GA iterations passes.

As mentioned in Section V-B, the fitness fitI is approx-
imated by fitI ′ for some I ′ ⊂ I, which is effective for
selection, but cannot be used to verify whether the halting
condition has been met. Therefore, for the individual A with
the highest value of fitI ′(A), we also calculate fitI(A). The
algorithm stops as a CA A is found such that ẼI(A) = 0. The
knowledge of fitI(A) at every iteration is exploited to build
the subsets In ⊂ I used for estimating fitI (see Section V-B).

I. Examples: Identification of ECAs 150 and 184

Having described the GA for solving the identification prob-
lem, we now present an example to illustrate its behavior. An
in-depth study of its performance and limitations can be found
in Section VI.

TABLE II
VALUES OF THE DESIGN PARAMETERS USED FOR THE

IDENTIFICATION OF ECAS 150 AND 184

For this purpose, a GA with design parameters as listed in
Table II was used. These values were chosen on the basis of
preliminary experiments, while the choice of r∗ was motivated
by the fact that observation sets resulting from ECAs will be
used. If r∗ = 1 would be used, the GA would be able to rapidly
explore the entire space of ECAs (consisting of only 256 can-
didates), which makes that more interesting characteristics of
the GA might be missed.

Using these parameters two experiments were conducted,
further referred to as R1 and R2. In R1, the considered obser-
vation set consisted of observations of ECA 150, while ECA
184 was used in R2. The choice of these two ECAs was
motivated by the fact that ECA 150 shows a strong sen-
sitive dependence on the initial configuration, while ECA
184 (known as the traffic rule) results in an orderly behav-
ior [31]. These two types of behavior can be seen in the
space-time diagrams in Fig. 3(a) and (b). In this figure, also
the corresponding temporally incomplete observations with
random time gaps of at most ten time steps are shown
[Fig. 3(c) and (d)]. Such temporally incomplete observations
with random time gaps, starting from 64 different initial
configurations, were used by the GA.

In both experiments, the GA quickly found a solution. In the
case of experiment R1, it took 26 iterations, while 23 iterations
were needed in experiment R2. In Fig. 4, the maximum, aver-
age, and minimum fitness of the population is shown over time
for both the experiments. Note that for the sake of readability
the fitness values were normalized to the interval [0, 100].

978 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 3, MARCH 2020

(a)

(b)

Fig. 4. Maximum, average, and minimum fitness of the population versus
the GA iteration in experiments (a) R1 and (b) R2.

First, let us note that the plotted values correspond to the
fitness approximation calculated over a subset of the observa-
tion set as described in Section V-B. This explains why the
maximum is not strictly increasing, though the algorithm uses
an elite survival procedure.

Moreover, as can be seen in the plots, in both experiments
the average fitness (almost) constantly increased as the popu-
lations evolved. In R1, the growth was stable but slow, while
in the case of R2 we see a more rapid increase, especially
during the first 10 iterations. In the case of R1, the final solu-
tion was found within one significant “jump” of the maximal
fitness. This can be attributed to the fact that the behavior
of CAs that are very close to the best solution is completely
different from the one of ECA 150. In contrast, in R2, we
see a rather gentle increase of the maximum fitness toward
100, which can be explained by the fact that there are many
CAs resulting in checkerboard-like patterns similar to the ones
evolved by ECA 184.

In Fig. 5, we see the space-time diagram of some CAs that
were discovered by the GA during the evolution as “current
best” candidates for R1, while Fig. 6 displays these for R2.

Interestingly, in both experiments, relatively early in the
evolution of the GA was able to concentrate on some of the
crucial patterns in the space-time diagrams of the unknown
ECAs. In R1, after six iterations, the best individuals already
replicated the triangular pattern of ECA 150, even though it is
very hard to notice such a pattern in the observations available
for the GA [see Fig. 3(c)]. Similarly, in R2, the linear pattern
emerged very quickly, yet deciding on the slope of the lines
turned out to be a bit more challenging.

VI. EXPERIMENTAL RESULTS

A. Introduction

In this section, the results of a series of computational exper-
iments are presented. The main goal of these experiments was
to evaluate the effectiveness of the identification algorithm in
specific circumstances, where the observation set is generated
by a selected CA. The goal of the GA was to uncover this CA
from observations. Five experiments were performed and in
each of them a broad class of CAs and corresponding obser-
vation sets were considered. In Experiment 1, we evaluated the
performance of the GA on spatially complete observation sets
originating from the entire class of ECAs, considered as a sub-
set of A2, i.e., CAs with radius 2. By only considering ECAs,
we were able to examine a class of well-known CAs. Yet, con-
sidering such a specific subset of A2 may have had a strong
impact on the results. To verify whether this was the case,
Experiment 2 was conducted, where we evaluated the perfor-
mance of the GA on observations originating from a randomly
selected set of 350 CAs defined by local rules with radius 2
(but not ECAs). In Experiments 2 and 4, the lengths of the
time gaps were random. To verify whether this uniform ran-
domness influences the obtained results, we studied other types
of time gaps (constant versus only odd versus only even) in
Experiment 3. In Experiment 4, we additionally considered
spatially incomplete observations. Finally, Experiment 5 cov-
ers the aspect of radius detection, i.e., the ability of the GA
to uncover the correct radius of the underlying CA (which is
not known upfront in many practical cases). Three cases were
studied here, namely, CAs with radius 2, 3, and 4.

Due to the large number of cases in the experiments
described in this section, the GA has been implemented using
highly optimized code written in C and compiled by the Intel
C compiler, utilizing OpenMP for concurrent fitness calcula-
tions. The specific executions of the GA were run on a large
computing cluster, where each execution was bound to a spe-
cific node (no internode communication was needed). Each
of the cluster’s nodes had a 24-core Xeon E5-2670 CPU and
128 GB of RAM. The source code of this GA implementation
along with the build and the execution scripts and technical
documentation is available on: github.com/houp/identify.

B. Experiment 1: Identification of ECAs in Case of Spatial
Completeness

In this experiment, the observation set I consists of spatially
complete observations only, i.e., for every I ∈ I, it holds that
I ∈ {0, 1}NI×MI . In addition, we assume that the number of

BOŁT et al.: IDENTIFICATION OF CAs BASED ON INCOMPLETE OBSERVATIONS WITH BOUNDED TIME GAPS 979

Fig. 5. Current best individuals visualized with their space-time diagram and the corresponding GA iteration number, in R1.

Fig. 6. Current best individuals visualized with their space-time diagram and the corresponding GA iteration number, in R2.

rows is equal to the number columns in all observations (NI =
MI = S > 0).

The goal of the experiment is to measure the efficiency
of the identification algorithm. More specifically, we are
interested in the number of iterations needed in order to
evolve to a solution. We assess the performance of the algo-
rithm using the observation sets generated by ECA rules.
Let IA denote the observation set obtained by observing
the behavior of an ECA A. It is assumed that for each A,

the number of observations is the same, i.e., |IA| = K,
for K > 0, and that the observations of different ECAs
are evolved from the same set of random initial conditions.
Observation set IA contains observations with random time
gaps bounded by � > 0, which are chosen for every row
independently.

The values of the design parameters used in this experiment
are the same as in Table II with the exception of: P = 32,
PE = 8, α = 0.0.25, and R = 100. Due to the stochastic

980 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 3, MARCH 2020

TABLE III
EXPERIMENT 1: THE PERFORMANCE OF THE GA EXPRESSED IN TERMS

OF THE AVERAGE OF THE MINIMUM, AVERAGE, AND MAXIMUM

NUMBER OF ITERATIONS PER BEHAVIORAL CLASS

ACCORDING TO (a) WOLFRAM’S CLASSIFICATION

SCHEME AND (b) THE NMLE

(a)

(b)

nature of the GA, the experiment is repeated � = 50 times
for each ECA.

The performance of the GA is quantified for each A in terms
of the average (avgA), minimum (minA), and maximum (maxA)
number of GA iterations needed to find the solution. Across all
ECAs, the average of the minimum, average, and maximum
number of GA iterations was 46, 270, and 1018, respectively.

These results may serve as a reference when interpret-
ing the statistics broken down for specific behavioral classes
[Table III(a) and (b)]. In Table III(a), the grouping is done
according to Wolfram’s classification scheme [25], while
the values of the normalized maximum Lyapunov exponent
(nMLE) [31]–[33] are used in Table III(b). These tables
show that the effort needed for identification is significantly
lower than the overall average for ECAs belonging to the
least complex classes (Wolfram class I and nMLE = −∞).
Additionally, the most complex classes require the highest
average number of iterations, which shows that there is a
connection between the complexity of a CA’s dynamical
nature and the performance of the identification algorithm.
This connection is further confirmed by the results of a two-
sided Mann–Whitney U-test for avgA grouped according to
Wolfram’s classes [Table IV(a)] and the nMLE [Table IV(b)].
The p-values confirm that the difference in performance of the
GA for the different Wolfram classes and for the considered
(intervals of) nMLE values is statistically significant.

In Table V, we present the nMLE and GA statistics of the
five ECAs that were the easiest to identify [Table V(a)] and
the five ECAs that were the hardest to identify [Table V(b)]
according to the values of avgA. Not surprisingly, among the
easiest to identify, we find ECAs 0 and 255, which correspond
to the two simplest local rules mapping any neighborhood con-
figuration to the same value. Interestingly, all of the ECAs that
were hard to identify have similar relatively high nMLE val-
ues. Summing up, the identification algorithm turns out to be
effective in all of the cases considered, although the effort of
finding a solution differs greatly, depending on the ECA.

C. Experiment 2: Performance on the Class A2

Experiment 1 concerned ECAs only, considering them as
a subclass of A2, by setting r∗ = 2 in the GA, so that a

TABLE IV
EXPERIMENT 1: RESULTS OF THE TWO-SIDED MANN–WHITNEY U TEST

OF avgA GROUPED ACCORDING TO (a) WOLFRAM’S CLASSIFICATION

SCHEME AND (b) NMLE

(a)

(b)

TABLE V
ECAS REQUIRING THE (a) SMALLEST AND THE (b) LARGEST NUMBER OF

ITERATIONS OF THE GA IN EXPERIMENT 1

(a)

(b)

measurable effort was needed to find a solution. As a natural
continuation of Experiment 1, we repeated the experiment,
but instead of using 256 ECAs to generate initial observa-
tion sets, we used 350 randomly selected CAs defined by a
local rule with radius two, i.e., CAs belonging to the class A2.
The remaining parameters and the experimental setup were the
same as in Experiment 1. The goal of this experiment was to
verify whether the results of Experiment 1 were affected by
the nature of ECAs, which form a very specific subclass of A2.

The average of the minimum, average, and maximum num-
ber of GA iterations required to find a solution in this
experiment was, respectively,

avg(min A) = 57, avg
(
avgA

) = 617, avg(max A) = 3040.

These results clearly suggest that, on average, ECAs as a
subclass of A2 were easier to identify when compared to other
CAs from the class A2, which may be attributed to the fact
that many of the ECAs result in a relatively simple dynam-
ical behavior. On the other hand, although the averages are
slightly higher, the order of magnitude is not changed. We
believe that these results show that the approach of analyz-
ing ECAs as a subclass of A2 in Experiment 1 was fully
justified. More interestingly, the results presented above are
very close to the results for ECAs belonging to class IV

BOŁT et al.: IDENTIFICATION OF CAs BASED ON INCOMPLETE OBSERVATIONS WITH BOUNDED TIME GAPS 981

TABLE VI
EXPERIMENT 3: THE PERFORMANCE OF THE GA EXPRESSED IN TERMS

OF THE AVERAGE OF THE MINIMUM, AVERAGE, AND MAXIMUM

NUMBER OF ITERATIONS IN THE CASE OF: 1. EVEN,
2. ODD, AND 3. ARBITRARY TIME GAPS

of Wolfram’s classification scheme [Table III(a)], suggesting
that the identification is likely to be more complex when
identifying the classes of CAs with higher radius.

D. Experiment 3: Identification of ECAs With Constant Time
Gaps

While the time gaps had a random length in Experiment 1,
they are kept constant in this experiment. Random time gaps
correspond to a lack of temporal synchronization between the
observed system and the observations, while the constant time
gaps represent a simple form of synchronization of the clocks.
Thus, the goal of this experiment is to verify whether such
a synchronization makes it easier to solve the identification
problem.

Each observation I used in this experiment is constructed
by randomly selecting one number tI ∈ {1, . . . , � − 1} and
taking every tI th row of the original space-time diagram, thus
in between every two time stamps of a given observation I
exactly tI time stamps are missing. Neither the numbers tI
nor the fact that the time gaps are equally known by the GA.
We consider three cases: 1) even tI (Table VII); 2) odd tI
(Table VIII); and 3) arbitrary tI (Table IX). The overall per-
formance of the algorithm across all ECAs and these three
cases are presented in Table VI.

As can be inferred from these tables, the performance of
the GA differs greatly from that in Experiment 1. Especially
in the case of odd tI , the performance is significantly lower.
Moreover, in this case, for ECAs 105 and 150 (which are
dynamically equivalent) the algorithm is not able to find a
solution in fewer than G = 9× 105 iterations. A similar situ-
ation occurs in the case of arbitrary tI (Table IX), where the
effect of odd time gaps, which are present in about half of the
cases, played an important role.

The reason for the unidentifiability of ECAs 105 and 150
lies in the specific properties of binary CAs. Let A105 and A150
be the corresponding global rules of the ECAs in question. It
is relatively easy to check that for any configuration X it holds
that A105(X) 	= A150(X) and A105(A105(X)) = A150(A150(X)).
In other words, every second row of a space-time diagram of
A105 is identical to the corresponding row in the space-time
diagram of A150 and this holds for any initial configuration.
Hence, if the time gaps are odd, both CAs solve the same
identification problem. In general, the identification algorithm
can handle multiple solutions of the identification problem, but
in this particular case, the LUT representations of those two
CAs are each other’s Boolean complement. This is an impor-
tant challenge for the crossover operation which is likely to
produce offspring weaker than the parents in most of the cases.

TABLE VII
EXPERIMENT 3: THE PERFORMANCE OF THE GA EXPRESSED IN TERMS

OF THE AVERAGE OF THE MINIMUM, AVERAGE, AND MAXIMUM

NUMBER OF ITERATIONS PER BEHAVIORAL CLASS ACCORDING

TO (a) WOLFRAM’S CLASSIFICATION SCHEME AND THE

(b) NMLE IN THE CASE OF CONSTANT, EVEN

TIME GAPS (CASE 1)

(a)

(b)

TABLE VIII
EXPERIMENT 3: THE PERFORMANCE OF THE GA EXPRESSED IN TERMS

OF THE AVERAGE OF THE MINIMUM, AVERAGE, AND MAXIMUM

NUMBER OF ITERATIONS PER BEHAVIORAL CLASS

ACCORDING TO (a) WOLFRAM’S CLASSIFICATION

SCHEME AND THE (b) NMLE IN THE CASE OF

CONSTANT, ODD TIME GAPS (CASE 2)

(a)

(b)

Interestingly, ECAs 105 and 150 are not the only ECAs
with this property. The same happens for ECAs 15 and 240
(nMLE = 0), 23 and 232 (nMLE ≈ 0.001), 43 and 212 (nMLE
= −∞), 51 and 204 (nMLE = 0), 77 and 178 (nMLE = 0),
85 and 170 (nMLE = 0), and 113 and 142 (nMLE = −∞). Yet,
all of those rules are correctly identified in Experiment 2. We
argue that this must be because they are much less sensitive
to the initial configuration (in terms of nMLE) than ECAs
105 and 150.

Finally, it can be shown that there does not exist a pair
of 1-D binary CAs A and B such that A(X) 	= B(X),
A(A(X)) 	= B(B(X)), and A3(X) = B3(X) for any X, which
is clearly reflected in the high performance of the algorithm
in the case of even time gaps.

All together, the main result of this experiment is that the
nature of the time gaps can greatly affect the performance of
identification algorithm, up to the extent that it prevents the
algorithm to successfully identify a solution.

E. Experiment 4: Impact of Spatial Incompleteness of
Observations

In this experiment, we measure the effect of introduc-
ing spatial incompleteness. The previous experiments covered

982 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 3, MARCH 2020

TABLE IX
EXPERIMENT 3: THE PERFORMANCE OF THE GA EXPRESSED IN TERMS

OF THE AVERAGE OF THE MINIMUM, AVERAGE, AND MAXIMUM

NUMBER OF ITERATIONS PER BEHAVIORAL CLASS ACCORDING

TO (a) WOLFRAM’S CLASSIFICATION SCHEME AND

THE (b) NMLE IN THE CASE OF CONSTANT

TIME GAPS (CASE 3)

(a)

(b)

TABLE X
EXPERIMENT 4: MINIMAL, AVERAGE, AND MAXIMAL PERCENTAGE SA

DENOTING THE MAXIMAL DENSITY OF “?” SYMBOLS IN THE

OBSERVATION SET AT WHICH THE IDENTIFICATION IS

SUCCESSFUL FOR AT LEAST ONE OF THE 50 RUNS,
PER BEHAVIORAL CLASS ACCORDING TO

(a) WOLFRAM’S CLASSIFICATION

SCHEME AND THE (b) NMLE

(a)

(b)

only temporal incompleteness, but here we validate how the
addition of an additional source of incompleteness affects the
performance of the algorithm. The parameters of the identifi-
cation algorithm are set to the same values as in Experiment 1.
For each of the 256 ECAs, we build a set of spatially complete
observations. For each of those sets we run the identification
algorithm � = 50 times. Then, we gradually introduce the
spatial incompleteness by changing 2000 randomly selected
entries (either 0 or 1) to “?”. This process is repeated multiple
times until we end up with observations of which only the first
row is known. After each step, the identification algorithm is
executed � = 50 times. Note that we do not execute the iden-
tification algorithm after the final step of introducing the “?”
symbols everywhere, since it is a trivial case.

For each ECA we measure the percentage SA denoting the
maximal percentage of “?” symbols in the observation set at
which the identification is successful for at least one of the
50 runs in fewer than G = 9 × 105 GA iterations (Table X).
Overall, the average is avg(SA) = 73.96% and ECA 125 turns
out to be the most sensitive to the spatial incompleteness,
resulting in SA = 4.26%.

As can be inferred from Table X, ECAs differ when it comes
to their value of SA, which may be understood informally

TABLE XI
EXPERIMENT 4: RESULTS OF THE TWO-SIDED MANN–WHITNEY U TEST

OF SA GROUPED ACCORDING TO (a) WOLFRAM’S CLASSIFICATION

SCHEME AND THE (b) NMLE

(a)

(b)

as their tolerance to spatial incompleteness. Interestingly, for
most of the class I ECAs, introduction of spatial incomplete-
ness does not impact identifiability. As the CAs get more
complex, also the tolerance to spatial incompleteness tends
to lower. Yet, for some class II rules, there are visible differ-
ences, which are not yet fully understood. To further analyze
the obtained results, we applied the two-sided Mann–Whitney
U-test on SA grouped according to Wolfram’s classifica-
tion scheme and the nMLE (Table XI). As in the case of
Experiment 1, the difference in performance of the GA for
the different Wolfram classes and for the considered (intervals
of) nMLE values is statistically significant.

F. Experiment 5: Radius Detection

The goal of this experiment is to verify whether the identi-
fication algorithm is able to correctly evolve the radius of an
unknown local rule. We study randomly selected CAs from the
sets A2, A3, and A4. From each of these sets, 100 CAs are
selected. The parameters of the identification algorithm are the
same as in Experiment 1, with the exception of the minimal
radius, which is now r∗ = 1, the population size P = 512, and
size of the elite PE = 128. The latter two settings are motivated
by preliminary experiments showing that a larger population
size assures a stable behavior of the algorithm if the expected
solution is likely to have a higher radius. In contrast to the
previous experiment, we adjust the halting condition. In this
experiment, the algorithm is stopped when finding a solution
or after G = 104 iterations. Since the CAs are selected ran-
domly, we do not repeat the identification multiple times per
CA, as in the previous experiments. The observations gener-
ated by the CAs are spatially complete and the time gaps are
random.

Among the 300 tested cases, only six runs of the identifica-
tion algorithm were unsuccessful. In the remaining 294 cases,
the algorithm was able to find a solution within an average
number of 369 iterations. More detailed statistics on the num-
ber of iterations, broken down among different radii are shown
in Table XII. The average number of iterations increases as the
radius of the underlying CA increases, which can be attributed
to the growth of Ar as r increases.

BOŁT et al.: IDENTIFICATION OF CAs BASED ON INCOMPLETE OBSERVATIONS WITH BOUNDED TIME GAPS 983

TABLE XII
EXPERIMENT 5: THE PERFORMANCE OF THE GA EXPRESSED IN TERMS

OF THE AVERAGE OF THE MINIMUM, AVERAGE, AND MAXIMUM

NUMBER OF ITERATIONS, PER RADIUS OF THE SOLUTION

TABLE XIII
EXPERIMENT 5: MINIMAL, AVERAGE, AND MAXIMAL PERCENTAGE OF

THE NUMBER OF GA ITERATIONS, BEFORE FINDING THE SOLUTION,
DURING WHICH THE MAJORITY OF THE POPULATION HAD THE

RADIUS OF THE TARGET SOLUTION, PER RADIUS

OF THE SOLUTION

We also analyze the structure of the populations with regard
to the ratio of individuals with a specific radius to the over-
all size of population. We observed that most of the evolved
individuals have the radius of the final solution starting from
some point in time, early during the evolution. In other words,
a majority of individuals aligns to the radius of the solution,
long before the solution itself is found.

More precisely, for radii 3 and 4, in all of the cases consid-
ered, the solution always has the correct radius, and a strict
majority (more than half of individuals) has this radius some
time before finding the solution. In the case of radius 2, the
same happens for 93% of the test cases. Otherwise, the final
solution and the majority of individuals have a larger radius
than the original rule, which is possible due to Fact 1.

A more detailed breakdown of the results is presented in
Table XIII. This table shows the minimum, average, and max-
imal percentage (calculated from all of the runs of the GA) of
the total number of GA iterations before finding the solution,
during which the strict majority of the population has the same
radius as the CA that is looked for. High percentages corre-
spond to cases where the correct radius is detected early in
the evolution.

The results shown in Table XIII suggest that the algorithm
is typically able to discover the correct radius of the solution
long before finding the solution itself. This justifies the use of
individuals with variable length and show that the GA is able
to correctly identify the radius.

VII. SUMMARY

The main goal of this paper was to formally define, discuss,
and solve the identification problem for CAs in the context
of incomplete observations. This setting is motivated by real-
world situations in which a CA-based model is desired.

A solution algorithm was presented, and its performance
was evaluated for all ECAs and various CA families with
larger radii by performing a series of computational experi-
ments. The results show that our identification algorithm can
solve the problem in many complex settings and that the effort
associated with the identification of CAs is connected to their

dynamical properties, i.e., the effort of identification grows
with the complexity of the CA. The identification algorithm is
capable of correctly identifying the neighborhood radius and
is able to solve the problem even in cases where a relatively
high number of cell states are missing in the observations.
Moreover, simple synchrony effects expressed by constant
time gaps were studied and the results show that in some of
such settings the problem becomes either insolvable or at least
very hard to solve. Therefore, introducing randomness to the
observation timing is recommended.

These positive experimental results and the general structure
of the identification algorithm, which can be easily adapted to
higher-dimensional and multistate CAs, will direct our future
research on this topic. The ultimate goal is to establish a gen-
eral identification framework applicable in a broad range of
real-world modeling scenarios.

The preliminary results of our ongoing works suggest that
the identification algorithm can be further generalized to solve
identification problems involving both incomplete and noisy
observations, i.e., observations where some of the states were
wrongly recorded. In the future, we will also address the iden-
tification problem for stochastic CAs and continuous CAs.
Preliminary results on the identification of nondeterminis-
tic CAs are already available in the case of α-asynchronous
CAs [34] and diploid CAs [35].

ACKNOWLEDGMENT

The computational resources used in simulations for
Experiments 1, 3–5 (STEVIN Supercomputer Infrastructure)
and services used in this paper were kindly provided
by Ghent University, the Flemish Supercomputer Center
(VSC), the Hercules Foundation, and the Flemish Government
Department EWI. Computations used in simulations for
Experiment 2 were carried out at the Academic Computer
Centre in Gdansk (TASK KDM).

REFERENCES

[1] D. Das, “A survey on cellular automata and its applications,” in Global
Trends in Computing and Communication Systems (Communications in
Computer and Information Science), vol. 269, P. V. Krishna, M. R. Babu,
and E. Ariwa, Eds. Heidelberg, Germany: Springer, 2012, pp. 753–762.

[2] S. Al-Kheder, J. Wang, and J. Shan, “Cellular automata urban growth
model calibration with genetic algorithms,” in Proc. Urban Remote Sens.
Joint Event, Paris, France, Apr. 2007, pp. 1–5.

[3] E. Sapin, L. Bull, and A. Adamatzky, “Genetic approaches to search for
computing patterns in cellular automata,” IEEE Comput. Intell. Mag.,
vol. 4, no. 3, pp. 20–28, Aug. 2009.

[4] P. L. Rosin, “Image processing using 3-state cellular automata,” Comput.
Vis. Image Understanding, vol. 114, no. 7, pp. 790–802, 2010.

[5] F. C. Richards, T. P. Meyer, and N. H. Packard, “Extracting cellular
automaton rules directly from experimental data,” Physica D Nonlinear
Phenomena, vol. 45, nos. 1–3, pp. 189–202, 1990.

[6] M. Mitchell, J. P. Crutchfield, and R. Das, “Evolving cellular automata
with genetic algorithms: A review of recent work,” in Proc. 1st
Int. Conf. Evol. Comput. Appl. (EvCA), 1996. [Online]. Available:
http://csc.ucdavis.edu/∼evca/evca1/papers.htm

[7] T. Bäck, R. Breukelaar, and L. Willmes, “Inverse design of cellu-
lar automata by genetic algorithms: An unconventional programming
paradigm,” in Unconventional Programming Paradigms (LNCS 3566),
J.-P. Banâtre, P. Fradet, J.-L. Giavitto, and O. Michel, Eds. Heidelberg,
Germany: Springer-Verlag, 2005, pp. 161–172.

[8] E. Sapin, O. Bailleux, and J.-J. Chabrier, “Research of a cellular automa-
ton simulating logic gates by evolutionary algorithms,” in Proc. 6th Eur.
Conf. Genet. Program. (EuroGP), 2003, pp. 414–423.

984 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 3, MARCH 2020

[9] S. Bandini, S. Manzoni, and L. Vanneschi, “Evolving robust cellular
automata rules with genetic programming,” in Automata, A. Adamatzky
et al., Eds. Frome, U.K.: Luniver Press, 2008, pp. 542–556.

[10] K.-I. Maeda and C. Sakama, “Identifying cellular automata rules,” J.
Cellular Automata, vol. 2, no. 1, pp. 1–20, 2007.

[11] D. Andre, F. H. Bennett, III, and J. R. Koza, “Discovery by genetic
programming of a cellular automata rule that is better than any known
rule for the majority classification problem,” in Proc. 1st Annu. Conf.
Genet. Program., 1996, pp. 3–11.

[12] C. Ferreira, “Gene expression programming: A new adaptive algorithm
for solving problems,” Complex Syst., vol. 13, no. 2, pp. 87–129, 2001.

[13] L. Kroczek and I. Zelinka, “Investigation on cellular automaton rule
estimation,” J. Cellular Automata, vol. 13, no. 4, pp. 307–323, 2018.

[14] X. Liu, X. Li, L. Liu, J. He, and B. Ai, “A bottom-up approach to
discover transition rules of cellular automata using ant intelligence,”
Int. J. Geograph. Inf. Sci., vol. 22, nos. 11–12, pp. 1247–1269, 2008.

[15] L. Bull and A. Adamatzky, “A learning classifier system approach to the
identification of cellular automata,” J. Cellular Automata, vol. 2, no. 1,
pp. 21–38, 2007.

[16] A. Adamatzky, Identification of Cellular Automata. London, U.K.:
Taylor & Francis Group, 1994.

[17] Y. Yang and S. A. Billings, “Extracting Boolean rules from CA patterns,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 4, pp. 573–580,
Aug. 2000.

[18] Y. Yang and S. A. Billings, “Neighborhood detection and rule selection
from cellular automata patterns,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 30, no. 6, pp. 840–847, Nov. 2000.

[19] X. Sun, P. L. Rosin, and R. R. Martin, “Fast rule identification and
neighborhood selection for cellular automata,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 41, no. 3, pp. 749–760, Jun. 2011.

[20] P. Gács, G. L. Kurdyumov, and L. A. Levin, “One-dimensional uniform
arrays that wash out finite Islands,” Problemy Peredachi Informatsii,
vol. 14, no. 3, pp. 92–96, 1978.

[21] N. H. Packard, Adaptation Toward the Edge of Chaos. Champaign, IL,
USA: Univ. Illinois Urbana–Champaign, 1988.

[22] B. Wolnik, M. Dembowski, W. Bołt, J. M. Baetens, and B. De Baets,
“Density-conserving affine continuous cellular automata solving the
relaxed density classification problem,” J. Phys. A Math. Theor., vol. 50,
no. 34, Jul. 2017, Art. no. 345103.

[23] M. Dembowski, B. Wolnik, W. Bołt, J. M. Baetens, and B. De Baets,
“Affine continuous cellular automata solving the fixed-length density
classification problem,” Nat. Comput., vol. 17, no. 3, pp. 467–477,
Jul. 2017.

[24] E. Chuvieco and A. Huete, Fundamentals of Satellite Remote Sensing.
Boca Raton, FL, USA: CRC, 2009.

[25] S. Wolfram, “Statistical mechanics of cellular automata,” Rev. Modeling
Phys., vol. 55, pp. 601–644, Jul. 1983.

[26] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis With Applications to Biology, Control, and
Artificial Intelligence. Ann Arbor, MI, USA: Univ. Michigan Press,
1975.

[27] M. Tomassini and M. Perrenoud, “Cryptography with cellular automata,”
Appl. Soft. Comput., vol. 1, no. 2, pp. 151–160, 2001.

[28] F. Seredynski and J. Skaruz, “Evolutionary algorithms and cellular
automata towards image reconstruction,” in Proc. 3rd Int. Conf. Emerg.
Appl. Inf. Technol., 2012, pp. 283–286.

[29] P. H. T. Schimit, “On exploring the genetic algorithm for modeling
the evolution of cooperation in a population,” Commun. Nonlinear Sci.
Numer. Simul., vol. 19, no. 8, pp. 2801–2810, 2014.

[30] D. Whitley, S. Rana, and R. B. Heckendorn, “The island model genetic
algorithm: On separability, population size and convergence,” J. Comput.
Inf. Technol., vol. 7, no. 1, pp. 33–47, 1998.

[31] F. Bagnoli, R. Rechtman, and S. Ruffo, “Damage spreading and
Lyapunov exponents in cellular automata,” Phys. Lett. A, vol. 172,
nos. 1–2, pp. 34–38, 1992.

[32] S. Wolfram, “Universality and complexity in cellular automata,” Physica
D Nonlinear Phenomena, vol. 10, nos. 1–2, pp. 1–35, 1984.

[33] M. A. Shereshevsky, “Lyapunov exponents for one-dimensional cellular
automata,” J. Nonlinear Sci., vol. 2, no. 1, pp. 1–8, 1992.

[34] W. Bołt, B. Wolnik, J. M. Baetens, and B. De Baets, “On the iden-
tification of α-asynchronous cellular automata in the case of partial
observations with spatially separated gaps,” in Challenging Problems
and Solutions in Intelligent Systems, G. De Tré et al., Eds. Cham,
Switzerland: Springer, 2016, pp. 23–36.

[35] W. Bołt, A. Bołt, B. Wolnik, J. M. Baetens, and B. De Baets, “A sta-
tistical approach to the identification of diploid cellular automata,” in
Theory and Practice of Natural Computing, C. Martín-Vide, R. Neruda,
and M. A. Vega-Rodríguez, Eds. Cham, Switzerland: Springer, 2017,
pp. 37–48.

Witold Bołt received the M.Sc. degrees in com-
puter science and in theoretical mathematics from
the University of Gdańsk, Gdańsk, Poland, in 2008
and 2009, respectively. He is currently pursuing the
Ph.D. degree with the Institute of Systems Research,
Polish Academy of Science, Warsaw, Poland.

He is a Software Architect and a Consultant for
enterprise customers in Europe. His current research
interests include identification of cellular automata
and evolutionary algorithms.

Jan M. Baetens received the M.Sc. degree in bio-
science engineering: land and forestry management
and the Ph.D. degree in applied biological sciences
from Ghent University, Ghent, Belgium, in 2007 and
2012, respectively.

He is an Assistant Professor with the Department
of Data Analysis and Mathematical Modeling, Ghent
University, Ghent, in 2017, where he is a mem-
ber of the research unit Knowledge-Based Systems
(KERMIT). His current research interests include
analysis of spatially explicit models and case-based

development of such models.

Bernard De Baets received the M.Sc. degree
(summa cum laude) in mathematics, the
Postgraduate degree in knowledge technology
(summa cum laude), and the Ph.D. degree (summa
cum laude) in mathematics from Ghent University,
Ghent, Belgium, in 1988, 1991, and 1995,
respectively, and the Honorary Doctorate degree
from the University of Turku, Turku, Finland, in
2017.

He became a Senior Full Professor in applied
mathematics with Ghent University in 1999, where

he is leading KERMIT, the research unit Knowledge-Based Systems. He has
co-authored nearly 500 papers in international peer-reviewed journals.

Dr. De Baets was a recipient of the Government of Canada Award in
1988, the Honorary Professor of Budapest Tech in 2006, and the Profesor
Invitado of the Universidad Central “Marta Abreu” de Las Villas, Cuba, in
2017. He serves on the editorial boards of various international journals, in
particular, as the Co-Editor-in-Chief of Fuzzy Sets and Systems. He became
an IFSA Fellow in 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

