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A B S T R A C T

In this paper, the identification problem of diploid cellular automata is considered, in which, based on a series of
incomplete observations, the underlying cellular automaton rules and the states of missing cell states are to be
uncovered. An algorithm for identifying the rule, based on a statistical parameter estimation method using a
normal distribution approximation, is presented. In addition, an algorithm for filling the missing cell states is
formulated. The accuracy of these methods is examined in a series of computational experiments.

1. Introduction

Cellular Automata (CAs) are commonly used modeling constructs
for addressing a variety of practical and theoretical problems (Das,
2012). Yet, for that purpose one needs to understand the underlying
mechanisms of the phenomenon at stake, and translate them into CA
rules. This, however, hampers the use of CAs, since it is very hard to
manually design such rules for most problems.

Many efforts have been made in the direction of developing auto-
mated methods for constructing CAs based on observed space-time
diagrams. These include methods based on genetic algorithms (Bolt
et al., 2018; Richards et al., 1990; Mitchell et al., 1996; Bäck et al.,
2005; Sapin et al., 2003), genetic programming (Bandini et al., 2008;
Maeda and Sakama, 2007; Andre et al., 1996), gene expression pro-
gramming (Ferreira, 2001), other evolutionary algorithms (Kroczek and
Zelinka, 2018), ant colony algorithms (Liu et al., 2008), machine
learning approaches (Bull and Adamatzky, 2007; Gilpin, 2018), as well
as direct construction algorithms (Adamatzky, 1994; Yang and Billings,
2000,2000; Sun et al., 2011). A review of the key methods is presented
in Adamatzky (2012). Most recent research relates to deterministic CAs,
with the notable exception of Billings and Yang (2003) where a Sto-
chastic CA (SCA) is represented by a polynomial corrupted by noise,
whose parameters are then discovered by a genetic algorithm. Despite
the vast literature and the numerous attempts to solve the identification
problem, it is still hard to outline an effective solution strategy that
would work in the stochastic case and when observations of the SCA in
question are incomplete, i.e. when not all cell states have been

recorded.
In this paper, we focus on the identification of a class of Stochastic

CAs (SCAs) called diploid CAs. Such SCAs recently gained a lot of at-
tention in the research community (Fatès, 2017; Mendonça, 2017). The
identification algorithm presented in this paper is an extension of the
algorithm presented in Bołt et al. (2016), where the identification of
α-asynchronous CAs in the case of incomplete observations was dis-
cussed. This extension allows for the identification of diploid CAs based
on incomplete observations. The consideration of incomplete observa-
tions is motivated by the fact that in real-world problems it is practi-
cally impossible to capture the entire image of the phenomenon at
stake. Indeed, due to technical limitations and the dynamical nature of
the processes being observed, typically only some parts of the space-
time history are available. The goal of the identification algorithm is to
estimate the parameters of the underlying SCA and to estimate the
missing states in the observations.

This paper is organized as follows. In Section 2 we present the key
definitions. The identification problem and the description of the
identification algorithm are presented in Section 3. Section 4 contains
the results of our computational experiments. The paper is concluded
by Section 5, where the results are summarized.

2. Preliminaries

In this paper, we consider 1D CAs whose N cells are arranged in a
circular array. We focus on binary CAs with a symmetric neighborhood
whose radius is denoted by r . A configuration of a given CA A is an
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element = … −x x x x( , , , )N0 1 1 of {0, 1}N , and A is identified with its global
rule →F: {0, 1} {0, 1}N N , given by the formula = ′ ′ … ′ −xF x x x( ) ( , , , )N0 1 1 ,
where:

′ = … …− − + +x f x x x x x( , , , , , , )n n r n n n n r1 1

and all operations on the indices are performed modulo N . Here, the
function →+f : {0, 1} {0, 1}r2 1 , called the local rule, is an update function,
which may be deterministic or not. For the sake of readability, we
enumerate the elements of +{0, 1} r2 1 as follows: = …N (0, ,0, 0)0 ,

= …N (0, ,0, 1)1 , …, = …−N (1, ,1, 0)s 1 , = …N (1, ,1, 1)s , where
= −+s 2 1r2 1 . Further, xn

t will be used to denote the value of the nth cell
after the tth application of F starting from the configuration x .

CAs with a unit neighborhood radius and a deterministic local rule f
are known as Elementary CAs (ECAs) (Wolfram, 1983). The local rule f
of an ECA is a function of three variables, i.e. →f : {0, 1} {0, 1}3 . As the
set {0, 1}3 has only eight elements, i.e. =N (0, 0, 0)0 , =N (0, 0, 1)1 , …,

=N (1, 1, 1)7 , the local rule f can be defined by collecting the values
= ∈ ∈ …Nf iℓ ( ) {0, 1}, {0, ,7}i i , in a lookup table (LUT) (see Table 1).

Note that the order of the neighborhood configurations is fixed, so a
given LUT can be stored using its last row.

The number = ∑ = NC f ( ) 2i i
i

0
7 is called the rule number of the local

rule f . We will write ECAC to refer to the ECA with rule number C (for
example, ECA204 denotes the identity CA). The set of all 256 ECAs will
be denoted by �.

If the local rule of a CA is stochastic, we are dealing with an SCA.
Here, we consider SCAs whose local rule can be expressed as:

= … …+
− − + +x X x x x x x( , , , , , , ) ,n

t
t n n r

t
n
t

n
t

n
t

n r
t1

, 1 1 (1)

where NX ( )t n i, are independent Bernoulli random variables satisfying:

= =NX pPr( ( ) 1) ,t n i i, (2)

i.e. the probability of turning the state of a cell into 1 in the next time
step depends only on the states of the cells in its neighborhood and is
independent of the time step t and the cell number i. Obviously, it then
holds that:

= = −NX pPr( ( ) 0) 1 ,t n i i, (3)

which means that an SCA can be fully described by the sequence of
probabilities …p p p( , , , )s0 1 , usually presented in a tabular form (pLUT).
The general form of the pLUT of an SCA with =r 1 is given in Table 2.
Although Table 2 does not look different from Table 1, its entries pi are
numbers belonging to [0,1], while each entry ℓi in Table 1 belongs to
{0, 1}.

It is known that every SCA can be expressed as a stochastic mixture
of a finite number of deterministic CAs (Bołt et al., 2015), i.e. for every
SCA A, there exists a finite sequence of deterministic CAs …A A( , , )m1
and a vector of probabilities …λ λ( , , )m1 satisfying ∑ == λ 1i

m
i1 , such that

A is equivalent to independently selecting Ai for every cell, at every
time step, with probability λi. In this paper we focus on a special class of
SCAs, the so-called diploid CAs, which can be expressed as stochastic
mixtures consisting of only two deterministic CAs. Such SCAs have been
studied earlier by several authors (e.g. Fatès, 2017; Mendonça, 2011).
Note that a special class of diploid CAs is the class of α-asynchronous
CAs (Fatès and Morvan, 2005), where one of the two deterministic CAs
is the identity CA.

Definition 1 (Diploid CA). Let A1 and A2 be two different deterministic
CAs with the same neighborhood radius r and with local rules f1 and f2,
respectively. For any mixing rate ∈λ ]0, 1], we define the diploid CA
A A( , )λ1 2 as the SCA with the following probabilities in its pLUT:

= + −N Np λf λ f( ) (1 ) ( ),i i i1 2 (4)

for any ∈ …i s{0, 1, , }.

=

⎧

⎨

⎪

⎩
⎪

= =
= =

− = =
= =

N N
N N
N N
N N

p

f f
λ f f

λ f f
f f

0, if ( ) ( ) 0,
, if ( ) 1 and ( ) 0,

1 , if ( ) 0 and ( ) 1,
1, if ( ) ( ) 1.

i

i i

i i

i i

i i

1 2

1 2

1 2

1 2 (5)

Note that if ′ = −λ λ1 , then the diploid CA ′A A( , )λ1 2 is identical to
A A( , )λ2 1 , allowing us to restrict to ∈λ ]0, 0.5].

Example 2. Let A1 be ECA57 and A2 be ECA120. The general form of
the pLUT of A A( , )λ1 2 is shown in Table 3. Some space-time diagrams of
A A( , )λ1 2 evolved from the same initial configuration for different values
of λ are shown in Fig. 1. In these space-time diagrams, we adopt the
convention that the initial configuration is shown at the top and time
increases downwards in the diagram. It can be seen that the space-time
diagram becomes increasingly similar to the one of ECA57 as λ
approaches one, while ECA120 is the most influential one for <λ 0.5.

In general, the decomposition of an SCA as a stochastic mixture of
CAs is not unique (Bołt et al., 2015), yet the following proposition
(Fatès, 2017) gives a full characterization of diploid CAs, as well as the
conditions for the existence of a unique representation.

Proposition 1. Let …p p p( , , , )s0 1 be the pLUT of an SCA A. Then A is a
diploid CA if and only if there exists a ∈λ ]0, 0.5] such that

∈ −p λ λ{0, , 1 , 1}i for each ∈ …i s{0, 1, , }, but
… ∉ +p p p( , , , ) {0, 1}s

s
0 1

1. Moreover, if ≠λ 0.5, then there exist a unique
couple A A( , )1 2 such that =A A A( , )λ1 2 . Otherwise, if =λ 0.5, then there
exist 2d such couples, with d being the number of pi's equal to 0.5, for

= …i s0, 1, , .

3. Identification and gap filling

The goal of this section is to formally define the identification
problem and formulate the identification algorithm incorporating a gap
filling procedure.

3.1. Formulation of the identification problem

Our formulation is based on the notion of an observation of a space-
time diagram, which is assumed to originate from some unknown di-
ploid CA A A( , )λ1 2 . Solving the identification problem requires finding
both CAs A1 and A2 and obtaining a good estimation of λ. More for-
mally, let …I I I, , , M1 2 be ×T N arrays with binary entries. Each array Im,
for ∈ …m M{1, 2, , }, will be referred to as an observation. The set of all
observations will be denoted by � . We assume that each observation

�∈I is a space-time diagram of the same diploid CA A A( , )λ1 2 , i.e. the
element I t n( , ) is the state of the nth cell at the tth time step.

We choose a small ∈α ]0, 1] and we take − α1 as a confidence
level1 . Based on the set of observations � , we construct candidates for
A1 and A2, and we estimate λ by building a confidence interval λ λ[ , ]L U .

Table 1
General form of the LUT of the local rule of an ECA.

N0 N1 N2 N3 N4 N5 N6 N7

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7

Table 2
General form of the pLUT of an SCA with unit radius.

N0 N1 N2 N3 N4 N5 N6 N7

p0 p1 p2 p3 p4 p5 p6 p7

1 Note that α is not related to α-asynchronous CAs mentioned briefly in
Section 2.
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We require that the probability that both CAs A1 and A2 are correctly
identified and the true λ belongs to λ λ[ , ]L U is at least − α1 2 .

The above formulation is valid for so-called complete observations
which are composed of only the symbols 0 and 1, meaning that all states
have been (correctly) captured. To account for incomplete observations
we extend the definition of an observation. An incomplete observation I
is a ×T N array composed of the symbols 0, 1 and ?, where ? represents
an unknown state referred to as a gap. It is assumed that the first row of
an observation I does not contain the symbol ?. The formulation of the
identification problem given above remains valid in the case of in-
complete observations. Yet, due to the introduction of gaps, we extend
it with one additional requirement. After finding A1, A2 and the con-
fidence interval for λ, we require to fill in the gaps with the most likely
states in a way that does not conflict with the identified A1 and A2. In
other words, we want to fill the gaps such that the obtained space-time
diagram is a valid space-time diagram of A A( , )λ1 2 . The latter require-
ment is very natural, yet the most obvious solution strategies fail to
fulfill it.

Let I be an observation. We will write I t n r[ , | ] to denote the vector
− … +I t n r I t n r( ( , ), , ( , )) (assuming periodic boundary conditions).

The value I t n( , ) can now be understood as a realization of the random
variable −−X I t n r( [ 1, | ])t n1, . In this way, for any couple t n( , ), we de-
termine a dependence region D t n( , ) consisting of couples ′ ′t n( , ) that are
linked with t n( , ) by Eq. (1):

= − − … − +
∪ − … +
∪ + − … + +

D t n t n r t n r
t n r t n r
t n r t n r

( , ) {( 1, ), , ( 1, )}
{( , 2 ), , ( , 2 )}
{( 1, ), , ( 1, )}.

Assume that = =I t n I t n( , ) ( , ) ?1 1 2 2 . We define a relation of con-
nection between two gaps t n( , )1 1 and t n( , )2 2 . We say that a gap at po-
sition t n( , )1 1 is connected with a gap at position t n( , )2 2 if

∈t n D t n( , ) ( , )2 2 1 1 (or, equivalently, ∈t n D t n( , ) ( , )1 1 2 2 , due to the sym-
metry of the neighborhood). A gap is called isolated if it is not connected

with any other gap.
We group the gaps in an observation into clusters. A cluster � is the

smallest, nonempty subset of the set of gaps, so that if some gap belongs
to � , also all the gaps connected with this gap belong to � . Note that a
similar concept of cluster is considered in percolation theory
(Broadbent and Hammersley, 1957). The clusters considered here,
however, differ from the latter only by the definition of the con-

nectivity.
This concept is illustrated in Fig. 2, where two clusters of gaps, for a

neighborhood with unit radius, are shown. The first cluster consists of
two gaps at cells (2, 3) and (3, 2), while the second one is formed by an
isolated gap at cell (2, 8). The cells colored dark gray correspond to the
union of the dependence regions of the the first cluster, while the cells
colored light gray correspond to the second one. Note that periodic
boundary conditions are used here.

In the design of the identification algorithm and the gap filling
procedure we will restrict ourselves to the case of isolated gaps. The
presented method can, however, be generalized to observations that
contain larger clusters of gaps. The difficulty residing therein relates to
the notational burden of a formal description of the solution strategy
and the associated computational complexity of the required algorithm.
This is due to the fact that for an effective gap filling algorithm it is
necessary to consider all possible fillings of each of the clusters.

Table 3
The LUTs of ECAs 120 and 57 and the pLUT of the diploid (ECA120, ECA57)λ.

N0 N1 N2 N3 N4 N5 N6 N7

ECA120 1 0 0 1 1 1 0 0
ECA57 0 0 0 1 1 1 1 0
diploid CA λ 0 0 1 1 1 − λ1 0

Fig. 1. Space-time diagrams of (ECA57, ECA120)λ for six different mixing rates λ, evolved from the same initial configuration.

Fig. 2. Example of two clusters of gaps, the first cluster consisting of two cells:
(2, 3) and (3, 2), while the second one is an isolated gap at cell (2, 8). In this
example, a neighborhood with unit radius is used.
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Although it is possible to propose a divide and conquer strategy to
tackle such problem, the complexity of a formal description is a serious
bottleneck. Since considering only isolated gaps may seem very lim-
iting, we verified how likely it is to obtain isolated gaps in observations
in which the incompleteness is distributed randomly. We tested the
relationship between the total number of gaps in an observation and the
number of clusters and their sizes. For a fixed, complete ×49 49 ob-
servation and a probability ∈p ]0, 1], we randomly introduced gaps,
with p being the cell-wise probability of turning the valid state into a
gap. We will refer to p as gap introduction probability. In the obtained
incomplete observation we calculated the number of obtained clusters,
for a neighborhood with unit radius, and we measured the percentage
of isolated gaps in the entire spectrum of observed gaps. We repeated
this process 250 times for ∈ …p {0.005, 0.01, ,0.995} and we calculated
the average for each p.

Fig. 3 depicts these results. We can see that for <p 0.15, on average,
isolated gaps account for more than 50% of all of the gaps. In other

words, when there is a significant, but not too large number of gaps in
an observation, then most of them are isolated. Obviously, the obtained
value of =p 0.15 depends on the choice of the neighborhood radius r
and will likely be lower for larger radii. Yet, as the number of gaps is
still reasonably low, we can expect to have many isolated gaps.

To sum up, we think it is justified to consider only isolated gaps in
the identification and gap filling problems. Note that if most of the gaps
are not isolated, most probably the number of gaps is quite large and
thus the quality of the observation itself is very low and we should not
expect much from any identification strategy.

3.2. Identification algorithm

Here, we propose an algorithm for solving the identification pro-
blem. For simplicity, a description of the algorithm is given in the case
when there are no gaps. Following Proposition 1, it is obvious that it
should be assumed that ≠λ 0.5, but to obtain the required confidence
level, we additionally assume that λ is bounded between known bounds
a and b, i.e. < ≤ ≤ <a λ b0 0.5.

Based on a set of observations � , we create frequency tables
= …L L L( , , )s0 and = …K K K( , , )s0 , where Li denotes the number of

occurrences of neighborhood configuration Ni in the observations
�∈I , where the last row of each observation is discarded. To build

table K , we additionally check the state of the central cell in row +t 1
for each of the neighborhoods in row t , and we count the number of
times it equals 1. The meaning of the numbers L and K is following. For
every ∈ …i s{0, 1, , }, Li is the number of occurrences of the neighbor-
hood configuration Ni, while Ki is the number of cases in which the
application of the unknown diploid CA to this neighborhood config-
uration resulted in state 1. Obviously, −L Ki i is the number of cases in
which the outcome of the diploid CA's application to Ni was 0. We
assume that the set of observations � is large enough to ensure that
each neighborhood configuration was observed at least once (which is
always possible if we have control over the initial configurations),
hence >L 0i for every i. The following proposition is the basis of the
identification algorithm presented in this section.

Proposition 2. Assume that the observations in � are space-time diagrams
of a diploid CA A A( , )λ1 2 and f1 and f2 are the local rules of A1 and A2,
respectively. Then for any ∈ …i s{0, 1, , } the proportion =ˆpi

K
L

i
i
is a

random variable following a Bernoulli distribution with success probability
pi, where pi is given by Eq. (5).

The first step in the identification is to identify the deterministic CAs
A1 and A2, i.e. to find their corresponding LUTs …(ℓ , ,ℓ )s0

(1) (1) and
…(ℓ , ,ℓ )s0

(2) (2) . For every ∈ …i s{0, , }, we proceed as follows:

(a) if =K 0i , then we put = =ℓ ℓ 0i i
(1) (2) ,

(b) if =K Li i, then we put = =ℓ ℓ 1i i
(1) (2) ,

Fig. 3. Relationship between gap introduction probability and the number and size of the clusters: (a) average number of clusters vs. gap introduction probability; (b)
minimum, average and maximum percentage of isolated gaps among all gaps.

Table 4
Minimum (min.), average (avg.), 95th-percentile (perc.), maximum (max.) and
standard deviation (st. dev.) of the maximal relative error E A A λ( , , )1 2 (Eq.
(14)) for different values of λ.

min. avg. 95th-perc. max. st. dev.

=λ 0.1 0.89% 3.50% 10.21% 49.44% 3.46%
=λ 0.2 0.65% 2.42% 7.07% 38.20% 2.33%
=λ 0.3 0.45% 1.88% 5.49% 26.15% 1.79%
=λ 0.4 0.33% 1.51% 4.46% 20.58% 1.44%

all λs 0.33% 2.33% 6.68% 49.44% 2.49%

Fig. 4. Histogram of the maximal relative error E A A λ( , , )1 2 (Eq. (14)) for all λ
with bin size 0.5%.
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(c) if < 0.5K
L

i
i

, then we put =ℓ 1i
(1) and =ℓ 0i

(2) ,

(d) if > 0.5K
L

i
i

, then we put =ℓ 0i
(1) and =ℓ 1i

(2) .

Note that in case =K 0i (case (a)), we are not sure that both ℓi
(1) and

ℓi
(2) are equal to zero, as it is possible that pi is equal to λ or − λ1 , while

there is no sample in � with the outcome 1. Fortunately, the probability
of this happening equals − λ(1 )Li or λLi, and thus is less than − a(1 )Li.
The same consideration applies when =K Li i (case (b)). Hence, to
achieve the desired confidence level, we will assume that

− ≤ +a(1 )L α
2

i
s 1 . In cases (c) and (d) the situation is a bit more com-

plicated. If < 0.5K
L

i
i

, then to verify whether pi is really less than 0.5, we
can perform a hypothesis test on proportions with alternative hypoth-
esis <H p: 0.5i1 . We use the normal approximation method and a left-

tailed test. If the obtained p-value is less than +
α

2s 1 , then we may claim

that pi is really less than 0.5. If > 0.5K
L

i
i

, the alternative hypothesis is
>H p: 0.5i1 and the test is right-tailed. This completes the procedure of

finding A1 and A2. Given the above assumptions, the total probability of
picking wrong CAs is less than α.

We now turn to the second step of the algorithm, i.e. the estimation
of λ by constructing a relatively small confidence interval λ λ[ , ]L U that
contains the true (unknown) λ with high probability, assuming that the
CAs A1 and A2 have been correctly identified. Let us note that if

< <0 0.5K
L

i
i

, then we know that the diploid CA A A( , )λ1 2 acted as A1 Ki

times during Li independent transitions, while if < <0.5 1K
L

i
i

, then this
diploid CA acted as A1 −L Ki i times within these Li independent
transitions. As a consequence, we get the following proposition.

Fig. 5. Histogram of the maximal relative error E A A λ( , , )1 2 (Eq. (14)) for all λ with bin size 0.5% grouped by the Hamming distance between the LUTs of A1 and A2.
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Fig. 6. Relation of the Hamming distance of the LUTs defining A1 and A2 to the cumulative relative error CE .

Fig. 7. Cumulative relative error C A A( , )E 1 2 normalized with respect to the
maximal cumulative error.

Fig. 8. Normalized Hamming distance between the LUTs of ECAs A1 and A2.

Table 5
Minimum (min.), average (avg.), 95th-percentile (perc.), maximum (max.) and
standard deviation (st. dev.) of the obtained maximal distance from the con-
fidence interval D A A λ( , , )1 2 (Eq. (15)) for different values of λ.

min. avg. 95th-perc. max. st. dev.

=λ 0.1 0.0 0.0008 0.0024 0.0207 0.0010
=λ 0.2 0.0 0.0010 0.0034 0.0498 0.0014
=λ 0.3 0.0 0.0012 0.0040 0.0438 0.0017
=λ 0.4 0.0 0.0013 0.0044 0.0413 0.0018

all λs 0.0 0.0011 0.0036 0.0498 0.0015

Fig. 9. Relation of the average and the standard deviation of the maximal
distance to the confidence interval Δ. The shape and the color of points is as-
signed according to Wolfram's class of the corresponding ECA.

Table 6
Minimum (min.), 5th-percentile (perc.), average (avg.), maximum (max.) and
standard deviation (st. dev.) of success rates obtained by the gap filling algo-
rithm for different values of λ.

min. 5th-perc. avg. max. st. dev.

=λ 0.1 89.91% 93.36% 98.08% 100.00% 2.08%
=λ 0.2 79.84% 88.68% 96.45% 100.00% 3.63%
=λ 0.3 69.88% 84.05% 94.87% 100.00% 5.13%
=λ 0.4 59.89% 80.13% 93.53% 100.00% 6.53%

all λs 59.89% 85.30% 95.74% 100.00% 4.95%
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Proposition 3. Let = ∈ … ∣ < <i sΓ { {0, 1, , } 0 0.5}K
L

i
i

and

= ∈ … ∣ < <i sΩ { {0, 1, , } 0.5 1}K
L

i
i

. Then the proportion

=
∑ + ∑ −

∑ + ∑
∈ ∈

∈ ∈
λ̂

K L K
L L

( )i i i i i

i i i i

Γ Ω

Γ Ω (6)

is a random variable following a Bernoulli distribution with success
probability λ.

Following Brown et al. (2009) there are various methods for esti-
mating the confidence interval for λ using λ̂ . Here, we choose the
normal distribution approximation, even though the authors of Brown
et al. (2009) advise against it. This choice is motivated by the fact that
this method has a reasonable accuracy in our case, while its im-
plementation is straightforward. Assuming that − α1 is the chosen
confidence level, then the following holds with probability − α1 :

= − − ≤ ≤ + − =ˆ ˆ ˆ ˆ ˆ ˆλ λ z λ λ
L

λ λ z λ λ
L

λ: (1 )
*

(1 )
*

: ,L α α U (7)

where = ∑ + ∑∈ ∈L L L* i i i iΓ Ω , and zα is the argument at which the

cumulative standard normal distribution function takes the value −1 α
2 .

The above holds if L* is large enough, which in our case means that L λ*
and −L λ* (1 ) are greater than five (Brown et al., 2009). Since λ is
unknown, due to the assumption ≥λ a, we can impose a stronger
condition >L*

a
5 , which is easy to verify. With these assumptions, it

holds that ∈λ λ λ[ , ]L U with probability − α1 , assuming that A1 and A2

have been correctly identified. As already shown, the probability of
picking A1 and A2 correctly is also − α1 . Therefore, the total prob-
ability of correctly identifing A1, A2 and finding an interval in which λ is
contained is at least − ≥ −α α(1 ) 1 22 .

Note that − ≤λ λU L
z
L*
α and for commonly used confidence levels it

holds that <z 3α . Thus, if L* is sufficiently large, we are sure that the
interval λ λ[ , ]L U narrows as the number of observed cells grows.

To use the above algorithm in the case of incomplete observations,
only a simple modification is needed: we calculate Li and Ki discarding
those entries that contain the symbol “?”.

For further considerations we will need to have one numeric value
as an estimate of λ instead of an interval. We take = + = ˆλ λ λ λ¯ ( )L U

1
2

as such a point estimate. Note that this is the maximum maximum
likelihood estimator for λ. The motivation of this choice is given in
Section 3.3 below.

3.3. Gap filling algorithm

Using A A,1 2 and λ̄ found by the method described in Section 3.2, we
propose an algorithm for estimating the missing states. Let

→+f f, : {0, 1} {0, 1}r
1 2

2 1 be the local rules of A A,1 2, respectively. We
consider the set of neighborhood configurations C f f( , )1 2 consisting of
neighborhoods on which f1 and f2 agree. In other words, ∈N C f f( , )i 1 2 if

=N Nf f( ) ( )i i1 2 . Note that if ∈N C f f( , )i 1 2 , then the local rule of A A( , )λ1 2
is deterministic on the neighborhood Ni.

The first step of our algorithm is to find gaps that result from the
application of the diploid CA on the neighborhoods belonging to
C f f( , )1 2 . To be precise, we are looking for t n( , ) such that =I t n( , ) ?
and − ∈I t n r C f f[ 1, | ] ( , )1 2 . In such case, we can set with certainty the
value of I t n( , ) as − = −f I t n r f I t n r( [ 1, | ]) ( [ 1, | ])1 2 .

In the second step of our algorithm, we consider the case of
neighborhoods that do not belong to C f f( , )1 2 . Let py be the probability

Fig. 10. Histogram of the success rates A A λSR( , , )1 2 (Eq. (20)) for all the
considered A1, A2 and λ.

Fig. 11. Success rates obtained with the gap filling algorithm for all experiments grouped by λ.
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of I t n( , ) being equal to ∈y {0, 1} in case the vector −I t n r[ 1, | ] is
known. From the definition of a diploid A A( , )λ1 2 , we have:

= = = ⎧
⎨⎩

− =
− − = −

p I t n y
λ f I t n r y

λ f I t n r y
Pr( ( , ) )

, if ( [ 1, | ]) ,
1 , if ( [ 1, | ]) 1 .y

1

1 (8)

In order to fill the missing state I t n( , ), we examine the +t( 1)th
row of the observation. For ∈ − …h r r{ , , }, we consider the random
event Fh meaning that starting from the configuration − +I t n h r[ 1, | ]
an evolution of A A( , )λ1 2 leads to a state + +I t n h( 1, ). From our as-
sumption about isolated gaps, the value of + +I t n h( 1, ) is known. Let
us consider the probability ph y, of obtaining + +I t n h( 1, ) given

=I t n y( , ) :

= ∣ =p F I t n yPr( ( , ) ) .h y h, (9)

From Eq. (4) we can easily find ph y, . Indeed, if + ∈I t n h r C f f[ , | ] ( , )1 2 ,
then

= ⎧
⎨⎩

+ ≠ + +
+ = + +

p
f I n m h r I t n h
f I n m h r I t n h

0, if ( [ , | ]) ( 1, ),
1, if ( [ , | ]) ( 1, ),h y,

1

1 (10)

while if + ∉I t n h r C f f[ , | ] ( , )1 2 , then

Fig. 12. Histogram of the success rates obtained with the gap filling algorithm grouped by the Hamming distance between the LUTs of A1 and A2.
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= ⎧
⎨⎩

+ = + +
− + ≠ + +

p
λ f I n m h r I t n h

λ f I n m h r I t n h
, if ( [ , | ]) ( 1, ) ,

1 , if ( [ , | ]) ( 1, ) .h y,
1

1 (11)

Let = ⋂ =−F Fh r
r

h. Consider the probability = ∣I t n y FPr( ( , ) ) of a
missing value equal to y given that the evolution from the −t( 1)th row
to the +t( 1)th row goes as in observation I . The idea of our algorithm
is to choose the ∈y {0, 1} that maximizes this probability. We calculate

= ∣I t n FPr( ( , ) 0 ) and = ∣I t n FPr( ( , ) 1 ) using the formulas obtained in
Bołt et al. (2016). For the sake of completeness, we recall these for-
mulas below. From Bayes’ rule we know that:

= ∣ =
∣ =

I t n y F
p F I t n y

F
Pr( ( , ) )

Pr( ( , ) )
Pr( )

.y

For ≠h h1 2, the events F F,h h1 2 are independent given that I t n[ , ] is
fixed, so from the total probability theorem it follows:

∑ ∑

∑ ∏ ∑ ∏

= = ∣ = = ∣ =

= ∣ = =

= =

= =− = =−

F I t n y F I t n y p F I t n y

p F I t n y p p

Pr( ) Pr( ( , ) )Pr( ( , ) ) Pr( ( , ) )

Pr( ( , ) ) .

y y
y

y
y

h r

r

h
y

y
h r

r

h y

0

1

0

1

0

1

0

1

,

(12)

Hence,

= ∣ =
∏

∑ ∏
=−

= =−

I t n y F
p p

p p
Pr( ( , ) ) .y h r

r
h y

y y h r
r

h y

,

0
1

, (13)

Note that in order to maximize the above probability, we only need
to choose the maximum of the numerators = ∏ =−p pNUM h r

r
h0 0 ,0 and

= ∏ =−p pNUM h r
r

h1 1 ,1. Doing so, we can set =I t n y( , ) accordingly (if
these two numbers are equal, we choose I t n( , ) randomly).
Unfortunately, we do not know the exact value of λ, but only its esti-
mate. However, according to Eqs. (8), (10) and (11), each of the nu-
merators equals zero or is of the form −λ λ(1 )j k, for some natural
numbers j and k. If one of them is zero, then we are sure that the other
is greater than zero. Thus, it remains to consider the case when both
numerators are positive. So let = −λ λNUM (1 )j k

0 0 0 and
= −λ λNUM (1 )j k

1 1 1. The following cases are possible:

1. >j j0 1 and ≥k k0 1 (or ≥j j0 1 and >k k0 1): <NUM NUM0 1 regard-
less of λ.

2. <j j0 1 and ≤k k0 1 (or ≤j j0 1 and <k k0 1): >NUM NUM0 1 regard-
less of λ.

3. =j j0 1 and =k k0 1: =NUM NUM0 1 regardless of λ.
4. >j j0 1 and <k k0 1: the result depends on λ.
5. <j j0 1 and >k k0 1: the result depends on λ.

Let us note that in case 4 (case 5 is analogous), the inequality
>NUM NUM0 1 is equivalent to:

> −− −λ λ(1 ) ,j j k k0 1 1 0

and both exponents are positive. It is easy to see that the inequality is
satisfied for ∈ ′λ λ] , 1[, where ′λ is the unique solution of

= −− −λ λ(1 )j j k k0 1 1 0 in the interval ]0, 1[. It means that if ∈ ′λ λ] , 1[,
then >NUM NUM0 1, but if ∈ ′λ λ]0, [, then <NUM NUM0 1. Although
we do not know the exact value of λ, from the identification algorithm,
we can assume that ∈λ λ λ[ , ]L U . Since the interval λ λ[ , ]L U is very small,
in most cases it will be entirely contained in ′λ]0, [ or in ′λ] , 1[.
However, if λ λ[ , ]L U overlaps with both ′λ]0, [ and ′λ] , 1[, then the one
with a greater common part will include also the center of λ λ[ , ]L U
which equals λ̄. This consideration provides a heuristic argument for
the use of a known value λ̄ as point estimate, when the exact value of λ
is not known. Using λ̄ we can identify the largest numerator in cases 4
and 5 and thus we can always estimate the state.

Although we do not provide a formal proof, it holds that the out-
come of this procedure of gap filling will never produce a neighborhood
belonging to C f f( , )1 2 that would be inconsistent with the output of f1
and f2. In other words, it is guaranteed that the complete space-time
diagrams obtained with our method are valid space-time diagrams of
the identified diploid CA.

4. Results

In this section, we present the results of our computational experi-
ments to illustrate the accuracy of the algorithm described in Section 3.
Firstly, we concentrate on the case of complete observations in order to
verify the quality of the estimation of the parameters defining a diploid
CA. Secondly, we consider incomplete observations with isolated gaps,
and we measure the success rate of filling the gaps.

4.1. Verification of the identification algorithm

This experiment concerns the identification of diploid CAs con-
sisting of ECAs based on complete observations. More formally, we
considered diploid CAs A A( , )λ1 2 , with �∈A A,1 2 and ∈ …λ {0.1, ,0.9},
with the exception of 0.5. Since A A( , )λ2 1 is identical to −A A( , ) λ1 2 1 , only
the diploid CAs based on ECAs for ∈ …λ {0.1, 0.2, ,0.4} need to be ex-
amined. As ≠A A1 2, a total of × × =256 255 4 249900 diploid CAs were
considered. The same set of 100 random initial configurations was used
for all considered cases. Each of the initial configurations contained 49

Fig. 13. Normalized cumulative success rate C A A( , )SR 1 2 .

Fig. 14. Relation of the average and the standard deviation of the success rates
obtained with the gap filling algorithm. The shape and the color of points is
assigned according to Wolfram's class of the corresponding ECA.
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cells. Using these initial configurations, 100 observations, each con-
taining 49 times steps, were generated for each A A( , )λ1 2 . The identifi-
cation algorithm was executed for these observations. The process of
constructing the observation set and identifying the CAs was repeated
50 times for each of the considered diploid CAs. Consequently, for each
diploid CA A A( , )λ1 2 , 50 pairs of candidate CAs A A( , )j j

1
( )

2
( ) and 50 con-

fidence intervals λ λ[ , ]L
j

U
j( ) ( ) for ∈ …j {1, 2, ,50} were obtained. In each

run of the algorithm for each diploid CA, the obtained candidate CAs
A A( , )j j

1
( )

2
( ) were perfectly matching the ones defining the diploid CA in

question. More formally, for every A A( , )λ1 2 it turned out that =A A j
1 1

( )

and =A A j
2 2

( ) for every j, meaning that the first step of the identifica-
tion algorithm always resulted in a correct identification of the CAs
making up the diploid CAs.

To verify the results of the second step of the algorithm, two error
measures were used: the maximal relative error and the maximal dis-

tance to the confidence interval. Letting =
+

λ̂
j λ λ( )

2
L
j

U
j( ) ( )
, the maximal

relative error is defined as:

= − ×= …
ˆE A A λ λ λ

λ
( , , ) max | | 100%,j

j

1 2 1, , 50

( )

(14)

while the maximal distance to the confidence interval is defined as:

= = …D A A λ λ λ λ( , , ) max d ( , [ , ]) ,j L
j

U
j

1 2 1, , 50
( ) ( ) (15)

where:

=
⎧

⎨
⎩

∈
− <
− >

x a b
x a b

a x x a
x b x b

d ( , [ , ])
0, if [ , ],

, if ,
, if . (16)

A statistical summary containing the minimum, average, 95th-per-
centile, maximum and the standard deviation of the maximal relative
error E is given in Table 4. The maximal error (49.44%) may seem high,
but as the 95th-percentile values show, in the vast majority of cases the
errors are significantly lower.

In Fig. 4 the overall histogram of the maximal relative error E from
all data points is shown, while in Fig. 5 we show the results grouped
according to the Hamming distance (dist) between the LUTs of the ECAs
A1 and A2. As can be seen, the distributions of the relative error for each
of the distances are quite different from each other. Note that each of
the histograms has been normalized with respect to the maximal
number of occurrences to account for a different number of instances in
the classes.

To further analyze the obtained results, we define the cumulative
relative error C A A( , )E 1 2 as:

∑ ∑= +
= … = …

C A A E A A λ E A A λ( , ) ( , , ) ( , , ) ,E
λ λ

1 2
0.1, , 0.4

1 2
0.1, , 0.4

2 1
(17)

which for each pair of ECAs combines the results for the different values
of λ. We assume =C A A( , ) 0E for any ECA A. Obviously, it holds that

=C A A C A A( , ) ( , )E E1 2 2 1 .
As already shown in Fig. 5, the distance between the LUTs of ECAs

A1 and A2 greatly influences the quality of estimation. We grouped the
values of CE according to the Hamming distance between the LUTs of A1
and A2 (Fig. 6) to better understand this influence. As expected, the
closer the ECAs are to each other in terms of their LUTs, the higher the
value of CE. This can be understood by analyzing Eq. (5). The number of
positions at which the LUTs of A1 and A2 differ determines the number
of neighborhoods on which the diploid CA acts non-deterministically,
and thus produces transitions that are useful for estimating. This means
that CAs that are close to each other will likely produce less samples
that can be used for the estimation of λ.

Although Fig. 6 suggests a strong impact of the Hamming distance
of the LUTs defining A1 and A2 on the estimation error, there are also
other factors contributing to this error. To illustrate this the values of
the cumulative relative error CE, normalized with respect to the max-
imal cumulative error, are shown in Fig. 7. As can be inferred from this

graph, there are significant differences between the values of CE in
different areas of the ECA space. Moreover, many symmetries can be
observed.

In Fig. 8 we illustrate the Hamming distance between ECAs A1 and
A2 in the same layout as the cumulative error CE shown in Fig. 7.
Comparing the graphs in Figs. 7 and 8 we see many similarities, though
there are also differences. As mentioned earlier, the Hamming distance
between ECAs A1 and A2 corresponds to the number of entries in the
pLUT of the diploid CA that are neither 0 nor 1. Such entries correspond
to neighborhood configurations on which the diploid CA is non-de-
terministic. Intuitively, we expect that if the number of such entries in
the pLUT increases, more non-deterministic behavior should occur in
the evolution. Yet, for this to occur, the corresponding neighborhood
configurations need to appear in the space-time diagram, and this de-
pends on the initial configuration and on the dynamical properties of
the ECAs A1 and A2. For instance, consider a diploid CA made up by
ECA184 (so-called traffic rule) and ECA232 (so-called majority rule).
The Hamming distance between the LUTs of ECA184 and ECA232 is 2.
Yet, this particular diploid CA is known to be a stochastic solution of the
density classification problem (Fatès, 2013), and thus it evolves to a
homogeneous configuration with all 0s or all 1s. This means that the
two neighborhood configurations on which this diploid CA is non-de-
terministic quickly vanish. The study of the dynamical properties of
diploid CAs is ongoing (Fatès, 2017), so it is not yet possible to give a
full characterization of their dynamical properties in this paper. Such a
characterization will allow to fully understand the differences in ac-
curacy of the identification algorithm between different diploid CAs.

We now focus our analysis on the maximal distance from the con-
fidence interval D A A λ( , , )1 2 (Table 5).

In general, the values of D are low, which shows that in most cases
the real λ either belongs to the confidence interval or is very close to it.
This shows a high accuracy in the estimation of λ, irrespective of λ. For
that reason we concentrate our analysis on the cumulative maximal
distance to the confidence interval:

∑ ∑= +
= … = …

C A A D A A λ D A A λ( , ) ( , , ) ( , , ) .D
λ λ

1 2
0.1, , 0.4

1 2
0.1, , 0.4

2 1
(18)

These values were then grouped, for each ECA A, as:

�= ∣ ∈ ∖{ }A C A A A AΔ( ) ( , ) { } .D 2 2 (19)

In Fig. 9, the relation between the average and the standard deviation
of AΔ( ) is shown for each ECA A. Each point in this plot corresponds to
a specific ECA. The shape and the color of each of the points are as-
signed according to Wolfram's classification scheme (Wolfram, 1983),
where Class I corresponds to simple dynamics resulting in homo-
geneous configurations, Class II — periodic dynamics, Class III —
chaotic/random dynamics and Class IV— complex dynamics. As can be
seen, there is a strong correlation between the Wolfram class and AΔ( ).
In general, the accuracy of the estimation of λ grows with the growing
complexity of the ECA in question. This is due to the fact that complex
ECAs generate more diversified observations containing a lot of oc-
currences of all of the neighborhood configurations, which leads to
greater accuracy of estimation. On the other hand, relatively simple
ECAs often evolve towards homogeneous or close-to-homogeneous
configurations, and the number of useful samples for the estimation is
lower.

4.2. Verification of the gap filling algorithm

The goal of the second experiment is to verify the correctness of the
results produced by the gap filling algorithm. We used a similar ex-
perimental setup as in the previous experiment. We examined diploid
CAs constructed from each couple of ECAs for ∈λ {0.1, 0.2, 0.3, 0.4}. For
every diploid CA we used 100 observations of size ×49 49. For every
observation we randomly introduced isolated gaps for 5% of the cells.
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For every diploid CA and set of observations, we repeated the identi-
fication and gap filling processes 50 times.

Our main point of interest is the success of the gap filling algorithm.
For every observation we calculated the success rate as the number of
correctly filled gaps divided by total number of gaps in this observation.
More precisely, let � = …I I{ , , }i i i1, 100, be a set of incomplete observations
in the ith repetition of the experiment for a given diploid CA A A( , )λ1 2 .
Let Igaps( )n i, denote the number of gaps in observation In i, and

I isuccess( , )n the number of correctly filled gaps. The success rate
A A λSR( , , )1 2 for a diploid CA A A( , )λ1 2 is defined as:

=
∑ ∑

∑ ∑
×= =

= =

A A λ
I

I
SR( , , )

success( )

gaps( )
100% .i n n i

i n n i
1 2

1
50

1
100

,

1
50

1
100

, (20)

A statistical summary of the obtained success rates across all the con-
sidered diploid CAs is given in Table 6. As can be inferred from this
table, the total average of the success rate was more than 95%, meaning
that on overage more than 95% of gaps were correctly filled. The
minimum result is much lower (58%), but still even the lowest success
rate is higher than 50%, meaning that most of the gaps were successfully
filled. Moreover, when we look at the 5th-percentile values, we see that
in general the success rate was very high. To further illustrate this, a
histogram of all success rates obtained in the experiment is presented in
Fig. 10. From this graph we can clearly see the concentration of the data
at very high values. As Table 6 suggests, there are strong differences
between the results obtained for different values of λ. To better un-
derstand this relationship we grouped all success rates by λ:

�= ∣ ∈λ A A λ A ASR( ) {SR( , , ) , }.1 2 1 2 (21)

We expect that the success rates will be better for diploids with smaller
λ, since as λ goes to 0.5, the diploid CA goes to a purely random be-
havior on some of the neighborhoods and thus filling gaps on such
neighborhoods becomes very hard. Our experiments confirm this ex-
pectation. We created four histograms of the values λSR( ) (see Fig. 11).
As can be seen, the success rates are significantly better for diploid CAs
with =λ 0.1 as compared to the case =λ 0.4.

Further, we grouped the success rates from all of experiments by the
Hamming distance between the LUTs of A1 and A2 used to define the
diploid CAs. From Fig. 12 it is easily seen that our gap filling algorithm
works better for diploids created from ECAs that are similar to each
other, i.e. ECAs that have a small number of neighborhoods on which
they differ. This is due to the fact that for such pairs, the number of
nondeterministic transitions is lower, and thus estimation is easier.

To better understand the impact of the choice of specific ECAs for a
diploid CA, we define the cumulative success rate for a pair of ECAs A1,
A2 as:

∑ ∑= +
= … = …

C A A A A λ A A λ( , ) SR( , , ) SR( , , ) .
λ λ

SR 1 2
0.1, , 0.4

1 2
0.1, , 0.4

2 1

The obtained results in a normalized form are visualized in Fig. 13. As
can be inferred from this picture, there are significant differences
among the ECAs and moreover many symmetries are present. These
differences might be influenced by the same factors as the cumulative
error of estimation CE discussed earlier in this section.

Finally, we grouped success rate by specific ECA A, as:

�= ∣ ∈ ∖{ }A A A A AΔSR( ) SR( , ) { } .2 2 (22)

Fig. 14 shows the relation between the average and the standard de-
viation of AΔSR( ). Each point on the graph corresponds to one ECA and
is colored according to the corresponding Wolfram class. As can be
seen, the accuracy of the gap filling algorithm grows with the com-
plexity of the ECA in question, which can be attributed to the fact that
complex ECAs result in a more diverse behavior, and thus more data
that is potentially helpful for the gap filling procedure.

5. Summary

In this paper the identification of a diploid CA from given, poten-
tially incomplete, space-time diagrams has been discussed. An identi-
fication algorithm has been described in detail. Computational experi-
ments have shown that the algorithm is very effective. The
deterministic CAs constituting the analyzed diploids CAs were always
correctly identified and the accuracy of the estimation of λ was very
high with an average relative error of 2.33%. In case of incomplete
observations, the gap filling algorithm was able to estimate the correct
states of cells that have not been observed with an average success rate
of more than 95%, allowing to uncover full space-time diagrams with
very high accuracy. Following the line of research of this paper, in
future we intend to extend the presented algorithm to wider classes of
SCAs.
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