2,415 research outputs found

    Tidal Stabilization of Rigidly Rotating, Fully Relativistic Neutron Stars

    Get PDF
    It is shown analytically that an external tidal gravitational field increases the secular stability of a fully general relativistic, rigidly rotating neutron star that is near marginal stability, protecting it against gravitational collapse. This stabilization is shown to result from the simple fact that the energy δM(Q,R)\delta M(Q,R) required to raise a tide on such a star, divided by the square of the tide's quadrupole moment QQ, is a decreasing function of the star's radius RR, (d/dR)[δM(Q,R)/Q2]<0(d/dR)[\delta M(Q,R)/Q^2]<0 (where, as RR changes, the star's structure is changed in accord with the star's fundamental mode of radial oscillation). If (d/dR)[δM(Q,R)/Q2](d/dR)[\delta M(Q,R)/Q^2] were positive, the tidal coupling would destabilize the star. As an application, a rigidly rotating, marginally secularly stable neutron star in an inspiraling binary system will be protected against secular collapse, and against dynamical collapse, by tidal interaction with its companion. The ``local-asymptotic-rest-frame'' tools used in the analysis are somewhat unusual and may be powerful in other studies of neutron stars and black holes interacting with an external environment. As a byproduct of the analysis, in an appendix the influence of tidal interactions on mass-energy conservation is elucidated.Comment: Revtex, 10 pages, 2 figures; accepted for publication in Physical Review D. Revisions: Appendix rewritten to clarify how, in Newtonian gravitation theory, ambiguity in localization of energy makes interaction energy ambiguous but leaves work done on star by tidal gravity unambiguous. New footnote 1 and Refs. [11] and [19

    Turbulent Cells in Stars: I. Fluctuations in Kinetic Energy and Luminosity

    Full text link
    Three-dimensional (3D) hydrodynamic simulations of shell oxygen burning (Meakin and Arnett, 2007b) exhibit bursty, recurrent fluctuations in turbulent kinetic energy. These are shown to be due to a general instability of the convective cell, requiring only a localized source of heating or cooling. Such fluctuations are shown to be suppressed in simulations of stellar evolution which use mixing-length theory (MLT). Quantitatively similar behavior occurs in the model of a convective roll (cell) of Lorenz (1963), which is known to have a strange attractor that gives rise to chaotic fluctuations in time of velocity and, as we show, luminosity. Study of simulations suggests that the behavior of a Lorenz convective roll may resemble that of a cell in convective flow. We examine some implications of this simplest approximation, and suggest paths for improvement. Using the Lorenz model as representative of a convective cell, a multiple-cell model of a convective layer gives total luminosity fluctuations which are suggestive of irregular variables (red giants and supergiants (Schwarzschild 1975)), and of the long secondary period feature in semi-regular AGB variables (Stothers 2010, Wood, Olivier and Kawaler 2004). This "tau-mechanism" is a new source for stellar variability, which is inherently non-linear (unseen in linear stability analysis), and one closely related to intermittency in turbulence. It was already implicit in the 3D global simulations of Woodward, Porter and Jacobs (2003). This fluctuating behavior is seen in extended 2D simulations of CNeOSi burning shells (Arnett and Meakin 2011b), and may cause instability which leads to eruptions in progenitors of core collapse supernovae PRIOR to collapse.Comment: 30 pages, 13 figure

    A class of symplectic integrators with adaptive timestep for separable Hamiltonian systems

    Get PDF
    Symplectic integration algorithms are well-suited for long-term integrations of Hamiltonian systems because they preserve the geometric structure of the Hamiltonian flow. However, this desirable property is generally lost when adaptive timestep control is added to a symplectic integrator. We describe an adaptive-timestep symplectic integrator that can be used if the Hamiltonian is the sum of kinetic and potential energy components and the required timestep depends only on the potential energy (e.g. test-particle integrations in fixed potentials). In particular, we describe an explicit, reversible, symplectic, leapfrog integrator for a test particle in a near-Keplerian potential; this integrator has timestep proportional to distance from the attracting mass and has the remarkable property of integrating orbits in an inverse-square force field with only "along-track" errors; i.e. the phase-space shape of a Keplerian orbit is reproduced exactly, but the orbital period is in error by O(1/N^2), where N is the number of steps per period.Comment: 24 pages, 3 figures, submitted to Astronomical Journal; minor errors in equations and one figure correcte

    A Self-Consistent Reduced Model for Dusty Magnetorotationally Unstable Discs

    Full text link
    The interaction between settling of dust grains and magnetorotational instability (MRI) turbulence in protoplanetary disks is analyzed. We use a reduced system of coupled ordinary differential equations to represent the interaction between the diffusion of grains and the inhibition of the MRI. The coupled equations are styled on a Landau equation for the turbulence and a Fokker-Planck equation for the diffusion. The turbulence-grain interaction is probably most relevant near the outer edge of the disk's quiescent, or "dead" zone. Settling is most pronounced near the midplane, where a high dust concentration can self-consistently suppress the MRI. Under certain conditions, however, grains can reach high altitudes, a result of some observational interest. Finally, we show that the equilibrium solutions are linearly stable.Comment: 8 pages, 3 figures, accepted to MNRA

    On the cosmological singularity

    Full text link
    The long story of the oscillatory approach to the initial cosmological singularity and its more recent incarnation in multidimensional universe models is told.Comment: The invited paper for Proceedings of the XIII Marcel Grossmann Meeting (Stockholm, 2012) by reason of the Marcel Grossmann Award to V.A. Belinski and I.M. Khalatniko

    A Gauss-Seidel projection method with the minimal number of updates for stray field in micromagnetic simulations

    Full text link
    Magnetization dynamics in magnetic materials is often modeled by the Landau-Lifshitz equation, which is solved numerically in general. In micromagnetic simulations, the computational cost relies heavily on the time-marching scheme and the evaluation of stray field. Explicit marching schemes are efficient but suffer from severe stability constraints, while nonlinear systems of equations have to be solved in implicit schemes though they are unconditionally stable. A better compromise between stability and efficiency is the semi-implicit scheme, such as the Gauss-Seidel projection method (GSPM) and the second-order backward differentiation formula scheme (BDF2). At each marching step, GSPM solves several linear systems of equations with constant coefficients and updates the stray field several times, while BDF2 updates the stray field only once but solves a larger linear system of equations with variable coefficients and a nonsymmetric structure. In this work, we propose a new method, dubbed as GSPM-BDF2, by combing the advantages of both GSPM and BDF2. Like GSPM, this method is first-order accurate in time and second-order accurate in space, and is unconditionally stable with respect to the damping parameter. However, GSPM-BDF2 updates the stray field only once per time step, leading to an efficiency improvement of about 60%60\% than the state-of-the-art GSPM for micromagnetic simulations. For Standard Problem \#4 and \#5 from National Institute of Standards and Technology, GSPM-BDF2 reduces the computational time over the popular software OOMMF by 82%82\% and 96%96\%, respectively. Thus, the proposed method provides a more efficient choice for micromagnetic simulations
    • …
    corecore