639 research outputs found

    Agent-based models of social behaviour and communication in evacuations:A systematic review

    Get PDF
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models

    Information Retrieval and Classification of Real-Time Multi-Source Hurricane Evacuation Notices

    Full text link
    For an approaching disaster, the tracking of time-sensitive critical information such as hurricane evacuation notices is challenging in the United States. These notices are issued and distributed rapidly by numerous local authorities that may spread across multiple states. They often undergo frequent updates and are distributed through diverse online portals lacking standard formats. In this study, we developed an approach to timely detect and track the locally issued hurricane evacuation notices. The text data were collected mainly with a spatially targeted web scraping method. They were manually labeled and then classified using natural language processing techniques with deep learning models. The classification of mandatory evacuation notices achieved a high accuracy (recall = 96%). We used Hurricane Ian (2022) to illustrate how real-time evacuation notices extracted from local government sources could be redistributed with a Web GIS system. Our method applied to future hurricanes provides live data for situation awareness to higher-level government agencies and news media. The archived data helps scholars to study government responses toward weather warnings and individual behaviors influenced by evacuation history. The framework may be applied to other types of disasters for rapid and targeted retrieval, classification, redistribution, and archiving of real-time government orders and notifications

    Agent-based models of social behaviour and communication in evacuations: A systematic review

    Full text link
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models.Comment: Pre-print submitted to Safety Science special issue following the 2023 Pedestrian and Evacuation Dynamics conferenc

    A Conceptual Design of Spatio‐Temporal Agent‐ Based Model for Volcanic Evacuation

    Get PDF
    The understanding of evacuation processes is important for improving the effectiveness of evacuation plans in the event of volcanic disasters. In terms of social processes, the enactment of evacuations in volcanic crises depends on the variability of individual/household responses. This variability of population response is related to the uncertainty and unpredictability of the hazard characteristics of volcanoes—specifically, the exact moment at which the eruption occurs (temporal), the magnitude of the eruption and which locations are impacted (spatial). In order to provide enhanced evacuation planning, it is important to recognise the potential problems that emerge during evacuation processes due to such variability. Evacuation simulations are one approach to understanding these processes. However, experimenting with volcanic evacuations in the real world is risky and challenging, and so an agent‐based model is proposed to simulate volcanic evacuation. This paper highlights the literature gap for this topic and provides the conceptual design for a simulation using an agent‐based model. As an implementation, an initial evacuation model is presented for Mount Merapi in Indonesia, together with potential applications of the model for supporting volcanic evacuation management, discussion of the initial outcomes and suggestions for future work

    A Spatial Agent-based Model for Volcanic Evacuation of Mt. Merapi

    Get PDF
    Natural disasters, especially volcanic eruptions, are hazardous events that frequently happen in Indonesia. As a country within the “Ring of Fire”, Indonesia has hundreds of volcanoes and Mount Merapi is the most active. Historical studies of this volcano have revealed that there is potential for a major eruption in the future. Therefore, long-term disaster management is needed. To support the disaster management, physical and socially-based research has been carried out, but there is still a gap in the development of evacuation models. This modelling is necessary to evaluate the possibility of unexpected problems in the evacuation process since the hazard occurrences and the population behaviour are uncertain. The aim of this research was to develop an agent-based model (ABM) of volcanic evacuation to improve the effectiveness of evacuation management in Merapi. Besides the potential use of the results locally in Merapi, the development process of this evacuation model contributes by advancing the knowledge of ABM development for large-scale evacuation simulation in other contexts. Its novelty lies in (1) integrating a hazard model derived from historical records of the spatial impact of eruptions, (2) formulating and validating an individual evacuation decision model in ABM based on various interrelated factors revealed from literature reviews and surveys that enable the modelling of reluctant people, (3) formulating the integration of multi-criteria evaluation (MCE) in ABM to model a spatio-temporal dynamic model of risk (STDMR) that enables representation of the changing of risk as a consequence of changing hazard level, hazard extent and movement of people, and (4) formulating an evacuation staging method based on MCE using geographic and demographic criteria. The volcanic evacuation model represents the relationships between physical and human agents, consisting of the volcano, stakeholders, the population at risk and the environment. The experimentation of several evacuation scenarios in Merapi using the developed ABM of evacuation shows that simultaneous strategy is superior in reducing the risk, but the staged scenario is the most effective in minimising the potential of road traffic problems during evacuation events in Merapi. Staged evacuation can be a good option when there is enough time to evacuate. However, if the evacuation time is limited, the simultaneous strategy is better to be implemented. Appropriate traffic management should be prepared to avoid traffic problems when the second option is chosen

    An Agent-Based Exploration of the Hurricane Forecast-Evacuation System Dynamics

    Get PDF
    In the mainland US, the hurricane-forecast-evacuation system is uncertain, dynamic, and complex. As a result, it is difficult to know whether to issue warnings, implement evacuation management strategies, or how to make forecasts more useful for evacuations. This dissertation helps address these needs, by holistically exploring the system’s complex dynamics from a new perspective. Specifically, by developing – and using – an empirically informed, agent-based modeling framework called FLEE (Forecasting Laboratory for Exploring the Evacuation-system). The framework represents the key, interwoven elements to hurricane evacuations: the natural hazard (hurricane), the human system (information flow, evacuation decisions), the built environment (road infrastructure), and connections between systems (forecasts and warning information, traffic). The dissertation’s first article describes FLEE’s conceptualization, implementation, and validation, and presents proof-of-concept experiments illustrating its behaviors when key parameters are modified. In the second article, sensitivity analyses are conducted on FLEE to assess how evacuations change with evacuation management strategies and policies (public transportation, contraflow, evacuation order timing), evolving population characteristics (population growth, urbanization), and real and synthetic forecast scenarios impacting the Florida peninsula (Irma, Dorian, rapid-onset version of Irma). The third article begins to explore how forecast elements (e.g., track and intensity) contribute to evacuation success, and whether improved forecast accuracy over time translates to improved evacuations outcomes. In doing so, we demonstrate how coupled natural-human models – including agent-based models –can be a societally-relevant alternative to traditional metrics of forecast accuracy. Lastly, the fourth article contains a brief literature review of inequities in transportation access and their implication on evacuation modeling. Together, the articles demonstrate how modeling frameworks like FLEE are powerful tools capable of studying the hurricane-forecast-evacuation system across many real and hypothetical forecast-population-infrastructure scenarios. The research compliments, and builds-upon empirical work, and supports researchers, practitioners, and policy-makers in hazard risk management, meteorology, and related disciplines, thereby offering the promise of direct applications to mitigate hurricane losses

    e-Sanctuary: open multi-physics framework for modelling wildfire urban evacuation

    Get PDF
    The number of evacuees worldwide during wildfire keep rising, year after year. Fire evacuations at the wildland-urban interfaces (WUI) pose a serious challenge to fire and emergency services and are a global issue affecting thousands of communities around the world. But to date, there is a lack of comprehensive tools able to inform, train or aid the evacuation response and the decision making in case of wildfire. The present work describes a novel framework for modelling wildfire urban evacuations. The framework is based on multi-physics simulations that can quantify the evacuation performance. The work argues that an integrated approached requires considering and integrating all three important components of WUI evacuation, namely: fire spread, pedestrian movement, and traffic movement. The report includes a systematic review of each model component, and the key features needed for the integration into a comprehensive toolkit

    Beyond ‘flood hotspots’: modelling emergency service accessibility during flooding in York, UK

    Get PDF
    This paper describes the development of a method that couples flood modelling with network analysis to evaluate the accessibility of city districts by emergency responders during flood events. We integrate numerical modelling of flood inundation with geographical analysis of service areas for the Ambulance Service and the Fire & Rescue Service. The method was demonstrated for two flood events in the City of York, UK to assess the vulnerability of care homes and sheltered accommodation. We determine the feasibility of emergency services gaining access within the statutory 8- and 10-minute targets for high-priority, life-threatening incidents 75% of the time, during flood episodes. A hydrodynamic flood inundation model (FloodMap) simulates the 2014 pluvial and 2015 fluvial flood events. Predicted floods (with depth >25 cm and areas >100 m2) were overlain on the road network to identify sites with potentially restricted access. Accessibility of the city to emergency responders during flooding was quantified and mapped using; (i) spatial coverage from individual emergency nodes within the legislated timeframes, and; (ii) response times from individual emergency service nodes to vulnerable care homes and sheltered accommodation under flood and non-flood conditions. Results show that, during the 2015 fluvial flood, the area covered by two of the three Fire & Rescue Service stations reduced by 14% and 39% respectively, while the remaining station needed to increase its coverage by 39%. This amounts to an overall reduction of 6% and 20% for modelled and observed floods respectively. During the 2014 surface water flood, 7 out of 22 care homes (32%) and 15 out of 43 sheltered accommodation nodes (35%) had modelled response times above the 8-minute threshold from any Ambulance station. Overall, modelled surface water flooding has a larger spatial footprint than fluvial flood events. Hence, accessibility of emergency services may be impacted differently depending on flood mechanism. Moreover, we expect emergency services to face greater challenges under a changing climate with a growing, more vulnerable population. The methodology developed in this study could be applied to other cities, as well as for scenario based evaluation of emergency preparedness to support strategic decision making, and in real-time forecasting to guide operational decisions where heavy rainfall lead-time and spatial resolution are sufficient

    Dynamic route choice in hurricane evacuation

    Get PDF
    In this research a framework is developed for modeling route choice in hurricane evacuation. Two behavioral hypotheses are evaluated which together with the route choice model, constitute the contributions of the research. The first hypothesis states that beside congestion, other variables such as familiarity with the route, availability of fuel and shelter, facility class, and length of route have an effect on an evacuees\u27 route choice. The second hypothesis states that as time passes and storm conditions change, the impact each variable has on route choice changes. The logit structure was used for modeling the choice process and stated choice data previously collected from the New Orleans area on hypothetical storms was used to calibrate the model. The study found that accessibility of a route, familiarity with a route, facility class, length of a route, and availability of services (gas stations and hotels) had an effect on evacuation route choice. The magnitude of the coefficients of perceived service, accessibility, and distance differed among those evacuating in the first half of the evacuation period versus those that evacuated in the second half but coefficients of facility class were not significantly different between two time intervals. Observed traffic count data from hurricane Katrina evacuation was used to validate the model. Comparison of traffic volumes predicted by the model with actual traffic volumes from hurricane Katrina shows error percentages of 17.5, 0.01, and 28 percent of error for volumes on I-10, I-55, and US-61 respectively

    Understanding the Socio-infrastructure Systems During Disaster from Social Media Data

    Get PDF
    Our socio-infrastructure systems are becoming more and more vulnerable due to the increased severity and frequency of extreme events every year. Effective disaster management can minimize the damaging impacts of a disaster to a large extent. The ubiquitous use of social media platforms in GPS enabled smartphones offers a unique opportunity to observe, model, and predict human behavior during a disaster. This dissertation explores the opportunity of using social media data and different modeling techniques towards understanding and managing disaster more dynamically. In this dissertation, we focus on four objectives. First, we develop a method to infer individual evacuation behaviors (e.g., evacuation decision, timing, destination) from social media data. We develop an input output hidden Markov model to infer evacuation decisions from user tweets. Our findings show that using geo-tagged posts and text data, a hidden Markov model can be developed to capture the dynamics of hurricane evacuation decision. Second, we develop evacuation demand prediction model using social media and traffic data. We find that trained from social media and traffic data, a deep learning model can predict well evacuation traffic demand up to 24 hours ahead. Third, we present a multi-label classification approach to identify the co-occurrence of multiple types of infrastructure disruptions considering the sentiment towards a disruption—whether a post is reporting an actual disruption (negative), or a disruption in general (neutral), or not affected by a disruption (positive). We validate our approach for data collected during multiple hurricanes. Fourth, finally we develop an agent-based model to understand the influence of multiple information sources on risk perception dynamics and evacuation decisions. In this study, we explore the effects of socio-demographic factors and information sources such as social connectivity, neighborhood observation, and weather information and its credibility in forming risk perception dynamics and evacuation decisions
    • 

    corecore