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ABSTRACT 

 

AN AGENT-BASED EXPLORATION OF THE HURRICANE FORECAST-EVACUATION 
SYSTEM DYNAMICS  

 
by  
 

Austin R Harris 
 

The University of Wisconsin-Milwaukee, 2022 
Under the Supervision of Professor Dr. Paul Roebber 

 
 

In the mainland US, the hurricane-forecast-evacuation system is uncertain, dynamic, 

and complex. As a result, it is difficult to know whether to issue warnings, implement 

evacuation management strategies, or how to make forecasts more useful for 

evacuations. This dissertation helps address these needs, by holistically exploring the 

system’s complex dynamics from a new perspective. Specifically, by developing – and 

using – an empirically informed, agent-based modeling framework called FLEE 

(Forecasting Laboratory for Exploring the Evacuation-system). The framework 

represents the key, interwoven elements to hurricane evacuations: the natural hazard 

(hurricane), the human system (information flow, evacuation decisions), the built 

environment (road infrastructure), and connections between systems (forecasts and 

warning information, traffic). The dissertation’s first article describes FLEE’s 

conceptualization, implementation, and validation, and presents proof-of-concept 

experiments illustrating its behaviors when key parameters are modified. In the second 

article, sensitivity analyses are conducted on FLEE to assess how evacuations change 

with evacuation management strategies and policies (public transportation, contraflow, 

evacuation order timing), evolving population characteristics (population growth, 
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urbanization), and real and synthetic forecast scenarios impacting the Florida peninsula 

(Irma, Dorian, rapid-onset version of Irma). The third article begins to explore how 

forecast elements (e.g., track and intensity) contribute to evacuation success, and 

whether improved forecast accuracy over time translates to improved evacuations 

outcomes. In doing so, we demonstrate how coupled natural-human models – including 

agent-based models –can be a societally-relevant alternative to traditional metrics of 

forecast accuracy. Lastly, the fourth article contains a brief literature review of inequities 

in transportation access and their implication on evacuation modeling. Together, the 

articles demonstrate how modeling frameworks like FLEE are powerful tools capable of 

studying the hurricane-forecast-evacuation system across many real and hypothetical 

forecast-population-infrastructure scenarios. The research compliments, and builds-

upon empirical work, and supports researchers, practitioners, and policy-makers in 

hazard risk management, meteorology, and related disciplines, thereby offering the 

promise of direct applications to mitigate hurricane losses.  
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PREFACE 

This dissertation marks a major moment in my career. I want to take a minute to 

acknowledge – and reflect on – the journey to becoming a Doctor in Atmospheric Science.     

On 5/3/99, the “weather seeds” were planted on my brain. That F-5 tornado in Moore, OK 

passed 1-mile from our home. I wrote afterwards, “I will go to the Oklahoma school of 

meteorology. There I’ll work as a storm chaser. Eventually, I’ll work in the severe storms 

lab issuing warnings etc.” Basically, I had the unique privilege of recognizing a dream 

early in my life, and with the support of two wonderful parents, actually achieved it. 

I graduated from the University of Oklahoma in 2013 with a B.S. in Meteorology. After 

applying – and being denied – entrance to 15+ graduate programs, UWM was the first 

and only graduate program to offer me a scholarship. I took it, and after two years at 

UWM, left with an M.S. in Atmospheric Science, forecasting experience at Innovative 

Weather, and an offer for my first “big boy” job at the Warning Decision Training Division 

(WDTD) of the National Weather Service (NWS). There, I joined a team of instructors 

teaching forecasters how to issue thunderstorm, flash flood, and tornado warnings. It was 

my childhood dream, actualized.  

Though I was immensely proud of my new role in meteorology, it was not my 

meteorological home.  

After Katrina (2005) and evacuations from the El Reno tornado (5/31/13), I felt that 

“accurate” forecasts were not necessarily “good” forecasts and that the weather 

community needs research focusing on societal impacts of forecasts (e.g., like the 

interdisciplinary work of Drs. Rebecca Morss, Julie Demuth, Kim Klockow, and many 
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others). Knowing this belief and interest, and seeing an opportunity to simulate 

evacuations using agent-based models, Dr. Paul Roebber asked if I would return to 

graduate school to study this topic. After many conversations, I agreed, knowing Paul 

was the right advisor, and that this was a golden opportunity to get into an area of 

research I felt strongly about.   

Early in the Ph.D., Paul connected me with Dr. Rebecca Morss at NCAR. Rebecca kindly 

agreed to serve on my committee and help me navigate the social science literature 

needed to model evacuations. Through Rebecca and Paul’s support, the project has 

become something I’m extremely proud of. It would not be possible without them. In 

addition, Rebecca connected me to other interdisciplinary scientists through NCAR’s ASP 

colloquium and the Graduate Visitor Program. In this community, I’ve found my 

meteorological home.  

This dissertation marks my entrance into this scholarly community. From here, I intend to 

support the weather enterprise for many years to come.  
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INTRODUCTION 

Across the US, the hurricane-forecast-evacuation system is uncertain, dynamic, and 

complex. Take Hurricanes Irma (2017) and Rita (2005), cases where accurate but 

uncertain forecasts triggered evacuations — and severe traffic jams — in Florida and 

Texas, respectively. As the forecasts shifted and traffic worsened, some evacuees 

became even more exposed than had they remained in-place (Cangialosi et al. 2018; 

Wong et al. 2018; Zhang et al. 2007; Knabb et al. 2006). Despite forecast information 

being as useful as one can reasonably expect given current forecast skill, the cases 

illustrate the complexities of people using inevitably imperfect information to make 

evacuation decisions before the storm, and they demonstrate how evacuations involve 

many physical-social parts and uncertainties that change as the storm approaches the 

coast (e.g., Morss et al. 2017; Barton 2014; Miller and Page 2007; Watts et al. 2019). 

Because of these complex dynamics, safe and efficient hurricane evacuations can be 

difficult to achieve.  

Empirical studies explain important aspects of evacuations, such as how forecasts, 

warnings, and other factors influence evacuation decisions (e.g., Huang et al. 2016; 

Lindell and Perry 2012; Baker 1991). However, it’s impossible to empirically study all 

aspects of evacuation across multiple cases. Computational models, on the other hand, 

provide a complementary tool where empirical knowledge can be codified and used to 

run virtual experiments for many scenarios, real or synthetic (e.g., Morss et al. 2017; 

Blanton et al. 2018). The entire forecast-evacuation system has not been represented in 

one computational framework, however, with models focusing on specific aspects only 

(e.g., evacuation traffic only, or evacuation decision-making only).   
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This dissertation explores the hurricane-forecast-warning system dynamics from an 

agent-based, computational perspective which compliments, and builds upon, empirical 

work. The model includes representations of the forecast, evacuation decision-making, 

and evacuation traffic together in one framework for the first time. By performing 

experiments on the unique model system, the study becomes the first to examine the 

hurricane evacuation system holistically i.e., to establish the relative importance of 

factors, key interactions between systems, and non-evident emergent patterns.  

The work takes the form of a series of manuscripts which have been – or are in the 

process of being – published by academic journals. Detailed literature reviews are 

provided in each article and tailored to their specific purposes. Drs. Paul Roebber and 

Rebecca Morss are co-authors on the manuscripts, and thus, are co-authors for the 

dissertation (note: I will reference “we” throughout, as they greatly contributed to the 

articles).  

The first article details and describes the agent-based modeling framework i.e., its 

conceptualization, implementation, and the empirical data which it is based. Though 

intended for a broad, international audience, the work is most useful for evacuation 

modelers, as it contains detailed information about the model’s structure and reasoning 

behind its development. The research has been peer-reviewed and published in the 

International Journal of Disaster Risk Reduction (Harris et al. 2021). 

The second article provides a first-order look at the systems dynamics, by using the model 

to explore how evacuations change with evacuation management strategies and policies 

(public transportation, contraflow, evacuation order timing), evolving population 
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characteristics (population growth, urbanization), and real and synthetic forecast 

scenarios impacting the Florida peninsula (Irma, Dorian, rapid-onset version of Irma). The 

primary intended audience are researchers, practitioners, and policy-makers in hazard 

risk management.  

The third article begins to explore how individual forecast elements, such as forecast track 

and intensity – and their improved accuracy over time – translates to evacuation success. 

As such, the research benefits meteorology by demonstrating how coupled natural-

human models provide a societally-relevant alternative to traditional metrics of forecast 

“accuracy” e.g., by measuring the impact of forecasts elements on how people make 

evacuation decisions and physically evacuate.  

The fourth article is a brief literature review on carless households in the US and whether 

inequities exist in hurricane evacuations as a result (they do). Through the literature 

review, the idea is to ensure future evacuation modeling studies do not contribute to 

inequities, and instead, are used to identify and reduce them across many forecast-

population-infrastructure scenarios.   

To my colleagues in the weather and hazards communities, I offer the following articles 

to help advance new methods for studying hurricane evacuations, to better support 

practitioners/policy-makers aiming to improve evacuations, to change how forecast 

verification is done across the weather enterprise, and to help cultivate a shared 

understanding across disciplines of the entire hurricane-forecast-warning system. This 

last point is especially important for meteorology, as the community often struggles to 

understand why improved forecast accuracy does not always translate into increased 

public safety. 
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ARTICLE 1 

AN AGENT-BASED MODELING FRAMEWORK FOR EXAMINING THE DYNAMICS 

OF THE HURRICANE-FORECAST-EVACUATION SYSTEM 

1. Introduction 

Hurricanes Irma (2017) and Rita (2005) demonstrate how, in the mainland US, the 

forecast-evacuation system is uncertain, dynamic, and complex. For example, Irma’s 3-

10-day forecasts indicated the storm was likely to make landfall as a major hurricane 

somewhere in Florida, with the most likely track near Miami, triggering the largest 

evacuation in US history (FDEM 2017). However, the forecast track shifted slightly 

westward as the storm approached, with eventual landfall near Tampa Bay–St. 

Petersburg, a common evacuation destination in the event, while leaving Miami largely 

unscathed (Cangialosi et al. 2018; Wong et al. 2018). Similarly, uncertainties in Hurricane 

Rita’s track and intensity forecasts, combined with the aftermath of Hurricane Katrina, led 

to mass evacuations and severe traffic jams in Houston–Galveston. The worst of the 

storm missed the area, but had Rita struck Houston–Galveston directly, the 

consequences could have been severe, as many evacuees were stranded on area roads 

(Zhang et al. 2007; Knabb et al. 2006).  

The events are relevant since the forecasts were fairly accurate, with the westward shift 

of Irma’s track falling within the National Hurricane Center’s cone of uncertainty 

(Cangialosi et al. 2018), and Rita’s forecast track being less erroneous than most (Knabb 

et al. 2006). However, forecasts were less successful in providing useful guidance for 

many affected by the events, despite being as useful as one can expect given current 
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forecast skill. These cases illustrate the complexities of people using inevitably imperfect 

forecasts to make evacuation decisions well before the storm arrives, and they 

demonstrate how evacuations involve many interacting physical-social parts and 

uncertainties which evolve over time (e.g., Morss et al. 2017; Barton 2014; Trainor et al. 

2012; Miller and Page 2007). Because of these complex dynamics, safe and efficient 

evacuations can be a formidable challenge.   

Empirical studies provide insight to different aspects of hurricane evacuations, such as 

how forecasts, warnings, and other factors influence evacuation decisions (e.g., Huang 

et al. 2016; Lindell and Perry 2012; Baker 1991). However, it is difficult to empirically 

study all aspects of evacuations across multiple cases. Computational models, on the 

other hand, provide a complementary tool where empirical knowledge can be codified 

and used to run virtual experiments for many different hurricane scenarios, real and 

synthetic (e.g., Morss et al. 2017, Watts et al. 2019). Recent research demonstrates the 

potential of modeling the hurricane evacuation system together in one framework (e.g., 

Watts et al. 2019; Blanton et al. 2018). With that we ask: can a modeling framework be 

designed to holistically investigate the complex dynamics of the hurricane-forecast-

warning system i.e., to determine which factors are important and how they interact 

across a range of scenarios? 

To answer this question, we introduce a new modeling framework, FLEE (Forecasting 

Laboratory for Exploring the Evacuation-system). FLEE includes several empirically-

informed models representing key, interwoven aspects of real-world hurricane 

evacuations: the natural hazard (hurricane), the human system (information flow, 

evacuation decisions), the built environment (road infrastructure), and connections 
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between systems (forecasts and warning information, traffic, impact zones). The 

hurricane and forecast information are represented using data and products from the 

National Hurricane Center (NHC), a component of the U.S. National Weather Service 

(NWS) which is the leading authority for real-time hurricane forecasting. Two agent-based 

models (ABMs) replicate 1) the flow of information and evacuee decision-making, and 2) 

evacuation infrastructure, routing, and traffic. These models are conceptually and 

numerically interconnected as shown in Figure 1.  

 

 
Figure 1: A conceptual overview of FLEE which includes models of the three interconnected systems of 
hurricane evacuations: (a) the natural hazard (b) the human system, and (c) the built environment, 
represented by NHC forecast products and two ABMs, respectively (italics). Forecast and warning 
information (purple), evacuation traffic (light blue), and impact zones (gold) serve as conceptual links 
between systems. Coupling the individual models (a-c) via these links makes FLEE a hybrid agent-based 
and system dynamics model (Martin and Schlüter 2015) uniquely positioned to perform experiments 
impossible to conduct in the real-world.  
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This article has two primary objectives. First, to overview the conceptualization and 

implementation of FLEE. This includes describing the model components, which are 

designed to represent key aspects of real-world hurricane evacuations, while remaining 

sufficiently idealized to build fundamental and practical knowledge (e.g., see Watts et al. 

2019; Sun et al. 2016, discussion in Section 2). The article’s second aim is to show results 

from experiments demonstrating how FLEE is uniquely positioned to examine the 

hurricane-forecast-warning system dynamics. That is, how it can explore the effects of 

altering different factors, interactions among system components, and to show how large-

scale patterns of evacuation can emerge from individual decisions of many 

heterogeneous agents interacting with each other and with their physical-informational 

environments.  

Preliminary experiments are performed on a simplified representation of the Florida 

peninsula – a place frequently visited by tropical systems (Keim et al. 2007) – and for 

Hurricane’s Irma and Dorian, which affected these areas in 2017 and 2019. FLEE was 

designed to be flexible, however, and thus the modeling framework can be modified to 

study other regions, hurricane scenarios, and multi-hazards e.g. hurricanes followed by 

flooding or cascading failures such as loss of power networks, damage to roads etc. 

This research builds on previous work which models the hurricane evacuation system by 

expanding the components of the full system represented within the same modeling 

framework. For example, one body of work uses ABMs to study evacuation planning (e.g., 

Madireddy et al. 2011; Zhang et al 2009; Chen 2008, 2012; Zhan and Chen 2008; Chen 

and Zhan 2004, 2006). Such work focuses on evacuation traffic while using highly 
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idealized representations of the forecast and warning information and evacuation 

decision-making. Meanwhile another body of work uses ABMs and other models to study 

information flow and evacuation decision making but does not include representations of 

evacuation routing and traffic (see, e.g., Dixon et al. 2017; Yin et al. 2014; Widener et al. 

2013; Watts et al. 2019; Morss et al. 2017; Czajkowski 2011; Hasan et al. 2013). Arguably 

the most comprehensive model of the hurricane evacuation system is Blanton et al. 

(2018) and Davidson et al. (2018), as they integrate the forecast, evacuation decisions, 

and evacuation traffic into one system. However, its representation of information flow 

and evacuation decision making were fairly simplistic as these models were designed for 

operational use.  

Modeling frameworks like FLEE, which represent the entire hurricane-forecast-warning 

system, can support researchers, practitioners, and policy-makers in a variety of 

disciplines. This includes hazard risk management, which would benefit from increased 

knowledge of the relative effectiveness of evacuation management strategies. The 

evacuation modeling community would benefit from improved understanding of 

evacuation, which provides better rationale for variable selection in future models. In 

meteorology, modeling frameworks like FLEE can provide a societally-relevant alternative 

to traditional measures of forecast accuracy, by showing how forecasts influence 

evacuation success. Lastly, by looking at the system holistically, these modeling 

frameworks can cultivate shared understanding across these disciplines, a need 

emphasized by Bostrom et al. (2016).  
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2. Modeling framework and implementation  

This section describes FLEE’s components and design (Grimm et al. 2020). The modeling 

framework was developed using Fortran due to familiarity with the language but could be 

developed using existing agent-based software. For further details, the commented code, 

a model description, and input files are available for download at the CoMSES model 

library (https://www.comses.net/codebase-release/4cd05855-f387-48bd-8899-

9d62375518cb/).  

FLEE can run on multiple operating systems, including MacOS, Linux, and Windows, and 

on computers with average memory and cores (e.g., we used computers with 2 cores and 

4 GB memory). Simulations typically require 3-5 days of real-time. Though it cannot run 

in quasi-real time on a desktop computer, the paper’s goal is proof of concept – improving 

run time is a key next step for more practical use.  

The modeling framework includes a spatially explicit virtual world representing a 

geographical area of interest (described in section 2.1); a dynamic hurricane – and 

forecast information about it – that passes through that world (section 2.2); a multi-agent 

model where information is interpreted by millions of heterogenous agents and used to 

make evacuation decisions (section 2.3); and a traffic model where agents move across 

the virtual world as the hurricane approaches (section 2.4).  

ABMs were chosen to represent the human system (Figure 1b) and the built environment 

(Figure 1c) as the models capture individual’s decision-making processes and 

interactions between agents, making them excellent tools for investigating complex 

system dynamics (e.g., see Miller and Page 2007; Barton 2014; Hammond 2015, Rand 

https://www.comses.net/codebase-release/4cd05855-f387-48bd-8899-9d62375518cb/
https://www.comses.net/codebase-release/4cd05855-f387-48bd-8899-9d62375518cb/
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and Rust, 2011). Another reason is that ABMs have proven capable of simulating 

evacuation decisions in hurricanes (see, e.g., Dixon et al. 2017; Yin et al. 2014; Widener 

et al. 2013; Zhang et al. 2009; Watts et al. 2019; Morss et al. 2017) and hurricane traffic 

dynamics (e.g., Gehlot et al. 2019; Ukkusuri et al. 2017; Liang et al. 2015; Chen and Zhan 

2008). One drawback of ABMs is their high computational expense, which makes them 

less suitable for operational use (e.g., pros/cons in Bazghandi 2012).  

To design and implement FLEE, we integrated across multiple relevant areas of 

expertise, including agent-based modeling, meteorology, emergency management, 

protective decision making, risk communication, social vulnerabilities, and traffic 

modeling. As in any modeling effort, aspects of FLEE are simplified and some real-world 

processes are not represented. Decisions about what to include were based on our 

research goals (e.g., to explore the broad system dynamics), review of relevant literature, 

and discussions among our research team. These decisions are discussed throughout 

Sections 2.1–2.4.  

2.1.  The virtual world  

FLEE’s virtual world is a 10 x 4 cellular representation of the north-south axis of Florida, 

an area susceptible to hurricanes (Keim et al. 2007) and which has experienced mass 

evacuations such as Irma (2017). The grid spacing is coarse by design (40 grid spaces 

of 69-km x 69-km each) as the project’s goal is to explore the broader system dynamics, 

and to provide a starting point for more complex experiments. Census data informs the 

spatial distribution of agent households on the abstracted grid as well as household 

characteristics (which then influence evacuation decisions as discussed in section 2.3). 
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For the built infrastructure, virtual highways and interstates designed to simulate key 

aspects of Florida’s road network are overlaid on the model grid (section 2.4). These 

roads allow agents to move between grid cells for evacuation. Details regarding the 

construction of each model system (i.e., the natural hazard, the human system, and the 

built environment) and the key connections between them is provided in the next three 

subsections.  

2.2. The natural hazard (hurricane, forecasts, and warning information) 

FLEE includes a hurricane that approaches and can move through the model domain 

(Figure 1a). The storm and its forecasts can be real or synthetic; here we simulate real, 

historical storms using archived NHC forecast products which were issued in real-time. 

The products include information about the observed storm characteristics (Table 1) and 

official forecast information (Table 2), both of which update every 6-hours (both in FLEE 

and in the real-world). When taken together, the products capture the critical storm 

information and its evolution as the storm approaches. We chose to use NHC products in 

this implementation rather than meteorological model ensembles (as used in Blanton et 

al. 2018; Davidson et al. 2018) because they more closely resemble forecasts seen by 

the public (Demuth et al. 2012), and can be systematically perturbed to assess the 

evacuation’s sensitivities to the forecast. Note, the NHC products are a starting point, but 

FLEE can be extended to include additional or more complex information about the storm 

and forecasts and warnings, if desired. In this article, NHC forecast products are obtained 

for Hurricanes Irma (2017) and Dorian (2019), which represent forecast scenarios with 

different tracks, speeds, forecast errors, and subsequently, different evacuation 

behaviors (e.g., Wong et al. 2018, Mongold et al. 2020; Long et al. 2020).   
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Observed storm characteristics  Archived NHC products where the data are 

located  

Observed wind radii (i.e., 64, 50, and 34 knot 

wind speeds in each of 4 quadrants) 

Advisory Wind Field 

Observed maximum sustained winds (i.e., 

current storm category) 

Advisory Forecast Track 

Observed forward speed Advisory Forecast Track 

Table 1: Observed storm characteristics used in FLEE and the NHC products from which the data are 
located. Storm characteristics includes the storm’s observed location, size, intensity, and forward speed as 
it moves across the virtual world (left). This information was taken from archived NHC forecast products 
(right) which were issued in real time (available at https://www.nhc.noaa.gov/gis/). Consistent with the wind 
speeds in the NHC data, winds are discussed here in the unit knots (nautical miles per hour, equivalent to 
approximately 1.15 mph or 1.85 km/h).  

 

 

 

 

 

 

 

 

 

 

 

 

https://www.nhc.noaa.gov/gis/
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Forecast information 

 

Archived NHC products where the data are 

located  

Forecast track Advisory Forecast Track 

Forecast maximum sustained winds (i.e., 

forecast storm category) 

Advisory Wind Field 

Forecast wind radii (i.e., 64, 50, and 34 knot 

wind speeds in each of 4 quadrants) 

Forecast Wind Radii 

Uncertainty in forecast track  Cone of Uncertainty 

Expected arrival time Arrival time of tropical storm force winds 

Table 2: Forecast information used in FLEE and the NHC products from which the data are located. The 
forecast information (left) includes the storm’s expected track, category, size, the amount of uncertainty 
associated with the forecast track (i.e., the cone of uncertainty), and the expected arrival time of the storm. 
Specific archived NHC products where the data was taken is shown (right) and is available for download at 
https://www.nhc.noaa.gov/gis/. Note: the cone of uncertainty represents the probable track of the center of 
a tropical cyclone, and is formed by enclosing the area swept out by a set of circles along the forecast track 
(at 12, 24, 36 hours, etc.). The size of each circle is set so that two-thirds of historical official forecast errors 
over a 5-year sample fall within the circle (see full explanation at 
https://www.nhc.noaa.gov/aboutcone.shtml). 

Each time a new forecast is entered into the model, information from the NHC products 

is synthesized into a “light system” forecast of the three major hazards known to drive 

hurricane evacuation decisions: wind, storm surge1, and rain. The approach resembles 

the Meteoalarm web platform (http://www.meteoalarm.eu) where hazard risk are 

displayed in traffic-light color-coding (green, yellow, orange, red). Reds are reserved for 

severe and rare events, while also capturing some degree of immanency (i.e., reds are 

warnings, yellows are watches) (Alfieri et al. 2012). We chose to use this type of light 

system in the modeling system because it (1) represents a synthesis of the forecast for 

 
1 Storm surge is defined by the National Oceanic and Atmospheric Association (NOAA) as the abnormal 
rise in seawater level during a storm, measured as the height of the water above the normal predicted 
astronomical tide. The surge is caused primarily by a storm’s winds pushing water onshore.  

https://www.nhc.noaa.gov/gis/
https://www.nhc.noaa.gov/aboutcone.shtml
http://www.meteoalarm.eu/
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public consumption like TV personnel do (Demuth et al. 2009), and (2) provides means 

to connect forecast products with the model grid where evacuation decisions are made 

(Figure 1b).  

Light system forecasts are created with ArcGIS by overlaying products onto the 10 x 4 

model grid. Then, at each grid cell, forecast products are combined and weighted to 

estimate risk for wind, surge, and rain. Weights are based on current knowledge of the 

contributions of different factors to these types of hazards (e.g., Rezapour and Baldock 

2014; NOAA 2021; team expertise in meteorology and risk perception), combined with an 

empirical validation that the progression of hazard risks for Irma and Dorian is reasonable. 

Sensitivity tests on the light system weighting (not shown) indicated that shifts in the 

weightings of the different factors did not have a significant effect on evacuations. The 

exact process of combining and weighting information to create light system forecasts is 

provided in Tables A1–A3. 

Figure 2 presents the light system forecasts for Hurricane Irma (2017) at 24 hour intervals. 

The early NHC forecasts depict the most likely scenario as a landfalling major hurricane 

near Miami. However, the forecasts shifted westward as the storm approached Florida, 

with the storm eventually making one mainland U.S. landfall in the Florida Keys and a 

second in southwest Florida near Naples. The light system captures the gradual westward 

shift in threats. Moreover, as the storm approaches Florida and track uncertainty 

decreases (confidence increases), the light system estimates increased risk focused on 

areas inside the narrowing cone of uncertainty. Because of these features, the light 

system appears to be a reasonable way of representing the risks associated with 

hurricane hazards and is good enough to proceed. As a result, FLEE becomes the first 
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to use synthesized NHC products with ABMs, and alongside Watts et al. (2019) and 

Morss et al. (2017), contains one of the most sophisticated representations of hurricane 

forecast information in models of the hurricane evacuation system to date. 

Figure 2: Light system forecasts for Hurricane Irma (2017) as the storm approaches and travels through 
the Florida-like, model grid. Forecasts are shown at 24 hour intervals, but update every 6 hours in the model 
simulations (not shown). Left column: Evolving NHC forecast track (black center line), category (numbers), 
cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), and 64+ 
(red) knot intervals. Right three columns: The light-system threats for wind, surge, and rain are shown for 
equivalent times in the simulation, with the forecast track (center black line) and cone of uncertainty (outer 
black lines) included for reference. Note: threats are highest when near the center of the forecast cone and 

when hazards are most imminent, among other factors. 
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2.3. The human system (information flow, evacuation-related decisions) 

With the synthesized light system forecasts as inputs, an ABM simulates the “human 

system” i.e., information flow and evacuation-related decisions (Figure 1b). This system 

includes two types of agents: emergency management agents who issue evacuation 

orders, and household agents (i.e., the public) who collect information, assess risks, and 

make protective decisions. An overview of the agents and their decision-making 

algorithms, which run every 30 minutes in FLEE, is described in this section.  

As the hurricane approaches the coastline, emergency management agents (EMs) 

decide whether to issue evacuation orders for each grid cell. The decision-making 

process is represented schematically in Figure 3 and is based on research by Demuth et 

al. (2012), Dye et al. (2014), and Bostrom et al. (2016), as well as the analysis in Cutter 

(2019). Clearance times are subjectively assigned to FLEE’s grid cells using data from 

the Florida Statewide Regional Evacuation Study Program (2019) which accounts for 

available road networks and the number expected to evacuate per county (based on 

population density and forecast intensity). For example, high clearance times (40–60 

hours) are located in Miami and Tampa Bay for intense (red) surge forecasts; low 

clearance times (5–20 hours) occur in rural areas upstate with less intense (yellow) surge 

forecasts. Since surge is not expected inland, only coastal EMs issue evacuation orders 

in FLEE.  
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Figure 3: The evacuation order decision-making algorithm prescribed to emergency management 
agents (EMs) along the coastline. Information used by EMs include the surge light system forecasts 
(Section 2.2), estimated arrival time of the storm, and clearance times for each grid cell.  

The second type of agent, household agents, represent groups of 4 individuals, bringing 

the number of estimated households in FLEE to 4.1 million (note: the literature suggests 

people generally make household-based evacuation decisions e.g., summary in Murray-

Tuite et al. 2019). This is a simplification to reduce model run-time, as the average 

household size in Florida is estimated at 2.7. Since the paper’s goals are to describe 

FLEE and demonstrate its capabilities, we believe this assumption is okay, for now. 

Future experiments building fundamental knowledge of the system dynamics should 

accurately reflect household size.   

Household agents collect information about the hurricane, assess risk posed by the 

storm, and decide whether the risk warrants evacuation. The design of the evacuation 

decision-making algorithms prescribed to these agents was adapted from conceptual 
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models of protective decision-making for hazards, such as the Protective Action Decision 

Model (PADM; Lindell and Perry, 2012; see hurricane applications in Lazo et al. 2015; 

Huang et al. 2017; Watts et al. 2019), and findings from empirical research on decision-

making for hurricanes (e.g., Baker, 1991; Dow and Cutter, 2000; Dash and Gladwin, 

2007; Morss and Hayden, 2010; Bowser and Cutter 2015; Huang et al., 2016, Morss et 

al., 2016, Demuth et al., 2016; Cuite et al., 2017; Bostrom et al., 2018; Demuth et al., 

2018). As noted in Watts et al (2019), a major challenge is to synthesize the conceptual 

PADM model and information from empirical analyses into simple yet sufficiently specific 

instructions for agents. For the purposes of our model, we are not seeking a fully realistic 

algorithm, but one that captures the main processes underlying public evacuation 

decisions in the context of the modeling system so we can examine the broader 

evacuation dynamics holistically.  

To develop the household decision algorithm, we synthesized the relevant literature which 

suggests that people generally evacuate when they believe that the hurricane poses a 

risk to themselves or their family, and that different people perceive risk differently and 

have different evacuation barriers (e.g., Baker, 1991; Dash and Gladwin, 2007; Lazo et 

al., 2015). This literature also finds that factors with the strongest, most consistent 

influence on evacuation decisions include the risks indicated by forecast information and 

evacuation orders, as well as household characteristics associated with risk perceptions 

and evacuation barriers (Huang et al. 2016). Thus, we construct the decision-making 

algorithms by combining time-varying information about the evolving risk (from light 

system forecasts and EM’s evacuation orders) and household characteristics related to 

perceived and actual risk (age, mobile home residence) to form a risk assessment. This 
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risk assessment is then compared with evacuation barriers (socioeconomic status, car 

ownership) which vary across the agent population and the model grid. Undecided agents 

seek information and update decisions every 30 minutes, making agents active 

participants in the evacuation decision making process (Watts et al. 2019; Morss et al. 

2017; Mileti and Sorensen 1990, Sadri et al. 2017). A high-level schematic of the decision-

making algorithm is presented in Figure 4; details regarding the algorithm’s variables and 

formulation is provided in Table A4.   

 

 

Figure 4: The household evacuation decision-making algorithm in FLEE. Based on the PADM of 
Lindell and Perry (2012), the process begins when agents combine information obtained from multiple 
sources (e.g., forecast information, evacuation orders, and household characteristics) into a household risk 
assessment, which is then compared with evacuation barriers (i.e., socioeconomic barriers, car ownership) 
that vary across the agent population. A household will evacuate if the household’s risk assessment is 
greater than the household’s evacuation barriers.  
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Agent’s household characteristics are prescribed by subjectively projecting county-level 

census and social vulnerability data regarding mobile home ownership, age, car 

ownership, and socioeconomic status (which includes poverty rates, unemployment, and 

income) onto FLEE’s model grid (Figure A1; Flanagan et al. 2011). Once the geographical 

distribution of variables is sorted between cells, specific characteristics are stochastically 

assigned to individual households (Table A5). The idea is to not perfectly represent the 

real-world characteristics, but to generally capture its geographical distribution, and have 

an appropriately wide range of household characteristics within grid cells. This results in 

many heterogeneous agents with unique preferences and characteristics.   

To account for complexities in how people process and value different information, factors 

influencing a household’s risk assessment are weighed differently between households 

(Table A6). For example, some agents are concerned about evacuation orders while 

others are not; some are concerned about their mobile home’s durability while others are 

not, and so on. Varying the weights captures these differences. In addition, varying the 

weights indirectly represents other factors such as culture and worldviews which are 

sometimes important (Lazrus et al. 2020; Morss et al. 2020). Weight distributions are 

stochastically generated for each household with specified ranges informed by the 

literature (e.g., Senkbeil et al. 2019; Bostrom et al. 2018; Petrolia et al. 2011; Meyer et al. 

2014; Morss and Hayden 2010; Brommer and Senkbeil 2010; Peacock et al. 2005). The 

idea is to reflect the relative importance of each factor (e.g., evacuation orders, forecast 

information, mobile home ownership, and age, in that order) as established in Huang et 

al. (2016).  
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One noteworthy simplification of the decision-making algorithm is that households do not 

share forecast information with other agents. In other words, everyone has the exact 

same forecast and evacuation order information i.e., it is a world with perfect, 

instantaneous communication of updated forecast information. Another is that they do not 

consider social cues, such as seeing other people evacuate, which can increase one’s 

risk perception. We also do not consider previous experience of disasters, social-media 

influence, or the structural integrity of buildings, which can influence people’s risk 

assessments and behaviors (e.g., Dash and Gladwin, 2007; Lindell and Perry, 2012; 

Demuth et al., 2018). Again, the idea is to capture the main processes underlying public 

evacuation decisions so we can examine the hurricane-forecast-evacuation system 

dynamics holistically. Such features could be added in future model versions, depending 

on the intended research goals.  

2.4  The built environment (infrastructure, evacuation routing, and traffic) 

If a household decides to evacuate, they enter another ABM – this time representing 

evacuation traffic – which moves the household across an idealized road network toward 

a (presumably) safer location (Figure 1c). An overview of this traffic model, its vehicle 

agents, and the idealized road infrastructure is described in this section.  

FLEE’s idealized road network, and its relationship with the 10 x 4 model grid, is depicted 

in Figure 5. The built environment consists of two five-lane interstates (blue arrows) 

situated on the edges of the model grid. These interstates, representing Florida’s I-75 and 

I-95, transport evacuees northward along FLEE’s “coasts.” Additionally, two east-west 

running, three-lane interstates (purple arrows), representing Florida’s I-75 and I-4, allow 
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residents to move horizontally across the grid. For example, these interstates let 

households move from Miami (yellow star) towards Tampa Bay (blue star) or inland 

towards Orlando (orange star). Lastly, eight, two-lane highways (red arrows) allow inland 

residents access to the interstates where they can flee northward/inland to safety. Though 

idealized, FLEE’s built infrastructure is designed to capture the main elements of Florida’s 

real world road network that influence large-scale evacuation dynamics. However, future 

models could add complex road structures, such as including local and intra-city road 

networks, if desired.  

Figure 5: The idealized road network and population distribution on the model grid. Agents inside the 
idealized grid (a) are subjectively populated and characterized based on 2019 census data (color filled 
cells). Note there are 16,390,000 agents total, which equates to 4,097,500 households/vehicles, and that 
grid cell dimensions are 69 x 69 km each. Major cities depicted include Miami-Ft. Lauderdale (yellow star), 
Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange star). The grid cell 
corresponding to Tampa Bay (blue star) contains the most evacuees of any grid cell at 2.5 million. Cities 
are also depicted in Florida’s actual population map (b), with the semi-transparent, 10 x 4 model grid 
overlaid, for reference. The available road network (e.g., road type, direction, number of lanes) is shown 
(left) with supporting table (c). Agents are generally instructed to flee onto the primary interstates (blue) and 
then northward (arrows) to areas of lower risk.  
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Evacuating households are instructed to depart within twelve hours of the evacuation 

decision (Huang et al. 2012, Lindell et al. 2005, Murray-Tuite et al. 2019). Departure times 

are generated stochastically within this twelve hour timeframe. When it’s time to depart, 

households are assigned a vehicle and look for spots on the nearest highway (Figure 5; 

red and purple lines). Specifically, households search for any unoccupied spot along the 

69 km stretch of highway corresponding to their home grid cell. If an open spot exists, 

they are immediately placed in this spot. If spots are unavailable due to traffic for a period 

of time, evacuees can lose patience, abandon the evacuation and shelter in-place instead 

(this process is detailed in Table A7). In this way, the amount of evacuation traffic 

influence evacuation decision-making for households.  

In regard to destinations, nearly half of the evacuees are randomly selected to evacuate 

out-of-state (e.g., based on Wong et al. 2018; Murray-Tuite et al. 2019). For the remaining 

in-state evacuees, evacuation destinations are chosen based on where the forecast 

hazard risk is lower (e.g., from red to green) and where accommodations are available, 

which is typically in more populated areas (Murray-Tuite et al. 2019). In the case of 

Hurricane Irma, in-state evacuees typically moved upstate (e.g., towards Tampa Bay, 

Jacksonville) and inland (e.g., towards Orlando). Carless households move to local 

shelters, meaning they do enter the road networks and influence traffic (Wong et al. 2018). 

Regarding route selection, we simplify the complex process by assigning agents the 

shortest route (Sadri et al. 2014). Once assigned, evacuee routes do not change. The 

amount of time required to reach destinations is not considered, though this could be 

added in future models.  
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For those who enter the road, rules governing vehicle movement are simple: drivers 

accelerate when they can, slow down if they must, and do not accelerate at the speed 

limit (70 mph on interstates, 50 mph on roads) or behind another car. Lane switching is 

not permitted but could be added in future models. Some drivers exhibit erratic behaviors 

by randomly braking, potentially leading to traffic jams. Accidents are stochastically 

generated, with a frequency based on Robinson et al. (2009). Default settings for these 

parameters are described in Table A7.   

An example of FLEE’s evacuation traffic is shown in Figure 6. The traffic model, which 

has a 1.2 second timestep, captures interactions between vehicles at micro-scales, e.g., 

over-reactive and/or erratic drivers cause other drivers to slow down, triggering realistic-

looking traffic jams (Figure 6; blue streaks). These interactions are important for 

investigating complex system dynamics such as traffic (Miller and Page 2007; Barton 

2014). Congestion and slowdowns – similar to what is shown in Figure 6 – occur at 

intersections, in densely populated regions, surrounding accidents, or when vehicles run 

out of gas. In Section 4.1, we show that, before Hurricane Irma, severe traffic occurs 

along I-75 and I-95 northbound due to Miami and Tampa Bay being in the storm’s path. 

During Irma’s actual evacuation, severe traffic was also observed in these areas (e.g., 

Zhu et al., 2020; Cava 2018; Wong et al. 2018). Because the traffic model captures 

important vehicle interactions at microscales, and generates reasonable traffic 

phenomena at regional scales, we believe FLEE’s built environment represents 

evacuation traffic sufficiently well to examine the hurricane-forecast-evacuation system 

dynamics holistically. 
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Figure 6: Sample of evacuation traffic generated by FLEE’s built environment during Hurricane Irma 
(2017). Specifically, we show one lane of a zoomed-in, 4-km segment of I-95 (y-axis). Vehicles (dots) move 
along the interstate segment over a 5-minute period (x-axis) (i.e., vehicles move from bottom-left to top-
right). Colors depict vehicle speed – full speed traffic moves unobstructed (red dots), while erratic drivers 
cause vehicles to slow down (blue dots) or stop altogether (dark blue).  

 

3. Experimental methods and data analysis 

3.1  Model validation 

There are no governing equations to model human behavior. Therefore a thorough 

understanding of the FLEE’s behavior – and a validation the behavior is realistic as 

possible – must be achieved. This was accomplished in several ways. First, the modeling 

framework was tested throughout implementation to ensure the model code is error-free. 

This includes conducting sensitivity analyses on FLEE i.e., components were perturbed, 
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one-by-one, to check if it behaves reasonably (e.g., sensitivity tests on light system 

weights described in Section 2.2). Second, the model framework was calibrated against 

existing observational data, namely for Hurricane Irma (e.g., Wong et al. 2018; FDEM 

2017; Long et al. 2020; Feng and Lin 2021). These empirical studies provide an overview 

of Irma’s evacuation behaviors, including the total number of evacuees, how Irma’s 

evacuation rates change with time and vary spatially, and when/where significant traffic 

occurred. Throughout Section 4, we compare FLEE’s default evacuation behaviors to 

these observations in an effort to validate the model framework, and in turn, demonstrate 

that FLEE portrays key aspects of real-world evacuation dynamics sufficiently well to be 

suitable for experimentation.  

3.2  Experimental Design  

Table 3 provides an overview of the different experiments reported in this article. The first 

experiment (Table 3a) uses the default model parameters described in Section 2.1–2.4 

for Hurricane Irma. It provides a baseline of evacuation behaviors which are compared to 

existing observational data for validation. Based on this default simulation, we then 

systematically modify model parameters one-by-one, while holding other variables 

constant, to explore FLEE’s behaviors and sensitivities. These experiments include 

varying the evacuation order timing (Table 3b), implementing contraflow (Table 3c), and 

changing the storm to Hurricane Dorian (Table 3d). Additional experiments changing the 

evacuation decision-making inputs (Table 3e) and the population density (Table 3f) are 

included in Appendix A. Together, these proof-of-concept experiments are intended to 

demonstrate how FLEE can serve as a virtual laboratory uniquely positioned to advance 

our understanding of the hurricane-forecast-evacuation system. 
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Experiment Storm Goal Run details 

a) Default  Irma Establish a baseline of 
evacuation behaviors (section 
4.1) for comparison with 
experiments b-f and 
observational data for 
validation. 

1:  Inputs described in Sections 
2.1-2.4. 

b) Varying 
evacuation 
order timing 

Irma Examine the influence of 
changing evacuation order 
timing by adjusting clearance 
times at each grid cell (section 
4.2)  

2: Evacuation orders 10 h earlier  
3: Evacuation orders 10 h later  
4: Clearance times equal  
5: Clearance times equal and 
reduced by 10 hours  

c) 
Implementing 
contraflow  

Irma Examine the influence of 
contraflow on evacuations 
(section 4.3) by adjusting the 
number lanes on various 
highways 

6: +1 lane on I-95 
7: +1 lane on I-75 
8: +1 lane on both I-95/I-75 

d) Default  Dorian To examine how the default 
parameter values carry over to 
a new storm scenario (section 
4.4)  

9:  Default inputs (Sections 2.1-
2.4) but with Dorian’s light 
system forecasts 

e) Evacuation 
decision-
making inputs 

Irma Determine the relative influence 
of each decision-making input 
by turning them off, one-by-one 
(Appendix A)  

10: Forecast weight = 0 
11: Evacuation order weight = 0 
12: Age weight = 0 
13: Mobile home weight = 0 

f) Varying 
population 
density  

Irma Adjust population distribution to 
examine the influence of 
population density on 
evacuations (Appendix A)  

14: Uniform population 
distribution 

Table 3: Description of experiments. The main goals are to establish the broader spatial and temporal 
patterns of evacuation behaviors for Hurricane Irma (2017), then intentionally perturb FLEE’s key 
parameters to assess the relative importance and general response of the factors (b-f). In doing so, we 
demonstrate how FLEE can investigate the dynamics of the hurricane-forecast-evacuation system. Note: 
experiments e and f were included in Appendix A.  
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3.3  Data Analysis 

To compare evacuation patterns and behaviors quantitatively across simulations, FLEE 

tracks evacuation statistics for all grid cells. The primary model output analyzed here are 

the percent of households that successfully evacuated (i.e., evacuation rates), and the 

percent who intended to evacuate but “gave up” due to traffic. The latter statistic provides 

insight to where the excessive traffic may be preventing successful evacuations. In 

addition to displaying data by grid cells, values are broken down into multiple impact 

zones, designed as first-order approximations of areas likely to experience different levels 

of impacts based on the actual meteorological conditions produced by the storm. Here, 

we use four impact zones, defined by whether the grid cells: a) are coastal or inland, and 

b) primarily experiences winds that are greater than 64 knots (hurricane-force) or less 

than 64 knots. Using the impact zones, we can determine who evacuated from locations 

that did not end up experiencing hazardous conditions. In addition, we examine 

compliance rates (i.e., the percentage of residents under evacuation orders who 

evacuated) and shadow evacuation rates (i.e., the percentage of residents who 

evacuated from areas not under evacuation orders; McGhee and Grimes 2006; Murray-

Tuite et al. 2019). Note: evacuation orders are issued for entire grid cells i.e., everyone in 

that grid cell either gets an evacuation order or not.  

In looking at the results, we compare multiple metrics that might indicate successful 

outcomes in different ways. For example, high compliance rates may not be “good” if the 

storm ends up not having much impact in those areas, and shadow evacuation rates may 

not matter if those at highest risk can get out safely. 
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Because FLEE includes stochastic elements, it can exhibit some run-to-run variability. 

For example, in a series of tests where simulations were repeated five times, evacuation 

rates ranged from 0–2% within grid cells. This run-to-run variability is smaller than other 

agent-based evacuation simulations (e.g., Watts et al. 2019, Chen and Zhan 2008), likely 

because there are many more agents in this model (nearly 4.1 million 

households/vehicles). Nevertheless, when interpreting results, changes less than this 0–

2% variability within grid cells are considered insignificant.  

4. Results 

4.1  Spatial and temporal patterns of evacuation  

First, we examine results from a simulation with the default FLEE configuration for 

Hurricane Irma (Table 3a). By comparing these results with observations of Irma’s actual 

evacuation (e.g., in Wong et al. 2018; FDEM 2017; Long et al. 2020; Feng and Lin 2021), 

they provide a first-order assessment that agents in the model are behaving reasonably 

based on the processes implemented. They also illustrate key aspects of FLEE’s 

behavior, including the spatial and temporal patterns of evacuation, which provide a 

baseline for interpreting results from subsequent experiments (sections 4.2–4.4; 

Appendix A, supplementary results 1–2). 

Based on the default model settings for Irma, EM agents issue evacuation orders in a 

similar pattern to what was observed (Figure 7; red cells). Evacuation orders were first 

issued around Miami-Ft. Lauderdale 36–48 hours into the simulation (Figure 7b), and 

spread northward along both coastlines over the next several days (Figure 7c–e). The 

last evacuation orders were issued in Jacksonville 120 hours into the simulation, which 
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coincides with the time Irma makes landfall along the southwest Florida coast (Figure 7e). 

By the end of the simulation, Irma’s hurricane-force winds (Figure 7f–g; dotted cells) 

impacted the western two-thirds of the model – particularly the southwest and western 

coastlines – while leaving the east-coast generally unscathed. This general progression 

of evacuation orders being issued from south-to-north along both coasts matches what 

occurred with Irma (e.g., see Page 14-15 and Figure 2 of Wong et al. 2018 for evacuation 

orders by county). This increases our confidence that the EM decision-making algorithm 

– and the storm surge forecasts on which its based – behaves reasonably and 

realistically.  
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Figure 7: Evacuation rates in Irma’s default model run. Rates are presented every 24 hours throughout 
the 144 hour simulation (a-f) for each grid cell. The percentage which intended to evacuate but could not 
due to excessive traffic is also expressed (g), as are the spatial and temporal patterns of evacuation orders 
(red cells) and the swath of hurricane force winds experienced (dotted cells). Also shown are the number 
of evacuees still enroute (bottom of panels a-f) and the population by grid cell (h). Major cities depicted 
include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), 
and Orlando (orange star). These provide a frame of reference for the evacuation rates in a-f. 

The percentage of households who evacuate is shown at 24 hour intervals for each grid 

cell (Figure 7 a–f). The results depict spatial and temporal patterns that are similar to real 

hurricane evacuation behaviors. First, evacuation rates increase after evacuation orders 

are issued, showing its importance to decision-making (Huang et al. 2016). Secondly and 

relatedly, evacuation rates are higher along the coasts than inland (Baker 1991). Thirdly, 

evacuation rates are still high for most areas. This arises because the forecasts in this 

simulation were dire everywhere, especially before the storm’s track shifted westward 
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(Figure 2). The dire forecasts prompted EMs to issue evacuation orders along both 

coasts, and as a result, many agents evacuated areas which did not experience hurricane 

force winds.  

FLEE’s simulated evacuation rates generally match existing observational data for Irma, 

which suggest evacuation rates vary from 40–60% along Florida’s east coast, to 60-80% 

across the south and west coasts, and around 5-40% inland (e.g., see breakdown of 

evacuation rates by region in Figure 4 of Wong et al. 2018; breakdown by voting precinct 

in Figure 1c of Long et al. 2020). One area for improvement is that FLEE produces 

evacuation rates higher than realistic early in the simulation, especially in the northern 

part of Florida (Long et al. 2020).  

Table 4 depicts evacuation rates in different impact zones. In total, 45.1% of households 

on the model grid evacuate, which equals 7.38 million people. Note, estimates from the 

Florida Department of Emergency Management (2017) suggest actual evacuation 

numbers totaled 6.9 million. For a given level of wind impact, evacuation rates are higher 

along the coasts than inland (52.3% coastal vs. 22.2% inland for >64 knots, 58.1% coastal 

vs. 36.7% inland for <64 knots). Interestingly, areas experiencing hurricane force winds 

had lower evacuation rates than areas less affected by the storm. This could be due to 

the potentially higher than realistic evacuation rates early in the simulation. They may 

also partially result from the east coast receiving evacuation orders, albeit unnecessarily, 

which increased evacuation rates in these areas, combined with excessive traffic along 

the west coast. For example, 17 to 32% of the populated Tampa Bay-St. Petersburg gave 

up evacuating due to excessive traffic (Figure 7g). The severe congestion, which did 

occur with Irma’s actual evacuation, also reduced evacuation rates along the southwest 
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and southeast coasts (e.g., see traffic information in Page 15 of Wong et al. 2018; FDEM 

2017; Feng and Lin 2021).  

 
% Successfully evacuated 

   

Experiment Total 

(all 

cells) 

Coastal 

>64 

knot 

zone 

Inland 

>64 

knot 

zone 

Coastal 

< 64 

knot 

zone 

Inland 

< 64 

knot 

zone 

Compliance 

rates 

Shadow 

evacuation  

Gave 

up to 

traffic 

Irma Default  45.1 52.3 22.2 58.1 36.7   55.0 25.6 10.5 

Table 4: Evacuation rates by impact zones for Irma’s default run. Successful evacuation rates are 
broken down into impact zones (coastal vs. inland, and areas experiencing vs. not experiencing hurricane 
force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation order who did 
evacuate), shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and 
the percentage of evacuees who attempted to evacuate but “gave up” due to excessive amounts of traffic.  

A second pattern illustrated by the evacuation rates is the variability in evacuation 

decisions among households i.e., some households decide to leave, but many do not, 

despite seeing similar information and having similar characteristics. This is consistent 

with real-world hurricane evacuations, and more generally with the heterogeneity 

exhibited by US households in the real-world (e.g., Hasan et al., 2011; Dixon et al., 2017). 

In the model, the variability arises from household’s different weighting of information as 

well as their different characteristics and barriers, which create differences in household 

risk perception.    

Figure 8 illustrates the temporal evacuation patterns. Despite not receiving evacuation 

orders, many households (black dotted line) evacuate in the first 0–36 hours. Evacuation 

rates increase linearly between 36–108 hours as evacuation orders expand along the 

coasts. Just before the storm moves ashore around 126 hours, evacuation rates 
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decrease, while the number of households giving up due to excessive traffic (black 

dashed line) increase. The latter occurs as household agents’ patience is influenced by 

the forecast arrival time of the storm. In other words, agents see the impending landfall, 

then decide to abandon the evacuation and stay home. These temporal patterns of 

evacuations, as with the spatial patterns, generally match existing empirical data, which 

suggests that evacuation rates increased semi-linearly throughout this period (e.g., see 

Figure 6 of Wong et al. 2018; Figure 2c of Long et al. 2020). As a result, we believe 

FLEE’s simulated evacuations provide a realistic baseline for interpreting results from 

subsequent experiments (sections 4.2–4.4). 

Figure 8: The temporal patterns in evacuation for Irma’s default simulation. Successful evacuation 
rates are shown (black dotted line), averaged across all grid cells, as are the percentage of households 
giving up due to traffic (dashed line), the percent staying and/or undecided (solid black line), and the 
percentage of households moving to a local shelter (grey dot dashed line). The latter do not officially enter 
the road network. Key times in the evacuation simulation, such as evacuation order issuance and storm’s 
landfall, are indicated by the vertical dotted lines. The results illustrate key aspects of the model’s behavior 
and provide a starting point for interpreting results from subsequent experiments (sections 4.2–4.4).  
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4.2  Varying timing of evacuation orders  

Now we investigate the effects of changing the evacuation order timing in FLEE (Table 

3b). Specifically, we conduct four experiments: 1) shifting evacuation orders 10 hours 

earlier, 2) shifting evacuation orders 10 hours later, 3) equalizing the clearance times for 

all grid cells, making the storm’s forecasted arrival time the only factor influencing 

differences in evacuation order timing across grid cells, and 4) shifting evacuation orders 

10 hours earlier than in experiment 3. These experiments build on the results examined 

in section 4.1, and begin to explore interactions among the evolving forecasts, evacuation 

orders, and household evacuation behaviors.   

Evacuation rates, broken down by impact zones (Table 5), indicate that changing 

evacuation order timing in the four experiments reduces the overall evacuation rates from 

45.1% in Irma’s default simulation (top row)  to 43.3 – 44.6%, which is 295,200 – 82,000 

less evacuees. Similarly, rates of evacuees giving up to traffic increases from 10.5% in 

the default simulation to 10.9 – 13.0%, which is 65,600 and 410,00 more people. This is 

surprising, as one might expect evacuation rates to increase if evacuation orders are 

issued earlier, as this creates more time to evacuate. 
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 % Successfully evacuated    

Experiment Total 

(all 

cells) 

Coastal 

>64 

knot 

zone 

Inland 

>64 

knot 

zone 

Coastal 

< 64 

knot 

zone 

Inland 

< 64 

knot 

zone 

Compliance 

rates 

Shadow 

evacuation  

Gave 

up to 

traffic 

Irma Default  45.1 52.3 22.2 58.1 36.7   55.0 25.6 10.5 

EO +10h  44.6 51.5 20.9 56.2 36.9 53.6 24.7 11.8 

EO -10h 43.9 51.7 23.7 51.5 36.8 49.9 30.5 10.9 

CTs equal 43.6 51.7 22.4 51.6 37.0 51.6 25.9 12.8 

CTs equal, 

reduced 10h 

43.3 50.4 22.8 51.7 36.8 51.0 26.1 13.0 

Table 5: Experiments varying evacuation order EO timing. Successful evacuation rates are broken 
down into impact zones (coastal vs. inland, and areas experiencing vs. not experiencing hurricane force 
winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation order who did 
evacuate), shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and 
the percentage of evacuees who attempted to evacuate but “gave up” due to excessive amounts of traffic. 
Note: EO is short for evacuation orders; CT is short for clearance times. Irma’s default model run is included 
for reference.  

When examining the results for every grid cell (Figure 9), results indicate that, despite 

only affecting evacuation rates by 1–2% overall, changing the evacuation order timing 

has significant and sometimes opposite effects between neighboring areas. For example, 

shifting evacuation orders 10 hours earlier (Figure 9a) increases evacuation rates (and 

decreases traffic) in Tampa Bay–St. Petersburg by 4%, while decreasing evacuation rates 

(and increase traffic) from 2% to 16% in neighboring cells to the south. This points to the 

importance of coordination amongst EMs for issuing evacuation orders within a region 

and a need for follow-up experiments to unpack these complex processes.  

Shifting evacuation orders 10 hours later (Figure 9b) across all grid cells results in 

evacuation orders not being issued in the Jacksonville metropolitan area. This is because, 
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during the additional 10 hours where EMs are deciding whether to issue evacuation 

orders, the forecast shifted westward and away from Jacksonville (Figure 2), thus 

prompting EMs to decide against issuing evacuation orders for the area. These results 

demonstrate how the model captures the real-world tradeoffs between issuing evacuation 

orders earlier (when the uncertainty is greater) versus waiting until closer to the storm’s 

arrival (when the forecast uncertainty is reduced).   

Figure 9c and Figure 9d show results from experiments where clearance times are 

equalized. Recall that clearance times is meant to account for differences in available 

road networks and the number expected to evacuate e.g., clearance times are highest in 

populated metropolitan areas and in south Florida where people travel longer distances 

to evacuate. Thus, equalizing the clearance times, which makes the storm’s arrival time 

the only influence on evacuation order timing, is meant to demonstrate the importance of 

clearance times in EM decisions. The experiments produce a slight increase in 

evacuation rates for Tampa Bay–St. Petersburg (1-4%) but with a general decrease in 

evacuation rates everywhere else. This is especially true in Miami, where evacuation 

rates drop by 10 to 18%. In this experiment overall, removing the default clearance times 

worsened hurricane evacuations by 1–2% in total, which is a decrease of 164,000–

328,000 evacuees (Table 5). This demonstrates how evacuations can be made more 

successful by accounting for clearance times in EM’s evacuation order decision-making.  
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Figure 9: Effects of EO timing on evacuations across grid cells. Results are presented for the 
experiments modifying the timing of evacuation orders, specifically by a) shifting evacuation orders 10 h 
earlier than default, b) shifting evacuation orders 10 h later than default, c) equalizing the clearance times, 
making the storm’s arrival time the only influence on evacuation order timing, causing evacuation orders to 
be issued linearly from south to north as the storm approaches, and d) reducing clearance times by 10 
hours than in experiment c. Values are expressed as the departure from the default settings in section 4.1 
and in Figure 7f. Also expressed is the swath of hurricane force winds (dotted cells), evacuation orders (red 
cells), and the population by grid cell (e). These provide a frame of reference e.g., major cities depicted 
include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), 
and Orlando (orange star). Note, run-to-run variability due to stochastic elements in the model ranges from 
0–2% in grid cells for both evacuation rates and percent giving up due to traffic. Therefore values of -2 to 2 
lie within that variability and should be ignored. 

Figure 10 shows the evolution of evacuation rates (and rates giving up due to traffic) with 

time for the different experiments. Shifting evacuation orders 10 hours earlier (green lines) 

than default (black lines) simply causes evacuation rates to increase earlier in the 

simulation, and does not meaningfully change the evacuation “shape” otherwise. Similar 

effects are observed with the uniform clearance time experiments (orange/red lines). This 

information suggests the model behaves as expected, and in general, the experiments 

demonstrate how the model can quantify and explore, in a simplified context, the effects 

of varying evacuation order decisions by EMs. This includes simulating the tradeoffs 
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between waiting on evacuation orders and its effect on evacuation success, which cannot 

be quantified using empirical methods. In addition, the results suggest the modeling 

system is capable of exploring the effects of evacuation strategies such as phased 

evacuations, which may be helpful to emergency management (Chiu et al. 2008; Chen 

and Zhan 2004; Zhang et al. 2014).  

 

Figure 10: Temporal effects of changing evacuation order timing on evacuation rates (solid lines) and 
numbers giving up due to traffic (dashed lines), averaged across all grid cells, throughout the 144 hour 
simulation. The default simulation (Table 3a; section 4.1) is expressed (black lines), as are experiments 
modifying the timing of evacuation orders, specifically by a) shifting evacuation orders 10 h earlier than 
default (green lines), b) shifting evacuation orders 10 h later than default (purple lines), c) equalizing the 
clearance times, making the storm’s arrival time the only influence on evacuation order timing, causing 
evacuation orders to be issued linearly from south to north, and (orange lines) d) shifting evacuation orders 
10 hours earlier than in experiment c (red lines).  

4.3 Implementing interstate contraflow  

Next, we investigate the effects of adding contraflow to lessen evacuation traffic and 

improve evacuation rates in FLEE. For the experiments, we add one contraflow lane on 
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I-95,  one contraflow lane on I-75, and one contraflow lane on both interstates (Figure 

3c).  

The results in Table 6 suggest adding contraflow lanes does improve evacuation rates 

and reduces traffic overall. For example, evacuation rates improve from 45.1% in the 

default simulation (top row) to 48.0, 47.6, and 49.8% when adding contraflow onto I-95, 

I-75, and both interstates, respectively. This equates to an increase of 475,600, 410,000, 

and 770,800 evacuees. Meanwhile, rates giving up from traffic decrease from 10.5% to 

6.6–8.3%, which is a decrease of 639,700—360,800 people.  The improvements in 

evacuation rates – and reduction in traffic – are not limited to particular times in the 

simulation; rather the improvements are uniform throughout (Figure 11).  

 % Successfully evacuated    

Experiment Total 

(all 

cells) 

Coastal 

>64 

knot 

zone 

Inland 

>64 

knot 

zone 

Coastal 

< 64 

knot 

zone 

Inland 

< 64 

knot 

zone 

Compliance 

rates 

Shadow 

evacuation  

Gave 

up to 

traffic 

Irma Default  45.1 52.3 22.2 58.1 36.7   55.0 25.6 10.5 

+1 I-95 48.0 52.3 25.3 62.6 36.9 57.0 28.0 8.3 

+1 I-75 47.6 56.8 22.4 58.0 37.0 57.3 25.9 8.8 

+1 I-95,  I-75 49.8 56.8 25.7 62.5 36.9 59.3 28.4 6.6 

Table 6: Evacuations by impact zone when implementing contraflow. Successful evacuation rates are 
broken down into impact zones (coastal vs. inland, and areas experiencing vs. not experiencing hurricane 
force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation order who did 
evacuate), shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and 
the percentage of evacuees who attempted to evacuate but “gave up” due to excessive amounts of traffic.  
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Figure 11: Temporal effects of implementing contraflow on evacuation rates (solid lines) and numbers 
giving up due to traffic (dashed lines), averaged across grid cells, throughout the 144 hour simulation. The 
default simulation is expressed (black lines), as are experiments adding one lane of contraflow onto I-95 
(green lines), I-75 (purple lines), both I-95 and I-75 (orange lines). The default run for Hurricane Dorian 
(Table 3d; Section 4.4) is also expressed (grey lines). Note, Dorian’s simulation extends to 184 hours while 
Irma’s ends after 144 hours.  

 

When comparing the impact of the different experiments on various grid cells (Figure 12a-

d), the targeted effect of contraflow becomes clear. For example, adding contraflow onto 

I-95, which is located along the eastern coastline, improves evacuation rates (and 

reduces traffic) along the eastern half of the model grid. Adding contraflow onto I-75, 

which is found along the western coastline, improves evacuation rates (and reduces 

traffic) along the western half of the model grid. These improvements in evacuation rates 

are large locally, ranging from 3–14% along the southwest coast and 5–12% along the 

southeast coast.  
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The results suggests that, if given accurate forecasts, implementing contraflow in the 

modeling system reduces traffic and thus increases successful evacuation in targeted 

regions, which is what contraflow is designed to do. This provides evidence that the model 

can be used to investigate the potential impacts of modifying different parts of the system, 

such as implementing contraflow or other evacuation management strategies, and 

determine its influence on the hurricane evacuation in its full context (e.g., supporting 

studies by Zhang et al. 2014; Dixit and Radwan 2009; Chen 2012; Sbayti and 

Mahmassani 2006; Mitchell and Radwan 2006; Chen and Zhan 2004, 2008; Ballard and 

Borchardt 2006; Wolshon and Lambert 2004; Fang and Edara 2014; Chiu et al. 2008; 

Wolshon 2001; Yi et al. 2017). 
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Figure 12: Influence of contraflow for all grid cells. Evacuation rates (left) and the percent of households 
unable to evacuate due to traffic (right) are shown. Results are presented for the default experiment without 
contraflow (a), when adding one lane of contraflow to I-95 (b), when adding one lane of contraflow on I-75 
(c), and when adding one lane of contraflow onto both interstates (d). These results (b-d) are compared to 
the default simulation (a) where values are expressed as the percent difference from the default settings 
(a). Also expressed is the swath of hurricane force winds (dotted cells), evacuation orders (red cells), and 
the population by grid cell (e). These provide a frame of reference e.g., major cities depicted include Miami-
Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando 
(orange star). Note, run-to-run variability due to stochastic elements in the model ranges from 0–2% in grid 
cells for both evacuation rates and percent giving up due to traffic. Therefore values of -2 to 2 lie within that 
variability and should be ignored. 

4.4  Hurricane Dorian  

Finally, we explore the modeling system’s behavior when a different scenario, with a 

different storm and a different set of evolving forecasts, is simulated. This experiment 

(Table 3d), with Hurricane Dorian (2019), uses the same set of parameters as in the 

default Irma simulations. This experiment should be of interest to meteorologists and 

emergency managers, by exploring how differences in storm characteristics and forecast 

information can propagate through the agent-based system and translate into different 

patterns in evacuations.  



46 
 

Figure 13 shows the evolution of Dorian along with the NHC and light system forecasts. 

The early forecasts (0–72h into the simulation) predict the most likely scenario as a 

landfalling major hurricane along Florida’s east coast. However, the forecasts shift 

northward (96–120h), significantly reducing areas under threat. After remaining nearly-

stationary over the Bahamas (120–144h), the storm re-accelerates northward (>168h) 

narrowly missing Florida’s east coast. As with Irma, the light system captures the spatial 

and temporal shifts in threats with Dorian. Because of the forecasts, EMs issue 

evacuation orders along the central east-coast by 72 hours  (Figure 14; red cells). The 

evacuation orders spread along the coastline over the next several days, generally 

matching what was observed (Roache 2019; Cangialosi 2019). 

Compared to Irma, this is a fundamentally different storm with different areas at risk and 

less people under evacuation orders. As a result, evacuation rates were less with Dorian 

(33.5%) than with Irma (45.1%), which is 2 million less evacuees (Table 7). Similarly, 

fewer households give up on evacuating due to traffic with Dorian (6.1%) than Irma 

(10.5%). This reduction in evacuation rates in FLEE generally matches existing 

observational data for Dorian (Mongold et al. 2020).  

During the first 24–72 hours, evacuation rates are increasing everywhere, as most areas 

are under threat (Figure 14a-b). As with Irma, we suspect the model is producing 

evacuation rates higher than realistic during this period, especially in the northern part of 

Florida and inland. However, this observational data (Mongold et al. 2020) is quite limited 

and cannot confirm this. Beyond 48 hours, however, evacuation rates only increase along 

the eastern-most portions of the grid where evacuation orders are issued (Figure 14c-f). 

By the end, the highest evacuation rates occur in areas where you would expect (i.e., 
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along the east coast where risk is highest, and where evacuation orders are issued), 

which is consistent with real-world evacuation behaviors (e.g., Baker 1991). With the 

exception of the Tampa-Bay–St. Petersburg area where evacuations occurred early in 

the simulation, evacuation traffic was primarily confined along the southeast coast (Figure 

14h).  

The evolution of Dorian’s evacuation rates with time, averaged across the model grid, is 

shown in Figure 11 (grey lines). Similar to Irma’s default run (black lines), evacuation 

rates during Dorian quickly increase due to the dire initial forecasts. Once the forecasts 

shift northward, Dorian’s evacuation rates slows significantly but with some increases due 

to the issuance of evacuation orders between 60–120h. The evacuation stops by 140 

hours because, at this point, the storm is expected to remain offshore. The results again 

suggest that Dorian’s evacuation is, in many respects, different than Irma’s.    

Robust empirical data on Dorian’s evacuation rates is not publicly available. However, the 

available data (Mongold et al. 2020) suggests the model is, to first order, generating 

reasonable evacuation behaviors e.g., it captures the inland versus coastal differences in 

evacuations, the correct issuance of evacuation orders, and the prolonged, linear 

increases in evacuation rates observed for several days (Mongold et al. 2020). When 

combined with the results from Irma (section 4.1), the results provide further evidence 

that the model reasonably simulates the integrated hurricane evacuation system, and can 

be used to study various storm scenarios, real or imagined. Furthermore, the differences 

in the spatial and temporal patterns of evacuation between the two hurricanes confirm the 
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importance of forecast information to the evacuation dynamics (Huang et al. 2016; Baker 

1991).  

Figure 13: Light system forecast for Hurricane Dorian (2019). Forecasts are shown for every 24 hours 
but update every 6 hours (not shown). Left column: Evolving NHC forecast track (black center line), category 
(numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), 
and 64+ (red) knot intervals. Right three columns: The light-system threats for wind, surge, and rain are 
shown for equivalent times with the forecast track (center black line) and cone of uncertainty (outer black 
lines) included for reference. Note: threats are highest when near the center of the forecast cone and when 
hazards are most imminent, among other factors. 
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Figure 14: Evacuation rates for grid cells during Dorian (2019). Rates are expressed every 24 hours 
(a-g). The percentage of each grid cell which intended to evacuate but could not due to traffic is also 
expressed (h), as is the spatial and temporal patterns of evacuation orders (red cells). In addition, the 
number of evacuees still enroute at the various times is shown (bottom of panels a-f).  Note, the hurricane 
force winds (>64kts) did not impact the model grid. Also expressed is the population by grid cell (i) which 
provide a frame of reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa 
Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange star).  
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 % Successfully evacuated    

Experiment Total 

(all 

cells) 

Coastal 

>64 

knot 

zone 

Inland 

>64 

knot 

zone 

Coastal 

< 64 

knot 

zone 

Inland 

< 64 

knot 

zone 

Compliance 

rates 

Shadow 

evacuation  

Gave 

up to 

traffic 

Irma Default  45.1 52.3 22.2 58.1 36.7   55.0 25.6 10.5 

Dorian Default 33.5 - - 67.6 24.8 64.4 23.3 6.1 

Table 7: Evacuation behaviors by impact zone for Dorian. Successful evacuation rates are broken down 
into impact zones (coastal vs. inland, and areas experiencing vs. not experiencing hurricane force winds of 
64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation order who did evacuate), 
shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and the 
percentage of evacuees who attempted to evacuate but “gave up” due to excessive amounts of traffic. 

5. Summary and Discussion 

This article conceptualizes and implements a modeling framework for studying the 

dynamics of the hurricane-forecast-warning system. The modeling framework, called 

FLEE, integrates models of the natural hazard, the human system, the built environment, 

and connections between systems. It includes millions of agents – with behaviors and 

characteristics informed by empirical research – who interact with each other, with their 

physical environments, and with evolving, uncertain forecast information to produce 

evacuation decisions and generate evacuation traffic. After describing FLEE, we validate 

the model framework by comparing its evacuation behaviors to observations, mainly for 

Hurricane Irma (2017), and present a set of proof-of-concept experiments illustrating its 

behaviors when key parameters are modified. In doing so, we show FLEE is capable of 

examining the dynamics of the hurricane-forecast-evacuation system from a new 

perspective.  
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We propose several areas for future work. First, FLEE can explore how changes in 

forecast track, intensity, storm size, forward speed, uncertainty, and different forecast 

scenarios influence evacuations (see, e.g., Fossell et al. 2017). This provides 

meteorologists with a societally-relevant alternative to traditional measures of forecast 

accuracy (need described by Morss 2005, Murphey 1993, Roebber and Bosart 1996), by 

measuring the impact of forecasts elements and uncertainties on how people receive and 

process the information, make evacuation decisions, and physically evacuate. Second, 

the model can be used to address behavioral science questions, such as how future 

projections of population density, socioeconomic status, inequality, and car access may 

affect hurricane evacuations. Third, FLEE can further determine the relative effectiveness 

of evacuation management strategies such as contraflow, adding public transportation, 

evacuation order timing, and phased evacuations (building on, e.g., Urbina and Wolshon 

2003, Madireddy et al. 2011) and how forecasts influence evacuation order decisions 

(Davidson et al. 2018). This benefits researchers, practitioners, and policy-makers in 

hazard risk management.  

FLEE is intentionally abstracted to explore the broader evacuation dynamics. However, 

additional layers of complexity can be added, depending on research goals e.g., to 

account for family composition, social circle's evacuation status, social-media influence, 

and house/building strength in evacuation decisions. FLEE can be extended to study 

other regions or hazards, such as hurricanes followed by flooding, loss of power networks, 

damage to roads, and other cascading failures. Additional in-depth comparisons with 

observational data can improve FLEE’s realism, and subsequently, its capability to 

answer questions of interest. But given the sparse availability of empirical data on 
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hurricane evacuations, new data sets are likely needed. Nevertheless, in its current form, 

FLEE can significantly advance our understanding of the integrated hurricane-forecast-

warning system. This new knowledge is informed by and feeds back into empirical 

research, and can ultimately support researchers, practitioners, and policy-makers in a 

variety of disciplines, thereby offering the promise of direct applications to save lives and 

mitigate hurricane losses. 
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ARTICLE 2 

WHAT IMPROVES EVACUATIONS? EXPLORING THE HURRICANE-FORECAST-

EVACUATION SYSTEM DYNAMICS USING AN AGENT-BASED FRAMEWORK 

1. Introduction 

In the mainland US, the hurricane-forecast-evacuation system is dynamic, complex, and 

difficult to predict, owing to interacting physical-social factors and uncertainties that 

change as the storm approaches. Take Hurricane Irma (2017) and Rita (2005), cases 

where accurate but uncertain forecasts triggered mass evacuations — and severe traffic 

jams — in Florida and Texas, respectively. As the forecasts shifted and traffic worsened, 

some evacuees became more exposed to hazardous conditions than had they remained 

in-place (Cangialosi et al. 2018; Wong et al. 2018; Zhang et al. 2007; Knabb et al. 2006). 

Despite forecasts being as accurate as one can expect given current forecast skill, these 

cases illustrate the complexities of people using inevitably imperfect information to make 

pre-storm evacuation decisions, and they demonstrate how evacuations involve many 

intersecting physical-social parts and uncertainties that evolve over time (e.g., Morss et 

al. 2017; Barton 2014; Miller and Page 2007; Watts et al. 2019). Because of these 

complex dynamics, evacuations are a formidable challenge.  

Empirical studies help explain aspects of evacuations, such as how forecasts, warnings, 

and other factors influence evacuation decisions (e.g., Huang et al. 2016; Lindell and 

Perry 2012; Baker 1991). However, it’s impossible to empirically study all aspects of 

evacuation across multiple cases. Computational models, on the other hand, provide a 

complementary tool where empirical knowledge can be codified and used to run virtual 
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experiments for many hurricane scenarios, real or synthetic (e.g., Morss et al. 2017, Watts 

et al. 2019; Harris et al. 2021; Blanton et al. 2018; Davidson et al. 2018). In this context, 

modeling studies often optimize evacuations through strategies such as contraflow 

(opening additional lanes for traffic), public transportation, and evacuation order timing 

(e.g., summary of strategies in Murray-Tuite et al. 2019). However, the full hurricane-

forecast-evacuation system — including these different evacuation management 

strategies — has not yet been represented in one framework, meaning a holistic 

exploration of the system’s dynamics has not been achieved.  

To address this need, Harris et al. (2021), which is also Article 1 of this dissertation,  

developed a modeling framework capable of exploring the system’s dynamics holistically. 

Called FLEE (Forecasting Laboratory for Exploring the Evacuation-system), the agent-

based framework models key aspects of real-world hurricane evacuations: the natural 

hazard (hurricane), the human system (information flow, evacuation decisions), the built 

environment (road infrastructure), and connections between systems (forecasts and 

warning information, traffic, impact zones). By coupling the models into one framework 

for the first time, FLEE is capable of simultaneously exploring interactions across these 

sub-systems. In the current version, FLEE’s agent-based model grid is a 10 x 4 abstracted 

representation of the north-south axis of Florida (e.g., see conceptualization, 

implementation, assumptions, and proof-of-concept experiments in Harris et al. 2021). 

Note that FLEE is designed to represent key aspects of evacuations established in the 

literature, while remaining sufficiently idealized to build fundamental and practical 

knowledge (e.g., see Watts et al. 2019; Sun et al. 2016, discussion in Section 2). As a 

result, it is capable of providing a high-level, first-order look at the system’s dynamics.  
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This paper’s objective is to begin exploring the system’s dynamics using FLEE. 

Specifically, through sensitivity analyses on the model, we assess how evacuations 

change with evacuation management strategies and policies (public transportation, 

contraflow, evacuation order timing), evolving population characteristics (population 

growth, urbanization), and forecast scenarios impacting the Florida peninsula (Irma, 

Dorian, rapid-onset version of Irma). Throughout the analysis, we ask:  

1) How do the factors impact evacuation success? 

2) How does the factor’s impact vary across forecast-population scenarios?  

3) How are the impacts distributed geographically?  

In answering these questions, we demonstrate how these agent-based, computational 

frameworks can build our understanding of evacuations across many different real and 

imagined scenarios. Such knowledge would support researchers, practitioners, and 

policy-makers in a variety of disciplines including hazard risk management (building on, 

e.g., Madireddy et al. 2011), evacuation modeling (e.g., building on Watts et al. 2017, 

Davidson et al. 2018), and meteorology (e.g., need for measures of forecast impacts 

described by Morss 2005, Murphy 1993, Roebber and Bosart 1996).   

2. Methodology  

2.1 Experimental Design  

We start by performing a set of experiments with FLEE that involve changing the storm 

and corresponding forecast scenarios. To do so, we run FLEE using forecasts from 

Hurricane Irma and Dorian, which triggered evacuations across Florida in 2017 and 2019, 
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respectively. These simulations were compared to observational evacuation data for 

validation (Section 3). We then run FLEE with a hypothetical version of Irma in which 

Irma’s forecasts are condensed into a shorter timeframe to assess how rapid onset (and 

similarly, rapid intensification) impacts evacuation success. Together, these three 

experiments are used to provide a baseline of evacuation behaviors to compare additional 

experiments against.  

Next, starting from these “default” simulations for each storm, we systematically modify 

FLEE’s parameters one-by-one, while holding other variables constant, to explore FLEE’s 

behaviors and sensitivities to evacuation management strategies, evacuation policies, 

and evolving population characteristics. This includes simulating contraflow by adding 

one, two, and three lanes across important highways; public transportation/carpooling by 

adjusting the number of evacuees per vehicle from 4 people per car to 2, 3, 5, 6, and 8 

people per car; modifications to evacuation order timing by shifting the issuance of 

evacuation orders earlier/later by 10 and 20 hours; and the impact of population growth 

and urbanization by projecting the population forward to 2030 and 2040 or making 

population density uniform across the model grid, respectively. By comparing the 

experiments to the default simulations and to each other, we investigate the relative 

importance of different factors and key interactions, and we demonstrate how FLEE can 

explore the system’s dynamics across a variety of scenarios.  

2.2 Data Analyses  

To compare evacuation behaviors quantitatively across simulations, we track evacuation 

statistics for each of FLEE’s 40 grid cells, which represent the north-south axis of Florida 
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(see full description of the model’s virtual world in Harris et al. 2021, hereafter HRM21). 

The primary model output analyzed here are the percent of households that successfully 

evacuated (i.e., evacuation rates), and the percent who intended to evacuate but gave up 

due to traffic. The latter statistic provides insight to where excessive traffic prevented 

successful evacuations. In addition to displaying data by grid cells and averaged across 

the domain, these two statistics are sometimes broken down into multiple impact zones, 

designed as first-order approximations of areas likely to experience different levels of 

impacts based on the actual meteorological conditions produced by the storm. Here, we 

use four impact zones, defined by whether the grid cells are: a) coastal or inland, and b) 

experience winds that are greater than 64 knots (hurricane-force) or less than 64 knots 

during the storm of interest. Using the impact zones, we can determine who evacuated 

from locations that did not end up experiencing hazardous conditions. In addition, we 

examine the percentage of residents under evacuation orders in the model who 

evacuated (sometimes called compliance rates), and the percentage of residents who 

evacuated from areas not under evacuation orders (sometimes called shadow 

evacuations; McGhee and Grimes 2006; Murray-Tuite et al. 2019).  

In interpreting the results for different experiments, we compare multiple metrics that 

might indicate successful outcomes in different ways. For example, high evacuation rates 

may not be “good” if the storm ends up not having much impact in those areas, and 

unnecessary evacuations may not matter if those in areas experiencing the greatest 

impacts were able to evacuate successfully. 
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Because FLEE includes stochastic elements, it can exhibit some run-to-run variability. 

Therefore, when interpreting results, changes less than 0–2% in evacuation statistics 

across experiments  are considered insignificant (e.g., see experiments in HRM21). 

2.3 Model Updates and Validation 

Based on comparison with recent empirical data on evacuation rates and traffic for the 

storms studied here, several updates have been made to FLEE since its 

conceptualization and implementation in HRM21. First, to reduce evacuation rates early 

in the simulations, making the temporal patterns of evacuation closer to data for Irma and 

Dorian, we made two changes: 1) integrating households into the decision-making 

process gradually rather than assuming instantaneous communication of risk information 

and 2) making evacuation barriers time dependent, i.e., decrease as the storm 

approaches. Second, the initial formulation of FLEE exhibited unrealistic variability 

between grid cells in some situations; to address this, we reduced the influence of mobile 

home and socioeconomic status in the evacuation decision-making algorithm. In addition, 

FLEE’s initial formulation overestimated evacuation rates in coastal grid cells compared 

to inland cells. Thus, we changed the formulation of evacuation orders so they are only 

issued to a percentage of households in coastal grid cells, reflecting the approximate 

percentage of population in different regions of Florida that live in evacuation zones, 

rather than the entire grid cell. Details regarding the implementation of the updates is 

provided in the Appendix B (Table B1, Figure B1), as are full descriptions and sources of 

the empirical data used for validation (Table B2).  

3. Results and Discussion  
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First, we examine results from the default simulations for Hurricane’s Irma and Dorian. 

Comparing these simulations against observations provides a first-order assessment that 

the model behaves reasonably for these two forecast scenarios based on the processes 

implemented. Then, we examine results from the default simulation using forecasts from 

a rapid-onset version of Irma (hereafter called Irma-RO). Together, the experiments 

provide a baseline for interpreting results from subsequent experiments.  

3.1   Hurricane Irma  

Irma’s 3-10–day forecasts, as shown in Figure 2 of HRM21 (Article 1 of this dissertation), 

place the entire model under significant threat, with the most likely outcome being a 

landfalling major hurricane near Miami. However, forecasts shifted westward as the storm 

approached, with the storm eventually making a first mainland U.S. landfall as a Category 

4 in the Florida Keys and a second landfall as a Category 3 in southwest Florida. Irma’s 

hurricane-force winds (Figure 15a–b; dotted cells) impacted the western two-thirds of the 

model – particularly the southwest coastlines – while leaving the east-coast unscathed. 

Evacuation orders were issued along both coasts in FLEE (Figure 15a–b; red cells), 

similar what was observed during Irma (Wong et al. 2018; Darzi et al. 2020; model 

description in Figure 3 of HRM21). The comparison with empirical data increase our 

confidence the evacuation order algorithm – and the synthesized National Hurricane 

Center forecasts on which its based – behaves sufficiently realistically for the purpose of 

the subsequent experiments. 
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Figure 15: Evacuation rates and traffic by grid cell for the default hurricane scenarios. Also shown is 
the population by grid cell (g) to provide a frame of reference e.g., major cities depicted include Miami-Ft. 
Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando 
(orange star). In addition, the number of evacuees still enroute at the end of the simulations are shown. 

Irma’s simulated evacuation rates (Figure 15a) are similar to observational data, which 

suggest evacuation rates vary from 20–40% along Florida’s east coast, to 40–70% across 

the south and west coasts, and around 10–30% inland (Wong et al. 2018; Long et al. 

2020; Martin et al. 2020; Feng and Lin 2021). This was the largest evacuation in US 

history, meaning many households failed to evacuate due to excessive traffic. This occurs 

most frequently around Tampa Bay-St. Petersburg in FLEE (Figure 15b), again matching 

observations (Feng and Lin 2021; States et al. 2021).  
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Table 8 depicts evacuation rates across impact zones. 32.0% of households on the model 

grid evacuate for Irma, which equals 5.4 million people. Estimates from the Florida 

Department of Emergency Management (2017) suggest actual evacuation numbers 

totaled 6.9 million. When considering households evacuating to local shelters in FLEE 

(not shown), the simulated evacuation rates are similar to observations. For a given level 

of wind impact, evacuation rates are higher along the coasts than inland, which typical for 

real-world evacuations (Feng and Lin 2021; Martin et al. 2020).  

 % Successfully evacuated    

Experiment Total 
(all 
cells) 

Coastal 
>64 
knot 
zone 

Inland 
>64 
knot 
zone 

Coastal 
< 64 
knot 
zone 

Inland 
< 64 
knot 
zone 

% Under 
evacuation 
orders who 
evacuated 

% Not 
under 
evacuation 
orders who 
evacuated 

Gave 
up to 
traffic 

Irma  32.0 39.3 24.5 29.6 29.4 34.9 25.6 2.5 

Dorian  12.0 - - 14.7 0.6 35.4 4.3 0.7 

Irma-RO  26.3 30.2 18.8 26.8 28.9 28.8 25.3 7.7 

Table 8: Evacuation rates and traffic by impact zones for the default storm scenarios. Successful 
evacuation rates are broken down into impact zones (coastal vs. inland, and areas experiencing vs. not 
experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via 
evacuation order who did evacuate), shadow evacuation rates (i.e., percentage of people not instructed to 
evacuate who did), and the percentage of evacuees who attempted to evacuate but “gave up” due to 
excessive amounts of traffic. 

 

The evolution of evacuation rates and traffic is shown across time in Figure 16. Despite 

not receiving evacuation orders, some households (black solid line) evacuate in the first 

0–72 hours. Evacuation rates increase linearly between 72–108 hours as evacuation 

orders expand. Just before the storm moves ashore around 126 hours, evacuation rates 

decrease, while the number of households giving up due to excessive traffic (black 

dashed line) increase. These temporal patterns of evacuations, as with the spatial 
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patterns, generally match existing empirical data (e.g., Wong et al. 2018). Therefore, we 

believe FLEE’s simulated evacuations provide a realistic baseline for interpreting results 

from Irma’s other experiments. 

 

Figure 16: Evacuation rates and traffic over time for the default hurricane scenarios. Evacuation rates 
are shown (solid lines), averaged across all grid cells, as are the percentage giving up due to traffic (dashed 
line). The times of landfall for the Irma and Irma-RO scenarios are indicated (vertical dashed lines).  

 

3.2   Hurricane Dorian  

Dorian’s early forecasts (Figure 13 of HRM21) place the entire Florida peninsula under 

threat, with the most likely scenario as a landfalling major hurricane along Florida’s east 

coast. Because of the forecasts, evacuation orders were issued along the majority of 

FLEE’s east coast (Figure 15c–d; red cells), matching what was observed (TIME 2019). 

However, after remaining nearly-stationary over the Bahamas for many hours, the storm 

accelerates northward, missing Florida’s east coast entirely.  
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Dorian is a fundamentally different storm with less people at risk. As a result, evacuation 

rates were less with Dorian (12.0%) than Irma (32.0%), which is 3.3 million less evacuees 

(Table 8). Due to fewer evacuees overall – and the evacuation being spread over a longer 

time (Figure 16; blue lines) – less people give up due to traffic (0.7%) than Irma (2.5%). 

Evacuation rates and traffic are confined to the east coast with Dorian (Figure 15c–d), 

matching our understanding of what occurred (Mongold et al. 2020).  

Though robust empirical data on Dorian’s evacuation rates is not available, the available 

data suggests the model is generating reasonable evacuation behaviors i.e., the Dorian 

simulation appears accurate as possible given current empirical data, and is reasonable 

for experimentation.  

3.3   Hurricane Irma-RO  

The hypothetical Irma-RO forecasts are shown in Figure 17. For each grid cell, the peak 

magnitudes of forecast risk are identical to Irma’s forecasts. However, the forecasts – and 

subsequently, the simulation –  are compressed from 168 hours to 72 hours. By 

comparing the evacuation response between the real and hypothetical storms, we aim to 

explore the potential effects of a storm that exhibits rapid onset (and also, to a degree, 

rapid intensification) on the hurricane evacuation dynamics. 
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Figure 17: Forecasts for Hurricane Irma-RO approaching FLEE’s 10 x 4 version of the north-south axis 
of Florida. Forecasts are shown for every 24 hours but update every 6 hours (not shown). For a detailed 
explanation of the forecasts’ conceptualization and implementation, see HRM21.  

FLEE’s response to the Irma-RO forecast is similar to Irma’s, but with key differences. 

First, evacuation orders (Figure 15e–f, red cells) are not issued around Jacksonville 

(Figure 15g, green star). This occurs because the westward shift in forecasts happens 

more quickly than with Irma, meaning the area was removed from risk before evacuation 

order decisions were made. As a result, Irma-RO has 300,000 fewer people intending to 

evacuate in these regions, despite having identical peak magnitudes of risk.  
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In addition, a lower percentage of the Florida population evacuates Irma-RO (26.3%) than 

Irma (32.0%). This is partially because fewer evacuation orders are issued, but mostly 

because more people gave up evacuating due to excessive traffic in Irma-RO (7.7%) than 

Irma (2.5%), an increase of 852,000 people (Table 8). The increased traffic is mostly 

confined to the Tampa Bay-St. Petersburg metropolitan areas and surrounding southwest 

coastlines. However, unlike with Irma, residents around Miami-Ft. Lauderdale also 

experience significant traffic (Figure 15f). Therefore, we believe the Irma-RO case 

suggests that rapid-onset – and possibly, rapid intensification –  can worsen evacuation 

rates and traffic in higher-risk areas. This is consistent with our conceptual understanding 

of these situations, as there is less time to evacuate safely.  

3.4   Public Transportation and Carpooling 

In the following subsections, we modify key model parameters and compare their 

evacuation behaviors to the Irma, Dorian, and Irma-RO default, baseline experiments 

discussed earlier. Specifically, we assess how evacuation outcomes change with 

evacuation management strategies and policies (public transportation, contraflow, 

evacuation order timing) and evolving population characteristics (population growth, 

urbanization). The idea is to demonstrate how models like FLEE can explore the role of 

these factors in improving evacuations, including exploring 1) how the factors impact 

evacuation success, 2) how their impacts vary across forecast scenarios, and 3) how their 

impacts are distributed geographically.   

Relative to evacuation management strategies like contraflow, public transportation and 

carpooling is studied less frequently and is rarely provided (e.g., summary in Murray-Tuite 
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et al 2019; Bullard and Wright 2011; exceptions in Swamy et al. 2017; Zhang and Chang 

2014). To our knowledge, additional public transportation was not offered for Irma or 

Dorian, nor was carpooling widely used across households. The goal of this section is to 

demonstrate how models like FLEE can explore the role of these strategies in improving 

evacuations.  

Experiments were conducted by changing the number of people evacuating per car from 

4 (default) to 2, 3, 5, 6, and 8. For a given number of evacuees, this experiment changes 

the number of cars on the road. For example, going from 4 to 2 people per car doubles 

the number of cars evacuating. On the other hand, going from 4 to 8 people per car halves 

the number of cars evacuating. Though the car-length is kept the same in FLEE (in reality, 

if simulating buses, it should be longer), this is intended as a first-order exploration of the 

effects of strategies such as public transportation and carpooling using FLEE.    

Evacuation rates and traffic are shown in Table 9. Across all scenarios, results indicate 

that evacuation rates increase when public transportation and carpooling are used as 

fewer people get stuck in traffic and give up evacuating. These improvements are 

significant. For example, with Irma, going from 4 to 6 people per car improves evacuation 

rates by 2.2%, an increase of 500,000 people. The magnitude of improvements is 

scenario-dependent, with the largest improvements happening with Irma-RO followed by 

Irma and Dorian (this is because Irma-RO has the most traffic issues, followed by Irma 

and then Dorian).  
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Experiments Evacuati
on 
Rates 

% 
Change 
relative 
to 
default 

Evacuat
ed 

% 
Under 
evacuat
ion 
orders 
who 
evacuat
ed 

% Not 
under 
evacuati
on 
orders 
who 
evacuat
ed 

% Gave 
up due 
to traffic 

Gave 
up due 
to 
traffic 

Irma 
2/car 22.5 -9.5 3.67m 25.5 16.0 12.0 1.97m 

 
3/car 28.5 -3.5 4.67m 32.0 20.9 6.0 980k 

 
4/car 
(default) 

32.0 0 5.24m 34.9 25.6 2.5 410k 

 
5/car 33.7 +1.7 5.52m 26.4 27.6 0.8 130k 

 
6/car 34.2 +2.2 5.61m 37.1 27.9 0.3 49k 

 
8/car 34.4 +2.4 5.64m 37.1 28.3 0.1 16k 

Dorian 
2/car 9.5 -2.5 1.56m 26.7 3.9 3.1 508k 

 
3/car 11.2 -0.8 1.84m 32.9 4.2 1.4 229k 

 
4/car 
(default) 

12.0 0 1.97m 35.4 4.3 0.7 115k 

 
5/car 12.2 +0.2 1.99m 36.4 4.3 0.4 66k 

 
6/car 12.3 +0.3 2.02m 36.8 4.3 0.3 49k 

 
8/car 12.5 +0.5 2.05m 37.8 3.7 0.1 16k 

Irma-RO 
2/car 16.9 -9.4 2.77m 17.4 16.0 17.1 2.81m 

 
3/car 21.5 -4.8 3.52m 23.1 18.6 12.4 2.03m 

 
4/car 
(default) 

26.3 0 4.31m 28.8 25.3 7.7 1.26m 

 
5/car 29.7 +3.4 4.87m 32.3 25.0 4.3 704k 

 
6/car 31.0 +4.7 5.08m 34.2 25.6 2.9 475k 

 
8/car 33.2 +6.9 5.44m 37.0 26.4 0.9 147k 

Table 9: Evacuation rates and traffic for the public transportation and carpooling experiments. Also 
shown are the total numbers evacuated, numbers giving up due to traffic, compliance rates (i.e., those 
instructed to evacuate via evacuation order who did evacuate), and shadow evacuation rates (i.e., 
percentage of people not instructed to evacuate who did).  
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The experiments also reveal non-linearities in the system (Table 9). For example, in all 

forecast scenarios, doubling the number of evacuating cars (i.e., going from 4 to 2 people 

per car) results in significantly larger changes to evacuation rates than halving the number 

of evacuating cars (i.e., going from 4 to 8 people per car). We believe this suggests 

excessive traffic can worsen evacuations exponentially. Future work may consider 

furthering our understanding of this relationship, including identifying whether tipping 

points exist, or whether targeted carpooling and bussing helps, supporting practitioners 

in risk management.  

Figure 18 shows which areas are impacted by the public transportation and carpooling 

experiments. In the 8 people per car experiment, evacuation rates and traffic improve 

areas heavily trafficked in the default simulations (default in Figure 15). In the 2 people 

per car experiment, evacuations worsen considerably, particularly across at-risk areas 

where evacuees are dependent on traffic downstream i.e., southern Florida.  
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Figure 18: Evacuation rates and traffic by grid cell for select carpooling and public transit 
experiments. Values are expressed as changes relative to default, as shown in Figure 15. Also expressed 
is the population by grid cell (g). These provide a frame of reference e.g., major cities depicted include 
Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and 
Orlando (orange star).  

By and large, results suggest that public transportation and carpooling improve 

evacuations significantly. This is especially true for the most heavily trafficked scenarios 

and regions in these scenarios (i.e., Irma-RO, south Florida). More broadly, results 

confirm FLEE behaves appropriately for this type of modification. It also demonstrates 

how this type of modeling framework can be used to explore public transportation and 

carpooling use across many scenarios, real and synthetic, and to identify regions to target 

using the strategy.  

3.5   Contraflow 
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Though used before Hurricane’s Floyd (1999) and Katrina (2005), contraflow was not 

implemented, to our knowledge, on a wide-scale for Irma or Dorian (Wong et al., 2018; 

Wolshon and Lambert 2004), as it requires considerable personnel resources and must 

be planned days in advance (e.g., summary in Murray-Tuite et al. 2019). Here we aim to 

explore how contraflow might have influenced evacuations in these cases, and more 

broadly, to examine how strategies focused on improving road capacity compare with 

other evacuation management strategies and factors in the forecast-evacuation system.  

As described in HRM21, FLEE’s road network consists of two northbound, five-lane 

interstates situated on the model’s “coasts” (i.e., Florida’s I-75 and I-95). Meanwhile, two 

east-west running, three-lane interstates move evacuees across the grid horizontally (i.e., 

I-75 and I-4), while eight two-lane highways move inland residents onto the “coastal” 

interstates where they flee to safety. Here we examine the influence of adding contraflow 

on these highways and interstates.  

Evacuation rates and traffic are shown when adding one lane on I-95 and I-75, and one, 

two, and three lanes across the entire road network (Table 10). Contraflow improves 

evacuation rates across all scenarios, confirming the model behaves appropriately. 

Adding lanes everywhere is more effective than adding lanes on one highway, consistent 

with other studies (e.g., see Murray-Tuite et al 2019). Opening three lanes of contraflow 

before Irma increases evacuation rates by 1.9%. For comparison, the public 

transportation experiments of 5 and 6 people per car increase evacuation rates by 1.7% 

and 2.2%, respectively.  
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Experiments Evacuati
on 
Rates 

% 
Change 
relative 
to 
default 

Evacuat
ed 

% 
Under 
evacuat
ion 
orders 
who 
evacuat
ed 

% Not 
under 
evacuati
on 
orders 
who 
evacuat
ed 

% Gave 
up due 
to traffic 

Gave 
up due 
to traffic 

Irma 
Default  32.0 0 5.24m 34.9 25.6 2.5 409k 

 
+1 I-95 32.1 +0.1 5.26m 35.0 25.8 2.4 393k 

 
+1 I-75 32.0 0 5.24m 34.9 25.6 2.5 409k 

 
+1 all 32.7 +0.7 5.36m 35.7 26.0 1.9 311k 

 
+2 all 33.5 +1.5 5.49m 36.3 27.2 1.0 163k 

 
+3 all 33.9 +1.9 5.56m 36.8 27.4 0.7 115k 

Dorian 
Default  12.0 0 1.97m 35.4 4.3 0.7 115k 

 
+1 I-95 12.2 +0.2 2.0m 36.3 3.8 0.5 82k 

 
+1 I-75 12.0 0 1.97m 35.5 4.3 0.7 115k 

 
+1 all 12.1 +0.1 1.98m 36.2 4.3 0.5 82k 

 
+2 all 12.3 +0.3 2.02m 36.7 4.3 0.3 49k 

 
+3 all 12.3 +0.3 2.02m 36.9 4.3 0.3 49k 

Irma-RO 
Default  26.3 0 4.31m 28.8 25.3 7.7 1.26m 

 
+1 I-95 27.1 +0.8 4.44m 29.2 23.2 6.9 1.13m 

 
+1 I-75 26.3 0 4.31m 28.8 22.1 7.6 1.25m 

 
+1 all 28.0 +1.7 4.59m 30.6 23.5 5.9 967k 

 
+2 all 29.3 +3.0 4.80m 31.8 25.0 4.7 770k 

 
+3 all 29.8 +3.5 4.88m 32.6 25.0 4.2 688k 

Table 10: Evacuation rates and traffic for the contraflow experiments. Also shown are the total 

numbers evacuated, numbers giving up due to traffic, compliance rates (i.e., those instructed to evacuate 
via evacuation order who did evacuate), and shadow evacuation rates (i.e., percentage of people not 
instructed to evacuate who did).  
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The magnitude of improvements from contraflow are forecast-scenario-dependent (Table 

10). For example, relative to the default simulations, adding three lanes increases 

evacuation rates by 1.9% with Irma, 0.3% with Dorian, and 3.5% with Irma-RO. In terms 

of areas impacted (Figure 19), contraflow improves heavily trafficked areas in the default 

scenarios (i.e., urban areas and areas dependent on traffic “upstream” like south Florida). 

This is consistent with the public transportation and carpooling experiments, suggesting 

evacuation management strategies are most effective in heavily-trafficked forecast 

scenarios and regions.  

 

Figure 19: Evacuation rates and traffic by grid cell for select contraflow experiments. Values are 
expressed as changes relative to default, as shown in Figure 1. Also expressed is the population by grid 
cell (g). These provide a frame of reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow 
star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange star).  
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Overall, results suggest that adding road capacity through strategies such as 

implementing contraflow can improve evacuations significantly. Results also show how 

FLEE can compare the relative importance of factors to evacuation success and identify 

areas benefiting most from contraflow across scenarios, thus potentially supporting 

decision-makers in their cost-benefit analyses.  

3.6   Evacuation Order Timing 

Regarding evacuation orders, there are modeling studies investigating how to optimize 

evacuation order timing to support decision-makers (e.g., see summary in Yi et al. 2016; 

examples in Dixit and Radwan 2009, Davidson et al. 2019; clearance time studies in 

Florida Statewide Regional Evacuation Study Program 2019). Building upon this work, 

we explore the importance of evacuation order timing in FLEE, specifically by issuing 

orders 10 and 20 hours earlier and later than the default simulations (note: this was done 

by adjusting the clearance times for each grid cell, which subsequently shifts evacuation 

order decision-making thresholds by these amounts; description in HRM21).  

When averaged across all grid cells, shifting the timing of evacuation orders did not 

meaningfully impact evacuation rates and traffic. The largest changes occurred with Irma-

RO; however, evacuation rates only improved by 0.8%, 0.8%, 0.2%, and 0.1% for the 20 

hours earlier, 10 hours earlier, 10 hours later, and 20 hours later experiments, 

respectively (not shown). The effects are much smaller than implementing public 

transportation or contraflow.  
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Figure 20: Evacuation rates and traffic by grid cell for select evacuation order timing experiments. 
Values are expressed as changes relative to default, as shown in Figure 1. Also expressed is the population 
by grid cell (g). These provide a frame of reference e.g., major cities depicted include Miami-Ft. Lauderdale 
(yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange star). 

However, between grid cells, evacuation order timing has complex – but sometimes 

significant – impacts (Figure 20). For example, during Irma, later evacuation orders 

improve evacuation rates around Tampa Bay-St. Petersburg by 3-6%, and reduce 

evacuation rates along the northwest coastline and Jacksonville metroplex by 5-11%. The 

latter is actually a positive, however, as the later evacuation order thresholds caused 

evacuation orders to not be issued in this area, as the forecast risk shifted westward, 

removing Jacksonville from harm’s way. In this way, FLEE captures the tradeoff between 

issuing evacuation orders earlier (earlier warnings) versus waiting (reduction in false 

alarms). Similar impacts occur with Dorian, where later evacuation orders reduced 
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evacuation rates, and subsequently, false alarms. With Irma-RO, earlier orders helps 

generally (but also increases false alarms), while later evacuation orders again exhibits 

localized effects (e.g., it improves evacuation rates inland but worsens evacuations along 

coastal grid cells).  

Relative to public transportation, carpooling, and contraflow, evacuation order timing has 

little impact on evacuation rates/traffic overall. That’s not to say it’s unimportant, however, 

as evacuation order timing has significant but localized effects on evacuations that varies 

considerably across scenarios. Perhaps this is to be expected, as evacuation orders are 

earlier in FLEE’s “order of operations” between sub-systems. Future work may consider 

studying these complex effects by shifting evacuation order timing at specific areas in 

FLEE, studying more forecast scenarios, and/or by implementing phased evacuations 

(e.g., building on Chiu et al. 2008; Chen and Zhan 2008; Zhang and Chang 2014). 

3.7   Population Growth and Urbanization 

To our knowledge, few studies explore how US hurricane evacuations may change with 

population growth and urbanization. In this section, we begin to explore these effects by 

increasing FLEE’s Florida peninsula population from 16.9 million in 2020 to 2030 and 

2040 projections of 19.3 million and 22.3 million, respectively (see Figure 21g–h for 

population increase by grid cell; projections in Florida Department of Transportation 

2020). Meanwhile, a third experiment representing the potential effects of urbanization is 

conducted by making the population density uniform across the model grid. Together, 

these experiments begin to look at how evacuations may change with population 
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characteristics, including how it impacts evacuation success relative to evacuation 

management strategies. 

 

Figure 21: Evacuation rates and traffic by grid cell for the 2030 and 2040 projected populations. 
Values are expressed as changes relative to default, as shown in Figure 1. Also expressed is the 2030 
population by grid cell (g) and the 2040 population by grid cell (h). These provide a frame of reference e.g., 
major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), 
Jacksonville (green star), and Orlando (orange star). 

Evacuation statistics are shown for this set of experiments in Table 11. Results suggest 

that evacuations may worsen in the future due to projected population changes. For 

example, relative to the default simulation, Irma’s evacuation rates decrease by 1.3% and 

3.3% in 2030 and 2040, respectively. Relative to the evacuation management strategies 
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tested earlier, the changes are significant, e.g., adding three lanes of contraflow increases 

evacuation by 1.9%, and going from 4 to 3 people/car decreases evacuation rates by 

3.5%. Lastly, making population density uniform improves evacuations overall. To a first 

order, this provides evidence that urbanization can worsen evacuations rates.  

Experiments Evacu
ation 
Rates 

% 
Change 
relative 
to 
default 

Evacuat
ed 

% 
Under 
evacuat
ion 
orders 
who 
evacuat
ed 

% Not 
under 
evacuati
on 
orders 
but 
evacuat
ed 

% Gave 
up due 
to traffic 

Gave up 
due to 
traffic 

Irma 
Default  32.0 0 5.24m 34.9 25.6 2.5 409k 

 
Uniform 33.6 +1.6 5.51m 36.7 29.8 2.6 426k 

 
2030  30.7 -1.3 5.93m 33.3 24.9 3.6 695k 

 
2040 28.7 -3.3 6.38m 31.8 22.1 5.5 1.22m 

Dorian 
Default  12.0 0 1.97m 35.4 4.3 0.7 115k 

 
Uniform 11.2 -0.8 1.84m 36.4 3.8 0.6 98k 

 
2030  11.6 -0.4 2.24m 34.1 4.4 1.0 193k 

 
2040 11.2 -0.8 2.49m 32.7 4.5 1.5 333k 

Irma-RO 
Default  26.3 0 4.31m 28.8 25.3 7.7 1.26m 

 
Uniform 29.2 +2.9 4.79m 32.0 26.7 6.0 983m 

 
2030  23.7 -2.6 4.58m 28.1 20.0 10.0 1.93m 

 
2040 21.9 -4.4 4.87m 23.6 21.7 11.7 2.61m 

Table 11: Evacuation rates and traffic for the population growth and urbanization 
experiments. Also shown are the total numbers evacuated, numbers giving up due to traffic, compliance 
rates (i.e., those instructed to evacuate via evacuation order who did evacuate), and shadow evacuation 
rates (i.e., percentage of people not instructed to evacuate who did).  
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As with public transportation, carpooling, and contraflow, the impacts of population growth 

and urbanization are scenario dependent. For example, the 2040 experiments result in a 

3.3% decrease in evacuation rates with Irma, a 0.8% decrease with Dorian, and a 4.4% 

decrease with Irma-RO, i.e., the heavily-trafficked scenarios are most sensitive to 

changes in the evacuation dynamics.  

Figure 21 shows the change in evacuation rates and traffic by grid cell for these population 

change experiments. In the Irma and Irma-RO scenarios, evacuation worsen in 

2030/2040 across the southern half of the model, with notable impacts surrounding 

Tampa Bay-St. Petersburg and Miami-Ft. Lauderdale. This also occurs in Dorian, though 

to a lesser extent, mainly in the areas at risk (Figure 21c–d; red cells) that are most 

“upstream” i.e., southern portions of the areas at risk.  

Results suggest that, in the absence of other changes, population growth and 

urbanization may worsen future evacuations. Its impacts may be most significant in 

heavily-trafficked, rapid-onset forecast scenarios, and across south Florida, which is 

further “upstream” with respect to traffic flow. More broadly, the value of the experiments 

is they show how agent-based frameworks like FLEE can explore evacuations across 

many different forecast-population scenarios, both real and hypothetical, and in doing so, 

emphasize the need for additional implementation of evacuation management strategies 

moving forward. 

4. Summary and Conclusions 

This paper explores the hurricane-forecast-evacuation system dynamics using an agent-

based framework positioned to study interactions across the forecast-human-built 
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environment sub-systems. By changing key model parameters one-by-one, we 

investigate how evacuations change with public transportation, contraflow, evacuation 

order timing, population growth, urbanization, and different forecast scenarios affecting 

the Florida peninsula (e.g., Irma, Dorian, rapid-onset version of Irma). In viewing the 

results, we ask the following questions: 

1) How do the changes impact evacuation success? Results suggest that 

forecasts, public transportation and carpooling, contraflow, and population growth 

significantly impact evacuation rates and traffic. Evacuation order timing is less 

important overall, but has significant, localized effects.  

 

2) How does this vary across forecast-population scenarios? We find evidence 

that evacuations are less successful with population growth and rapid onset 

scenarios. We also find that evacuation management strategies are most effective 

in these heavily-trafficked scenarios. 

 

3) How are impacts distributed geographically? Heavily-trafficked areas (e.g., 

urban areas at-risk and/or places “upstream” of traffic) benefit from evacuation 

management strategies the most. Population growth and urbanization particularly 

negatively impact southern Florida.  

Additionally, we find evidence that non-linearities exist in the traffic portion of FLEE, where 

excessive traffic can worsen evacuations significantly. These results demonstrate how 

agent-based frameworks like FLEE are powerful virtual laboratories capable of 

investigating the system dynamics across many forecast-population-infrastructure 
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scenarios, real or synthetic, including non-linear effects. The findings presented are not 

intended to be definitive, but rather to improve understanding of the system dynamics and 

to provide a foundation for this type of work.  

FLEE and/or models with additional detail provide several, immediate opportunities for 

future work. One avenue is to further investigate the system’s non-linearities, including 

identifying saturation points to be avoided. Another is to unpack the role of evacuation 

order timing in evacuation success. A third area of immediate future work is to assess 

how changes in forecast track, intensity, storm size, forward speed, and uncertainty 

influence evacuation success in FLEE (see, e.g., Fossell et al. 2017). This would 

demonstrate to meteorologists how agent-based models offer a societally-relevant 

alternative to traditional measures of forecast accuracy (a need described by Morss 2005, 

Murphy 1993, Roebber and Bosart 1996), by measuring the impact of forecasts on 

different aspects of evacuation.   

Looking further ahead, as empirical data on evacuation behaviors and traffic improves, 

the information can be codified into virtual laboratories like FLEE, thus increasing their 

realism, and subsequently, their ability to answer questions of interest. In this way, 

empirical and modeling studies feedback into each other and provide many future 

opportunities to advance our understanding of the hurricane forecast-evacuation system.  

The research supports practitioners, policy-makers, and scholars in hazard risk 

management and related disciplines, thereby offering the promise of direct applications 

to save lives and mitigate hurricane losses. For example, practitioners can use these 

types of models to explore different scenarios and build understanding about which 
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evacuation strategies may be most effective, when, and where. Policymakers can use the 

information to identify resource needs in future forecast-population scenarios. And 

researchers particularly benefit from studying the system holistically, where cross-

disciplinary understanding can be cultivated (Bostrom et al. 2016).  
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ARTICLE 3: 

A NEW VERIFICATION APPROACH? USING COUPLED NATURAL-HUMAN 

MODELS TO EVALUATE FORECAST IMPACT ON EVACUATIONS 

1. Introduction 

Murphy (1993), Roebber and Bosart (1996), and Morss (2005) show how “accurate” 

forecasts are not necessarily useful ones. Hurricanes Irma (2017) and Rita (2005) 

exemplify this distinction. Irma’s 3-10-day forecasts called for landfall as a major hurricane 

in southeast Florida near Miami–Ft. Lauderdale; this triggered the largest evacuation in 

US history (FDEM 2017), with Tampa Bay–St. Petersburg in west Florida as a common 

evacuation destination. However, as the storm approached, forecasts shifted westward, 

and the storm eventually made a landfall near Tampa Bay–St. Petersburg, while avoiding 

major impacts in Miami–Ft. Lauderdale altogether (Cangialosi et al. 2018; Wong et al. 

2018). Meanwhile, uncertainties in Rita’s track and intensity forecasts, combined with the 

aftermath of Hurricane Katrina, led to severe traffic in Houston–Galveston. The worst of 

the storm missed the city, but had it struck Houston–Galveston directly, the 

consequences could have been severe, as many evacuees were stranded on highways 

(Zhang et al. 2007; Knabb et al. 2006).  

Irma and Rita’s forecasts were accurate by meteorological standards, with Irma’s 

westward shift falling within the National Hurricane Center’s (NHC) cone of uncertainty 

(Cangialosi et al. 2018), and with Rita’s track errors being less than average errors at the 

time (Knabb et al. 2006). However, the above discussion illustrates several ways in which 

the forecasts were less successful in providing useful guidance for evacuation decisions. 
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Thus, in addition to measuring skill in terms of errors in a hurricane’s track and other 

meteorological characteristics, the National Academy of Sciences recommends the 

weather enterprise “measure the impact of forecasts” (p. 105; NASEM 2018) i.e., to 

increase forecast usefulness, traditional accuracy metrics should be supplemented with 

a new approach.   

Coupled natural-human models are increasingly being used to model aspects of 

hurricane evacuations (e.g., Davidson et al. 2018; Blanton et al. 2018), including warning 

communication (e.g., Morss et al. 2017; Watts et al. 2018), evacuation-related decision-

making (e.g. Yin et al. 2014; Widener et al. 2013; Zhang et al. 2009; Davidson et al. 2018), 

and evacuation traffic (e.g., Yang et al. 2019; Yi et al. 2017). These models provide a tool 

where empirical knowledge can be codified and used to run virtual experiments for many 

evacuation scenarios, real or synthetic. This suggests that coupled natural-human models 

could be used to study the impacts of forecast elements and uncertainties on evacuations.  

With this in mind, Harris et al. (2021) (hereafter HRM21) designed a coupled-model 

framework, called FLEE (Forecasting Laboratory for Exploring the Evacuation-system), 

that models the key, interwoven aspects of hurricane evacuations: the natural hazard 

(hurricane), the human system (information flow, evacuation decisions), the built 

environment (road infrastructure), and connections between systems (forecasts and 

warning information, traffic, impact zones). Hurricane and forecast information are 

represented using archived National Hurricane Center (NHC) forecast products. Two 

agent-based models replicate the information flows, evacuee decision-making, built 

infrastructure, and evacuation traffic. By integrating the systems into a unified framework, 

FLEE becomes a “virtual laboratory” positioned to advance fundamental knowledge of 
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the system’s dynamics and explore the role of hurricane forecasts in the forecast-

evacuation system (e.g., see FLEE’s conceptualization, implementation, validation, and 

proof of concept experiments in HRM21; use in studying evacuation management 

strategies and policies, evolving population characteristics, and forecast scenarios in 

Article 2 of the dissertation).  

Using FLEE, this paper’s objective is to explore how tropical cyclone forecast elements 

impact evacuations, and in doing so, to build towards the development of new verification 

approaches. Within the coupled-model framework, we perturb forecasts of track amounts 

typical of errors today (2021) – and in the past (2001) – and evaluate their impact on 

evacuations across both real and hypothetical forecast scenarios (e.g., Hurricane Irma, 

and Hurricane Dorian making landfall across east Florida). For these storms, we compare 

forecast track errors with intensity and forward speed errors characteristic of rapidly 

intensifying/onset scenarios, which are widely studied in meteorology.  

Throughout the analysis, we ask:  

1) What is the relative influence of changes in forecast elements (e.g., track vs. 

intensity)? 

2) Do improvements in forecast accuracy over time (e.g., 2001–2021) translate to 

improved evacuations?  

In answering these questions, we demonstrate how coupled natural-human models, and 

specifically agent-based models, offer a societally-relevant alternative to traditional 

metrics of forecast accuracy, by exploring the impact of forecasts elements and 
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uncertainties on how people receive and process the information, make evacuation 

decisions, and physically evacuate.  

2. Design and Approach  

To answer questions 1–2, we first determine what “typical” errors are for different 

elements of tropical cyclone forecasts, both today and in the past. For track and intensity, 

average forecast errors – and their trends over time – are documented and available at 

0–120 hour lead times on the NHC website 

(https://www.nhc.noaa.gov/verification/index.shtml). Forward speed forecast errors are 

not readily available to the public, though they are noted to be “slightly larger than cross-

track errors” (Fossell et al. 2017). Storm size forecast errors are also unavailable, as it is 

impossible to verify wind radii forecasts because they “are likely to have errors so large 

as to render a verification of official radii forecasts unreliable” (Cangialosi 2021). Based 

on data availability, we focus on NHC track and intensity forecasts errors.  

To explore the role of forecast track on evacuations, our approach is to introduce 

perturbed tracks to the left and right of NHC’s official track forecasts by distances equaling 

2001 and 2021 average errors at 0–120 hour lead times (Table C1). Then, the left and 

right perturbed forecasts are ingested into FLEE and used to run evacuation simulations. 

By comparing the evacuation response from perturbed forecasts to those from the official 

forecasts, we assess the relative importance of track errors on evacuations.  

There are several details to note. First, we compare average errors in 2021 with 2001, as 

this represents 20 years of improvements in track accuracy (also, 96–120 hour lead time 

errors were not readily available before 2001). Second, since forecast information 

https://www.nhc.noaa.gov/verification/index.shtml
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updates every 6 hours in FLEE (and in the real-world), the left/right perturbed tracks 

update every 6 hours. Third, the official forecasts were downloaded at 

https://www.nhc.noaa.gov/gis/ for Irma and Dorian; ArcGIS was used for data 

visualization and track perturbations.   

To explore the role of forecast intensity on evacuations, we intended to introduce 

perturbed intensities higher/lower than original forecasts by amounts representing 

average errors in 2001 and 2021. However, average errors are less than 20 kts, even at 

long lead times. As a result, intensity errors are too small to effectively resolve in FLEE, 

where forecasts are synthesized into a green-yellow-orange-red “light system” forecast 

for all grid cells (see HRM21). Because of the limitation, we instead create rapid 

intensity/onset (RI/RO) forecast scenarios where intensity and forward speed errors are 

significant. In these scenarios, we shorten the forecast timeline of the original NHC 

forecasts (e.g., from 168 hours to 84 and 72 hours), while keeping the peak magnitudes 

of risk the same, and determine its effect on evacuations. By comparing the evacuation 

response from RI/RO forecast scenarios to those from the official forecasts, we begin to 

assess the relative importance of RI/RO on evacuations (note: in these RI/RO scenarios, 

track, intensity, and forward speed elements are intertwined; see Figures C5–6, C12–13). 

To compare evacuation behaviors quantitatively, we track evacuation statistics for FLEE’s 

grid cells (note: FLEE’s grid is a 10 x 4 abstracted representation of the north-south axis 

of Florida; full description of FLEE’s virtual world and built environment in HRM21). The 

primary model outputs analyzed here are the percent of households that successfully 

evacuated (i.e., evacuation rates), and the percent who intended to evacuate but gave up 

due to traffic. The latter statistic provides insight to where the excessive traffic may be 

https://www.nhc.noaa.gov/gis/
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preventing successful evacuations. In addition to displaying these output data by grid 

cells, we aggregate data into multiple impact zones, designed as first-order 

approximations of areas likely to experience different levels of impacts based on the 

actual meteorological conditions produced by the storms. In interpreting results, we 

compare metrics that might indicate successful outcomes in different ways e.g., high 

evacuation rates may not be “good” if the storm ends up not having much impact in those 

areas, and unnecessary evacuations may not matter if those at highest risk can get out 

safely. 

The list of experiments is provided in Table 12. Along with a default simulation, 

simulations are run for the four perturbed track forecasts and two RI/RO forecasts across 

two storm scenarios: one real (Irma) and one hypothetical (Hurricane Dorian making 

landfall across east Florida). In the hypothetical case, Dorian and its forecasts were 

shifted west of the original track by 70 km so the storm impacts eastern Florida (Section 

3.2). Together, these experiments allow us, to first-order, to 1) compare the relative 

influence of track forecast errors to RI/RO cases and 2) assess whether improvements in 

forecast accuracy over time translate to improved evacuations across different cases, real 

and synthetic.  
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Irma Dorian (landfalling)  

1. Default 8.   Default 

2. 2001 Left 9.   2001 Left 

3. 2001 Right 10.   2001 Right 

4. 2021 Left 11.   2021 Left 

5. 2021 Right 12.   2021 Right 

6. RI/RO 13.   RI/RO 

7. RI/RO – 12 hours 14.   RI/RO – 12 hours 

Table 12: Experiments in the study. The Default Irma and Dorian (landfalling) case uses official NHC 
forecasts for Irma and Dorian. However, Dorian’s later forecasts are intentionally shifted westward to create 
a hypothetical scenario where the storm impacts eastern Florida. RI/RO cases contain default forecasts 
shortened from 168 hours to 84 hours, while the RI/RO-12 hours case contains forecasts shortened further 
to 72 hours. Track errors are introduced by shifting the forecast left/right from default by amounts equivalent 
to average errors in 2001 and 2021.  

3. Results 

3.1. Hurricane Irma  

Irma’s official (Table 12– default) forecasts are shown in Figure 22 at 24 hour intervals. 

Early forecasts place the entire model grid under threat, with the most likely outcome as 

a landfalling major hurricane near Miami. However, forecasts shifted westward as the 

storm approached, with the storm eventually making one mainland U.S. landfall as a 

Category 4 in the Florida Keys and a second landfall as a Category 3 in southwest Florida. 

Irma’s hurricane-force winds (Figure 23a–b; dotted cells) impacted the western two-thirds 

of the model – particularly the southwest coastlines – while leaving the east-coast 

unscathed. Evacuation orders were issued along both coasts in FLEE (Figure 23a–b; red 

cells), matching what was observed, thus increasing our confidence that the evacuation 

order algorithm – and the synthesized NHC forecasts on which it is based – behave 
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realistically in the model context (Wong et al. 2018; Darzi et al. 2020; additional 

verification provided in HRM21).  

Also shown on Figure 22 are perturbed left and right tracks based on average errors in 

2001 (blue arrows) and 2021 (green arrows). Compared to default, the left perturbed 

tracks place more of south/western Florida under threat, while the right perturbed 

forecasts place more of north/eastern Florida under threat. Because average forecast 

errors decrease closer to landfall, the perturbed track forecasts eventually converge to 

the default forecast by 144 hours into the simulation. Note: full light system forecasts for 

perturbed tracks are provided in Figures C1–4; light system forecast for RI/RO cases are 

provided in Figures C5–6.  
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Figure 22: Default forecasts for Hurricane Irma (2017) as the storm approaches and travels through the 
Florida-like, model grid. Forecasts are shown at 24 hour intervals, but update every 6 hours in the model 
simulations (not shown). Left column: Evolving, official NHC forecast track (black center line), category 
(numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), 
and 64+ (red) knot intervals. The approximate track of the perturbed forecasts are shown, including the 
2001 left/right errors (blue arrows) and the 2021 left/right errors (green arrows). Right three columns: The 
light-system threats for wind, surge, and rain are shown for equivalent times in the simulation, with the 
forecast track (center black line) and cone of uncertainty (outer black lines) included for reference. Note: 
threats are highest when near the center of the forecast cone and when hazards are most imminent, among 
other factors. 
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Figure 23: Irma’s evacuation rates across grid cells. Evacuation rates are provided for the (a) default 
forecast and the (b) percent of households giving up due to excessive traffic. Evacuation rates are also 
presented for (c) 2001 left track, (d) 2021 left track, (e) 2001 right track, (f) 2021 right track, (g) RI/RO, and  
(h) RI/RO – 12 hour perturbed cases. Values (c–h) are expressed as the departure from the (a) default 
forecast evacuation rates. Also expressed is the swath of hurricane force winds (dotted cells), evacuation 
orders (red cells), and the population by grid cell (i). These provide a frame of reference e.g., major cities 
depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville 
(green star), and Orlando (orange star).  
 
 

Using the default forecasts, Irma’s simulated evacuation rates (Figure 23a) are similar to 

observational data, which suggest evacuation rates varied from 20–40% along Florida’s 

east coast, to 40–70% across the south and west coasts, and around 10–30% inland 

(Wong et al. 2018; Long et al. 2020; Martin et al. 2020; Feng and Lin 2021). This was the 

largest evacuation in US history, meaning many households failed to evacuate due to 

excessive traffic. This occurs most frequently around Tampa Bay-St. Petersburg (Figure 

23b), again similar to observations (Feng and Lin 2021; States et al. 2021).  
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Table 13 shows evacuation rates across impact zones. 32.0% of households on the 

model grid evacuate for Irma, which equals 5.24 million people. Estimates from the 

Florida Department of Emergency Management (2017) suggest actual evacuation 

numbers totaled 6.9 million. When considering households evacuating to local shelters in 

FLEE (not shown), the simulated evacuation rates match observations. For a given level 

of wind impact, evacuation rates are higher along the coasts than inland, which is to be 

expected (Feng and Lin 2021; Martin et al. 2020). Therefore, we believe FLEE’s simulated 

evacuations provide a realistic baseline for interpreting results from Irma’s other 

experiments. 

Experiments (a) 
Evac
uatio
n 
rates 

(b) % 
Chan
ge 
relati
ve to 
defau
lt 

(c) 
People 
evacu
ated 

(d) 
Coastal 
>64 
knot 
zone 

(e) 
Inland 
>64 
knot 
zone 

(f) 
Coastal 
< 64 
knot 
zone 

(g) 
Inland 
< 64 
knot 
zone 

(h) % 
Gave 
up to 
traffic 

(i) 
Gave 
up to 
traffic 

Irma Default 32.0 0 5.24 m 39.3 24.5 29.6 29.4 2.5 410 K 

2001 Left 30.2 -1.8 5.10 m 37.7 22.2 27.8 27.4 3.2 541 K 

2021 Left 31.9 -0.1 5.39 m 39.4 24.7 29.0 29.4 2.4 406 K 

2021 Right 30.9 -1.1 5.22 m 33.2 25.1 32.8 29.5 4.7 794 K 

2001 Right 31.4 -0.6 5.31 m 31.6 26.7 35.1 30.0 5.5 929 K 

RI/RO 27.3 -4.7 4.61 m 32.0 20.3 27.2 28.4 6.3 1.06 m 

RI/RO -12 26.3 -5.7 4.44 m 27.7 18.2 26.5 25.9 7.6 1.28 m 

Table 13: Irma’s evacuation behaviors averaged across all grid cells for the different experiments. 
Successful evacuation rates are broken down into impact zones (coastal vs. inland, and areas experiencing 
vs. not experiencing hurricane force winds of 64+ kts) and the percentage of evacuees who attempted to 
evacuate but “gave up” due to excessive amounts of traffic.  
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How do the experiments with Irma’s perturbed tracks translate to evacuations? The 2001 

left errors increase evacuation rates across southern and western Florida and reduce 

evacuation rates further east (Figure 23c). This results in fewer evacuees overall (Table 

13a–c), including fewer evacuees across both >64 knot and <64 knot zones (Table 13d–

g). The 2021 left errors had considerably smaller changes. Relative to default, slightly 

fewer people evacuated unnecessarily across northeast Florida (Figure 23d). The 2001 

right errors (Figure 23e) resulted in many unnecessary evacuations along the east coast, 

and a reduction in evacuation rates across southern and western Florida. The 2001 right 

errors had the worst outcomes of the track experiments, with a 7.7% reduction in 

evacuation rates across the most impacted coastal >64 knot zone (Table 13d). The 2021 

right errors show a similar pattern, but the outcomes are not quite as bad, with a 6.1% 

reduction in evacuation rates across the most impacted zones (Table 13d; Figure 23f). 

When considering the results together, 2021 errors had better outcomes than 2001 – 

suggesting the value of smaller forecast errors – while left errors had better outcomes 

than right. The latter is not a general result – left errors are not necessarily better than 

right generally, but are a function of areas affected by any particular error i.e., the impact 

of errors is very much case/event dependent.  

How does this compare with Irma’s RI/RO cases? In both cases, RO/RI leads to a larger 

reduction in evacuation rates (Table 13a–b) and a greater increase in evacuation traffic 

than with the track errors (Table 13h–i). This includes a significant reduction in evacuation 

rates across more-impacted and less-impacted areas (Table 13d–g). The latter is partially 

because evacuation orders (Figure 23g–h, red cells) are not issued around Jacksonville 

in these cases (Figure 23i, green star), as the forecast’s westward shift happens quicker 
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than in default, removing the area from risk before evacuation orders were issued. When 

comparing the two RI/RO cases, the case that was 12 hours shorter resulted in worse 

evacuation outcomes than RI/RO, particularly when considering the decreases across 

the >64 knot zone, suggesting the extra time for evacuation makes a difference (Table 

13b–i; Figure 23g–h). Compared to track errors, the two RI/RO cases more negatively 

affect evacuation outcomes than the perturbed track cases, suggesting RI/RO is a critical 

feature for evacuation success.  

3.2. Hurricane Dorian (landfalling) 

Dorian’s (landfalling) forecasts are shown in Figure 24. Early forecasts place the entire 

Florida peninsula under threat, with the most likely scenario as a landfalling major 

hurricane along Florida’s east coast. Because of the forecasts, evacuation orders were 

issued along the majority of the east coast (Figure 25a–b; red cells). The exception is in 

Miami-Ft. Lauderdale, which avoided evacuation orders, matching what was observed 

(TIME 2019). In the actual Dorian case, the storm remains nearly-stationary over the 

Bahamas for many hours, before accelerating northward and missing Florida’s east coast. 

However, in this hypothetical case, we shift the forecasts westward by one grid cell (70 

km) 120–168 hours into the simulation. This creates a scenario where Dorian’s hurricane-

force winds impact Florida’s east coast as the storm accelerates northward (e.g., see 

Figure 25a–b; dotted cells).  

Also shown on Figure 24 are perturbed left and right tracks based on average errors in 

2001 (blue arrows) and 2021 (green arrows). Compared to forecasts in the default case, 

left tracks place southern and western Florida under threat, while right tracks place more 
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of northern and eastern Florida under threat. Because average forecast errors decrease 

as the storm approaches landfall, the perturbed track forecasts eventually converge to 

default by 144 hours into the simulation. Note: light system forecasts for perturbed tracks 

is provided in Figures C8–11; light system forecast for RI/RO cases are provided in 

Figures C12–13.  

Evacuation rates were lower with Dorian (landfalling) (16.8%) than Irma (32.0%), which 

is 2.4 million less evacuees (Table 14a–c). Due to fewer evacuees overall – and the 

evacuation being spread over a longer time (Figures C7, C14) – fewer people give up 

due to traffic (0.0%) in Dorian than Irma (2.5%). These outcomes seem reasonable, given 

that both the forecasts and the storm itself influence a smaller portion of the model domain 

in Dorian (landfalling) compared to Irma.  
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Figure 24: Default forecasts for Hurricane Dorian (2019) (landfalling) as the storm approaches and 
travels through the Florida-like, model grid. Forecasts are shown at 24 hour intervals, but update every 6 
hours in the model simulations (not shown). Left column: Evolving, official NHC forecast track for the original 
Dorian (black center line), category (numbers), cone of uncertainty (edges are outer black lines), and 
current wind radii at 34 (white), 50 (pink), and 64+ (red) knot intervals. The approximate track of the 
perturbed forecasts are shown, including the 2001 left/right errors (blue arrows) and the 2021 left/right 
errors (green arrows). Right three columns: The light-system threats for wind, surge, and rain are shown 
for equivalent times in the simulation, with the forecast track (center black line) and cone of uncertainty 
(outer black lines) included for reference. Note: threats are highest when near the center of the forecast 
cone and when hazards are most imminent, among other factors. Note: the 120-168 h hour forecasts have 
been shifted westward by 70 km to create a hypothetical scenario where Dorian makes landfall along the 
east coast.  
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Figure 25: Dorian LF’s evacuation rates across grid cells. Evacuation rates are provided for the (a) 
default setting and (b) the percent of households giving up due to excessive traffic.  Evacuation rates are 
also presented for (c) 2001 left track, (d) 2021 left track, (e) 2001 right track, (f) 2021 right track, (g)  RI/RO, 
and (h) RI/RO – 12 hour cases. Values (c–h) are expressed as the departure from the (a) default forecast 
evacuation rates. Also expressed is the swath of hurricane force winds (dotted cells), evacuation orders 
(red cells), and the population by grid cell (i). These provide a frame of reference e.g., major cities depicted 
include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), 
and Orlando (orange star).  
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Experiments (a) 
Evac
uatio
n 
rates 

(b) % 
Change 
relative 
to 
default 

(c) 
People 
evacuat
ed 

(d) 
Coast
al >64 
knot 
zone 

(e) 
Inland 
>64 
knot 
zone 

(f) 
Coast
al < 64 
knot 
zone 

(g) 
Inland 
< 64 
knot 
zone 

(h) % 
Gave 
up to 
traffic 

(i)  
Gave 
up to 
traffic 

Dorian LF 
default 

16.8 0 2.84 m 39.1 - 7.0 18.2 0.0 32 

2001 Left 20.6 + 3.8 3.48 m 39.4 - 13.5 19.8 0.1 10 K 

2021 Left 17.4 + 0.6 2.94 m 39.1 - 8.3 17.8 0.0 460  

2021 Right 15.5 - 1.3 2.61 m 39.0 - 5.2 16.9 0.2 35 K 

2001 Right 12.2 - 4.6 2.06 m  37.3 - 1.3 13.4 1.1 187 K 

RI/RO 18.3 + 1.5 3.09 m 39.0 - 9.2 19.3 0.1 17 K 

RI/RO -12 19.3 + 2.5 3.26 m 33.9 - 14.7 17.3 3.0 486 K 

Table 14: Dorian LF’s evacuation behaviors averaged across all grid cells for the different 
experiments. Evacuation rates, percent change in evacuation rates relative to the default simulation, and 
the total number of people evacuated are shown. Successful evacuation rates are broken down into impact 
zones (coastal vs. inland, and areas experiencing vs. not experiencing hurricane force winds of 64+ kts) 
and the percentage of evacuees who attempted to evacuate but “gave up” due to excessive amounts of 
traffic.  

How do perturbed tracks translate to evacuations in this scenario? 2001 left errors trigger 

more evacuations than default (Table 14b), with significant increases around Miami–Ft. 

Lauderdale where additional evacuation orders were issued (Figure 25c; red cells). With 

the 2021 left errors, evacuation orders were not issued in these regions (Figure 25d), 

leading to evacuation rates that more closely resembled the default forecast scenario. 

The simulation with 2001 right errors resulted in lower evacuation rates (Table 14a–b), 

with fewer evacuees across southeast Florida, and slightly more evacuees up north 

(Figure 25e). Of the perturbed tracks, 2021 right errors arguably had the best evacuation 

outcomes overall, with a reduction in unnecessary evacuations across southern Florida 

(Figure 25f). When considering the results together, it appears the directionally of errors 
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matters to evacuations, particularly in how population centers are affected. Furthermore, 

experiments suggest that 2001 errors were large enough to shift the issuance of 

evacuation orders around Miami–Ft. Lauderdale – which had significant impacts on 

evacuation rates and traffic – whereas 2021 errors did not have such a substantial impact.   

The RI/RO cases create significant increases in evacuation rates (Table 14a–b) and 

evacuation traffic (Table 14h–i) compared to the default simulation. The former is 

surprising, as there is less time to evacuate everyone safely, and is opposite to Irma’s 

results. Upon closer examination, the increase in evacuation rates occurs primarily across 

western Florida (Figure 25g-h) where the shorter timeline forced evacuation decisions 

early when forecasts were uncertain. As with the Irma case, the 12 hour difference 

between the RI/RO scenarios is significant. For example, in addition to creating 

unnecessary evacuations across western Florida, the RI/RO – 12 scenario decreases 

evacuation rates along the east coast (Figure 25h), reducing evacuation rates across the 

most impacted zones (Table 14d). In summary, compared to track errors, the RI/RO 

cases more negatively impacted evacuation outcomes than perturbed tracks, suggesting 

RI/RO is a critical feature, and that NHC’s efforts to improve RI/RO forecasting are 

important (e.g., DeMaria et al. 2021).    

4. Summary and looking ahead 

This paper demonstrates how coupled natural-human models can be employed to explore 

how changes in hurricane forecasts affect evacuations. Specifically, within one such 

framework (FLEE), we create RI/RO cases and track scenarios representative of 

accuracy errors today (2021) – and in the past (2001) – and evaluate their impact on 
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evacuations across real and hypothetical forecast scenarios (e.g., Hurricane Irma, 

Hurricane Dorian making landfall across east Florida).  

Our analysis of the results provides first-order assessment of the following questions: 

1) What is the relative influence of changes in forecast elements (e.g., track vs. 

RI/RO)? Our results confirm that RI/RO scenarios – which are already believed to 

be a problem in meteorology (e,g., see DeMaria et al. 2021) – are a significant 

feature with respect to evacuation success, as outcomes from the RI/RO 

simulations are generally worse than those from perturbed track experiments. 

RI/RO scenarios emphasize how track, intensity, and forward speed elements are 

intertwined.  

2) Do improvements in forecast accuracy over time (2001–2021) translate to 

improved evacuation outcomes? We provide evidence suggesting average 

track errors in 2001 more negatively impact evacuations than average track errors 

in 2021. For example, 2001 errors in the hypothetical Dorian scenario changed the 

issuance of evacuation orders in some areas, triggering many unnecessary 

evacuations, whereas the 2021 errors did not. Furthermore, an additional 12 hours 

of forecast lead time between the RI/RO cases and the RI/RO – 12 cases can 

significantly improve evacuations in these scenarios as well.  

Additionally, we provide evidence suggesting that hurricane evacuation outcomes are 

sensitive to the forecast-population-infrastructure scenarios, e.g., evacuation outcomes 

appear especially sensitive when metropolitan areas – which require extra time for 

evacuations and evacuation orders –  are on the edges of the cone of uncertainty. Results 
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from this study are not intended to be definitive; rather they demonstrate, to a first-order, 

how coupled natural-human models, and specifically agent-based models, offer a 

societally-relevant alternative to traditional metrics of forecast accuracy, by exploring the 

impact of forecasts elements/uncertainties on evacuations.  

Coupled natural-human and agent-based models provide many opportunities for future 

work. First, models with a more sophisticated representation of forecast intensity could 

be used to further tease out the different effects of track, intensity, and forward speed 

errors on evacuations e.g., to determine which elements are most important and should 

be the focus of research and forecasting efforts. Second, the models could explore 

additional questions such as: are there diminishing returns in improving aspects of 

forecast accuracy on evacuation? How much does human input over models and 

ensembles translate to evacuation success? And do forecasts help some groups 

evacuate more than others? Similarly, models can be extended to additional weather 

phenomenon such as tornadoes, potentially transforming public warning and protection 

scenarios in these areas as well. 

The models show promise for helping meteorology in the long term. As computing power 

increases, and as empirical data on hurricane evacuation behaviors and traffic improves, 

additional information can be codified into computational models, thus increasing their 

realism, and subsequently, their ability to answer questions of interest. This emphasizes 

the importance of funding social and behavioral science research within the weather 

enterprise, and shows how, together, empirical and modeling studies provide many 

opportunities to advance our understanding of the forecast’s role in the hurricane 

forecast-evacuation system.  



102 
 

ARTICLE 4 

A LITERATURE REVIEW ON INEQUITIES IN HURRICANE EVACUATIONS 

1. Introduction 

Throughout this dissertation, we introduce an ABM built to investigate the complex 

dynamics of the hurricane-forecast-evacuation system i.e., to determine which factors are 

most important, key connections, and how factors interact across a range of real or 

synthetic scenarios. The ABM framework, called FLEE, includes models of the natural 

hazard (hurricane), the human system (information flow, evacuation decisions), the built 

environment (road infrastructure), and connections between systems (forecasts and 

warning information, traffic). Carless households are excluded from the modeling 

framework, as these groups contribute less to evacuation traffic. However, FLEE, and 

subsequent models like it, can be designed to include these groups, depending on the 

research goals. 

In this brief literature review, we investigate who carless households are in the US, 

whether inequities exist in hurricane evacuations as a result, and how future hurricane 

evacuation models can use the information to account for the inequities. The idea is to 

help 1) ensure hurricane evacuation models like FLEE do not contribute to any inequities 

by excluding minoritized groups, and 2) demonstrate how models can explore inequities 

in the system across many forecast-population-infrastructure scenarios.  

Specifically, we ask the following questions regarding inequities in hurricane 

evacuations:  
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1. What research has been done regarding who can (and cannot) safely evacuate 

before a hurricane i.e., who are the carless?  

2. If inequities exist, how are current evacuation plans and policies addressing (or 

contributing to) these inequities?  

3. How can computational modeling frameworks help be a solution? 

2.    Inequities in evacuation (the carless)  

The question “who evacuates and why?” has motivated 40+ empirical studies 

investigating how people respond to hurricane risks for actual hurricane events and in 

hypothetical hurricane scenarios (see, e.g., reviews in Huang et al. 2016; Bowser and 

Cutter 2015; Lazo et al. 2015; Dash and Gladwin 2007). Although predictors of evacuation 

decisions vary across studies, a metaanalysis by Huang et al. (2016) found some 

common factors. These include risk perceptions, official evacuation orders, storm 

characteristics, and personal/situational characteristics such as mobile home residence. 

Socioeconomic and demographic variables such as race, income, and disabilities have 

effects on evacuations that are not entirely clear from these empirical studies (Bowser 

and Cutter 2015; Huang et al. 2016). However, car ownership is a common predictor of 

evacuation, with the carless being considerably less likely to evacuate (Huang et al. 

2016). That said, we ask, who are the carless?  

Answering this question is important to hurricane evacuations, as a non-insignificant 

number of people are carless. Across the US, 8% of households are carless, a value that 

has been fairly constant over the last decade. According to the 2017 census, the 

percentage of carless households is highest in US coastal cities where hurricanes 
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frequent (e.g. New York City: 56%, Washington D.C.: 37%, Baltimore: 36%, Boston: 35%, 

New Orleans: 27%, Providence: 22%, Miami: 20%, Tampa Bay: 11%, Orlando: 9%, 

Houston: 8%).  

When the carless population is stratified by demographics, huge racial disparities become 

apparent. For example, 7% of white households are carless, compared to 24% of African-

American households, 17% of Latino households, and 13% of Asian-American 

households (Sanchez et al. 2003). This makes African Americans and Latinos nearly 3.5 

times and 2.5 times more likely to be carless than whites, respectively. People of color 

make up a greater proportion of the nation’s largest coastal cities (e.g., Miami: 79%; New 

Orleans: 73%; New York City: 65%; Houston: 58%). Of all 11 major cities that have seen 

5+ hurricanes in the last 100 years (Houston, Miami-Ft. Lauderdale, Orlando, 

Jacksonville, Tampa Bay-St. Petersburg, New York City, Providence, Boston, New 

Orleans), those without a car are disproportionately people of color (Lui et al. 2006). As 

described by Bullard and Wright (2011) a “transportation apartheid, a two-tiered system 

of people with cars and people without cars, is alive and well in most metropolitan regions” 

and is “firmly and nationally entrenched in American society.” These inequities are 

apparent in who has access to vehicles for hurricane evacuations.  

3.    Existing evacuation policies (or lack thereof) 

Disasters such as hurricanes — and the inequities which result — have social, political, 

and economic roots  (Smith 2006) i.e., it has been emphasized by many in the hazards 

community that there is no such thing as a natural disaster. Thus, it is important to 

examine hurricane evacuation policies to identify the roots of inequities in car-lessness, 
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its effects on hurricane evacuations, and whether sufficient “transportation alternatives” 

are provided.   

Following Katrina, several nationwide evaluations of government evacuation plans were 

conducted. These reports suggest that most plans – at the federal, state, and local levels 

– assume citizens can evacuate on their own and provide little assistance to those who 

cannot. For example:  

• A U.S. Government Accountability Office report determined that “state and local 

governments are generally not well prepared to evacuate transportation 

disadvantaged populations” (US GAO 2006). 

• The Department of Homeland Security’s assessment of evacuation plans for each 

state and the 75 largest urban areas found “low-mobility and special-needs groups, 

while included in most state emergency operation plans, has been largely 

unaddressed by state DOTs” (DHS 2006). 

A recent CDC report suggests the lack of government assistance for the transportation 

disadvantaged remains a systematic, nationwide problem. According to Kruger et al. 

(2020),  

“Analysis of evacuation policies in eight southern U.S. coastal states in 2018 found 

that all have laws to execute evacuation orders. However, only four have laws that 

require informing racially and ethnically diverse populations and persons with 

disabilities and functional needs of emergency evacuation plans. Only one state 
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(Florida) authorized creation of a registry for persons with access and functional 

needs for the purposes of evacuation and sheltering.”  

In other words, the personal automobile remains the primary means of emergency 

evacuation in most hurricane evacuation plans with little to no assistance provided 

otherwise.  These plans effectively privilege the middle-to upper-class, able-bodied, non-

elderly, predominantly white households more likely to own cars, leaving behind less 

mobile residents of American society.  

4.   Implications for computational models 

The literature demonstrates inequities in car ownership, and subsequently, inequities in 

who can easily evacuate. This is important context when interpreting results from 

modeling studies, such as those in Articles 1–3 of this dissertation. Moving forward, 

models aiming to improve the forecast-evacuation-system should include representations 

of the carless, or at the very least, acknowledge their existence. Doing so ensures the 

modeling frameworks do not contribute to inequities by excluding these groups when 

studying the evacuation-system. Ideally, the models should be used to demonstrate the 

advantages of using buses or providing cars for the carless (e.g., experiments in Article 

2). In other words, modeling studies should quantify the value of government assistance 

for various hurricane scenarios and thus encourage the development of equitable policies 

across the country.  

We are entering new territory where we can quantify forecast value through computational 

models (e.g., experiments in Article 3). As a result, we need to establish a conception of 

forecast and evacuation success which places the wellbeing of minoritized and 
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disadvantaged peoples at the forefront. Ideas to help achieve this goal include 1) explicitly 

considering the impact of forecasts on traditionally underserved communities and making 

this the primary means of measuring forecast/evacuation success in research and 

operational settings, and 2) emphasizing and supporting inclusive research techniques 

such as community-based participatory research and co-production which empower 

communities. With these types of considerations in mind, coupled natural-human models 

of hurricane evacuation can be used to improve equity across the hurricane forecast-

evacuation system.  
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CONCLUSIONS 

The aim of this research was to holistically examine the dynamics of the hurricane-

forecast-warning system from a novel, agent-based perspective that compliments and 

builds-upon empirical work. This was accomplished through a series of manuscripts 

discussing the following:  

1. The agent-based model (FLEE)’s conceptualization, implementation, and 

validation.   

2. How FLEE’s evacuations change with evacuation management strategies and 

policies, evolving population characteristics, and real and synthetic forecast 

scenarios. 

3. How changes in forecast elements (e.g., track and intensity) impact FLEE’s 

evacuations, and whether accuracy improvements translate to evacuation 

success.  

4. The carless households in the US, the inequities which result, and ideas for 

inclusive evacuation modeling moving forward.  

Together, the studies provide a first-order assessment of the system’s dynamics, and 

demonstrate the ability of coupled natural-human models to study – and improve – 

hurricane evacuations. In other words, this dissertation serves as a starting point for 

examining the forecast-evacuation system’s dynamics holistically i.e., to establish the 

relative importance of factors, key interactions between systems, and the broader, 

potentially non-evident emergent patterns.   
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Moving forward, coupled natural-human modeling – and specifically agent-based 

modeling – offers a promising research tool for the weather enterprise and hazards 

communities. Firstly, models will improve as computing power increases. As things 

currently stand,  FLEE takes several days to run individual cases. One can envision, 

however, models being used to run evacuation simulations in real or quasi-real-time. 

Increased computing power also allows for increased level of detail in the models, and 

subsequently, ability to answer questions of interest. Secondly, models can be extended 

to study other regions or hazards, e.g., tornadoes, hurricanes followed by flooding, loss 

of power networks, damage to roads, and other cascading failures. For meteorology, this 

continues the process of improving forecast evaluation across the weather enterprise, 

which helps make forecasts more useful to society. Thirdly, additional in-depth 

comparisons with observational data can improve FLEE’s realism, and subsequently, its 

capability to study evacuations i.e., computational models improve as empirical data 

improves, and vice versa, effectively creating a feedback relationships between the two, 

and an area of research that is promising long-term. For this reason, I intend to continue 

agent-based hazards modeling, while simultaneously broadening expertise to include 

empirical social science knowledge and methods (e.g., surveys, interviews etc.) over the 

next few years. More broadly, I aim to be someone who can effectively straddle multiple 

scholarly worlds (e.g., empirical vs modeling worlds, meteorology vs hazards worlds), and 

in turn, continue to offer innovative perspectives to support the weather enterprise.   
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APPENDIX A: Article 1 

Table A1: Wind risk is calculated at each grid cell by assigning a risk score (1-4) based on the storm’s 
forecast category at that location, its location in the forecast wind field (34, 50, 64+ knot intervals) which 
depicts the size of the storm, location in the cone of uncertainty, and expected arrival time of tropical storm 
force winds. The scores are weighted, summed, and rounded to the nearest integer to provide an overall 
wind threat score (1-4) expressed as green-yellow-orange-red, respectively. Note: scores for the forecast 
category and expected arrival time are set to 1 if the grid cell is not situated within the cone of uncertainty 
and/or any forecast wind radii. When taken together, the products capture the wind’s critical forecast 
elements (e.g., storm’s track, intensity, size, forward speed, amount of uncertainty, evolution with time, 
imminency).  

 

 

 

 

Wind 

risk 

*Forecast 

category 

Forecast wind 

field 

Location in cone of 

uncertainty 

*Expected 

arrival time 

1 <TS None Fully outside Outside cone 

2 TS-1 >34 kts Mostly outside >96 h 

3 2-3 >50 kts Mostly inside 48-96 h 

4 4-5 >64 kts Fully inside <48 h 

Weight 15% 50% 20% 15% 

*Conditional upon being in the cone of uncertainty and/or within forecast wind radii              

(=1 otherwise) 
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Surge 

risk 

*Inundatio

n potential 

*Forecas

t 

category 

*Forecas

t wind 

field 

*Approach 

angle 

*Location 

in cone of 

uncertaint

y 

*Expecte

d arrival 

time 

1 None <TS None 
Outside 

cone 

Fully 

outside 

Outside 

cone 

2 Weak TS-1 >34 kts Left of track 
Mostly 

outside 
>96 h 

3 Moderate 2-3 >50 kts 

Right of 

track, track 

parallel to 

shore 

Mostly 

inside 
48-96 h 

4 High 4-5 >64 kts 

Right of 

track, track 

perpendicula

r to shore 

Fully 

inside 
<48 h 

Weigh

t 
12% 12% 25% 16% 20% 15% 

*Conditional upon being along shoreline (i.e., =1 inland) and upon being inside cone 

of uncertainty and/or within forecast wind radii (=1 otherwise) 

Table A2: Surge risk is determined at each grid cell by assigning a risk score (1-4) based on the cell’s 
inundation potential (estimated using NHC’s potential storm surge inundation products), expected category 
at that location, location within the forecast wind field (34, 50, 64+ knot intervals) which depicts the size of 
the storm, the storm’s approach angle, the location in the cone of uncertainty, and the expected arrival time 
of tropical storm force winds. The scores are weighted, summed, and rounded to the nearest integer to 
provide an overall surge threat score (1-4) expressed as green-yellow-orange-red, respectively. Note: 
scores for the expected category and expected arrival time are set to 1 if the grid cell is not situated within 
the cone of uncertainty and/or the forecast wind radii. Likewise, the values are only calculated for areas 
along the shoreline, as storm surge does not occur inland.  
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Rain risk 
*Storm 

speed 

Forecast wind 

field 

Location in cone 

of uncertainty 

*Expected arrival 

time 

1 Fast None Fully outside Outside cone 

2 Medium >34 kts Mostly outside *>96 h 

3 Slow >50 kts Mostly inside *48-96 h 

4  
Nearly 

stationary 
>64 kts Fully inside *<48 h 

Weight 30% 35% 20% *15% 

*Conditional upon being inside cone of uncertainty and/or within forecast wind radii          

(=1 otherwise) 

Table A3: Rain risk is calculated for each grid cell by assigning a risk score (1-4) based on the storm 
speed (>15 knots, 10-15 knots, 5-10 knots, and <5 knots), location within the forecast wind field (34, 50, 
64+ knot intervals) which estimates the size of the rain field, location in the cone of uncertainty, and the 
expected arrival time of tropical storm force winds. The scores are weighted, summed, and rounded to the 
nearest integer to provide an overall rain threat score (1-4) expressed as green-yellow-orange-red, 
respectively. Note: scores for the expected category and forecast period are set to 1 if the grid cell is not 
situated within the cone of uncertainty and/or the forecast wind radii. When taken together, the products 
capture the rain’s critical forecast elements (e.g., storm’s track, size, forward speed, amount of uncertainty, 
evolution with time, imminency). 
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Variable Variability 
in time 

Definition Values 

Wind  Dynamic Score from light system normalized to a 
0-100 scale 

Green = 0, Yellow = 33, 
Orange = 66, Red = 100 

Surge  Dynamic Score from light system normalized to a 
0-100 scale 

Green = 0, Yellow = 33, 
Orange = 66, Red = 100 

Rain  Dynamic Score from light system normalized to a 
0-100 scale 

Green = 0, Yellow = 33, 
Orange = 66, Red = 100 

Forecast  Dynamic The highest score from the wind, rain, 
and surge threats. This is used in a 
household’s risk assessment  

Values range from 0-
100 

Evacuation 
Orders  

Dynamic Is an evacuation order issued for the 
household’s grid cell (yes/no)? This is 
used in a household’s risk assessment 

If yes = 100. If no = 0  

Mobile 
Home 
Ownership 

Static Is the household in a mobile home 
(yes/no)? This is used in a household’s 
risk assessment 

If yes = 100. If no = 0  

Age Static 1-5 score from the household’s grid cell 
(Figure A1) normalized to 0-100 scale. 
This is used in a household’s risk 
assessment 

If 1=20, If 2=40, If 3=60, 
If 4=80, If 5=100 

Household 
risk 
assessment 

Dynamic The sum of the forecast, evacuation 
orders, mobile home ownership, and 
age factors  

Values range from 0-
400  

Evacuation 
barrier 

Static If household has a car and household’s 
risk assessment > socioeconomic 
barrier, household will evacuate 

 
Car ownership and 
socioeconomic barrier in 
Table A5 

Table A4: Key variables in the household evacuation decision-making algorithm. The algorithm’s 
inputs (i.e., forecast, evacuation orders, mobile home ownership, age) are normalized onto a 0-100 scale 
and summed to produce household risk assessment, which is then weighed against evacuation barriers to 
produce a decision.  
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Figure A1: Cell-by-cell distribution of agent characteristics identified by Huang et al. (2016) as being 
important determinants of hurricane evacuations. These characteristics are spatially distributed by 
subjectively projecting the county-level social vulnerability data (see Flanagan et al. 2011) onto the 
abstracted, Florida-like agent-based model grid. Note, for reference, grid cells are 69 km by 69 km each. 
Higher values for socioeconomic status and car ownership increase the evacuation barriers and thus 
reduce the likelihood of evacuation. Higher values for age and mobile home ownership increase evacuation 
intentions.  
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Household 
characteristics  

Variability 
in time 

Definition Values 

Socioeconomic 
status 

Static Establishes the 
evacuation barrier 
threshold. Low (high) 
values indicate grid 
cell has less (more) 
financial obstacles to 
evacuate 

 
If = 1, barrier = random between 5-105 
If = 2, barrier = random between 10-110 
If = 3, barrier = random between 15-115 
If = 4, barrier = random between 20-120 
If = 5, barrier = random between 25-125 

Car ownership Static Establishes whether 
a household owns a 
vehicle. Carless 
households do not 
evacuate 

 
If = 1, 96% of households own car 
If = 2, 94% of households own car  
If = 3, 93% of households own car  
If = 4, 91% of households own car  
If = 5, 89% of households own car 

Mobile home 
ownership 

Static Establishes whether 
a household lives in a 
mobile home. If home 
is mobile, will 
increase risk 
perception 

 
If = 1, 5% of houses are mobile 
If = 2, 10% of houses are mobile 
If = 3, 20% of houses are mobile 
If = 4, 33% of houses are mobile 
If = 5, 46% of houses are mobile 

Table A5: Prescribing agent characteristics to individual households. At the beginning of the 
simulation, FLEE checks the agent’s location and subsequent values in Figure A1, then stochastically 
assigns household characteristics at the values established above. These variables are static, meaning 
they are assigned at the beginning of the simulation and do not change, but serve as inputs into the agent 
decision-making algorithm as detailed in Table A4.  
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Variable 
weight 

Variability 
in time 

Definition Values 

Evacuation 
order  

Static Trust in evacuation orders from EMs Random between 
0-1 

Forecast  Static Trust in forecast information i.e., the light 
system 

Random between 
0-0.8 

Mobile 
home  

Static Agent belief in whether their housing type 
influences perceived risk 

Random between 
0-10 

Age  Static Agent belief in whether household age 
influences perceived risk 

Random between 
0-0.1 

Wind  Static Household’s perceived vulnerability to wind Random between 
0.1-1 

Surge  Static Household’s perceived vulnerability to surge Random between 
0-1 

Rain  Static Household’s perceived vulnerability to rain Random between 
0-0.9 

Table A6: Weighting of key variables in a household’s risk assessment. Weights are designed to 
reflect the relative importance of each factors (e.g., evacuation orders, forecast information, mobile home 
ownership, and age, in that order) as established in Huang et al. (2016). For the individual hazards, studies 
suggest most households perceive wind and surge as the primary threat over rain (e.g., Senkbeil et al. 
2019). But in general, the relative weighting is not well known.  
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Variable Variability 
in time 

Definition Default values 

Departure 
times 

Static Time between when an agent 
decides to evacuate and when 
they actually leave 

Random between 0-12 
hours 

Destinations 
(out-of-state) 

Static The number of evacuees who 
evacuate out-of-state  

50% of the bottom 4 rows 
of grid cells; 100% of top 6 
rows 

Destinations 
(in-state) 

Static The number of accommodations 
available in each grid cell for in-
state-evacuees 

½ of grid cell’s population 
(i.e., metros have more 
accommodations) 

Patience 
threshold 

Dynamic Household patience i.e., the 
amount of time a household is 
willing to spend waiting to get 
onto a heavily trafficked road 

Random between 0 and 
the estimated time of 
arrival of tropical storm 
force wind  

Left/right Static Agents in the bottom row of grid 
cells can choose between moving 
westward/eastward on the lower 
interstate 

40% westward, 60% 
eastward  

Erratic drivers Static Percent of time steps (1.2 
seconds) in which a driver may 
act “erratically” by randomly 
slowing down 

0.05% 

Random 
accident 
frequency 

Static The frequency of accidents along 
the two outer interstates i.e., I-95 
and I-75. These stop traffic for 10 
minutes. 

1-3 random accidents per 
hour 

Table A7: Key variables for the traffic agent-based model. These parameters are the default settings 
for the experiments detailed in Section 4.1. Static variables are assigned once a vehicle decides to evacuate 
and does not change, whereas dynamic variables do change throughout the simulation. 
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Supplementary Results 1 -  Varying household’s weighting of different types of 

information 

Next, we investigate the effects of changing household agent’s weightings of the four 

factors that influence their hurricane risk assessment: the forecast, evacuation orders, 

mobile home ownership, and age. For each experiment, we set the information weights 

to zero, effectively “turning off” each parameter, one-by-one, while holding the others 

constant (Table 3e). When comparing the results to the default settings in Section 4.1, 

the experiments demonstrate the specific influence of the different information on the 

evacuation behaviors, both spatially and temporally.  

In Irma’s default simulation (Section 4.1), 45.1% of households evacuate. However, 

turning off the information for evacuation orders, the forecast, mobile home, and age, one-

by-one, results in evacuation rates of 28.3%, 33.2%, 40.6%, and 44.8%, respectively. 

Similarly, in the default simulation, where 10.5% of households give up due to traffic, 

turning off the inputs reduces the rate to 2.6%, 8.1%, 9.8%, and 9.3%, respectively (Table 

A8). In other words, the results indicate that, in the model’s current formulation, 

evacuation rates are generally more sensitive to evacuation orders than they are to 

forecast information, mobile home ownership, and age. However, this is zone dependent 

e.g., evacuation orders has a greater influence in coastal zones, and mobile homes have 

a greater influence upstate/inland. The former is due to model formulation (evacuation 

orders are limited to coastal zones) and the latter due to the geographic distribution of 

mobile homes (e.g., as shown in Figure A1). That said, we cannot draw conclusions (or 

interpret the model dynamics) based on these findings. Rather, we can say the relative 

importance of these factors is generally consistent with the metaanalysis of Huang et al. 
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(2016), which we used to prescribed the information weightings, thus adding confidence 

that the model behaves reasonably.   

Breaking down the experiments by impact zones shows that, as expected, evacuation 

orders primarily impact evacuations along the coast. For example, turning off the 

evacuation order parameter decreases evacuation rates in the coastal >64 knot zone 

from 52.3% to 31.9%, while inland evacuation rates remain the same (Table A8). 

 

 % Successfully evacuated    

Experiment Total 
(all 
cells) 

Coastal 
>64 
knot 
zone 

Inland 
>64 
knot 
zone 

Coastal 
< 64 
kts 
zone 

Inland 
< 64 
kts 
zone 

Compliance 
rates 

Shadow 
evacuation  

Gave 
up to 
traffic 

Irma Default  45.1 52.3 22.2 58.1 36.7   55.0 25.6 10.5 

EO = 0  28.3 31.9 24.0 25.5 36.9 29.0 26.9 2.6 

Forecast = 0  33.2 38.2 11.7 45.3 26.5 41.4 17.5 8.1 

MH = 0  40.6 48.5 17.3 54.9 14.2 51.4 16.6 9.8 

Age = 0  44.8 51.3 22.3 56.4 35.0 53.6 25.3 9.3 

Table A8: Evacuation behaviors by impact zone when varying household weighting of information. 
Successful evacuation rates are broken down into impact zones (coastal vs. inland, and areas experiencing 
vs. not experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate 
via evacuation order who did evacuate), shadow evacuation rates (i.e., percentage of people not instructed 
to evacuate who did), and the percentage of evacuees who attempted to evacuate but “gave up” due to 
excessive amounts of traffic.  
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Figure A2 shows evacuation rates and traffic broken down by grid cell. Note, in this figure, 

rates are expressed as the departure from the default settings in Figure 7. The results 

further show how evacuation orders are a strong determinant of evacuation rates, as 

turning off the parameter reduces evacuation rates from 7% to 40% in places along the 

coast (Figure A2b). Note: turning off evacuation orders increases evacuation rates in the 

inland Miami suburbs, as traffic is reduced in the surrounding coastal areas. This 

highlights how evacuation rates in a given grid cell are also influenced by those in other 

grid cells. Unlike evacuation orders, the other three parameters (Figure A2 a, c-d) exhibit 

a more uniform influence on evacuation rates across FLEE’s grid. Areas most influenced 

by mobile home and age information occur in grid cells where rates of mobile home 

ownership are highest, and where age is expected to play a larger role (Figure A1, see 

cells with higher ranking). Though such information does not provide any new behavioral 

insights, it does verify that FLEE behaves as expected given the model’s current 

configuration, and is capable of capturing complex processes (e.g., evacuation behaviors 

in one part of the model influencing those in other areas). These results increase our 

confidence that FLEE adequately represents real-world evacuations and is suitable for 

further experimentation.  
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Figure A2: The spatial effects of “turning off” information inputs on evacuations rates and percent 
“giving up” from traffic for grid cells. Results are presented for experiments “turning off” the forecast 
information (a), evacuation orders (b), mobile home ownership (c), and age (d), one-by-one while holding 
the other parameters constant. Values are shown as the departure from the default settings in section 4.1 
and in Figure 7f-g. Also presented is the swath of hurricane force winds (dotted cells), evacuation orders 
(red cells), and the population by grid cell (e) which provide a frame of reference e.g., major cities depicted 
include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), 
and Orlando (orange star). Note, run-to-run variability due to stochastic elements in the model ranges from 
0–2% in grid cells for both evacuation rates and percent giving up due to traffic. Therefore values of -2 to 2 
lie within that variability and are insignificant.  
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Figure A3 shows the importance of the different information on certain periods during the 

evacuation. For example, turning off evacuation orders (red lines) causes a reduction in 

evacuation rates compared to the default simulation (black lines), especially during the 

36–102 hour period when evacuation orders were issued. Forecast information (purple 

lines) most influences evacuation rates between 30–60 hours, as forecasts indicated 

significant risk throughout Florida during this period. Unlike evacuation orders and 

forecast information, modifying the age (orange lines) and mobile home (green lines) 

factors do not impact any specific periods of time, but simply reduces the evacuation rates 

overall. This is to be expected, as these parameters are defined at the start of the 

simulation and are not updated.  

In summary, the simulations in this section illustrate how modifying the factors that 

influence households’ evacuation decisions in the human system agent-based model 

propagate through FLEE’s full modeling system to influence the spatial and temporal 

patterns of evacuation. In general, the results suggest FLEE behaves as expected given 

the model’s current configuration, and matches patterns seen in empirical studies which 

suggest forecast/warning information is a key driver for evacuations (e.g., Wong et al. 

2018; Huang et al. 2016). Additionally, the results illustrate how modeling laboratories 

such as this can build our understanding of the evacuation decision-making processes 

and how they intersect with other factors (e.g., the evolving forecast information, traffic) 

to produce evacuations.   
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Figure A3: The temporal effects of “turning off” information inputs on the timing of evacuation rates 
(solid lines) and numbers giving up due to traffic (dashed lines), averaged across all grid cells. The default 
simulation (Table 3a; section 4.1) is expressed (black lines), as are experiments turning off the four main 
types of information used to assess risk: no forecast information (purple lines), no evacuation orders (red 
lines), no mobile home ownership (green lines), and no age (orange lines). Comparing the experiments to 
the default experiment (black lines) provides a general sense of the relative importance of the parameter 
on the overall evacuation behaviors. Also shown is the simulation where the population density is uniform 
(grey lines), which is further described in Supplementary Results 2.    
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Supplementary Results 2 -  Varying geographical distribution of households  

In this section, we investigate FLEE’s behavior when the non-uniform geographical 

distribution of households in the default settings is changed to a uniform population 

distribution (Table 3f) i.e., where the 16.4 million residents (4.1 million households) are 

spread evenly across grid cells. As a result, the experiment is a first attempt to explore 

the effects of population density on evacuations, as this cannot be done empirically, and 

it demonstrates how FLEE can be used to run different scenarios with population shifts, 

e.g., times of year when there are a lot of tourists in certain areas, looking 10+ years out 

for how evacuations may change as the population grows.  

In total, evacuation rates increase from 45.1% in the default simulation to 49.9% when 

the population distribution is uniform, which is an increase of 786,720 people (Table A9). 

Meanwhile rates of households unable to evacuate due to excessive traffic decrease from 

10.5% in the default simulation to 3.5%, a decrease of 1,147,300 people. Thus, the 

experiments suggest the real-world, non-uniform population density substantially 

increases evacuation traffic and reduce evacuation rates.   

A more in-depth look reveals an interesting pattern in the spatial distribution of evacuation 

behaviors. In most places, evacuation rates are higher than in default while traffic is 

minimal (Figure A4, bottom panel); the exception is the southern “coastal” cells where 

rates unable to evacuate due to traffic increase 12–17%, particularly around Miami, which 

reduces evacuation rates by 9–17%. One possible explanation is that the southern cells 

have 1) more evacuees than in the default run and 2) more evacuees downstream i.e., 

the area is “last in line” to evacuate based on the available road network. It is also possible 
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that we are seeing the impacts of clearance times being out of balance with what the 

clearance times would be in a world with this revised population density.  

The results quantify contributions of the built environment to the evacuations. 

Furthermore, they illustrate the significant and potentially complex effects of population 

density on the evacuation success, which should be explored further. The experiment 

also shows how, in a modeling laboratory such as this, different components can be 

modified systematically to isolate influences which are impossible to do empirically, and 

highlights the potential value of this type of modeling laboratory to increasing our 

fundamental understanding of the system dynamics, and our understanding how 

evacuations may change as the population grows.   

 

 % Successfully evacuated    

Experiment Total 
(all 
cells) 

Coastal 
>64 
knot 
zone 

Inland 
>64 
knot 
zone 

Coastal 
< 64 
kts 
zone 

Inland 
< 64 
kts 
zone 

Compliance 
rates 

Shadow 
evacuation  

Gave 
up to 
traffic 

Irma Default  45.1 52.3 22.2 58.1 36.7   55.0 25.6 10.5 

Uniform pop.  49.9 65.3 29.7 62.3 36.9 64.1 32.5 3.5 

Table A9: Evacuation behaviors by impact zones when making the population uniform across the 
grid. Successful evacuation rates are broken down into impact zones (coastal vs. inland, and areas 
experiencing vs. not experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed 
to evacuate via evacuation order who did evacuate), shadow evacuation rates (i.e., percentage of people 
not instructed to evacuate who did), and the percentage of evacuees who attempted to evacuate but “gave 
up” due to excessive amounts of traffic.   
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Figure A4: Influence of population density on evacuation for grid cells. Evacuation rates (left) and the 
percent of households unable to evacuate due to traffic (right) are shown. Results are presented for the 
experiment where population density is even across all grid cells (top panel). These results are compared 
to the default simulation with non-uniform population (bottom panel) where values are expressed as the 
difference from the default settings in section 4.1 and in Figure 7. Also expressed is the swath of hurricane 
force winds (dotted cells), evacuation orders (red cells), and the population by grid cell (c) which provide a 
frame of reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. 
Petersburg (blue star), Jacksonville (green star), and Orlando (orange star). Note, run-to-run variability due 
to stochastic elements in the model ranges from 0–2% in grid cells for both evacuation rates and percent 
giving up due to traffic. Therefore values of -2 to 2 lie within that variability and should be ignored. 
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APPENDIX B: Article 2 

Original parameters Updated parameters Intended effect 

Instantaneous 
communication – forecasts 
and warning information were 
received immediately by 
households to begin the 
evacuation decision-making 
process 

Households are randomly 
assigned a value between 0-
24 hours. This is the amount 
of time needed to receive 
information before making 
evacuation decisions 

To provide a more realistic 
account of information 
diffusion (e.g., see Morss et 
al. 2017) 

Evacuation barriers are static 
and do not change 

Evacuation barriers are 
raised by 36 initially and 
decrease linearly to their 
original values in HRM21 by 
54 hours before landfall 

To prevent too many people 
from evacuating early in the 
simulations e.g., upstate and 
inland in the Irma and Dorian 
simulations 

Mobile home ownership 
weighting in household 
evacuation decision-making 
algorithm: Random between 
0-10 

Mobile home ownership 
weighting in household 
evacuation decision-making 
algorithm: Random between 
0-0.5 

To reduce unsensible 
variability between grid cells, 
particularly inland 

Socioeconomic status 
weighting in household 
evacuation decision-making 
algorithm: Random between 
5-125 

Socioeconomic status 
weighting in household 
evacuation decision-making 
algorithm: Random between 
5-109 

To reduce unsensible 
variability between grid cells, 
particularly inland 

Table B1: Updates to the model since HRM21. This includes describing the original model parameters, 
their updates, and the reasoning behind them.  
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Figure B1: The percentage of coastal grid cells receiving evacuation orders, if issued for the cell. Also 
expressed is the population by grid cell (b). These provide a frame of reference e.g., major cities depicted 
include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), 
and Orlando (orange star). Values are based on Figure 2 of Wong et al. (2018), Florida Department of 
Emergency Management (personal communication), Figure 1 of Darzi et al. (2020).  
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Information 
category 

 

Storm Data 
specifics 

Sources 

Evacuation 
orders 

Irma 
Counties, 
evacuation 
zones 

Figure 2 of Wong et al. (2018), Florida 
Department of Emergency Management 
(personal communication), Figure 1 of Darzi et 
al. (2020) 

 Dorian 
Counties, 
evacuation 
zones 

TIME (2019) 

Evacuation rates Irma By region Figure 4 of Wong et al. (2018) 

 Irma 
By voting 
precinct 

Figure 1c of Long et al. (2020) 

 Irma By county Table 10 of Martin et al. (2020) 

 Irma By state 
Florida Department of Emergency 
Management (2017), Figure 6 of Wong et al. 
(2018), Figure 2c of Long et al. (2020) 

 Irma By city Feng and Lin (2021) 

 Dorian Storm total Mongold et al (2020) 

Evacuation traffic Irma 
Areas/times 
of congestion 

Page 15 of Wong et al. (2018), Ghorbanzadeh 
et al. (2021), States et al. (2021) 

 Irma 
Total 
numbers 
stuck 

Feng and Lin (2021) 

Table B2: Empirical information used to validate FLEE. This includes a description of the information, 
which storm the data is form, and the exact source.  
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APPENDIX C: Article 3 

Hours until 
landfall 

Irma Advisory 
No.  

Dorian-LF 
Advisory No.  

2001 average 
errors (km) 

2021 average 
errors (km) 

120 25 17 601 319 

114 26 18 564 299 

108 27 19 527 279 

102 28 20 490 260 

96 29 21 453 240 

90 30 22 433 223 

84 31 23 412 207 

78 32 24 392 190 

72 33 25 370 174 

66 34 26 342 160 

62 35 27 314 146 

54 36 28 287 132 

48 37 29 259 118 

42 38 30 229 104 

36 39 31 200 90 

30 40 32 170 78 

24 41 33 138 67 

18 42 34 116 55 

12 43 35 94 43 

6 44 36 72 27 

0 45 37 50 13 

Table C1: Average track errors in 2001 and 2021, expressed in km for every 6 hours leading up to landfall. 
These values were taken from the NHC website (https://www.nhc.noaa.gov/verification/index.shtml), were 
extrapolated from 24 to 6 hour intervals, and matched to the equivalent advisory numbers from the official 
NHC forecasts for Irma and Dorian. Based off this information, track errors were perturbed left/right of the 
original NHC forecast track by amounts in this table.  
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Figure C1: Irma’s 2001 left track forecasts. Forecasts are shown for every 24 hours but update every 6 
hours (not shown). Left column: Official evolving NHC forecast track (black center line), category (numbers), 
cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), and 64+ 
(red) knot intervals. The approximate track of the perturbed forecasts is shown (orange arrow). Right three 
columns: The light system threats corresponding to the perturbed forecasts for wind, surge, and rain are 
shown for equivalent times.  
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Figure C2: Irma’s 2021 left track forecasts. Forecasts are shown for every 24 hours but update every 6 
hours (not shown). Left column: Official evolving NHC forecast track (black center line), category (numbers), 
cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), and 64+ 
(red) knot intervals. The approximate track of the perturbed forecasts is shown (orange arrow). Right three 
columns: The light system threats corresponding to the perturbed forecasts for wind, surge, and rain are 
shown for equivalent times. 
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Figure C3: Irma’s 2021 right track forecasts. Forecasts are shown for every 24 hours but update every 
6 hours (not shown). Left column: Official evolving NHC forecast track (black center line), category 
(numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), 
and 64+ (red) knot intervals. The approximate track of the perturbed forecasts is shown (orange arrow). 
Right three columns: The light system threats corresponding to the perturbed forecasts for wind, surge, and 
rain are shown for equivalent times. 
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Figure C4: Irma’s 2001 right track forecasts. Forecasts are shown for every 24 hours but update every 
6 hours (not shown). Left column: Official evolving NHC forecast track (black center line), category 
(numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), 
and 64+ (red) knot intervals. The approximate track of the perturbed forecasts is shown (orange arrow). 
Right three columns: The light system threats corresponding to the perturbed forecasts for wind, surge, and 
rain are shown for equivalent times. 
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Figure C5: Irma’s RI/RO forecasts. Here we shorten the forecast timeline of the original NHC forecasts 
shown in Figure 22 from 168 hours to 84 hours. Forecasts are shown for every 24 hours but update every 
6 hours (not shown). The peak magnitudes of risk (wind, surge, rain) for each grid cell are the same as 
Irma; however, the timelines are condensed, effectively creating large and intertwined forward speed, 
intensity, and track errors meant to emulate the effects of rapid onset/intensity cases.  

 

 



146 
 

Figure C6: Irma’s RI/RO – 12 forecasts. Here we shorten the forecast timeline of the original NHC 
forecasts shown in Figure 22 from 168 hours to 72 hours. Forecasts are shown for every 24 hours but 
update every 6 hours (not shown). The peak magnitudes of risk (wind, surge, rain) for each grid cell are 
the same as Irma; however, the timelines are condensed, effectively creating large and intertwined forward 
speed, intensity, and track errors meant to emulate the effects of rapid onset/intensity cases. 
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Figure C7: Evacuation rates over time for Irma’s experiments. The temporal effects of the experiments 
on evacuation rates (solid lines) and numbers giving up due to traffic (dashed lines), averaged across grid 
cells, throughout the simulations. The default simulation is expressed (black lines), as are RI/RO (dark red 
lines), RI/RO – 12 (light red lines), 2021 left (dark green lines), 2001 left (light green lines), 2021 right 
(purple lines), 2001 right (blue lines).  
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Figure C8: Dorian LF’s 2001 left track forecasts. Forecasts are shown for every 24 hours but update 
every 6 hours (not shown). Left column: Official evolving NHC forecast track (black center line), category 
(numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), 
and 64+ (red) knot intervals. The approximate track of the perturbed forecasts is shown (orange arrow). 
Right three columns: The light system threats corresponding to the perturbed forecasts for wind, surge, 
and rain are shown for equivalent times. 
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Figure C9: Dorian’s 2021 left track forecasts. Forecasts are shown for every 24 hours but update every 
6 hours (not shown). Left column: Official evolving NHC forecast track (black center line), category 
(numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), 
and 64+ (red) knot intervals. The approximate track of the perturbed forecasts is shown (orange arrow). 
Right three columns: The light system threats corresponding to the perturbed forecasts for wind, surge, 
and rain are shown for equivalent times. 
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Figure C10: Dorian’s 2021 right track forecasts. Forecasts are shown for every 24 hours but update 
every 6 hours (not shown). Left column: Official evolving NHC forecast track (black center line), category 
(numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), 
and 64+ (red) knot intervals. The approximate track of the perturbed forecasts is shown (orange arrow). 
Right three columns: The light system threats corresponding to the perturbed forecasts for wind, surge, 
and rain are shown for equivalent times. 
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Figure C11: Dorian LF’s 2001 right track forecasts. Forecasts are shown for every 24 hours but update 
every 6 hours (not shown). Left column: Official evolving NHC forecast track (black center line), category 
(numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), 
and 64+ (red) knot intervals. The approximate track of the perturbed forecasts is shown (orange arrow). 
Right three columns: The light system threats corresponding to the perturbed forecasts for wind, surge, 
and rain are shown for equivalent times. 
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Figure C12: Dorian LF’s RI/RO forecasts. Here we shorten the forecast timeline of the original NHC 
forecasts shown in Figure 22 from 168 hours to 84 hours. Forecasts are shown for every 24 hours but 
update every 6 hours (not shown). The peak magnitudes of risk (wind, surge, rain) for each grid cell are 
the same as Dorian LF; however, the timelines are condensed, effectively creating large and intertwined 
forward speed, intensity, and track errors meant to emulate the effects of rapid onset/intensity cases. 
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Figure C13: Dorian LF’s RI/RO – 12 forecasts. Here we shorten the forecast timeline of the original NHC 
forecasts shown in Figure 22 from 168 hours to 72 hours. Forecasts are shown for every 24 hours but 
update every 6 hours (not shown). The peak magnitudes of risk (wind, surge, rain) for each grid cell are 
the same as Dorian-LF; however, the timelines are condensed, effectively creating large and intertwined 
forward speed, intensity, and track errors meant to emulate the effects of rapid onset/intensity cases. 
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Figure C14: Evacuation rates over time for Dorian LF’s experiments. The temporal effects of the 
experiments on evacuation rates (solid lines) and numbers giving up due to traffic (dashed lines), averaged 
across grid cells, throughout the simulations. The default simulation is expressed (black lines), as are 
RI/RO (light red lines), RI/RO – 12 (dark red lines), 2021 left (dark green lines), 2001 left (light green lines), 
2021 right (purple lines), 2001 right (blue lines).  
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