666 research outputs found

    Interference management and system optimisation for Femtocells technology in LTE and future 4G/5G networks

    Get PDF
    Femtocells are seen to be the future of Long Term Evaluation (LTE) networks to improve the performance of indoor, outdoor and cell edge User Equipments (UEs). These small cells work efficiently in areas that suffer from high penetration loss and path-loss to improve the coverage area. It is said that 30% of total served UEs in LTE networks are vehicular, which poses challenges in LTE networks due to their high mobility, high vehicular penetration loss (VPL), high path loss and high interference. Therefore, self-optimising and dynamic solutions are required to incorporate more intelligence into the current standard of LTE system. This makes the network more adaptive, able to handle peak data demands and cope with the increasing capacity for vehicular UEs. This research has drawn a performance comparison between vehicular UEs who are served by Mobile-Femto, Fixed-Femto and eNB under different VPL scales that range between highs and lows e.g. 0dB, 25dB and 40dB. Deploying Mobile-Femto under high VPLs has improved the vehicular UE Ergodic capacity by 1% and 5% under 25dB and 40dB VPL respectively as compared to other eNB technologies. A noticeable improvement is also seen in signal strength, throughput and spectral efficiency. Furthermore, this research discusses the co-channel interference between the eNB and the Mobile-Femto as both share the same resources and bandwidth. This has created an interference issue from the downlink signals of each other to their UEs. There were no previous solutions that worked efficiently in cases where UEs and base stations are mobile. Therefore, this research has adapted an efficient frequency reuse scheme that worked dynamically over distance and achieved improved results in the signal strength and throughput of Macro and Mobile-Femto UE as compared to previous interference management schemes e.g. Fractional Frequency Reuse factor1 (NoFFR-3) and Fractional Frequency Reuse factor3 (FFR-3). Also, the achieved results show that implementing the proposed handover scheme together with the Mobile-Femto deployment has reduced the dropped calls probability by 7% and the blocked calls probability by 14% compared to the direct transmission from the eNB. Furthermore, the outage signal probabilities under different VPLs have been reduced by 1.8% and 2% when the VPLs are 25dB and 40dB respectively compared to other eNB technologies

    Mobile femtocell utilisation in LTE vehicular environment: vehicular penetration loss elimination and performance enhancement

    Get PDF
    Mobile computing is fast becoming a vital part of everyday life in which User Equipment (UE) demand being reachable anywhere and at anytime, as they spend much time travellingfrom one place to another, often by trains or buses. The ultimate aim of passengers is the ability to be connected to the Internet while they are moving from one place to another with their mobile devices. Providing indoor coverage on trains and buses directly with outdoor Base Stations (BSs) may not be a good solution due to the high density of use and path losses in the LTE network. This limitation can result in poor signal quality inside the train, and offering broadband services is not always possible. Clearly improvement to broadband access on buses and trains could be achieved by installing more BSs close to railway and bus routes and terminals. However, this solution is not ideal for the Internet Service Providers (ISPs) due to the high investment needed to deploy many more BSs. In addition, such a solution will introduce additional complexity by increasing the number of Handovers (HOs). This issue has focused the research community effort on developing solutions that take advantage of the existing wireless infrastructure without increasing the number of BSs. One method being considered is the development of more efficient methods and technologies to manage the UE’s mobility in seamless ways. In this paper we propose adoption of Mobile Femtocell (Mobile-Femto) technology as a solution to mitigate the Vehicular Penetration Loss (VPL) and Path Loss, with consequent improvement to the vehicular UE’s performance in LTE networks. Our results, using a Matlab simulation model, showed a noticeable improvement in the achieved Ergodic capacity by 5% under a VPL of 40dB while 90% of vehicular UEs spectral efficiency has improved by 1.3b/cu under a VPL of 25dB. In addition, 80% of vehicular UEs have improved their throughput and SINR by 300kb/s and 4dB respectively after implementing the Mobile-Femto into the Macrocell in LTE networks

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Performance evaluation of mobile users served by fixed and mobile femtocells in LTE networks

    Get PDF
    This paper investigates the concept of Mobile Femtocell with considering the feasibility of deploying Mobile Femtocells in public transportation vehicles such as trains, buses or private cars that form its own cell inside vehicles to serve vehicular and mobile User Equipments. This study is the launch of cell-edge mobile users who have always suffered degradation in the Quality of Service (QoS). Therefore, an investigation on the performance of LTE cell-edge mobile User Equipment e.g. users’ throughput, SINR, SNR, SIR, spectral efficiency and Handover performance, have been considered with deploying Fixed Femtocells and Mobile Femtocells in Long Term Evolution network. Two scenarios have been proposed in this study; Fixed Femtocells with mobile users and Mobile Femtocells with mobile users. More scenarios maybe considered in the case of Mobile Femtocell’s handover procedure. MATLAB simulation has been used for the purpose of simulating the designed scenarios and implementing the integrated mathematical equations. The simulated results have demonstrated the benefits of having Mobile Femtocells over the Fixed Femtocells in terms of mobile User Equipments’ performance

    Performance evaluation of mobile users served by fixed and mobile femtocells in LTE networks

    Get PDF
    This paper investigates the concept of Mobile Femtocell with considering the feasibility of deploying Mobile Femtocells in public transportation vehicles such as trains, buses or private cars that form its own cell inside vehicles to serve vehicular and mobile User Equipments. This study is the launch of cell-edge mobile users who have always suffered degradation in the Quality of Service (QoS). Therefore, an investigation on the performance of LTE cell-edge mobile User Equipment e.g. users’ throughput, SINR, SNR, SIR, spectral efficiency and Handover performance, have been considered with deploying Fixed Femtocells and Mobile Femtocells in Long Term Evolution network. Two scenarios have been proposed in this study; Fixed Femtocells with mobile users and Mobile Femtocells with mobile users. More scenarios maybe considered in the case of Mobile Femtocell’s handover procedure. MATLAB simulation has been used for the purpose of simulating the designed scenarios and implementing the integrated mathematical equations. The simulated results have demonstrated the benefits of having Mobile Femtocells over the Fixed Femtocells in terms of mobile User Equipments’ performance

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Cell Selection Mechanism Based on Q-learning Environment in Femtocell LTE-A Networks

    Get PDF
    Universal mobile networks require enhanced capability and appropriate quality of service (QoS) and experience (QoE). To achieve this, Long Term Evolution (LTE) system operators have intensively deployed femtocells (HeNBs) along with macrocells (eNBs) to offer user equipment (UE) with optimal capacity coverage and best quality of service. To achieve the requirement of QoS in the handover stage among macrocells and femtocells we need a seamless cell selection mechanism. Cell selection requirements are considered a difficult task in femtocell-based networks and effective cell selection procedures are essential to reduce the ping-pong phenomenon and to minimize needless handovers. In this study, we propose a seamless cell selection scheme for macrocell-femtocell LTE systems, based on the Q-learning environment. A novel cell selection mechanism is proposed for high-density femtocell network topologies to evaluate the target base station in the handover stage. We used the LTE-Sim simulator to implement and evaluate the cell selection procedures. The simulation results were encouraging: a decrease in the control signaling rate and packet loss ratio were observed and at the same time the system throughput was increased

    Energy efficiency and interference management in long term evolution-advanced networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cellular networks are continuously undergoing fast extraordinary evolution to overcome technological challenges. The fourth generation (4G) or Long Term Evolution-Advanced (LTE-Advanced) networks offer improvements in performance through increase in network density, while allowing self-organisation and self-healing. The LTE-Advanced architecture is heterogeneous, consisting of different radio access technologies (RATs), such as macrocell, smallcells, cooperative relay nodes (RNs), having various capabilities, and coexisting in the same geographical coverage area. These network improvements come with different challenges that affect users’ quality of service (QoS) and network performance. These challenges include; interference management, high energy consumption and poor coverage of marginal users. Hence, developing mitigation schemes for these identified challenges is the focus of this thesis. The exponential growth of mobile broadband data usage and poor networks’ performance along the cell edges, result in a large increase of the energy consumption for both base stations (BSs) and users. This due to improper RN placement or deployment that creates severe inter-cell and intracell interferences in the networks. It is therefore, necessary to investigate appropriate RN placement techniques which offer efficient coverage extension while reducing energy consumption and mitigating interference in LTE-Advanced femtocell networks. This work proposes energy efficient and optimal RN placement (EEORNP) algorithm based on greedy algorithm to assure improved and effective coverage extension. The performance of the proposed algorithm is investigated in terms of coverage percentage and number of RN needed to cover marginalised users and found to outperform other RN placement schemes. Transceiver design has gained importance as one of the effective tools of interference management. Centralised transceiver design techniques have been used to improve network performance for LTE-Advanced networks in terms of mean square error (MSE), bit error rate (BER) and sum-rate. The centralised transceiver design techniques are not effective and computationally feasible for distributed cooperative heterogeneous networks, the systems considered in this thesis. This work proposes decentralised transceivers design based on the least-square (LS) and minimum MSE (MMSE) pilot-aided channel estimations for interference management in uplink LTE-Advanced femtocell networks. The decentralised transceiver algorithms are designed for the femtocells, the macrocell user equipments (MUEs), RNs and the cell edge macrocell UEs (CUEs) in the half-duplex cooperative relaying systems. The BER performances of the proposed algorithms with the effect of channel estimation are investigated. Finally, the EE optimisation is investigated in half-duplex multi-user multiple-input multiple-output (MU-MIMO) relay systems. The EE optimisation is divided into sub-optimal EE problems due to the distributed architecture of the MU-MIMO relay systems. The decentralised approach is employed to design the transceivers such as MUEs, CUEs, RN and femtocells for the different sub-optimal EE problems. The EE objective functions are formulated as convex optimisation problems subject to the QoS and transmit powers constraints in case of perfect channel state information (CSI). The non-convexity of the formulated EE optimisation problems is surmounted by introducing the EE parameter substractive function into each proposed algorithms. These EE parameters are updated using the Dinkelbach’s algorithm. The EE optimisation of the proposed algorithms is achieved after finding the optimal transceivers where the unknown interference terms in the transmit signals are designed with the zero-forcing (ZF) assumption and estimation errors are added to improve the EE performances. With the aid of simulation results, the performance of the proposed decentralised schemes are derived in terms of average EE evaluation and found to be better than existing algorithms

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network
    • …
    corecore