
 

56             J. ICT Res. Appl., Vol. 15, No. 1, 2021, 56-70                        
 

 

Received May 3rd, 2020, 1st Revision November 30th, 2020, 2nd Revision February 17th, 2021,  Accepted for 

publication May 7th, 2021. 
Copyright © 2021 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2021.15.1.4 

 

Cell Selection Mechanism Based on Q-learning 

Environment in Femtocell LTE-A Networks  

Ammar Bathich*1, Saiful Izwan Suliman2, Hj. Mohd Asri Hj. Mansor2, Sinan 

Ghassan Abid Ali3 & Raed Abdulla4 

1Faculty of Computer and Information Technology, Al-Madinah International 

University, Jalan 2/125e, Kuala Lumpur 57100, Malaysia 
2Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 

 Jalan Ilmu 1/1, Shah Alam 40450, Selangor, Malaysia 
3Faculty of Computer Technologies Engineering, Iraq University College  

Al-Estiqlal St, Basrah, Iraq 
4School of Engineering, Asia Pacific University of Technology and Innovation (APU) 

Jalan Teknologi 5, Kuala Lumpur 57000, Malaysia 
*E-mail: ammarbat2003@gmail.com 

 

 

Abstract. Universal mobile networks require enhanced capability and appropriate 

quality of service (QoS) and experience (QoE). To achieve this, Long Term 

Evolution (LTE) system operators have intensively deployed femtocells (HeNBs) 

along with macrocells (eNBs) to offer user equipment (UE) with optimal capacity 

coverage and best quality of service. To achieve the requirement of QoS in the 

handover stage among macrocells and femtocells we need a seamless cell selection 

mechanism. Cell selection requirements are considered a difficult task in 

femtocell-based networks and effective cell selection procedures are essential to 

reduce the ping-pong phenomenon and to minimize needless handovers. In this 

study, we propose a seamless cell selection scheme for macrocell-femtocell LTE 

systems, based on the Q-learning environment. A novel cell selection mechanism 

is proposed for high-density femtocell network topologies to evaluate the target 

base station in the handover stage. We used the LTE-Sim simulator to implement 

and evaluate the cell selection procedures. The simulation results were 

encouraging: a decrease in the control signaling rate and packet loss ratio were 

observed and at the same time the system throughput was increased. 

Keywords: cell selection; femtocell; handover learning; LTE-A; Q-learning. 

1 Introduction 

Handoff, or handover, is an essential process in wireless networks. Active user 

sessions are maintained during base station switching by the handover 

mechanism. Efficient handover by a seamless handover algorithm makes the 

concept of femtocell technology successful. Therefore, it is necessary to examine 

the technique for cell selection during the handover process in order to reduce 

unnecessary handovers and to improve the user benefits with regard to gained 
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capacity. Generally, three stages are distinguished in the process of LTE 

handover [1]. Collecting handover related information/measurements from the 

serving and neighboring base stations is the first phase of the handover process; 

usually this is called the information or measurement gathering phase. The 

handover decision phase is the second stage, which is responsible for where and 

when to decide the handover; it should include a cell selection technique. The 

execution phase is the third stage in the handover process, when the UE 

disconnects itself from the serving base station (eNB or HeNB) and connects 

itself to the target [2-6].  The Home-eNB or HeNB (femtocell) model applies a 

hard handover mechanism, which means that the UE is terminated completely 

from the serving HeNB/eNB and then connected to the target one. A soft 

handover, which allows the UE to remain on the serving base station for a while 

before moving to the target, is not applicable in the femtocell concept [7]. A 

multi-tier LTE network has three different possible scenarios [8]. Firstly, Inter-

HeNB, which occurs when the UE changes its femtocell (HeNB) to another one. 

Secondly, hand-out, which occurs when the UE changes its femtocell (HeNB) to 

a macrocell (eNB). Thirdly, hand-in, which occurs when the UE changes its 

macrocell (eNB) to a femtocell (HeNB). 

Figure 1 shows the three possible scenarios mentioned above. Different backhaul 

routes of HeNB and eNB make the process of the hand-in scenario quite difficult 

[9]. Moving from HeNB to eNB is almost the same as an eNB-eNB handover; 

control signaling can be transferred to the core network via a backhaul link 

because of unavailability of an X2 interface [10]. However, control signaling is 

delivered between femtocells internally via X2 and S1 interfaces through an 

HeNB gateway [11-12]. On the other hand, the evolved packet core (EPC) may 

receive the control traffic if access control is required at the mobility management 

entity (MME) [7]. 

 

Figure 1 Multi-tier handover scenarios. 
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Several mobility management algorithms have been proposed in [13-17] to 

predict the target cell. The authors of [13] suggest an effective measurement 

scheme and network investigation for user equipment mobility from macrocell to 

femtocell (hand-in/handover scenario). The suggested scheme includes a 

macrocell arrangement procedure based on location to reduce the number of 

towers located outside the coverage area. When the UE route is estimated based 

on prior measurement outcomes, every femtocell that is near to the UE is added 

to the neighbor macrocell list.  

The second part of the proposed procedure is a femtocell-assisted handover 

decision to ensure that the UE handover is smooth. Nevertheless, in both parts of 

the procedure, both the macrocells and femtocells are essential to maintain the 

UE route or identify the uplink index, which is obtained from the UE, based on 

further network measurements of the macrocells and femtocells. In contrast, in 

[14] the researchers proposed a self-organizing architecture using a unique 

wireless scheme to reduce the candidate femtocell list in a dense femtocell 

scheme. Several handover decision structures based on machine-learning 

methods were used in [14] and [15] to choose the target cell in the vertical 

handover stage. The researchers in [15] suggest a novel scheme accompanied by 

resource allocation to discover the best station using its measurements 

(bandwidth and power) to boost the system throughput. The suggested structure 

is performed in a spectrum scenario for non-dense femtocell distributions. In 

terms of resource utilization, the outputs of the proposed algorithm showed an 

increase in system throughput.  

Furthermore, to decrease the number of needless handovers and the number of 

handover failures, the authors in [16] proposed ant colony optimization for the 

handover stage. The proposed scheme uses several input factors along with RSS, 

such as prediction of traveling distance, UE velocity, cost of service, and 

bandwidth. Furthermore, the proposed scheme is based on a database that always 

remains up-to-date by guaranteeing that the UE continuously examines the 

network’s status. Thus, after normalization and initialization of all input factors 

in each accessible station, the optimal station is chosen using the database. 

Nevertheless, the cost of updating the mobility database and the calculation time 

increase accordingly. Furthermore, the researchers in [17] proposed location 

predication and the mobility history in the handover decision stage to reduce the 

number of unnecessary handovers. The scheme calculates the required time for 

the UE to remain on a femtocell to eliminate interim femtocells users. The 

researchers used the previous procedure of UE mobility along with mobility 

structures established in advance to predict the connection period for the next 

femtocell.  
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A new cell selection technique is proposed to pick the nominated cell depending 

on the path of the UE by using a reinforcement learning algorithm. Suman’s 

algorithm [18] is used as the benchmark in terms of the control signaling rate and 

the packet loss ratio. We built our own module in the LTE-Sim simulator to test 

the network output results. The rest of this article is organized as follows. The Q-

learning structure is explained in Section 2. In Section 3 we discuss our suggested 

procedure. We evaluate our work in terms of control signaling rate and packet 

loss ratio in Section 4. The conclusion and future work are given in Section 5. 

2 Research Method 

We customized the selected reinforcement learning algorithm (Q-learning) to 

serve our technique in finding the best target cell among all neighboring cells, as 

follows: 

1. Environment: this includes the agent and other elements in the network. The 

environment covers all base stations in the neighboring cell list (NCL), which 

includes the femtocell HeNBs and macrocell eNBs. It is considered a finite-

state, stochastic and discrete-time network. 

In this environment we implement Bellman’s optimality [19] as a unique 

agent. Q(s,a) refers to the maximum value for the Q-function that shows the 

best activity (b) for each potential upcoming pair (υ,b). For every phase in the 

learning procedure with a learning rate α, the Q-value should be calculated 

with Algorithm 1: 

   Algorithm 1. One trail of Q-learning process 

s : existing state 

a : activity taken depending on the decision selection strategy 

R(s,a): reward as an output of activity (a) in state (s) 

𝑠𝑛 : upcoming state after executing an activity (a) 

Step 1: set the initial state (s) 

Step 2: select an activity (a) depending on decision selection strategy 

Step 3: a reward R(s,a) is obtained as a result 

Step 4: update 𝑄𝑡(𝑠, 𝑎) = (1 − 𝛼)𝑄𝑡−1(𝑠, 𝑎) + 𝛼(𝑅𝑡(𝑠, 𝑎) +

𝛾𝑚𝑎𝑥𝑏  𝑄𝑡−1(𝜈, 𝑏)) 

Step 5: 𝑠 ← 𝑠𝑛 

2. Agent: the activity creator, which includes the eNB user equipment (UEeNB) 

performing the handover procedure starting from its current station to the 

surrounding station that offers the best efficiency. 

3. State: the existing state of the environment, which includes the existing 

macrocell stations. S is a set of states denoted as S = {s = 1,2,…,NNCL+1}. (s 

= 1), representing the default state of the user equipment while it is connected 

to a macrocell. To expedite choosing the best station, we need to shortlist the 

surrounding stations; to do so we suggest a Q-learning scheme depending on 



60     Ammar Bathich, et al. 

the moving direction and distance procedure (D2Q procedure). In order to 

minimize the number of signaling messages with the surrounding stations 

during the handover decision stage we apply the user equipment’s direction 

procedure, which avoids contacting stations that do not move in the UE’s 

direction [20]. We take into consideration all stations that are in the cell radius 

coverage [21]. 
 

We benefit from GPS technology to determine the surrounding stations and 

UE locations during the handover procedure [19]. We set a threshold angle 

|∓θth°| that all candidate stations have to be within to get priority joining the 

candidate surrounding stations list (sometimes we call this the candidate cell 

list) [22]. Figure 2 shows a UE moving from location P1 toward location P2. 

We consider P3 as one of the surrounding stations. We assume that θ is the 

neighboring station angle with the UE. This angle ∠P2,P1,P3 can be calculated 

as follows: 

  𝜃𝑝2,𝑝1, 𝑝3
=

(𝑃3−𝑃1 ).(𝑃2−𝑃1 )

|𝑃3−𝑃1 ||𝑃2−𝑃1 |
     (1) 

       

where 𝑃1 , 𝑃2  and 𝑃3 are 𝑃1 (𝑥1 , 𝑦1 ), 𝑃2 (𝑥2 , 𝑦2 ) and 𝑃3 (𝑥3, 𝑦3 ) 
respectively [23].  

To guarantee that only nearby cells are included in the candidate surrounding 

stations list, we apply the distance between the candidate surrounding stations 

list and the UE in our algorithm, which have to be within the range of the 

neighbor cell radius [24]. We calculate the distance between the UE at 

position P2 and the station at position P3 with Eq. (2): 

 𝑑𝑝3,𝑝2 = √(𝑥3 − 𝑥2)2 + (𝑦3 − 𝑦2)2 (2) 

 

We assume that if (θ ≤ |∓θth°|) and (dp3,p2 ≤ neighbor cell radius dth), the 

surrounding station is a candidate cell. 28 meters was selected as the optimum 

femtocell distance threshold value, dth, and the maximum cosine function (θth) 

selected for this work was |∓25°| [25]. 

4. Activity: this is the agent’s choice in each state cycle. It recognizes the target 

cell: the UE may remain linked with the current eNB (activity 1) or select any 

of the other HeNBs listed in the NCL (activity 2,..., activity NNCL). Activity 

set A is determined as A = {a = 1, 2, ...,NNCL + 1}. 
 

5. Reward: this specifies the goodness or quality of action a in state s, 

considered as a utility function and denoted by R. In our framework, the 

reward is the earned capacity after connecting to the target cell (eNB or 
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HeNB). The objective is to maintain and maximize the capacity of UEeNB 

connecting to a new cell after the handover process (Capacity Q-learning 

based technique (CQ technique)). Thus, if UEeNB chooses macrocell eNB as 

the serving cell, the utility function R, which is the perceived reward 

(capacity) for the target cell, is expressed as 1. Else, if UEeNB chooses to 

connect to one of the femtocells (HeNBs) within its NCL, the utility function 

R is expressed as 2.  

6. Let 𝑃𝑒𝑁𝐵 be the power transmitted by macrocell eNB and ℎ𝑒𝑁𝐵,𝑘 the gain of 

the channel between macrocell eNB and its serving kth macrocell user UEeNB. 

Similarly, hi,j represents the gain of the channel between the ith  femtocell 

HeNB and the jth femtocell user UEHeNB. Lastly, Pi represents the transmit 

power of the ith femtocell HeNB. Additive white Gaussian noise (AWGN) is 

considered at macrocell user UEeNB with 𝜎2 power. The capacity of macrocell 

user UEeNB k’ from its serving macrocell eNB is calculated by Eq. (3): 

 

 𝐶𝑘 =
𝐵

𝑁 𝑈𝐸𝑒𝑁𝐵

(1 +
|ℎ𝑒𝑁𝐵,𝑘 |

2
𝑃𝑒𝑁𝐵

𝜎2+𝐼
)  (3) 

 

The number of surrounding stations is denoted as  𝑁𝐻𝑒𝑁𝐵. 𝐵 is the 

offered bandwidth from the stations. Interference among the 

surrounding stations can be calculated by 𝐼 =  ∑𝑁𝐻𝑒𝑁𝐵
𝑖=1 |ℎ𝑖,𝑘 |

2
𝑃𝑖 . We 

assume that all UEs have the same allocated bandwidth.  

 

 
 

Figure 2 User equipment moving direction and distance. 

3 Results and Analysis 

In this section, we present and discuss the performance of the proposed 

algorithms. In the LTE-Sim simulator, the user equipment is called ‘mobile user’ 
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(MU). The simulation used two macrocells (eNB), gradual numbers of femtocells 

(HeNB) configured as 30, 50, 70 and 90, a constant MU velocity (30 km/h) and 

gradual numbers of MU groups configured as 15, 30, 45 and 60. The control 

signaling rate and packet loss ratio were used to assess the performance of the 

proposed scheme for each femtocell density and each MU group in three different 

scenarios of femtocell distribution: close to the macrocell tower, in the middle 

area of the macrocell coverage, and at the edge  of the macrocell border, denoted 

as ‘Close’, ‘Middle’, and ‘Edge’ respectively. Furthermore, the handover 

decision algorithm proposed by Suman & Anita (2017) [18] was used as a 

reference point to our proposed algorithm; we refer to it as Suman’s algorithm. 

Suman’s handover decision stage was adapted by using a new algorithm, where 

the received signal strength (RSS) threshold value is increased in the hand-out 

scenario (the MU moves from a femtocell to a macrocell). In contrast, the RSS 

threshold is decreased in the hand-in scenario (the MU moves from a macrocell 

to a femtocell).  

The femtocell distribution scenarios were: Close, Middle and Edge, with different 

femtocell densities: 30, 50, 70 and 90 while the MU number was configured as 

30. Figure 3 shows that the control signaling rate of the proposed algorithm was 

not significantly affected by the femtocell density. The MU performs control 

signaling with the cells that are in front of and close to its position while ignoring 

the rest. Moreover, the variation in the control signaling rate, as shown in Figure 

3, is related to the femtocell position and MU direction regardless of the femtocell 

density. 

 

Figure 3 Comparison of control signaling rate of the proposed algorithm in 

three scenarios: Close, Middle and Edge. 
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By comparing the control signaling rates between the proposed algorithm and an 

existing work (Suman’s algorithm, 2017), when increasing the femtocell density 

from 30 to 90 cells in both MU groups (15 and 30), as shown in Figure 4, the 

proposed algorithm showed a sharp decrease in the control signaling rate. It is 

noticed that the control signaling rate in Suman’s handover scheme increased 

regularly when the femtocell number and MU number increased. Thus, Suman’s 

algorithm proved that the control signaling duration is fixed on the basis of the 

femtocell density. Moreover, Suman’s handover decision algorithm applied 

control signaling to all MU’s neighboring cells in each measured period by 

comparing the RSS of MU with its serving cell on the one hand and with MU’s 

neighboring cells on the other hand. However, our proposed scheme significantly 

reduced the control signaling rate compared to Suman’s algorithm for each MU 

group. This is due to the use of the Q-learning technique on the one hand and the 

use of the distance parameter between the femtocell location and the current 

position of the MU on the other hand. Therefore, the MU performs control 

signaling only with the femtocells that are in the candidate list in order to select 

the target femtocell, ignoring the other neighboring cells. In addition, the MU 

performs control signaling with the candidate femtocell list, which is already 

filtered at angle |25∓|, which is another reason for the reduction of the control 

signaling rate. 

 

Figure 4 Comparison of the control signalling rate numbers of the two 

handover algorithms. 
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Regarding the three scenarios of femtocell distribution (Close, Middle and Edge), 

the femtocells were distributed to groups of 30, 50, 70 and 90 MUs in each 

scenario and the number of MUs was configured as 30. Figures 5 and 6 show the 

simulation results of the proposed algorithm using both CBR and VoIP in terms 

of packet loss ratio. It can be seen from the two figures that the femtocell number 

increased the packet loss ratio in all distribution scenarios. Furthermore, both 

figures show that the lowest packet loss ratio occurred when the femtocell density 

was in the middle, while the highest occurred when the femtocell density was at 

the edge. This is because the MU starts moving away from the macrocell tower 

location and the femtocell density when concentrated close to the macrocell 

tower, which affects the packet loss ratio by increasing both the handover number 

and interference. 

Furthermore, when the femtocells were distributed at the edge, the packet loss 

increased because of the weakness of RSS between the MU and its serving 

macrocell while MU executes hand-out/handover and the femtocell density is 

smaller than their density when distributed in the middle. In addition, Figure 5 

and Figure 6 indicate that the packet loss ratio using CBR was higher than when 

using VoIP. This is because of the difference in packet size and the priority of 

real-time application. The packet size of CBR is 512 bytes with a rate of 8 

packets/second, while the VoIP packet size is 32 bytes per 20 ms time interval. 

By increasing the femtocell density from 30 to 90 cells for each MU group (15 

and 30) using the CBR application, both algorithms showed an increase in packet 

loss ratio, as can be seen in Figure 7. This increment of packet loss ratio was 

observed as long as the femtocell number was predictable due to frequent 

handovers between cells, especially among femtocells that cover a small area, 

and each handover process has a probability of radio link failure (RLF). The 

proposed algorithm increased the packet loss ratio from 0.00425 to 0.04952 

seconds when the femtocell number increased from 30 to 90 and in the case of 

using 15 MUs. Meanwhile, with Suman’s algorithm the packet loss ratio 

increased from 0.0475 to 0.21588 seconds with the same change in femtocell 

number and the same number of MUs. In addition, in the case of 30 MUs, the 

proposed algorithm increased the packet loss ratio from 0.00656 to 0.05504 

seconds, while the femtocell number increased from 30 to 90. With Suman’s 

algorithm the packet loss ratio increased from 0.08082 to 0.23619 seconds with 

the same change in femtocell number using the same application.       
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Figure 5 Comparison of packet loss ratio of the proposed algorithm in three 

scenarios using the CBR application. 

 

Figure 6 Comparison of packet loss ratio of the proposed algorithm in three 

scenarios using the VoIP application. 
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Figure 7 Comparison of packet loss ratio using the CBR application for two 

handover algorithms. 
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addition, the packet loss ratio increased from 0.02318 to 0.03707 seconds with 

the same change in femtocell number for Suman’s algorithm. However, the 

proposed algorithm reduced the packet loss ratio compared to Suman’s handover 

algorithm for each MU group and for each femtocell density using the VoIP 

application. Generally, the proposed algorithm combined with the VoIP 

application reduced the packet loss ratio by 86.44% compared to Suman’s 

handover algorithm in all scenarios. 

 

Figure 8 Comparison of packet loss ratio using the VoIP application for two 

handover algorithms. 
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4 Conclusion and Future Work 

The system performance obtained from the proposed scheme indicates a lower 

percentage of control signaling rate and packet loss ratio compared to the 

benchmarks used for this algorithm. The simulation results indicate that the 

suggested scheme based on the Q-learning methodology can help to improve the 

handover stage in LTE-A systems. 

Choosing appropriate factors to enhance the cell selection stage is still a hot 

research topic.  Consequently, we recommend further work to be designed and 

implemented in this field, including load balancing, hybrid femtocell schemes 

and UE velocity.  
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