6,246 research outputs found

    Unsupervised Learning of Individuals and Categories from Images

    Get PDF
    Motivated by the existence of highly selective, sparsely firing cells observed in the human medial temporal lobe (MTL), we present an unsupervised method for learning and recognizing object categories from unlabeled images. In our model, a network of nonlinear neurons learns a sparse representation of its inputs through an unsupervised expectation-maximization process. We show that the application of this strategy to an invariant feature-based description of natural images leads to the development of units displaying sparse, invariant selectivity for particular individuals or image categories much like those observed in the MTL data

    Unsupervised learning of visual taxonomies

    Get PDF
    As more images and categories become available, organizing them becomes crucial. We present a novel statistical method for organizing a collection of images into a treeshaped hierarchy. The method employs a non-parametric Bayesian model and is completely unsupervised. Each image is associated with a path through a tree. Similar images share initial segments of their paths and therefore have a smaller distance from each other. Each internal node in the hierarchy represents information that is common to images whose paths pass through that node, thus providing a compact image representation. Our experiments show that a disorganized collection of images will be organized into an intuitive taxonomy. Furthermore, we find that the taxonomy allows good image categorization and, in this respect, is superior to the popular LDA model

    Unsupervised learning of clutter-resistant visual representations from natural videos

    Get PDF
    Populations of neurons in inferotemporal cortex (IT) maintain an explicit code for object identity that also tolerates transformations of object appearance e.g., position, scale, viewing angle [1, 2, 3]. Though the learning rules are not known, recent results [4, 5, 6] suggest the operation of an unsupervised temporal-association-based method e.g., Foldiak's trace rule [7]. Such methods exploit the temporal continuity of the visual world by assuming that visual experience over short timescales will tend to have invariant identity content. Thus, by associating representations of frames from nearby times, a representation that tolerates whatever transformations occurred in the video may be achieved. Many previous studies verified that such rules can work in simple situations without background clutter, but the presence of visual clutter has remained problematic for this approach. Here we show that temporal association based on large class-specific filters (templates) avoids the problem of clutter. Our system learns in an unsupervised way from natural videos gathered from the internet, and is able to perform a difficult unconstrained face recognition task on natural images: Labeled Faces in the Wild [8]
    corecore