77 research outputs found

    Olving tri-level linear programming problem by a novel hybrid algorithm

    Get PDF
    This paper presents a revised hybrid algorithm to solve a tri-level linear programming problem, a generalization of a bi-level one, involving three decision makers at the upper, middle, and lower levels. The decision-making priority is from top to bottom and the decision of each decision maker affects the decision space of others. A hybrid algorithm has been already proposed to solve this problem, but it does not ensure to converge whereas the proposed novel revised algorithm lacks this drawback and ensures convergence.Publisher's Versio

    Public evaluation of large projects : variational inequialities, bilevel programming and complementarity. A survey

    Get PDF
    Large projects evaluation rises well known difficulties because -by definition- they modify the current price system; their public evaluation presents additional difficulties because they modify too existing shadow prices without the project. This paper analyzes -first- the basic methodologies applied until late 80s., based on the integration of projects in optimization models or, alternatively, based on iterative procedures with information exchange between two organizational levels. New methodologies applied afterwards are based on variational inequalities, bilevel programming and linear or nonlinear complementarity. Their foundations and different applications related with project evaluation are explored. As a matter of fact, these new tools are closely related among them and can treat more complex cases involving -for example- the reaction of agents to policies or the existence of multiple agents in an environment characterized by common functions representing demands or constraints on polluting emissions

    Tolling, Capacity Selection and Equilibrium Problems with Equilibrium Constraints

    Get PDF
    An Equilibrium problem with an equilibrium constraint is a mathematical construct that can be applied to private competition in highway networks. In this paper we consider the problem of finding a Nash Equilibrium regarding competition in toll pricing on a network utilising 2 alternative algorithms. In the first algorithm, we utilise a Gauss Siedel fixed point approach based on the cutting constraint algorithm for toll pricing. In the second algorithm, we extend an existing sequential linear complementarity approach for finding Nash equilibrium subject to Wardrop Equilibrium constraints. Finally we consider how the equilibrium may change between the Nash competitive equilibrium and a collusive equilibrium where the two players co-operate to form the equivalent of a monopoly operation

    DECENTRALIZED ALGORITHMS FOR NASH EQUILIBRIUM PROBLEMS – APPLICATIONS TO MULTI-AGENT NETWORK INTERDICTION GAMES AND BEYOND

    Get PDF
    Nash equilibrium problems (NEPs) have gained popularity in recent years in the engineering community due to their ready applicability to a wide variety of practical problems ranging from communication network design to power market analysis. There are strong links between the tools used to analyze NEPs and the classical techniques of nonlinear and combinatorial optimization. However, there remain significant challenges in both the theoretical and algorithmic analysis of NEPs. This dissertation studies certain special classes of NEPs, with the overall purpose of analyzing theoretical properties such as existence and uniqueness, while at the same time proposing decentralized algorithms that provably converge to solutions. The subclasses are motivated by relevant application examples
    corecore