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ABSTRACT

Sreekumaran, Harikrishnan PhD, Purdue University, December 2015. Decentralized
Algorithms for Nash Equilibrium Problems – Applications to Multi-Agent Network
Interdiction Games and Beyond. Major Professor: Andrew L. Liu.

Nash equilibrium problems (NEPs) have gained popularity in recent years in the

engineering community due to their ready applicability to a wide variety of practi-

cal problems ranging from communication network design to power market analysis.

There are strong links between the tools used to analyze NEPs and the classical

techniques of nonlinear and combinatorial optimization. However, there remain sig-

nificant challenges in both the theoretical and algorithmic analysis of NEPs. This

dissertation studies certain special classes of NEPs, with the overall purpose of an-

alyzing theoretical properties such as existence and uniqueness, while at the same

time proposing decentralized algorithms that provably converge to solutions. The

subclasses are motivated by relevant application examples.

One of the driving factors in our research is the need to design provably convergent

decentralized methods to solve NEPs. While theoretical results about the convergence

of such schemes for general games are unavailable, the methods are vastly popular

amongst practitioners. Aside from the advantage of being relatively intuitive and easy

to implement, decentralized methods also provide the means to analyze the process

by which real agents interact strategically. From a computational perspective, these

methods are also eminently suited towards distributed computing as well as parallel

high performance architectures. Both these properties make them eminently suitable

for solving large scale problems on modern computing platforms.

We start our exposition by introducing decentralized network interdiction games,

which model the interactions among multiple interdictors with differing objectives op-
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erating on a common network. These games can be seen as instances of GNEPs with

non-shared constraints. We initially focus on decentralized shortest path network in-

terdiction games (DSPI), and analyze the existence of equilibria for such games under

both discrete and continuous interdiction strategies. We show that under continuous

interdiction actions the game can be reformulated as a linear complementarity prob-

lem and solved by Lemke’s algorithm. In addition, we present decentralized heuristic

algorithms based on best response dynamics for games under both continuous and

discrete interdiction strategies. Finally, we establish theoretical bounds on the worst-

case efficiency loss of equilibria in these games, and use our decentralized algorithms

to empirically study the average-case efficiency loss. We also formulate decentralized

maximum flow interdiction (DMFI) as well as decentralized minimum cost flow in-

terdiction (DMCFI) games. Unlike DSPI games, analysis is much more challenging

for DMFI and DMCFI problems.

In the second half of the dissertation, we analyze computation of equilibria to

Nash equilibrium problems under exogenous uncertainty. We restrict our attention

to the class of potential games that has garnered great interest due to the large

variety of practical problems, such as network games and Nash Cournot equilibria,

that fall into the framework. We study the problem of computing the solutions

to potential games where each player’s objective function is assumed to depend on

some exogenous uncertainty. Under the assumption that the players are risk-neutral

expected-cost minimizers, we analyze the convergence of decentralized algorithms to

equilibria. The primary tools we use to show convergence are that of the recently

introduced multi-epiconvergence concept, as well as some recent results in decompo-

sition schemes for player-wise convex global optimization problems. We show that

under some reasonable assumptions, suitable approximation schemes combined with

parallel or sequential best response type mechanisms produce consistent estimates

of the Nash equilibria to potential games under uncertainty. We illustrate our algo-

rithms by presenting numerical results on two practical application examples - power

market equilibria under uncertainty and stochastic network traffic routing games.
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1. INTRODUCTION

1.1 Background and motivation

Classically, optimization theory deals with decision making problems wherein an

agent attempts to achieve certain goals while attempting to satisfy constraints on

his/her decisions. Competition, i.e. interactions between multiple noncooperative

agents each with their own optimization problems, is a natural extension of the typical

optimization framework. The research presented in this dissertation is motivated by

the need for efficient, decentralized algorithms for the computation of solutions to

competition problems, especially in the context of network models.

Formally a Nash equilibrium problem (NEP) is characterized by a set of players,

their objective functions and the set of feasible strategies allowed to each player.

Let there be F players each controlling their own variables xf ∈ Rnf . We denote

the combined decision vectors of all players by x = (x1, x2, . . . , xF )T ∈ Rn, where

n =
F∑
f=1

nf . The set of players is denoted by F = {1, . . . , F}. With some slight abuse

of notation, we often denote x = (xf , x−f ) to stress the fact that x is a combination

of an individual player’s decision vector combined with the decisions of the other

players.

Each player f has an objective function θf : Rn → R that depends on both her

own variables xf and the other players’ variables x−f . Furthermore, the decisions of

each player must fall into feasible sets Xf ⊆ Rnf . Note that if Xf (·) is a set-valued

mapping that is in fact parametrized by x−f , then we obtain a so-called generalized

Nash game, also known as a generalized Nash equilibrium problem (GNEP).
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Given the other players’ decisions x−f each player f solves the following problem.

minimize
xf

θf (xf , x−f )

subject to xf ∈ Xf .
(1.1)

The field of non-cooperative game theory primarily deals with the resolution of

NEPs, such as those defined by (1.1). At the core of this research is the solution

concept for such problems proposed by Nobel laureate John Nash [78, 79]. Nash

equilibria to the NEP defined by (1.1) are formally defined below.

Definition 1.1.1 xN is a Nash equilibrium (NE) to the NEP defined by (1.1) if

xNf ∈ Xf , and

θf (xNf , x
N
−f ) ≤ θf (yf , x

N
−f ), ∀ yf ∈ Xf .

(1.2)

holds for each f ∈ {1, . . . , F}.

The first condition in (1.2) ensures that the individual player variables are feasible to

their respective problems, while the second condition ensures that the local decisions

are optimal to each player’s problem.

There has been a strong tie between the fields of mathematical programming and

game theory, particularly the computation of Nash equilibria, since the development

of linear programming techniques in the 50s. However, this link between optimization

theory and equilibrium problems has become increasingly significant in recent years.

This rise in interest in equilibrium problems from the operations research community

is primarily motivated by the myriad applications that naturally admit equilibrium

models. These include deregulated electricity markets [46, 56, 57, 116], telecommuni-

cation networks [2, 19, 98, 118], network design [3, 31, 83], traffic routing [39, 48, 92]

amongst others.

Traditionally, optimization theorists have focussed on developing tractable refor-

mulations for NEPs in the form of variational inequalities [77], optimization refor-

mulations [82,110,111] etc. However, a significant portion of game theory literature,

especially by economists, has focussed on decentralized algorithms for computing
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Nash equilibria [44, 89]. Instead of focusing on computing equilibria via a central-

ized reformulation, these methods are based on simple iterative processes wherein

each player iteratively updates their decisions by applying some local optimization

rule. These decentralized methods for computing equilibria are becoming increasingly

important in the context of the availability of high performance parallel computing

platforms. However theoretical convergence results for decentralized methods are dif-

ficult to obtain, with the notable exception of certain special classes of games such as

potential games [75,88] and supermodular games [73,107].

The main motivation for our research comes from a set of application problems,

such as network interdiction, traffic routing, network design and power market equi-

librium, that can be modelled using the NEP framework. In practical settings, these

problems usually involve large underlying networks with thousands of nodes and

edges. There could also realistically be scenarios involving a large number of hetero-

geneous players, each with their own objectives. Another important characteristic

of such problems is that many problem parameters, such as customer demand, cost

functions etc often cannot be estimated with sufficient accuracy. In this context, some

form of uncertainty modeling must be incorporated into the framework, and suitable

solution methodologies and approximation schemes must be designed.

Our work examines several aspects of these issues. One of the motivating problem

classes for our research involves equilibrium problems arising from network security.

We refer to the broad class of games as network interdiction problems, i.e. prob-

lems on which multiple players act against adversaries operating on a network. All

the problems in this class involve bilevel optimization problems for each individual

player. This usually results in non-differentiability of player objectives, which presents

significant challenges for theoretical analysis and computation.

Another issue we address is that of approximating equilibria in games under uncer-

tainty. Specifically, we analyze the problem of designing provably convergent approx-

imation schemes, which can be combined with decentralized algorithms, to compute

equilibria to games involving certain special uncertainty structures.
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Before presenting our contributions in more detail, we first review related literature

in each of these problem classes and outline the gaps and open questions.

1.2 Related literature

1.2.1 Multiagent Network Interdiction Games

Interdiction models involve adversarial situations in which an agent attempts to

limit the actions of an adversary operating on a network. Such problems are usually

modeled in the Stackelberg framework of leader-follower games and can be formulated

as bi-level optimization problems. These models have been used in various military

and homeland security applications such as breaking up drug traffic networks, pre-

vention of nuclear smuggling and planning tactical air strikes. Interdiction models

have also found use in non-military applications such as controlling the spread of

pandemics and defending attacks on computer communication networks.

Network interdiction was first studied in a military setting for interdicting supply

lines during the cold war [42, 43, 53]. Since then, the formulation has been applied

to such varied real world settings as the spread of pandemics [6], controlling drug

traffic networks [104,114], protecting power infrastructure systems [94,95], protecting

communications networks [5,74,102], targeting air strikes [49,72,113], and preventing

nuclear smuggling [114].

Traditionally interdiction problems have been analyzed from a centralized perspec-

tive. In other words, a single agent is assumed to analyze, compute and implement

the strategies for interdiction. However in many situations it might be desirable and

even necessary to have a decentralized perspective on the interdiction problem. For

instance, such situations might arise when the computational resources utilized for

solving the problem are distributed across the network. There are also problems

in which a supervising body in control of a common network might assign various

adversaries on the network to individual agents. In such situations, the study of

the equilibrium solutions arising out of selfish, uncoordinated interdictors operating
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on a common network against individual adversaries becomes warranted. The idea

of decentralization also has links with learning concepts from game theory such as

best/better response mechanisms.

To the best of our knowledge, there has been no previous research on decentralized

network interdiction games. As a result, not much is known about the inefficiency

of equilibria for these games or intervention strategies to reduce such inefficiencies.

There has been a considerable amount of work, however, on interdiction problems

from a centralized decision-maker’s perspective. As mentioned earlier, interdiction

problems have been studied in the context of various military and security appli-

cations. For extensive reviews of the existing academic literature on interdiction

problems, we refer the readers to Church et al. [20] and Smith and Lim [102].

One potential reason for the lack of attention paid to decentralized network inter-

diction games may be that such games often involve nondifferentiable objective func-

tions, as each interdictor’s optimization problem usually entails a max-min type of

objective functions. Games involving nondifferentiable functions are generally chal-

lenging, in terms of both theoretical analysis of their equilibria and computing an

equilibrium. While in some cases (such as in the case of shortest path interdiction),

a smooth formulation (through total unimodularity and duality) is possible, such a

reformulation will lead the resulting network game to the class of GNEPs, in which

both the agents’ objective functions as well as their feasible action spaces depend on

other agents’ actions. Although the conceptual framework of GNEPs can be dated

to Debreu [26], rigorous theoretical and algorithmic treatments of GNEPs only began

in recent years [33]. Several techniques have been proposed to solve GNEPs, includ-

ing penalty-based approaches [34, 45], variational-inequality-based approaches [77],

Newton’s method [30], projection methods [120], and relaxation approaches [70,108].

Most of the work on GNEPs has focused on games with shared constraints due to

their tractability [32,52]. In such games, a set of identical constraints appear in each

agent’s feasible action set. However, as will be seen later, in a typical decentralized

network interdiction game, the constraints involving multiple agents’ actions that ap-
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pear in each agent’s action space are not identical. As a result, such games give rise

to more challenging instances of GNEPs.

Given the concept of selfish behavior amongst strategically interacting players, it

is important to quantify the inefficiency of such behavior relative to perfect socially

optimal centralized solutions. There have been many studies on the inefficiency of

equilibria in other game-theoretic settings. Most of the efforts have been focused

on routing games [10, 84, 112], in which selfish agents route traffic through a con-

gested network, and congestion games [88], a generalization of routing games. Some

examples include [8, 17, 18, 21, 24, 41, 91, 93, 105]. Several researchers have also stud-

ied the inefficiency of equilibria in network formation games, in which agents form

a network subject to potentially conflicting connectivity goals [1, 3, 4, 27, 31]. The

inefficiency of equilibria has been studied in other games as well, such as facility

location games [109], scheduling games [69], and resource allocation games [63, 64].

Almost all of the work described above study the worst-case inefficiency of a given

equilibrium concept. Although a few researchers have studied the average inefficiency

of equilibria, either theoretically or empirically, and have used it as a basis to design

interventions to reduce the inefficiency of equilibria [23, 106], research in this direc-

tion has not received much attention. One of the main motivations of our work is to

utilize decentralized algorithms to efficiently quantify the average-case inefficiencies

associated with equilibria, in realistic instances of network interdiction games.

1.2.2 Approximating equilibria under exogenous uncertainty

The main motivation for our work on games under exogenous uncertainty is the

growing relevance of equilibrium models in the context of a large variety of engineering

and economic problems. Much of the early work on Nash’s equilibrium model focussed

on the economic theory of how rational firms acted in various markets. In recent times,

due to the deregulation of infrastructure markets such as electricity [55, 116, 119],

gas [51] etc., the NEP model has taken on growing relevance as an analytical tool for
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studying the behavior of market participants. Most realistic applications involving

the NEP model involve various problem parameters, such as customer demand or

manufacturing costs, that can only be estimated using some probability distribution.

Typically, algorithms to solve stochastic NEPs involve using a suitable reformu-

lation, such as variational inequality reformulations [37], complementarity reformu-

lations, Nikaido-Isoda function based optimization reformulations [111] etc. Closely

related to our work is the topic of solving stochastic variational inequalities (SVIs).

The exponential convergence of SAA methods for SVI problems has been shown

in [115]. There has also been a growing interest in designing Stochastic Approx-

imation (SA) schemes for SVI problems. Such schemes, where function values and

derivatives are approximated via simulation, have been shown to converge under mild

conditions [51, 62]. However, most of the solution methodologies proposed for games

under uncertainty that use VI or optimization reformulations fall under the central-

ized algorithm framework. Very little work has been done on the idea of developing

distributed computational schemes that may be combined with suitable approxima-

tion methods that can compute solutions of stochastic NEPs. In this context, the

closest work to ours is an investigation of extensions of SA type methods for SVIs,

including some distributed methods, have been investigated in [117]. However, in

contrast to our approach, even distributed methods for solving SVIs usually require

some degree of coordination between the players in choosing step-lengths or other

algorithmic parameters.

1.3 Contributions

1.3.1 Network interdiction games

One of the major contributions of our work is the formulation of decentralized

network interdiction games in which we model multiple agents operating on a common

network interdicting individual adversaries. To the best of our knowledge, this work
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represents the first attempt to analyze network interdiction from the perspective of

strategic interactions between multiple interdictors.

Specifically, we propose to study three classes of decentralized network interdiction

games.

• Decentralized Shortest Path interdiction (DSPI) game - In this game each

player f is assumed to be protecting a node tf from an adversary at node sf

by increasing the distance between the two nodes as much as possible. The

adversaries solve a shortest path problem between the respective nodes. Each

leader must then maximize the shortest path corresponding to their adversaries.

The feasible interdiction strategies for each player and interdiction costs per arc

for each player may also depend on the strategies of other players involved.

• Decentralized Maximim Flow interdiction (DMFI) game - In this game each

player attempts to minimize the maximum flow of some undesirable substance

that its adversary is trying to push across the network from a source node sf to

a sink node tf . The players utilize some constrained resource in order to reduce

the capacities on the arcs of the network.

• Decentralized Minimum Cost Flow interdiction (DMCFI) game - This

game is a generalization of the previous two games. Each player attempts to

interdict an adversary that wishes to organize the flows on a network such that

the demands at each node are satisfied while trying to minimize the cost. The

players utilize some constrained resource to increase the cost of flow for the

adversaries on each arc. The objective of the interdictors is to maximize the

minimum cost of flow across the network.

The major contributions of our work on interdiction games are as follows. First,

we establish the existence of equilibria for DSPI games with continuous interdiction.

In DSPI games with discrete interdiction, the existence of a pure strategy Nash equi-

librium (PNE) is more subtle. We first demonstrate that a PNE does not necessarily
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exist in general discrete DSPI games. However, when all agents have the same source-

target pairs (i.e., multiple agents try to achieve a common goal independently), a PNE

exists in discrete DSPI games.

Second, for DSPI games under continuous interdiction, we show that each agent’s

optimization problem can be reformulated as a linear programming problem. As

a result, the equilibrium conditions of the game can be reformulated as a linear

complementarity problem with some favorable properties, allowing it to be solved by

the well-known Lemke algorithm. For discrete DSPI games (and for continuous games

as well), we present decentralized algorithms for finding an equilibrium, based on the

well-known best-response dynamics (or Gauss-Seidel iterative) approach. While such

an approach is only a heuristic method in general, convergence can be established for

the special case when the agents have common source-target pairs. For more general

cases, we obtain encouraging empirical results for the performance of the method on

several classes of network structures.

Third, in measuring the efficiency loss of DSPI games due to the lack of coordi-

nation among noncooperative interdictors, as compared to a centralized interdiction

strategy (that is, a strategy implemented by a single interdictor with respect to all

the adversaries), we establish a theoretical lower bound for the worst-case price of an-

archy of DSPI games under continuous interdiction. Such an efficiency loss measure,

however, may be too conservative, and we therefore use the decentralized algorithms

to empirically quantify the average-case efficiency loss over some instances of DSPI

games. These results can help central authorities design mechanisms to reduce such

efficiency losses for practical instances.

We also present formulations for decentralized max-flow interdiction and min-

cost flow interdiction games, both under continuous and discrete interdiction. While

these problems share several characteristics with DSPI games, we summarize why

they present significantly more challenging instances of GNEPs.
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1.3.2 Potential Games Under Exogenous Uncertainty

Although the initial focus of our research is on the properties of equilibria in deter-

ministic network interdiction games under complete information, the second half of

this dissertation deals with the topic of exogenous uncertainty in more general games.

Specifically, we consider games where each agent’s objective function is subject to

some common underlying uncertainty factor. The exogeneity assumption essentially

means that information about the uncertainty, such as the probability distribution of

the random variables involved, is common knowledge to all the players.

Formally, we analyze decentralized approximation algorithms for computing solu-

tions to Nash equilibrium problems (NEPs) under exogenous uncertainty. We con-

sider games involving a set of F players, wherein each player f controls some decision

variables xf and solves the following optimization problem:

minimize
xf

φf (x) = E [θf (xf , x−f ; ξ)]

subject to xf ∈ Xf .
(1.3)

The convergence of decentralized algorithms to equilibria is difficult to prove for

the general class of games under uncertainty. However by restricting our attention

to games where the underlying deterministic version possesses an exact potential

function, we are able to provide meaningful theoretical results. Since potential games

arise from a wide variety of applications from network design games to Nash-Cournot

market equilibrium problems, our research is well motivated. We consider risk-neutral

players solving expected value optimization problems, where each agent’s objective

function depends on the other players’ decisions as well as common random variables.

Our research is motivated by the need to analyze decentralized approximation

schemes for potential games under exogenous uncertainty. Specifically, we present

sample average approximation type schemes, where the expectation terms in each

agent’s objective function is resolved using an i.i.d sampling of the underlying random

variable. We first show that under suitable conditions, solutions to appropriate SAA

equilibrium problems converge asymptotically to the solutions of the true stochastic
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equilibrium problem. We then combine this SAA scheme with decentralized solution

methods, such as Gauss Jacobi type parallel best-response or Gauss Seidel type se-

quential best-response. Under some fairly mild assumptions, we are able to prove that

decentralized approximation schemes provide consistent estimates of the equilibria to

the true problem, i.e. that they converge in probability to the true solution as the

sampling size for the approximations increase.

The main motivating applications for our research on games under exogenous un-

certainty come from electricity markets and communication systems. For the former,

we analyze the strategic interactions between power generators competing in a power

market. The generating firms are assumed to bid supply quantities to an independent

system operator (ISO) who then dispatches power to meet the demand at each node

of the network. In general, the generating firms often anticipate the effect of the ISO’s

problem while deciding their supply bids. However, this results in an “endogenous”

model where each generation firm solves a bilevel optimization problem, resulting in

an equilibrium problem with equilibrium constraints (EPEC) model for the market.

Due to the intractability of EPECs, we focus instead on an “exogenous” model where

the generating firms and the ISO interact in a static game. In other words, the firms

and the ISO are assumed to act simultaneously, rather than sequentially. We show

that this results in a potential game formulation for the market equilibrium. Our

decentralized approximation methods are applied to this model, under uncertainty in

the inverse demand functions. We prove that the conditions required for provable con-

vergence of these methods are satisfied for realistic instances of the model. Further,

we present some numerical results on small instances of the problem. An interesting

observation from our numerical experiments is that schemes where different samples

are used by different players result in convergence similar to the case with uniform

sampling.

The second application we consider is that of atomic network traffic routing games,

which arise in telecommunication applications. These games arise naturally in the

context of network flow problems where agents wish to route flow between nodes on



12

a common congested network. The latencies on the arcs on the network depend on

the total amount of flow on the arc, and thus on the routing decisions of all the

players. Quite often, the latencies are subject to uncertainty in the form of weather

or other such external factors. As such, it can be shown that routing games under

uncertainty in latencies, fall naturally into the framework of potential games under

exogenous uncertainty. We show that these models satisfy conditions required for the

convergence of decentralized approximation schemes and present numerical results on

a variety of network topologies. In particular we present some preliminary results on

the scaling properties of our regularized parallel best response based approximation

algorithm.

The approximation scheme we present requires that the solutions computed to the

SAA version of the stochastic NEP are exact. But most numerical procedures require

finite termination criteria. We present a preliminary analysis of the convergence of

approximate solutions to the SAA problem as well as inexact solves at each iteration.

In our theoretical results, we assume that all the players use the same samples of

the underlying random vector. However it is reasonable that different players might

utilize their own samples drawn from the same underlying distribution in order to

compute equilibria. While we do not have theoretical convergence results for such

sampling schemes, we present a simple example in which decentralized algorithms

when combined with disparate sampling exhibits good empirical performance.

1.4 Summary

The remainder of this dissertation is organized as follows. Chapter 2 summarizes

some background theory for NEPs that is required for the analysis presented in the

remainder of the dissertation. A brief survey of decentralized algorithms is given,

along with pseudocodes for parallel and sequential best response algorithms that are

the focus of much of our work. Some popular centralized reformulations for NEPs

are also summarized.
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Chapter 3 provides detailed formulations of the three classes of DNI games and

offers some theoretical results regarding the properties of such games. Focus is pri-

marily on the shortest path interdiction game, for which we give detailed analysis on

the theoretical properties such as existence and uniqueness of equilibria. Reformu-

lation of the continuous version of the problem as an LCP is presented, and a proof

of the applicability of Lemke’s algorithm is given. We also present details of heuris-

tic decentralized algorithms, that can be shown to converge to equilibria in DSPI

games with common adversaries, while having good empirical performance even for

the general case. Formulations for DMFI and DMFCI games are also presented and

the challenges involved in their analysis are summarized.

In Chapter 4, we introduce player-wise convex potential games under exogenous

uncertainty and state various properties of such games that we use in our analysis.

The SAA approximation scheme for these games is outlined and convergence of reg-

ularized best-response schemes as sampling size increases is proven using the tool of

multi-epiconvergence.

Chapter 5 discusses two important practical applications of the NEP under un-

certainty model presented in Chapter 4. Details of the power market equilibrium

problem between generation firms and independent system operators are given. The

model for selfish atomic network routing is also given. Numerical results are presented

both from problems in literature as well as example networks that we generate.

Chapter 6 outlines some ongoing work on extensions of the decentralized ap-

proximation scheme presented in Chapter 4. The issue of approximate solutions of

subproblems, and convergence of this modified procedure to approximate equilibria

is addressed. The question of whether disparate sampling schemes, where each player

uses distinct samples of the common random vector is examined. Finally, possible

extensions of the multi-epiconvergence concept to the GNEP domain is presented.

Chapter 6 summarizes the dissertation and provides some concluding remarks on

possible future research directions.
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2. BACKGROUND THEORY

In this chapter, we review and summarize some key theoretical results that we use in

our study of Nash equilibrium problems. We give the formal definition of an NEP, as

well as its generalization to the case involving constraint interactions. A brief review

of decentralized algorithms for NEPs is presented. We also identify a key subclass of

NEPs, known as potential games, that we later use in our analysis. We conclude the

chapter by briefly reviewing some centralized methods to solve NEPs.

2.1 Problem definition

In this section, we give some definitions, assumptions and classifications for NEPs

which we use in the later sections for various reformulations. Recall the NEP defined

in section 1.1, where each player solves problem (1.1). To standardize our notation,

we will henceforth refer to this problem as NEP(θf , Xf )
F
f=1.

Typically the constraint sets for each player, i.e Xf , are specified using parametric

constraints. The general form for such sets is given by -

Xf = {xf ∈ Rnf : gf (xf ) ≤ 0}. (2.1)

Note that the constraints for each player are given by the vector valued functions

gf : Rnf → Rmf . We denote by X the cartesian product of the feasible sets for each

player. Formally,

X =
F∏
f=1

Xf . (2.2)

Unless otherwise stated, we make the following blanket assumption throughout

the remainder of this report.
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Assumption 1 The players’ objective functions θf (xf , x−f ) and the constraint func-

tions gf (xf ) are continuous, and convex with respect to the player’s own variables

xf .

2.2 Decentralized algorithms for NEPs

The primary focus of this thesis is on developing decentralized algorithms for

solving NEPs. As such, we introduce several classes of such algorithms. Since the

fundamental principle behind the Nash equilibrium concept is that a solution point

is a fixed point for the so called “best-response” mapping, perhaps the most natural

decentralized method to solve NEPs is the best-response based approach.

2.2.1 Best Response Algorithms

Best-response algorithms are methods where each player updates their decisions

solely based on their payoffs and constraints, given the current state of the game as

represented by the other players’ decisions. Typically best-response algorithms are

classified based on whether the player updates happen sequentially or in parallel.

Sequential best-response algorithms are similar to non-linear Gauss-Seidel type

algorithms. The broad scheme is given in Algorithm 1.

Algorithm 1 Sequential best-response (Gauss-Seidel)

Step 0: Initialize - Set x0 ← (x0
f )
F
f=1, k ← 0.

Step 1: Termination Check: IF xk satisfies termination criteria, THEN STOP

Step 2: Main Iteration:

FOR f = 1, . . . , F , let xk+1
f solve

minimize
xf

θf (x
k+1
1 , . . . , xk+1

f−1, xf , x
k
f+1, . . . , x

k
F )

subject to xf ∈ Xf .
(2.3)

Step 3: Update: xk+1 = (xk+1
f )Ff=1.
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In the initialization step, it is assumed that x0 is jointly feasible. Typically the

termination condition checks for closeness between successive iterates, either in the

payoff space or the decision space.

In contrast to the sequential best-response algorithm (Algorithm 1), Gauss Jacobi

type methods update player decisions in parallel. In other words, at the kth iteration

of the algorithm, all the players update their decisions simultaneously taking as given

the decisions of the other players from the previous iteration, i.e. xk−1
−f . This Gauss-

Jacobi type scheme is given below in Algorithm 2.

Algorithm 2 Parallel best-response (Gauss-Jacobi)

Step 0: Initialize - Set x0 ← (x0
f )
F
f=1, k ← 0.

Step 1: Termination Check: IF xk satisfies termination criteria, THEN STOP

Step 2: Main Iteration:

FOR f = 1, . . . , F , let xk+1
f solve

minimize
xf

θf (xf , x
k
−f )

subject to xf ∈ Xf .
(2.4)

Step 3: Update: xk+1 = (xk+1
f )Ff=1.

Best-response algorithms in either of the two forms given above provide natural

and intuitive methods to approach the NEP. However, in general these methods can-

not be guaranteed to converge to equilibria [38]. Provable convergence of the methods

is only available if we restrict our attention to special classes of games. In the fol-

lowing discussion, we present one such class of games, namely potential games, that

plays an important role in our research.

2.2.2 Potential games

Potential games were first introduced by Rosenthal [88], in the context of con-

gestion games wherein he showed the existence of pure strategy equilibria utilizing
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the potential function approach. The essential characteristic of a potential game, is

the existence of a function that captures on a global level, any unilateral deviation

in an individual player’s cost function. In this paper, we focus on a sub-class of po-

tential games that possess exact potential functions, in which unilateral deviations in

a given player’s cost function is reflected by an equal change in the potential func-

tion. In their seminal paper on potential games, Monderer and Shapley [75] formalize

the concept and give various classifications. They also prove some important results

about potential games characterizing the equilibria to such games using best response

dynamics.

The formal definition of potential functions in the context of NEPs is given below.

Definition 2.2.1 A continuous function P : Rn → R is said to be an ordinal poten-

tial function to the NEP(θf , Xf )
F
f=1 if for each x ∈ X we have

θf (xf , x−f ) < θf (yf , x−f ) iff P (xf , x−f ) < P (yf , x−f ), ∀yf ∈ Xf , (2.5)

for each player f ∈ F .

Definition 2.2.2 A continuous function P : Rn → R is said to be a weighted poten-

tial function to the NEP(θf , Xf )
F
f=1 if for each x ∈ X we have

θf (xf , x−f )− θf (yf , x−f ) = wf ( P (xf , x−f )− P (yf , x−f )), ∀yf ∈ Xf , (2.6)

for each player f ∈ F for some vector of positive weights w = (w1, . . . , wF ).

If the NEP admits a weighted potential function where the weights are all unity,

then it is said to admit an exact potential function. If the NEP is such that the

objective functions of the individual player problems do not involve other players’

variables, i.e. θf (x) = θf (xf ), then the sum of the objective functions provides an

exact potential function.

Another extension of the potential function concept is given below.

Definition 2.2.3 A continuous function P : Rn → R is said to be an generalized

ordinal potential function for NEP(θf , Xf )
F
f=1 if for each x ∈ X we have

θf (xf , x−f ) < θf (yf , x−f ) =⇒ P (xf , x−f ) < P (yf , x−f ), ∀yf ∈ Xf
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for each player f ∈ F .

Generalized ordinal potential games are, in some sense, the broadest class of po-

tential games. Clearly ordinal potential games are a subclass of generalized ordinal

potential games, because we impose the reverse implication in (2.5). Moreover, since

the weights wf are strictly positive for a weighted potential game, (2.6) implies (2.5).

Therefore, weighted potential games form a subclass of ordinal potential games.

For NEPs with potential functions, there is an immediate characterization of equi-

libria as global minimizers of the potential function over the Cartesian product of the

feasible sets Xf .

Theorem 2.2.1 [75] Suppose NEP(θf , Xf )
F
f=1 admits an ordinal potential function

P . xN is an equilibrium solution if it solves the following optimization problem.

min
x∈X

P (x).

Proof Suppose xN ∈ argmin
x∈X

P (x). Then xNf ∈ Xf by the definition of Ω(x).

Furthermore,

Pf (x
N
f , x

N
−f )− Pf (yf , xN−f ) ≤ 0 ∀ yf ∈ Xf .

=⇒ θf (x
N
f , x

N
−f )− θf (yf , xN−f ) ≤ 0 ∀ yf ∈ Xf .

where the first equation follows from the minimality of xNf .

Note that the converse relationship does not hold true. Not every solution to the

NEP is also a global solution to the potential-optimization problem. This is easy to

see since the only requirement for a NE xN is that no unilateral deviations are allowed.

However it is possible that there exists points y ∈ X such that P (y) < P (xN). Indeed

different NEs might have different P values.

Since weighted and exact potential functions are special cases of ordinal poten-

tial functions, the result is immediately extendable to NEPs with weighted/exact

potential functions.
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There is also an inherent link between potential games and networks. Shapley and

Monderer [75] show that every finite potential game1 is isomorphic to a congestion

game as defined by Rosenthal [88]. It was also shown in [75] that for finite games, best

response paths2 in the action space converge to Nash equilibria in a finite number of

steps.

For NEPs where each player’s objective function θf is continuously differentiable

in the joint decision variable x, potentiality may be characterized using gradients. In

this case, a function P is an exact potential for NEP(θf , Xf )
f=1
F if and only if P is

continuously differentiable and

∇xf θf (xf , x−f ) = ∇xfP (xf , x−f ), ∀f ∈ F . (2.7)

Suppose now that θf are twice continuously differentiable. Then NEP(θf , Xf )
F
f=1

has an exact potential function if and only if

∂2θf

∂x
if
f ∂x

jf ′

f ′

=
∂2θf ′

∂x
if
f ∂x

jf ′

f ′

, ∀f, f ′ ∈ F . (2.8)

Here if and jf ′ are any components of x controlled by f and f ′ respectively.

In either of the differentiable game classes discussed above, it is easy to show that

exact potential functions are identical up to a constant.

2.2.3 Non best-response based decentralized algorithms

Best-response mechanisms, such as the Gauss-Seidel and Gauss-Jacobi methods

presented in Algorithms 1 and 2, constitute the most fundamental forms of decen-

tralized algorithms for NEPs. Game theory literature is rich with references for

various other types of learning-based mechanisms such as fictitious play [15], rational

or Bayesian learning [66], reinforcement learning [65], no-regret learning [54], and

other evolutionary dynamics. We refer the interested reader to [44,101] for details on

learning theory in games.

1A game/NEP is said to be finite if each player f ’s action space Xf is a finite set.
2Best response paths consist of sequences of decision vectors {xk = (xk1 , x

k
2 , . . . , x

k
F )T } such that

xk+1
f = argmax

xf∈Xf (x̄−f )

θf (xf , x̄−f ), where x̄ = (xk+1
1 , . . . , xk+1

f−1, x
k
f , . . . , x

k
F ).
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However as mentioned before, convergence analysis for these decentralized learn-

ing mechanisms is by no means easy. Usually, theoretical convergence results are

restricted to special classes of games for each learning method. For instance, while

it has been shown that fictitious play converges to Nash equilibria in finite zero-sum,

potential and supermodular games [58], Shapley [100] provides a class of games for

which the mechanism fails to converge. In fact, in several cases, learning mechanisms

can only be shown to converge to equilibrium concepts weaker than Nash equilibria.

The case of regret matching is an example for this type of a result, wherein conver-

gence of the algorithm to correlated equilibria3 was shown in [54]. More recently, the

theory of differential inclusions has been used to show the convergence of learning

methods such as no-regret learning and fictitious play to correlated equilibria [11].

2.3 Centralized algorithms for NEPs

The analysis of NEPs and computation of their solutions usually involves reformu-

lating them as optimization problems, variational inequalities, fixed point problems

or other problems for which there are known solution methodologies. We present here

some such common approaches.

First, we define below varational inequalities [35] and quasi-variational inequalities

[81] that we use in reformulations for NEPs.

Definition 2.3.1 The variational inequality problem VI(X,F (x)) consists of finding

a vector x̄ ∈ X such that (y − x̄)TF (x̄) ≥ 0 for all y ∈ X.

An important concept in the theoretical analysis of NEPs is that of the Nikaido-

Isoda (NI) function [80], also known as the Ky-Fan function.

Definition 2.3.2 The NI function for the NEP(θf , Xf )
F
f=1 is given by

Ψ(x, y) :=
F∑
f=1

[θf (xf , x−f )− θf (yf , x−f )] . (2.9)

3Correlated equilibrium is a more general solution concept for games than Nash equilibrium. The
essential idea is that players choose their actions based on their observations of some random event.
Cf. [7].
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The individual terms within the summation capture the gains for each player if she

changes her decision from xf to yf while all the other players keep their decisions at

x−f . These gains are then summed up over all the players to obtain the NI function.

Variational Inequality Reformulations

If a NEP satisfies assumptions (1), then its solutions are linked to a variational

inequality according to the theorem given below.

Theorem 2.3.1 [33] Suppose the NEP(θf , Xf )
f=1
F satisfies assumptions (1). Then a

point xN is a solution to NEP(θf , Xf )
F
f=1 if and only if it is a solution of VI(X,F(x))

where F(x) := ∇xf θf (x)f=1
F .

Optimization reformulations

At any NE to NEP(θf , Xf )
F
f=1, it is impossible for any player to improve their

objectives by unilaterally deviating to another feasible solution. Since the NI function

captures such improvements, it is intuitive to use it to characterize NEs.

Let

V̂ (x) := sup
y∈X

Ψ(x, y). (2.10)

Then we may use the function V̂ to construct an equivalent formulation for the

NEP(θf , Xf )
f=1
F . Formally we have

Theorem 2.3.2 [111] V̂ (x) ≥ 0 for all x ∈ X. Furthermore, V̂ (xN) = 0 if and only

if xN is an NE to NEP(θf , Xf )
F
f=1.

Theorem (2.3.2) implies that NEs to NEP(θf , Xf )
F
f=1 may be computed using the

following optimization problem.

min V̂ (x)

subject to x ∈ X.
(2.11)
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Thus an NE xN to a convex GNEP is also a global optimum of the optimization

problem (2.11) with zero objective function [110].

Note however that this problem is still difficult since V̂ (x) is usually nonsmooth

and possibly discontinuous. In order to avoid these type of issues, a standard tech-

nique is to use a regularized version of the NI function defined below.

Ψγ(x, y) :=

f=1∑
F

[
θf (xf , x−f )− θf (yf , x−f )−

γ

2
‖xf − yf‖2

]
, (2.12)

given a positive parameter γ. For a convex GNEP, let

Vγ(x) := max
y∈X

Ψγ(x, y)

= max
y∈X

f=1∑
F

[
θf (xf , x−f )− θf (yf , x−f )−

γ

2
‖x− y‖2

]
.

(2.13)

This merit function Vγ can be used to characterize equilibria of player-wise convex

NEPs as given in the following theorem.

Theorem 2.3.3 [111] For a player-wise convex NEP, Vγ(x) ≥ 0 for all x ∈ X, and

xN is an equilibrium if and only if xN ∈ X and Vγ(x
N) = 0. Furthermore, for every

x ∈ X there exists a unique maximizer yγ(x) to the following problem.

max
y∈X

Ψγ(x, y).

If θf are continuously differentiable, the mapping Vγ is continuously differentiable. N

Using the difference of two regularized NI functions with different parameters, it

is also possible to characterize the solutions to NEPs as unconstrained optimization

problems. See [111] for details.

Regularized NI function refomulations for characterizing the equilibria of player-

wise convex NEPs have been used to develop locally fast and globally convergent

Newton-type methods [110].
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Fixed-point Reformulations

The solutions to an NEP may also be characterized using a fixed-point inclusion.

Recall that

V̂ (x) := sup
y∈X

Ψ(x, y).

Denote by Ŷ (x) the set that contains vectors where the supremum for V̂ is attained.

Then we have the following result.

Theorem 2.3.4 [33] Let Ŷ (x) := {yx ∈ X | V̂ (x) = Ψ(x, yx)}. Then a vector xN is

a solution to the NEP(θf , Xf )
F
f=1 if and only if xN ∈ Ŷ (xN).

In other words solutions to NEP(θf , Xf )f = 1F are also fixed points to the point-

to-set mapping x 7→ Ŷ (x).

A similar formulation may be obtained using the mapping V̄γ for all solutions and

V̂ γ for normalized solutions.

KKT systems

It is also possible to characterize the solutions to NEPs using the KKT systems of

the individual player problems. Suppose that xN is a solution to the NEP(θf , Xf )
F
f=1.

If a suitable constraint qualification (such as the Mangasarian-Fromovitz constraint

qualification) holds at a given point xN for each player f , then there exist dual

multipliers λNf ∈ Rm such that

∇xfLf (xf , x
N
−f , λf ) = 0, and

0 ≤ λf ⊥ −gf (xf ) ≥ 0

are satisfied by (xNf , λ
N
f ). Here Lf (x, λf ) = θf (x) + gf (xf )Tλf , the Langrangian of

the optimization problem for player f .

The individual KKT systems may be concatenated to obtain the following system.

L(x, λ) = 0,

0 ≤ λ ⊥ −g(x) ≥ 0,
(2.14)
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where

λ = (λ1, . . . , λF )T

g(x) = (g1(x1)T , . . . gF (xF )T )T

L(x, λ) = (∇x1Lf (x1, x
N
−1, λ1), . . . ,∇xFLf (xF , x

N
−F , λF ))T

We then have the following characterization of solutions to (1.1) using the system

(2.14).

Assumption 2 The functions θf (x) are continuously differentiable for each player

f ∈ F . The functions gif (xf ) are continuously differentiable for i = 1, . . . ,mf for

each player f ∈ F .

Theorem 2.3.5 [33] Suppose that the NEP(θf , Xf )
f=1
F satisfies Assumption (2),

then for every solution xN at which all the players’ feasible regions satisfy a suitable

constraint qualification, there exists a vector of multipliers λN such that (xN , λN)

solves (2.14).

Suppose further that the NEP(θf , Xf )
f=1
F satisfies the assumption (1). In this case,

if (xN , λN) satisfies (2.14), xN is a solution to the NEP.
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3. MULTI-AGENT DECENTRALIZED NETWORK

INTERDICTION GAMES

In this chapter, we describe one of the main motivating problem classes for this

thesis, namely multi-agent network interdiction games. We formulate three specific

problems within this class of problems and analyze each formulation using optimiza-

tion and game theoretic techniques. Aside from studying theoretical properties such

as existence and uniqueness of equilibria, we also present an empirical analysis of the

efficiency of equilibria for these problems utilizing various algorithmic techniques.

3.1 Introduction

A typical network interdiction problem involves interactions between two players,

an adversary and an interdictor, with conflicting interests. The adversary operates on

a network and attempts to maximize some objective such as the flow of goods between

two nodes. The interdictor tries to limit the adversary’s objective by intentionally

disrupting certain components of the network. Such interactions have historically

been viewed from a Stackelberg game perspective in which the interdictor acts as the

leader while the adversary acts as the follower. Essentially it is assumed that the

interdictor acts first and the follower chooses his decisions after observing the effects

of the interdictor’s actions on the network. From the interdictor’s perspective this

captures the pessimistic viewpoint of guarding against the worst possible result given

her actions.

Traditionally, interdiction problems have been analyzed from a centralized per-

spective. In other words, a single agent is assumed to analyze, compute and imple-

ment interdiction strategies. In many situations, however, it might be desirable and
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even necessary to consider an interdiction problem from a decentralized perspective.

For instance, a supervising body, in control of multiple agents in a common system,

may assign each agent to an adversary of interest. Each agent is then responsible for

computing and implementing its own interdiction strategy against the designated ad-

versary. Other situations may involve multiple independent agents, such as security

agencies of different countries, trying to achieve a common goal on a shared network.

Without any coordination between the agents, one might expect that a decentralized

interdiction strategy may be inefficient compared to one determined by a central de-

cision maker. This paper is focused on modeling and analyzing such settings and the

inefficiencies that may arise.

In this chapter, we introduce decentralized network interdiction (DNI) games, in

which multiple agents with differing objectives are interested in interdicting parts of

a common network. We investigate various properties of equilibria in DNI games,

including their existence and uniqueness, and propose algorithms to compute equi-

libria of these games. Using these algorithms, we also conduct empirical studies on

the efficiency loss of equilibria in one class of DNI games, in comparison to optimal

solutions obtained through centralized decision-making.

3.1.1 Application Examples

Before introducing the decentralized network interdiction model, we first present

some examples of how decentralized interdiction games may be used to model prob-

lems in these application areas.

Smuggling interdiction - Network interdiction has been used in the past to study

strategies to control the flow of illegal material. Various models have been proposed

to study such problems in the context of nucleur material smuggling, drug networks,

border control etc. Consider such a problem where adversaries attempt to maximize

the flow of some illegal material on a network. If the network encompasses a large

geographic area, as is reasonable for instance in drug networks, the interdiction re-
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sources may be spread across multiple jursisdictions, not merely geographically but

also organizationally. The overall objective of the interdictors is to minimize the flow

that the adversaries can push across this network.

We may model the problem as a decentralized maximum flow interdiction prob-

lem by decomposing the players into adversary-interdictor pairs. Each adversary

attempts to maximize the flow between two nodes on the network, while the inter-

dictor attempts to limit this maximum flow by employing resources to curtail the

capacity of the arcs along the flow network. Such resources may include monitoring

mechanisms such as patrolling or remote sensing equipment. Individual interdictors

may be constrained by budgets on their resources as well as restrictions on the lo-

cations of arcs they may interdict. For instance, on large geographic networks, each

interdictor might only have the ability to interdict nodes within a certain radius of

his target node.

Infectious disease control - Consider a scenario where an infectious disease such

as the avian flu is in danger of becoming a global pandemic. In this scenario, spread

of the disease may be modelled using social and transportation networks along which

contact results in a high probability of disease transmission. The resources to be

deployed to control such a disease spread would be split among various nationalities

and disparate organizational umbrellas.

Various disease control agencies take measures that would reduce the probability

of disease transmission along links of the transmission network. Such measures might

include shutting down arcs along transportation networks, or mitigating strategies

such as masks to be worn by children attending school. The objective of each agency

is to use its resources to maximize the minimum probability route along which the

disease may spread from its source nodes to the target nodes. Keeping in mind that

the probabilities are multiplicative, taking logarithms on the transmission probabili-

ties will result in a model where each agency maximizes the shortest probability path

from its source nodes to its target nodes.
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Air strike targeting - Network interdiction models have been extensively used to

capture situations in the military arena where logistical networks play a key role.

Consider a situation where planners intend to use air strikes to disrupt the logistical

network of the enemy. The enemy’s objective is to minimize the cost of moving

necessary battle supplies across a transportation network.

The nodes on the network are advance outposts on the battle field as well as supply

depots and embarkation points. Each node either has excess supply or a demand that

must be satisfied. The initial cost for each arc depends on what type of arc it is -

road, rail or water. It is also assumed to depend on the length of the arc. The arcs

are assumed to have a positive capacity.

The interdictor’s decisions involve picking which arcs to interdict with the limited

resources available for air strikes. The air strikes result in increase in the cost of flow

across each arc as well as decrease in capacity for a fixed period of time. However the

repair time for each arc also needs to be factored in.

Although this problem has been studied from a centralized planner’s perspective,

rapidly changing battle scenarios and the increase in computational resources avail-

able on modern military platforms necessitates the decentralized perspective which

could be effective in replanning the interdiction strategy in a dynamic manner.

3.2 Decentralized Network Interdiction Games

In this work, we consider strategic interactions among multiple interdictors who

operate on a common network. The interdictors may each have their own adversary

or have a common adversary. If there are multiple adversaries, we assume there is no

strategic interaction among the adversaries. We also assume that the interdictors are

allies in the sense that they are not interested in deliberately impeding each other.

Formally, we have a set F = {1, . . . , F} of interdictors or agents, who operate on a

network G = (V,A), where V is the set of nodes and A is the set of arcs. Each agent’s

actions or decisions correspond to interdicting each arc of the network with varying
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intensity: the decision variables of agent f ∈ F are denoted by xf ∈ Xf ⊂ R|A|, where

Xf is an abstract set that constrains agent f ’s decisions1. For any agent f ∈ F , let

x−f denote the collection of all the other agents’ decision variables; in other words,

x−f = (x1, . . . , xf−1, xf+1, . . . , xF ). The network obtained after every agent executes

its decisions or interdiction strategies is called the aftermath network. The strategic

interaction between the agents occurs due to the fact that the properties of each arc

in the aftermath network are affected by the combined decisions of all the agents.

In addition to the abstract constraint set Xf , we assume that each agent f ∈ F

faces a total interdiction budget of bf > 0. The cost of interdicting an arc is linear

in the intensity of interdiction; in particular, agent f ’s cost of interdicting arc (u, v)

by xfuv units is cfuvx
f
uv. We assume that cfuv > 0 for all (u, v) ∈ A and f ∈ F . To rule

out uninteresting cases, we also assume that the feasible set for each agent is also

nonempty (meaning that each agent has the budget to at least interdict one arc).

The optimization problem for each agent f ∈ F is:

maximize
xf

θf (xf , x−f )

subject to
∑

(u,v)∈A

cfuvx
f
uv ≤ bf ,

xf ∈ Xf ,

(3.1)

where the objective function θf is agent f ’s obstruction function, or measure of how

much agent f ’s adversary has been obstructed. Henceforth, we refer to the game in

which each agent f ∈ F solves the above optimization problem (3.1) as a decentralized

network interdiction (DNI) game. The obstruction function θf can capture various

types of interdiction problems. Typically θf is the (implicit) optimal value function of

the adversary’s network optimization problem parametrized by the agents’ decisions,

which usually minimizes flow cost or path length subject to flow conservation, arc

capacity and side constraints.

1In contrast to the rest of this dissertation, player indices are given as superscripts in this chapter.
Subscripts are used for other indices.
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Suppose that a central planner, with a comprehensive view of the network and

the agents’ objectives, could pool the agents’ interdiction resources and determine an

interdiction strategy that maximizes some global measure of how much the agents’

adversaries have been obstructed. Let θc(x1, . . . , xF ) represent the global obstruction

function for a given interdiction strategy (x1, . . . , xF ). The central planner’s problem

corresponding to the DNI game (3.1) is then as follows:

maximize
x1, ..., xF

θc(x1, . . . , xF )

subject to
∑
f∈F

∑
(u,v)∈A

cfuvx
f
uv ≤

∑
f∈F

bf ,

xf ∈ Xf ∀f ∈ F .

(3.2)

We refer to (3.2) as the centralized problem, and focus primarily on when the global

obstruction function is utilitarian; that is,

θc(x1, . . . , xF ) :=
∑
f∈F

θf (xf , x−f ).

As mentioned earlier, one of the goals of this work is to quantify the inefficiency

of an equilibrium of a DNI game – a decentralized solution to problem (3.1) – relative

to a centrally planned optimal solution – an optimal solution to problem (3.2). A

commonly used measure of such inefficiency is the price of anarchy.

Formally speaking, let NI be the set of all equilibria corresponding to a spe-

cific instance I. (In the context of DNI games, an instance consists of the network,

obstruction functions, interdiction budgets, and costs.) For the same instance I, let

(x1∗ , . . . , xF
∗
) denote a global optimal solution to the centralized problem (3.2). Then

the price of anarchy of the instance I is defined as

p(I) := max
(x1

N ,...,x
F
N )∈NI

θc(x1∗ , . . . xF
∗
)

θc(x1
N , . . . , x

F
N)
. (3.3)

Let I be the set of all instances of a game. We assume implicitly that for all I ∈ I,

the set NI is nonempty and a global optimal solution to the centralized problem

exists. By convention, p is set to 1 if the worst equilibrium as well as the global
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optimal solution to the centralized problem both have zero objective value. If the

worst equilibrium has a zero objective value while the global optimum is nonzero, p

is set to be infinity. In addition to the price of anarchy for an instance of a game, we

also define the worst-case price of anarchy over all instances of the game (denoted as

w.p.o.a) as follows:

w.p.o.a := sup
I∈I

p(I). (3.4)

Since we wish to study properties of a class of games such as DNI games, rather

than a particular instance of a game, we are more interested in the worst-case price of

anarchy. However, there are two major difficulties associated with such an efficiency

measure. First, it is well-known that the worst-case price of anarchy may be a very

conservative measure of efficiency loss, since the worst case may only happen with

pathological instances. Second, explicit theoretical bounds on the worst-case price of

anarchy may be difficult to obtain for general classes of games. Indeed most of the

related research has focused on identifying classes of games where such bounds may

be derived. In this work, we show how our proposed decentralized algorithms can be

used to empirically study the average-case efficiency loss (denoted by a.e.l). Let I ′

denote a finite set such that I ′ ⊂ I, and let |I ′| denote the cardinality of the the set

I ′. Then

a.e.l(I ′) :=
1

|I ′|
∑
I∈I′

p(I). (3.5)

In other words, the average-case efficiency loss is the average value of p(I) as defined

in (3.3) over a set of sampled instances I ′ ⊂ I of a game.

As mentioned above, the generic form of problem (3.1) can be used to describe

various network interdiction settings, such as maximum flow interdiction. To start

with models that are both theoretically and computationally tractable, we focus on

decentralized shortest-path interdiction games, which we describe in detail next.
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3.3 Decentralized Shortest Path Interdiction Games

As the name suggests, decentralized shortest path interdiction (DSPI) games in-

volve players or interdictors whose adversaries are interested in the shortest path

between source-target node pairs on a network. Interdictors act in advance to in-

crease the length of the shortest path of their respective adversaries by interdicting

(in particular, lengthening) arcs on the network.

To describe these games formally, we build upon the setup for the general decen-

tralized network interdiction game described in Section 3.2. Each agent f ∈ F has

a target node tf ∈ V which it wishes to protect from an adversary at source node

sf ∈ V by maximizing the length of the shortest path between the two nodes. The

agents achieve this goal by committing some resources (e.g. monetary spending) to in-

crease the individual arc lengths on the network: the decision variable xfuv represents

the contribution of agent f ∈ F towards lengthening arc (u, v) ∈ A. The arc length

duv(x
f , x−f ) of arc (u, v) ∈ A in the aftermath network depends on the decisions of

all the agents.

We consider two types of interdiction. The first type of interdiction is continuous :

in particular,

Xf := {xf ∈ R|A| : xfuv ≥ 0 ∀(u, v) ∈ A}

and the arc lengths after an interdiction strategy (x1, . . . , xF ) has been executed are

duv(x
1, . . . , xF ) = d0

uv +
∑
f∈F

xfuv ∀(u, v) ∈ A, (3.6)

where d0
uv > 0 is the initial length of arc (u, v). The initial arc lengths d0 are assumed

to be positive. We note that if we allow negative arc lengths, as long as the graph does

not possess negative length circuits (in which case shortest paths are not defined),

it is possible to modify the arc lengths to be positive and preserve shortest paths

(Cf. [22]).

The second type of interdiction is discrete: in this case,

Xf := {xf ∈ R|A| : xfuv ∈ {0, 1} ∀(u, v) ∈ A}
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and the arc lengths in the aftermath network are

duv(x
1, . . . , xF ) = d0

uv + euv max
f∈F

xfuv ∀(u, v) ∈ A, (3.7)

where euv ∈ R≥0 is the fixed extension of arc (u, v). In other words, the length of an

arc is extended by a fixed amount if at least one agent decides to interdict it.

The optimization problem solved by each agent f ∈ F in a DSPI game is given

by (3.1), where

θf (xf , x−f ) :=



min
zf

∑
(u,v)∈A

zfuv duv(x
f , x−f )

s.t.
∑
v∈V

zfuv −
∑
v∈V

zfvu =


1 if u = sf

0 if u 6= sf , tf

−1 if u = tf

zfuv ∈ {0, 1} ∀(u, v) ∈ A


(3.8)

where binary variable zfuv in (3.8) represents whether an arc (u, v) ∈ A is in the short-

est sf -tf path. In other words, agent f ’s optimization problem is a bilevel optimiza-

tion problem, where the inner minimization problem (3.8) is its adversary’s shortest

path problem. Although the inner minimization problem is an integer program with

binary variables, it is well known that the constraint matrix is totally unimodular

(e.g. [96]), rendering the integer program equivalent to its linear programming re-

laxation. Therefore, once the interdictors’ variables (x1, . . . , xF ) are fixed, we can

use linear programming duality to transform the inner minimization problem to a

maximization problem [61] and reformulate agent f ’s optimization problem (3.1) as:

maximize
xf , yf

yf
tf
− yf

sf

subject to yfv − yfu ≤ duv(x
f , x−f ) ∀(u, v) ∈ A,∑

(u,v)∈A

cfuvx
f
uv ≤ bf ,

xf ∈ Xf .

(3.9)
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It is well known (see, for example, [9, 68]) that at optimality, the term yfu − yf
sf

is

equal to the length of the shortest sf -u path in the aftermath network. This fact

has several important implications for problem (3.9). For instance, it allows us to

restrict the yf variables to be integral if the underlying network data is integral, since

at optimality all path lengths would also be integral. Moreover, as we show below, it

also allows us to bound the yf variables.

When interdiction is continuous, the largest possible length in the aftermath net-

work for any arc is bounded by the largest interdiction possible on that arc. Keeping

the budgetary constraints in mind, the maximum interdiction possible on any arc is

bounded by

F · max
f∈F , (u,v)∈A

{
bf

cfuv

}
.

As a result, the maximum length of any arc (u, v) ∈ A in the aftermath network is

bounded by

d0
uv + F · max

f∈F , (u,v)∈A

{
bf

cfuv

}
.

Therefore, the lengths of every path in the aftermath network are bounded above by

M =
∑

(u,v)∈A

d0
uv + |A| F · max

f∈F , a∈A

{
bf

cfa

}
.

On the other hand, when interdiction is discrete, the length of any path in the after-

math network is bounded above by

M =
∑

(u,v)∈A

(d0
uv + euv).

Since only the differences yfv −yfu across arcs (u, v) are relevant to the formulation

(3.9), we may always replace yfu by yfu−y
f
sf

for each u ∈ V to obtain a feasible solution

with equal objective value. Therefore we can then add the constraints −M ≤ yfu ≤M
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for all u ∈ V to the problem (3.9) to obtain an equivalent formulation of a DSPI game,

where each agent f ∈ F solves the following problem.

maximize
xf , yf

yf
tf
− yf

sf

subject to yfv − yfu ≤ duv(x
f , x−f ) ∀(u, v) ∈ A,∑

(u,v)∈A

cfuvx
f
uv ≤ bf ,

−M ≤ yfu ≤M ∀u ∈ V,

xf ∈ Xf .

(3.10)

When analyzing the DSPI game from a centralized decision-making perspective,

we assume that the global obstruction function is utilitarian, i.e., the sum of the

shortest sf -tf path lengths over all the agents f ∈ F . We also assume that the re-

sources are pooled among all the agents, resulting in a common budgetary constraint.

Thus the centralized problem for DSPI games can be given as follows:

maximize
x, y

∑
f∈F

(
yf
tf
− yf

sf

)
subject to yfv − yfu ≤ duv(x

f , x−f ) ∀(u, v) ∈ A, f ∈ F ,∑
f∈F

∑
(u,v)∈A

cfuvx
f
uv ≤

∑
f∈F

bf

−M ≤ yfu ≤M ∀u ∈ V, f ∈ F ,

xf ∈ Xf ∀f ∈ F .

(3.11)

Since yf is bounded for all f ∈ F , a globally optimal solution of (3.11) exists regard-

less of whether xf is continuous or discrete for all f ∈ F . In the continuous case,

Weierstrass’s extreme value theorem applies since all the functions are continuous and

the xf variables are bounded due to the non-negativity and budgetary constraints.

In the discrete case, there are only a finite number of values that the xf variables can

take.
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3.3.1 Game Structure and Analysis

Generalized Nash Equilibrium Problems

The formulation (3.10) gives us some insight into the structure of strategic inter-

actions among agents in a DSPI game. Note that in formulation (3.10), the objective

function for each agent f ∈ F only depends on variables indexed by f (in particular,

yf
sf

and yf
tf

). However, the constraint set for each agent f is parametrized by other

agents’ variables x−f .

It is straightforward to see how the DSPI game in (3.10) translates into a GNEP

problem: for all f ∈ F ,

χf = (xf , yf ),

θf (χf , χ−f ) =
(
yf
tf
− yf

sf

)
,

Ξf (χ−f ) =


χf = (xf , yf )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yfv − yfu ≤ duv(x
f , x−f ) ∀(u, v) ∈ A,∑

(u,v)∈A

cfuvx
f
uv ≤ bf ,

−M ≤ yfu ≤M ∀u ∈ V,

xf ∈ Xf


.

(3.12)

Note that χ = (χ1, . . . , χF ) ∈ Rn, where n = F (|V |+ |A|).

As mentioned in Chapter 2, GNEPs in general are more challenging than regular

Nash equilibrium problems, both theoretically and computationally. While results

on the existence of (pure-strategy) generalized Nash equilibria have been established,

few results exist on uniqueness of such equilibria, largely due to the fact that few

GNEPs have a unique equilibrium [33]. We will rely on both existing analytic results

and the special structure of DSPI games to determine the existence of equilibria and

their uniqueness in these games in later subsections.
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Existence of Equilibria

We first consider the existence of equilibria in the DSPI game when interdiction

decisions are continuous. In this case each interdictor’s optimization problem (3.10),

with the arc length function duv(·) defined as in (3.6), is a linear program. The

following result regarding general convex GNEPs can therefore be applied here.

Theorem 3.3.1 (Ichiishi [60]) Given a simultaneous-move GNEP with each agent

f ∈ F solving (1.1), assume that the following conditions hold:

(i) There exist nonempty, convex and compact sets Kf ⊆ Rnf for each agent f ∈ F

such that for every χ = (χ1, χ2, . . . , χF ) ∈
∏F

f=1 K
f , Ξf (χ−f ) is nonempty,

closed and convex. In addition, Ξf (χ−f ) ⊆ Kf and Ξf (·) is both upper and

lower semicontinuous as a point-to-set map.

(ii) For every agent f ∈ F , the function θf (·, χ−f ) is quasi-concave on Ξf (χ−f ).

Then a (pure-strategy) generalized Nash equilibrium exists.

To apply Theorem 3.3.1, the following result will be useful.

Theorem 3.3.2 (Rockafellar and Wets [86]) For every f ∈ F , suppose

Ξf (χ−f ) = {χf | gfi (χf , χ−f ) ≤ 0 for i = 1, . . . ,mf}

where gf1 , . . . , g
f
mf are finite, continuous functions and gf1 (χf , χ−f ), . . . , gf

mf (χf , χ−f )

are convex in χf for each χ−f . If for χ̄−f there is a point χ̄f such that gfi (χ̄f , χ̄−f ) < 0

for i = 1, . . . ,mf , then Ξf is continuous not only at χ̄−f but at every χ−f in some

neighborhood of χ̄−f .

We now use these results to show the existence of equilibria for the DSPI game.

Proposition 3.3.1 Under continuous interdiction, a generalized Nash equilibrium

exists for the DSPI game (3.10).
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Proof Recall the representation of a DSPI game as a GNEP in (3.12). We show

that conditions (i) and (ii) in Theorem 3.3.1 hold. First, condition (ii) in Theorem

3.3.1 is immediately apparent from (3.10) and (3.12) since the objective functions are

linear.

To show condition (i) holds, we define the set Kf for each f ∈ F as follows:

Kf =


(xf , yf )

∣∣∣∣∣
∑

(u,v)∈V

cfuvx
f
uv ≤ bf ,

−M ≤ yfu ≤M ∀u ∈ V,

xfuv ≥ 0, ∀(u, v) ∈ A.


. (3.13)

Clearly Kf is nonempty for all f ∈ F as it contains the zero vector. It is also easy to

see that Ξf (x−f , y−f ) ⊆ Kf and is a polyhedron, and therefore closed and convex for

any given (x−f , y−f ). The set Ξf (x−f , y−f ) is also nonempty, since we can construct

a feasible solution by setting xfuv = 0 for all (u, v) ∈ A and yfu to be the length of

the shortest path from sf to u for all u ∈ V . Now all that remains to be shown for

condition (i) in Theorem 3.3.1 to hold are the continuity properties of the point-to-set

mapping Ξf (·).

To do so we use Theorem 3.3.2. Consider the following assignment of the xf

variables.

x̄fuv =
1

2|A|
min

(u,v)∈A

bf

cfuv
.

Clearly we must then have ∑
(u,v)∈A

cfuvx̄
f
uv ≤

bf

2
< bf

. If we now set ȳfu = 0 for any u ∈ V , we obtain a tuple (x̄, ȳ), that is now feasible

and strictly interior to Ξf (·) for any χ−f , under our original assumptions of positivity

on bf , cf and d0.

Combined with the linearity of the constraints, this then allows us to directly

apply Theorem 3.3.2 to claim the continuity of the point-to-set mapping Ξf (·) in

some neighborhood of (x−f , y−f ), which certainly implies its continuity at (x−f , y−f ).
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Since this property holds at any (x−f , y−f ), the mapping Ξf (·) is both lower and

upper semi-continuous on its domain.

We may also analyze the existence of equilibria in DSPI games under continuous

interdiction using a path based NEP formulation as given below.

Let P f = {pf1 , p
f
2 , . . . , p

f
kf
} be the set of sf − tf paths available to agent f ∈ F .

The length of a path p ∈ P f is given by

dp(x
1, . . . , xF ) =

∑
(u,v)∈p

duv(x
1, . . . , xF ), (3.14)

where duv(x
1, . . . , xF ) is as defined in equation (3.6) for continuous interdiction, and

as defined in (3.7) for the discrete case.

The optimization problem for each interdicting agent f ∈ F is then:

maximize
xf

θf (xf , x−f ) ≡ min
p∈Pf

dp(x
f , x−f )

subject to
∑

(u,v)∈A

cfuvx
f
uv ≤ bf ,

xf ∈ Xf .

(3.15)

Under continuous interdiction and the general assumption made ealier that Xf

is nonempty, convex and compact, the feasible strategy set for agent f , given by

{xf ∈ Xf |
∑

(u,v)∈A c
f
uvx

f
uv ≤ bf} is also convex and compact. Given an x−f , the

objective function in (3.15) is the minimum of a set of affine functions of xf , and

therefore continuous in xf . Thus, by Weirstrass’s extreme value theorem, each agent

has an optimal strategy given the strategies of the other agents. Note, however, that

the objective function in (3.15) is not differentiable with respect to xf in general.

The key is to show that the objective function in (3.15), θf (xf , x−f ), is concave

in xf , despite the fact that it is not differentiable.

Proposition 3.3.2 Given that each agent f ∈ F solves the problem (3.15), with

dp(x
f , x−f ) defined as in (3.14) and (3.6), and assume that the abstract set Xf in

(3.15) is nonempty, convex and compact for each f ∈ F , the DSPI game under

continuous interdiction has a pure strategy Nash equilibrium.
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Proof Based on the assumption, the feasible region in (3.15) is nonempty, convex

and compact. With a fixed x−f , the objective function of agent f is the minimum

of a finite set of affine functions in xf , and therefore, is concave with respect to xf ,

by the well-known fact in convex analysis (Cf. [14]). Consequently, the DSPI game

belongs to the class of “concave games,” introduced in Rosen [87], and it is shown

in [87] that a pure-strategy Nash equilibrium always exists for a concave game.

Under discrete interdiction, the existence of a PNE is not always guaranteed when

different interdictors are competing against different adversaries. We illustrate the

nonexistence of PNE in Example 12 [103] below.

Example 1 Consider the network given in Figure 3.1.

s1

s2

t1, t2

b

e

c d

a

f

Figure 3.1. Network topology for DSPI game in Example 1.

In this game, there are two agents – agent 1 and agent 2 – who are attempting

to maximize the lengths of the s1-t1 paths and s2-t2 paths respectively. Note that

t1 = t2. The data for the problem, including initial arc lengths, cost of interdiction

and arc extensions are given below in Table 3.1.

Suppose b1 = 8 and b2 = 15. As a result, player 1 can either interdict the arcs a, b

and c one at a time, or the arcs a and c simultaneously. Similarly, player 2 can either

interdict arc d or arc f .

2The example network was constructed by our co-authors Ashish Hota and Dr. Shreyas Sundaram.
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Table 3.1.
Network data for Example 1

Arc tag Initial length Arc extension Cost to player 1 Cost to player 2

a 7 0.5 3 20

b 0 2 6 20

c 0 1.5 5 20

d 0 6 15 15

e 0 1 20 20

f 1 6 15 15

Thus, player 1 has four feasible pure strategies and player 2 has two feasible pure

strategies. The strategy tuples along with the corresponding pay-offs for each player

are summarized in Table 3.2. It is easy to verify that for any joint strategy profile,

there is a player who would prefer to deviate unilaterally. Therefore, this instance of

the DSPI game does not possess a NE.

Table 3.2.
Pay-off combinations for Example 1

P1/P2 strategies d f

a 6, 1 0, 0

c 7, 1 1.5, 1.6

(a, c) 7.5, 1 1.5, 1.5

b 7, 1 2, 0

In the previous example, the agents have a common target node, but different

source nodes. However, in the class of games in which the interdictors have a common

adversary, i.e., when each agent maximizes the shortest path between a common
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source-target pair, we can show that DSPI games under discrete interdiction possess

a PNE.

Consider the DSPI game where each agent is trying to maximize the shortest path

lengths between nodes s and t. Since the objective function of each agent is the same,

we can write the following centralized optimization problem to maximize the shortest

s − t path distance subject to the individual agents’ budget constraints. Let P st be

the set of s− t paths in the network. The centralized optimization problem is:

maximize
x

min
p∈P st

dp(x
1, x2, . . . , xF )

subject to
∑

(u,v)∈A

cfuvx
f
uv ≤ bf ∀f ∈ F ,

xfuv ∈ {0, 1} ∀(u, v) ∈ A, f ∈ F .

(3.16)

The feasible solution space of the above problem is finite under individual agents’

budget constraints. Therefore, the centralized problem always has a maximum. Fur-

thermore, the optimal solution to this problem is a PNE of the DSPI game as we

show in the following result.

Proposition 3.3.3 Suppose the source and target for each agent in a DSPI problem

are the same. Let x∗ denote the optimal solution of the centralized problem (3.16).

Then x∗ is a PNE to the DSPI game under discrete interdiction.

Proof Assume the contrary, and suppose that there is an agent h for whom there

exists a unilateral deviation xf that strictly increases the path distance s − t. By

assumption, xh is feasible to the budgetary constraints for agent h. Therefore, x̄ ≡

(xh, x∗−h) is feasible to (3.16) with a strictly larger objective value. Clearly this is a

contradiction to the optimality of x∗ to (3.16).

Uniqueness of equilibria

Establishing conditions under which a DSPI game has a unique equilibrium is

quite difficult. However, it is easy to show that there exist simple instances of DSPI

games for which multiple equilibria exist. We give several such examples below.
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Example 2 Consider the following instance, based on the network in Figure 3.2.

There are 2 agents: agent 1 has an adversary with source node 1 and target node

5; agent 2 has an adversary with source node 1 and target node 6. The initial arc

lengths are 0, interdiction is continuous, and the interdiction costs are the same for

both agents and are given in the arc labels in Figure 3.2. Both agents have a budget

of 1.

1 2 3

4 5 6

1 + ε 1 + ε

1 + ε 1 + ε

1 1 1

Figure 3.2. Network topology for DSPI game in Example 2.

Consider the case when ε = 2. One generalized Nash equilibrium occurs when

agent 1 interdicts the arcs (1, 4) and (2, 5) by 1/2 each, and agent 2 interdicts arcs

(1, 4) and (2, 5) by 1/6, and arc (3, 6) by 2/3. In this case both agents end up

with a shortest path length of 2/3. It is easy to see that any unilateral deviation

will result in a smaller shortest path length for the deviating agent. In fact, it is

straightforward to see that the source-target path lengths for each agent must be

equal at an equilibrium: if the path lengths are unequal, an agent could improve its

objective function by equalizing the path lengths. Therefore, in this example, any

combination of decision variables that results in a shortest path length of 2/3 for

each agent will be a generalized Nash equilibrium, and there is a continuum of such

decision variable combinations.

Example 3 A variant of this instance under discrete interdiction exhibits some in-

teresting properties. Consider the same instance, except under discrete interdiction,
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with all of the arc extension lengths are equal to 1, and the budget for each agent

equal to 1 + ε where ε is an integer that is at least 1. One possible equilibrium is for

agent 1 to interdict the arc (1, 4) and for agent 2 to interdict the arc (1, 2). If ε = 1,

then this will result in a shortest path length of 1 for each agent. Note that agent 1

does not use its entire budget. A similar equilibrium occurs when agent 1 interdicts

arcs (1, 4) and (2, 5) and agent 2 interdicts arc (3, 6). In this case agent 2 ends up

with unused budget.

Example 4 A more interesting situation occurs when ε = 0 and the budget is 1. In

this case, the 2 agents can interdict at most 1 arc each. Agent 1 interdicting arc (1, 4)

and agent 2 interdicting arc (1, 2) results in an equilibrium in which both agents have

shortest path lengths of 1. The potential function value for this equilibrium is 2.

However, there exist other equilibria in which one agent is worse off than the other.

For instance, suppose agent 1 interdicts the arc (5, 6) and agent 2 interdicts (3, 6):

agent 1’s shortest path length is 0, and agent 2’s shortest path length is 1. Although

agent 1’s shortest path length is now 0, it has no incentive to deviate since there is no

possible unilateral deviation that would allow it to increase its shortest path length.

A similar situation occurs when agent 1 interdicts (2, 5) and agent 2 interdicts (4, 5).

It is interesting to note that in this game, zero interdiction by both agents is also a

generalized Nash equilibrium with a potential function value of 0.

3.3.2 Computing a Nash Equilibirum

In this section we focus on algorithms to compute equilibria of DSPI games. As

discussed above, a DSPI game is a special case of a generalized Nash equilibrium

problem. Computational methods to find an equilibrium for GNEPs include refor-

mulations as quasi-variational inequalities [81], optimization reformulations using the

Nikaido-Isoda function [29, 110, 111], direct methods using KKT systems [28] and

penalty methods [34, 36], among others. We refer to the above methods as central-

ized algorithms, as they all attempt to find an equilibrium by tackling the game as a
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whole: for instance, by solving an equivalent variational inequality or complementar-

ity problem. Such methods are usually computationally intensive.

Motivated by the observation that DSPI games admit potential functions, we

also present decentralized algorithms based on best-response dynamics. Such decen-

tralized algorithms have several advantages over centralized algorithms. First, the

computational burden at each iteration is much smaller than with centralized algo-

rithms, since only a single agent’s optimization problem is solved with others agents’

decisions fixed. Second, a decentralized algorithm may provide insight into how an

equilibrium is achieved among agents’ strategic interactions. Such insight is partic-

ularly useful when multiple equilibria exist, as is the case for many GNEPs. It is

well-known (for example, [76]) that a game may possess unintuitive Nash equilibria

that would never realistically be the outcome of the game. A centralized algorithm

would not be able to distinguish between a meaningful and a meaningless equilibrium,

and may end up computing such unintuitive equilibria. A decentralized algorithm, on

the other hand, depicts how an equilibrium is achieved from a particular starting point

through iterative interactions among agents, should the algorithm converge. Third,

decentralized algorithms naturally lead to multithreaded implementations that can

take advantage of a high performance computing environment. In addition, different

threads in a multithreaded implementation may be able to find different equilibria of

a game, making such an algorithm particularly suitable for computationally quantify-

ing the average efficiency loss of decentralized strategies. Nevertheless, despite these

favorable properties, best-response based algorithms suffer from a major drawback:

it is difficult to theoretically prove these algorithms converge to equilibria for general

classes of GNEPs.

In the following discussion, we propose solving the continuous DSPI game using

a linear complementarity problem (LCP) reformulation. The reformulation is con-

structed using the Karush-Kuhn-Tucker (KKT) optimality conditions for each agent’s

optimization problem. We show that the resulting LCP has favorable properties, al-

lowing the use of Lemke’s pivoting algorithm.
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Linear Complementarity Formulation

Before presenting the LCP formulation for the DSPI game, we introduce some

basic notation and definitions. Formally, given a vector q ∈ Rd and a matrix M ∈

Rd×d, a linear complementarity problem LCP(q,M) consists of finding a decision

variable vector w ∈ Rd such that

w ≥ 0, (3.17)

q +Mw ≥ 0, (3.18)

wT (q +Mw) = 0. (3.19)

The LCP(q,M) is said to be feasible if there exists a w ∈ Rd that satisfies (3.17) and

(3.18). Any w satisfying (3.19) is called complementary. If w is both feasible and

complementary, it is called a solution of the LCP. In this case, we say w ∈ SOL(q,M)

to denote that w is in the solution set for the LCP. The LCP is said to be solvable if

it has a solution. A thorough exposition of the theory underlying LCPs and various

algorithmic techniques to solve such problems can be found in [25].

Consider now the DSPI game with continuous interdiction, introduced in Sec-

tion 3.3. We restate the formulation (3.9) for the optimization problem of agent

f ∈ F as follows:

minimize
xf , yf

yf
sf
− yf

tf

subject to yfu − yfv + xfuv ≥ −d0
uv −

∑
f ′∈F
f ′ 6=f

xf
′

uv ∀(u, v) ∈ A,

∑
(u,v)∈A

−cfuvxfuv ≥ −bf ,

xfuv ≥ 0 ∀(u, v) ∈ A,

yfu ≥ 0 ∀u ∈ V.

(3.20)

As observed earlier in Section 3.3, the yf variables are essentially free variables. In

order to simplify analysis, we restrict these variables to be non-negative while ignoring
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the bounds added in the formulation (3.10). As we shall see later, it is possible

to construct a solution to (3.20) given a solution to (3.10). When the interdiction

decisions of the agents f ′ 6= f are fixed, agent f ’s optimization problem (3.20) is

a linear program (LP). In this case, the KKT conditions are both necessary and

sufficient for a given feasible solution to be optimal.

We introduce the following notation to present the KKT conditions for the LP (3.20)

compactly. Let |V | = n and |A| = m. Denote by G the arc-node incidence matrix of

the graph G. Further let I denote an identity matrix, and 0 be vectors or matrices

of all zeros, of appropriate dimensions, respectively. The objective coefficients for the

LP (3.20), denoted by of ∈ Rm+n can be given as follows:

of =

0m

νf

 , where νf =


1 if u = sf

0 if u 6= sf , tf

−1 if u = tf

.

The right hand sides for the constraints in (3.20) are denoted using the vector

rf (x−f ) ∈ Rm+1:

rf (x−f ) =

−d0

−bf

−∑
f ′∈F
f ′ 6=f

 Im 0m×n

0Tm 0Tn


xf ′
yf
′

 .
The constraint matrix itself, denoted as Af ∈ R(m+1)×(m+n), is

Af =

 Im G

−cf T 0Tn

 .
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Using this notation, the LP (3.20) can be restated as follows:

minimize
xf ,yf

of
T

xf
yf


subject to Af

xf
yf

 ≥ rf (x−f ),

xf
yf

 ≥ 0.

(3.21)

Let the dual variables for the LP (3.20) be (λf , βf , υf ), where λf are the multipliers

for the arc potential constraints, βf the multiplier for the budgetary constraint and

υf the multipliers for the non-negativity constraints. The KKT conditions for (3.21)

are given by the following system.

rf (x−f ) ≤ Af

xf
yf

 ⊥

λf
βf

 ≥ 0,

0 ≤

xf
yf

 ⊥ υf ≥ 0,

of − Af T
λf
βf

− υf = 0.

(3.22)

The KKT system (3.22) can be rewritten in the following form:

υf = of − Af T
λf
βf

 ≥ 0,

xf
yf

 ≥ 0,

xf
yf

T υf = 0,

tf = −rf (x−f ) + Af

xf
yf

 ≥ 0,

λf
βf

 ≥ 0, tf
T

λf
βf

 = 0.

(3.23)

In this form, it is easy to recognize that for a fixed value of x−f , the KKT system is

equivalent to the LCP(qf (x−f ),M f ) where

qf (x−f ) =

 of

−rf (x−f )

 and M f =

 0(m+n)×(m+n) −Af T

Af 0(m+1)×(m+1)

 . (3.24)
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The decision variable vector for the LCP is the vector of combined decision variables

wf =


xf

yf

λf

βf

 . (3.25)

Each agent’s KKT system (3.23) is parametrized by the collective decisions of other

agents. As mentioned earlier, the optimization problem (3.20) is completely equiva-

lent to the KKT system (3.23). In other words, given (x−f , y−f ), an agent’s decisions

(xf , yf ) is optimal if and only if it satisfies the system (3.23). Using this fact, it is

straightforward to show that a candidate point (χ1, χ2, . . . , χF ), where χf = (xf , yf ),

is an equilibrium to the DSPI game where each agent solves (3.20) if and only if

it solves the KKT systems (3.23) for each player f ∈ F . As a consequence, the

equilibrium problem for the DSPI game under consideration is equivalent to the com-

plementarity problem obtained by stacking the F systems of (3.23) for f ∈ F . In

this case the decision variable is the combined set of primal and dual variables for

each agent, denoted by (w1, w2, . . . , wF ).

With some algebraic manipulation, it can be shown that the complementarity

system obtained by stacking the F KKT systems is itself an LCP. Consider the

following system obtained from (3.23) by expanding rf (x−f ).

υf = of − Af T

λf
βf

 ≥ 0,

xf
yf

 ≥ 0,

xf
yf


T

υf = 0,

tf =

d0

bf

+ Af

xf
yf

+
∑
f ′∈F
f ′ 6=f

 Im 0m×n

0Tm 0Tn


xf ′
yf
′

 ≥ 0,

λf
βf

 ≥ 0, tf
T

λf
βf

 = 0.

(3.26)
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The interactions between the agent f ’s decision variables (xf , yf ) and the KKT

system of any other agent f ′ 6= f can be represented using the matrix M̄ f given

below.

M̄ f =



0m×m 0m×n 0m×m 0m×1

0n×m 0n×n 0n×m 0n×1

Im 0m×n 0m×m 0m×1

01×m 01×n 01×m 0


. (3.27)

Using this notation, the stacked KKT systems (3.26) for agents f = 1, . . . , F can be

formulated as LCP(q,M). Here, the vector q is given by

q =


q̄1

q̄2

...

q̄F

 , where q̄f =


of

d0

bf

 , (3.28)

and the matrix M is given by

M =



M1 M̄2 M̄3 · · · M̄F

M̄1 M2 M̄3 · · · M̄F

...
...

...
...

...

M̄1 M̄2 · · · M̄F−1 MF


. (3.29)

Methods for solving LCPs fall broadly into two categories: (i) pivotal methods

such as Lemke’s algorithm and (ii) iterative methods such as splitting schemes and

interior point methods. The former class of methods are finite when applicable, while

the latter class converge to solutions in the limit. In general, the applicability of these

algorithms depends on the structural properties of the matrix M . In the following

analysis, we show that LCP(q,M) for the DSPI game, as defined in (3.28) and (3.29),

possesses two properties that allow us to use Lemke’s pivotal algorithm: (i) the matrix

M is a copositive matrix, and (ii) q ∈ (SOL(0,M))∗. Here, given a set K ∈ Rd, the

set K∗ is the dual cone of K, i.e. K∗ = {y ∈ Rd : yTx ≥ 0 ∀x ∈ K}.
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We first show that M is copositive. Recall that a matrix M ∈ Rd×d is said to be

copositive if xTMx ≥ 0 for all x ∈ Rd
+.

Lemma 3.3.3 Let the vector q and the matrix M be as defined in (3.28) and (3.29)

respectively. Then the matrix M is copositive.

Proof Let w ∈ R2m+n+1
+ . Using the block structure of M given in (3.29), wTMw

can be decomposed as follows.

wTMw =
F∑
f=1

wf
T
M fwf +

F∑
f=1

F∑
f ′=1
f ′ 6=f

wf
T
M̄ f ′wf

′
. (3.30)

We analyze the terms under the two summations separately. First consider wf
T
M fwf

for any agent f . Let the dual variables (λf , βf ) be collectively denoted by δf .

wf
T
M fwf =

[
χf

T
δf

T
] 0 −Af T

Af 0

χf
δf


= −χf TAf T δf + δf

T
Afχf

= 0.

(3.31)

Now consider any term of the form wf
T
M̄ f ′wf

′
.

wf
T
M̄ f ′wf

′
=

[
xf

T
yf

T
λf

T
βf

T
]


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




xf
′

yf
′

λf
′

βf
′



=
[
xf

T
yf

T
λf

T
βf
]


0

0

xf
′

0


= λf

T
xf
′
.

(3.32)

Combining (3.31) and (3.32) we obtain

wTMw =
F∑
f=1

F∑
f ′=1
f ′ 6=f

λf
T
xf
′
. (3.33)



52

Clearly wf
T
M̄ f ′wf

′ ≥ 0, if wf ≥ 0 and wf
′ ≥ 0. Thus w ≥ 0 implies that wTMw ≥ 0.

We now show condition (ii), that qTw ≥ 0 ∀w ∈ SOL(0,M).

Lemma 3.3.4 Let the vector q and the matrix M be as defined in (3.28) and (3.29)

respectively. Then q ∈ (SOL(0,M))∗.

Proof Consider any w ∈ SOL(0,M). Clearly then, wf must solve the system (3.26)

for f = 1, . . . , F , with of , d0 and bf taking zero values. In this case, considering the

primal feasibility of wf to this system, we obtain the following.∑
a∈A

cfax
f
a ≤ 0

yfu − yfv +
F∑
f=1

xfu,v ≥ 0 ∀(u, v) ∈ A

 for f = 1, . . . , F. (3.34)

Recall that cfa ≥ 0 for all a ∈ A and f = 1, . . . , F by assumption. Therefore, (3.34)

implies that xf = 0 for any player f . It is easy to see that in this case, we must have

yfu − yfv ≥ 0 ∀(u, v) ∈ A, for f = 1, . . . F. (3.35)

The inner-product qTw can be decomposed as follows.

qTw =
F∑
f=1

q̄f
T

wf

=

f∑
f=1

ofT
xf
yf

+ d0Tλf + bfβf


=

F∑
f=1

(yf
sf
− yf

tf
) + d0Tλf + bfβf .

(3.36)

Since w ∈ (SOL(0,M)), λf , βf ≥ 0. Furthermore, d0, bf ≥ 0 by assumption. Clearly,

d0Tλf + bFβf ≥ 0 for f = 1, . . . F .

Thus it only remains to verify that the objective function terms are non-negative.

Consider any sf − tf path Pf . By assumption, there must be at least one such path
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for each player f . By summing up the inequalities (3.35) over the arcs in the path

Pf , we obtain the desired result. In other words,∑
(u,v)∈Pf

yfu − yfv = yf
sf
− yf

tf
≥ 0. (3.37)

We have thus shown that q̄f
T
wf ≥ 0 for f = 1, . . . , F . Summing up over the players,

the proof is completed.

Using the Lemmas 3.3.3 and 3.3.4, we can now state the following result (Theorem

4.4.13 in [25]) about Lemke’s method as it applies to LCP(q,M).

Theorem 3.3.5 ( [25]) If M is copositive and q ∈ (SOL(q,M))∗, then Lemke’s

method will always compute a solution, if the problem is nondegenerate3

In contrast to the LCP approach for solving DSPI games under continuous inter-

diction, we have not found a simple or efficient reformulation to solve DSPI games

under discrete interdiction (in a centralized manner). In this context, we note that

the two-player DSPI game with discrete interdiction may be formulated as a bima-

trix game. It is well known that the mixed strategy Nash equilibria to a bimatrix

game can be found by solving an LCP. However, for general DSPI games with more

than two players, there is no equivalent bimatrix-like game formulation. Motivated

by these difficulties, we also explore decentralized approaches to solve DSPI games,

which we describe in the next section.

Gauss-Seidel Algorithm

We first present the simplest form of a best-response-based algorithm. The idea

is simple: starting with a particular feasible decision variable vector for each agent

χ0 = (χ1
0, χ

2
0, . . . , χ

F
0 ), solve the optimization problem of a particular agent, say, agent

1, with all of the other agents’ actions fixed. Assume an optimal solution exists to

3A detailed discussion of degeneracy and cycling in Lemke’s method can be found in Section 4.9
of [25].



54

this optimization problem, and denote it as χ1∗. The next agent, say, agent 2, solves

its own optimization problem, with the other agents’ actions fixed as well, but with

χ1
0 replaced by χ1∗. Such an approach is often referred to as a diagonalization scheme

or the Gauss-Seidel iteration, and for the remainder of this paper we use the latter

name to refer to this simple best-response approach.

Consider applying the Gauss-Seidel iteration to a GNEP, with each agent solving

the optimization problem (1.1). We will refer to agent f ’s individual’s problem as

P(χ−f ). The Gauss-Seidel iterative procedure is presented in Algorithm 1 below.

Algorithm 3 Gauss-Seidel Algorithm for a GNEP

Initialize. Choose χ0 = (χ1
0, . . . , χ

F
0 ) with χf0 ∈ Ξf (χ−f0 ) ∀f ∈ F . Set k ← 0.

Step 1:

for f = 1, 2, . . . , F do

Set χ−fk,f ← (χ1
k+1, . . . , χ

f−1
k+1, χ

f+1
k , . . . , χFk );

Solve P(χ−fk,f ) to obtain χfk+1.

end for

Set χk+1 ← (χ1
k+1, . . . , χ

F
k+1).

Set k ← k + 1.

Step 2:

if χk satisfies termination criteria, then STOP.

else GOTO Step 1.

The Gauss-Seidel algorithm can be directly applied to compute an equilibrium of a

DSPI game with discrete interdiction. Note that updates in agent f ’s decisions occur

at iteration k only if there is a strict increase in the agent’s payoff at the iteration.

For finite termination, we fix a tolerance parameter ε and use the following stopping

criterion:

‖χk − χk−1‖ ≤ ε. (3.38)
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Since the variables χk are integral for discrete interdiction problems, choosing ε < 1

will ensure that the algorithm terminates only when successive outer iterates are

equal.

Proposition 3.3.4 Suppose that the Gauss-Seidel algorithm (Algorithm 4) is applied

to the DSPI game with discrete interdiction, and the termination criterion (3.38) is

used with ε < 1. If the algorithm terminates at χk, then χk is an equilibrium to this

problem.

Proof Since the variables χk are integral for discrete interdiction problems, choosing

ε < 1 for the termination criterion will ensure that the algorithm terminates only when

successive outer iterates are equal. Consequently, by the assumption, χk−1 = χk at

termination. This also implies that χ−fk−1,f = χ−fk for f = 1, . . . , F . By construction

of χk, we must then have

χfk = argmin
χf∈Ξf (χ−f

k )

θf (χf , χ−fk ).

Clearly, χk must then be an equilibrium.

Proposition 3.3.4 establishes Algorithm 3 as a heuristic to solve the DSPI game

with discrete interdiction. However, there is no guarantee that the algorithm will in

fact converge, despite the fact that the DSPI game possesses a potential function.

While general results on convergence of best response dynamics for potential games

have been well-established in literature, the difficulty here in showing convergence lies

in the fact that we are dealing with a GNEP, in which each agent’s feasible region is

affected by other agents’ actions, and such coupling constraints do not have the same

functional form for each agent. As a result, any intermediate points resulting from

an agent’s best responses need not be feasible in the other agents’ problems.

We note however that it is possible to detect when the algorithm fails to con-

verge. Recall that Ξf (χ−f ) ⊆ Kf for each agent f ∈ F , where Kf is defined in

(3.13). Moreover, the set
∏F

f=1K
f is finite. Any intermediate point χk generated by

Algorithm 3 must certainly satisfy the budgetary constraints on xfk and the bound
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constraints on yfk for each agent f . Therefore χk ∈
∏F

f=1K
f . In other words, the set

of possible points χk generated by Algorithm 3 lies in a finite set. This means that

if the algorithm fails to converge, it must generate a sequence that contains at least

one cycle. The existence of such cycles in non-convergent iterate paths can then be

used to detect situations in which the algorithm might fail to converge.

Proposition 3.3.4 is likely the best one can do for general DSPI games under

discrete interdiction. However, for the subclass of such games with common source-

target pairs, we can in fact prove that the best response dynamics always terminates

in a NE in a finite number of steps.

Proposition 3.3.5 Consider a DSPI game with discrete interdiction with common

source-target pairs, and assume that the initial arc lengths d and arc extensions e are

integral. Suppose that Algorithm 4 is applied to such a problem, and the termination

criteria (3.38) is used with ε < 1. Then the algorithm will terminate finitely at an

equilibrium.

Proof Denote the common source node as s, and the common target node as t.

The set of joint feasible strategies in x under the given assumptions is a finite set.

Moreover, all the agents attempt to minimize the common objective, namely the s-t

path length. Note that at any iteration k at which an update occurs for any agent’s

decision, there must then be a strict increase in the s-t path length. Thus there can be

no cycles in the sequence {χk}. Furthermore, since the set of joint feasible strategies

is finite, the sequence must terminate at some point χ∗. It is easy to show that χ∗

must be an equilibrium (cf. Proposition 3.3.4).

For DSPI games with continuous interdiction, establishing the convergence result

for a best-response type algorithm is more involved. Even for typical Nash equi-

librium problems with no constraint interactions, the simple implementation of the

Gauss-Seidel algorithm described in Algorithm 1 may not work. To obtain better

convergence properties, we need a regularization scheme, as shown next.
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Regularized Gauss-Seidel Algorithm

It can be shown that the basic diagonalization scheme of solving individual agent

problems in sequence and updating agent decision variables at each step may not

converge to an equilibrium even for GNEPs with favorable properties such as contin-

uously differentiable and convex objective functions. However, Facchinei et al. [38]

showed that under certain assumptions, we can overcome this issue by adding a reg-

ularization term to the individual agent’s problem solved in a Gauss-Seidel iteration.

The regularized version of the optimization problem for agent f ∈ F is

maximize
χf

θf (χf , χ−f )− τ
∥∥χf − χf∥∥2

subject to χf ∈ Ξf (χ−f ),

(3.39)

where τ is a positive constant. Here the regularization term is evaluated in relation to

a candidate point χf . Note that the point χf and the other agents’ decision variables

χ−f are fixed when the problem (3.39) is solved in a regularized Gauss-Seidel iteration.

For ease of notation, we will refer to problem (3.39) as R(χ−f , χf ).

The regularized Gauss-Seidel procedure is given in Algorithm 4. As the name

indicates, the agents’ optimization problems contain a regularization term, and are

solved in sequence. The regularization term ensures that problem (3.39) has a unique

optimal solution so that the algorithm is well defined. The algorithm is set to termi-

nate when the outer iterates become sufficiently close to each other; in other words,

the termination condition is given in (3.38).

This version of the algorithm was originally presented in [38] to solve potential

GNEPs with shared constraints. Since DSPI games are GNEPs of non-shared con-

straints, we use Algorithm 4 as a heuristic algorithm to solve DSPI games under

continuous interdiction.

Proposition 3.3.6 Let {χk} be the sequence generated by applying Algorithm 4 to

the DSPI problem under continuous interdiction, wherein each agent solves (3.10).

Suppose {χk} converges to χ̄. Then χ̄ is an equilibrium to the DSPI problem.
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Algorithm 4 Regularized Gauss-Seidel Algorithm for a GNEP

Initialize. Choose χ0 = (χ1
0, . . . , χ

F
0 ) with χf0 ∈ Ξf (χ−f0 ) ∀f ∈ F . Set k ← 0.

Step 1:

for f = 1, 2, . . . , F do

Set χ−fk,f ← (χ1
k+1, . . . , χ

f−1
k+1, χ

f+1
k , . . . , χFk );

Set χf ← χfk ;

Solve R(χ−fk,f , χ
f ) to obtain χfk+1.

end for

Set χk+1 ← (χ1
k+1, . . . , χ

F
k+1).

Set k ← k + 1.

Step 2:

if χk satisfies termination criteria, then STOP.

else GOTO Step 1.

Proof Since χk → χ̄ we must have χfk → χ̄f and

lim
k→∞

∥∥∥χfk+1 − χ
f
k

∥∥∥ = 0. (3.40)

By construction of χk,f , (3.40) implies that

lim
k→∞

χk,f = χ̄. (3.41)

By Step 1 of Algorithm 4, χfk+1 ∈ Ξf (χ−fk,f ). Since χfk+1 → χ̄f , χ−fk → χ̄−f , and

Ξf (χ−fk,f ) is defined by linear inequalities parametrized by χ−fk,f , it is straightforward

to see by continuity arguments that χ̄f ∈ Ξf (χ̄−f ). In other words, χ̄ is feasible for

every agent’s optimization problem (1.1).

We claim that for each agent f ∈ F

θf (χ̄f , χ̄−f ) ≥ θf (χf , χ̄−f ), ∀ χf ∈ Ξf (χ̄−f ).

For the purposes of establishing a contradiction, let there be an agent f̄ and a vector

ξ̄f̄ ∈ Ξf̄ (χ̄−f̄ ) such that

θf̄ (χ̄f̄ , χ̄−f̄ ) < θf̄ (ξ̄f̄ , χ̄−f̄ ).



59

We established in the proof of Proposition 3.3.1 that the set valued mapping Ξf̄ (·)

satisfies inner semicontinuity relative to its domain. Using the definition of inner

semicontinuity (cf. [86] Chapter 5, Section B), and because χ̄−f̄ ∈ dom(Ξf̄ (·)), we

then have

lim inf
ξ−f̄→χ̄−f̄

Ξ(ξ−f̄ ) ⊃ Ξ(χ̄−f̄ ), (3.42)

where the limit in (3.42) is given by the following:

lim inf
ξ−f̄→χ̄−f̄

Ξ(ξ−f̄ ) =
{
uf̄ | ∀χ−f̄k → χ̄−f̄ ,∃uf̄k → u with uf̄k ∈ Ξf̄ (χ−f̄k )

}
. (3.43)

Since ξ̄f̄ ∈ Ξf̄ (χ̄−f̄ ), equations (3.41), (3.42) and (3.43) allow us to construct a se-

quence ξf̄k ∈ Ξf̄ (χ−f̄k,f ) such that ξf̄k → ξ̄f̄ as k →∞.

Let df̄ = (ξ̄f̄− χ̄f̄ ). Then by the subdifferentiality inequality for concave functions

we must have

θ′f̄ (χ̄f̄ , χ̄−f̄ ; df̄ ) > 0. (3.44)

Denote by Φf the regularized objective function for agent f ’s subproblem. In other

words,

Φf (χf , χ−f , z) = θf (χf , χ−f )− τ
∥∥χf − z∥∥2

.

We then have

Φ′f (χf , χ−f , z; df ) = θ′f (χf , χ−f ; df )− 2τ(χf − z)Tdf .

Note that χf̄k+1 is obtained by solving the problem R(χ−f̄
k,f̄
, χf̄k). In other words,

χf̄k+1 maximizes Φf̄ (ξf̄
k,f̄
, χ−f̄

k,f̄
, χf̄k) over the set Ξf̄ (χ−f̄

k,f̄
). Since this is a concave max-

imization problem, we then apply first order optimality conditions to obtain the

following.

Φ′f̄ (χf̄k+1, χ
−f̄
k,f̄
, χf̄k ; (ξf̄k − χ

f̄
k+1)) = θ′f̄ (χf̄k+1, χ

−f̄
k,f̄
, χf̄k ; (ξf̄k − χ

f̄
k+1))

+ 2τ(χf̄k+1 − χ
−f̄
k )(ξf̄k − χ

f̄
k+1)

≤ 0.

(3.45)

Passing to the limit k →∞, k ∈ K and using (3.41) we obtain 0 ≥ θ′f̄ (χ̄f , χ̄−f ; (ξ̄f −

χ̄f )) which contradicts (3.44).
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The proof of this theorem, though a straightforward adaptation of Theorem 4.3

in Facchinei et al. [38] does differ in one key aspect. We assume that the entire

sequence {χk} converges to χ̄. This is a strong assumption in the sense that it also

requires that all the intermediate points χk,f to converge to χ̄, a fact key to proving

that χ̄ is indeed an equilibrium. In contrast, for GNEPs with shared constraints, the

feasibility of the intermediate points ensures their convergence even to cluster points

of the sequence generated by the algorithm.

3.3.3 Numerical Results

We use the algorithms presented in the previous section to study several instances

of DSPI games. The decentralized algorithms were implemented in MATLAB R2010a

with CPLEX v12.2 as the optimization solver. The LCP formulation for the DSPI

game with continuous interdiction was solved using the MATLAB interface for the

complementarity solver PATH [40]. Computational experiments were carried out on a

desktop workstation with a quad-core Intel Core i7 processor and 16 GHz of memory

running Windows 7.

For DSPI games with discrete interdiction, we used Algorithm 3. For DSPI games

with continuous interdiction, we applied a combination of Algorithm 3 and Algorithm

4. In particular, we first tried Algorithm 3, and then used Algorithm 4 if Algorithm

3 failed to converge to an equilibrium. We pursued this strategy since the number

of outer iterations until Algorithm 4 converged was found to be quite sensitive to

the regularization parameter τ , typically resulting in slow convergence rates for the

algorithm. Since the running time for Algorithm 3, especially with the outer iterations

restricted to a maximum of 1000, was quite short relative to the running time for

Algorithm 4, it seemed reasonable to try using Algorithm 3 first, and use Algorithm

4 only as necessary.
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Computing Equilibria

First, we applied the algorithm to Example 3 in Section 3.3.1, which is a DSPI

game with continuous interdiction. In particular, the network is given in Figure 3.2

and there are 2 agents: agent 1 has an adversary with source node 1 and target node

5, and agent 2 has an adversary with source node 1 and target node 6. Both agents

have an interdiction budget of 1. The initial arc lengths are 0, and the interdiction

costs are equal for both agents and are given as the arc labels in Figure 3.2, with

ε = 2. We set the regularization parameter τ = 0.01. We were able to obtain a

solution within an accuracy of 10−6 in 3 outer iterations.

Furthermore, we obtained multiple Nash equilibria by varying the starting point

of the algorithm. All the equilibria obtained resulted in the same shortest path

lengths for each agent. Some of the equilibria obtained are given in Table 3.3. The

column x0 represents the starting interdiction vector for each agent; while x1
N and x2

N

give the equilibrium interdiction vectors for agents 1 and 2, respectively. The seven

components in the vectors of x0, x1
N and x2

N represent the interdiction actions at each

of the seven arcs in Figure 3.2, with the arcs being ordered as follows: first, the top

horizontal arcs (1, 2) and (2, 3), then the vertical arcs (1, 4), (2, 5) and (3, 6), and

finally the bottom horizontal arcs (4, 5) and (5, 6). The remaining two columns in

Table 3.3 , p1 and p2, give the shortest path lengths for agents 1 and 2 respectively,

at the equilibrium χN .

a1 a2 a3 . . . aF aF+1

b1 b2 b3 . . . bF bF+1

1 + ε 1 + ε

1 + ε 1 + ε

1 1 1

1 + ε 1 + ε 1 + ε

1 + ε 1 + ε 1 + ε

1 1

Figure 3.3. Network structure for DSPI Example 5
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Table 3.3.
Multiple equilibria for the instance of the DSPI game in Example 2

x0 x1
N x2

N p1 p2

(0, 0, 0, 0, 0, 0, 0) (0, 0, 0.5, 0.5, 0, 0, 0) (0, 0, 0.1667, 0.1667, 0.6667, 0) 0.6667 0.6667

(0.2, 0.2, 0, 0, 0, 0, 0) (0, 0, 0.6, 0.4, 0, 0, 0) (0, 0, 0.0667, 0.2667, 0.6667, 0) 0.6667 0.6667

(0, 0, 0, 0, 0, 0.2, 0.2) (0, 0, 0.4, 0.6, 0, 0, 0) (0, 0, 0.2667, 0.0667, 0.6667, 0) 0.6667 0.6667

(0, 0, 0, 0, 0, 0.3, 0.3) (0, 0, 0.35, 0.65, 0, 0, 0) (0, 0, 0.3167, 0.0167, 0.6667, 0) 0.6667 0.6667

(0.3, 0.3, 0, 0, 0, 0, 0) (0, 0, 0.65, 0.35, 0, 0, 0) (0, 0, 0.0167, 0.3167, 0.6667, 0) 0.6667 0.6667

(0.25, 0.25, 0, 0, 0, 0, 0) (0, 0, 0.625, 0.375, 0, 0, 0) (0, 0, 0.0417, 0.2917, 0.6667, 0) 0.6667 0.6667

(0, 0, 0, 0, 0, 0.25, 0.25) (0, 0, 0.375, 0.625, 0, 0, 0) (0, 0, 0.2917, 0.0417, 0.6667, 0) 0.6667 0.6667

(0, 0, 0, 0, 0, 0.15, 0.15) (0, 0, 0.425, 0.575, 0, 0, 0) (0, 0, 0.2417, 0.0917, 0.6667, 0) 0.6667 0.6667

(0.15, 0.15, 0, 0, 0, 0, 0) (0, 0, 0.575, 0.425, 0, 0, 0) (0, 0, 0.0917, 0.2417, 0.6667, 0) 0.6667 0.6667

Example 5 To test the algorithm on problems with larger scale, we expanded the

network in Example 3 with varying graph sizes and numbers of agents. For F agents,

the graph contains 2(F + 1) vertices with the edges as shown in Figure 3.3. The

source vertex for all agents is a1. The target vertex for a given agent f is bf+1. The

initial arc lengths are all assumed to be zero. The interdiction costs are the same

for all the players and are given as the arc labels in Figure 3.3. All the agents are

have an interdiction budget of 1. The cost parameter ε is chosen as 2. For discrete

interdiction on these graphs, arc extensions are assumed to be by a length of 1.

The running time and iterations required to compute equilibria for these instances

are summarized in Table 3.4 and Table 3.5. Table 3.4 gives the number of outer iter-

ations and runtime for Algorithm 3 over these instances with continuous interdiction.

For an empirical comparison between the decentralized and centralized approaches,

the performance of Lemke’s method for the LCP formulation is given in the last

column of the table. The results indicate that the running time for the centralized

method increases monotonically with the problem size. However, the running time

for the decentralized method depends not just on the problem size but also on the

number of outer iterations. In general, there is no correlation between these two
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parameters. Indeed the algorithm is observed to converge in relatively few iterations

even for some large problem instances. This is in stark contrast to the rapid increase

in running time observed for the LCP approach as problem size increases.

It must be noted that the order in which the individual agent problems are solved

in Algorithm 3 plays an important role. Indeed it was found that the algorithm could

fail to converge for certain agent orders, while succeeding to find equilibria quickly

for the same instance with a different ordering of agents. For instance, for a network

of size 25, solving the agent problems in their natural order {1, 2, . . . , 25} resulted

in the failure of Algorithm 3 to converge even after 1000 outer iterations. However,

with a randomized agent order, the algorithm converged in as few as 13 iterations.

It is encouraging to note that for the same agent order that resulted in the failure

of Algorithm 3, the regularized method Algorithm 4 converged to a GNE within 394

outer-iterations with a runtime of 28 wall-clock seconds.

Table 3.4.
Number of iterations and running times for DSPI Example 5 under con-
tinuous interdiction.

Decentralized LCP

# Agents # Iterations Runtime (s) Runtime (s)

5 3 0.0205 0.0290

10 5 0.0290 0.1833

15 11 0.1103 0.7534

20 5 0.0723 2.1106

25 13 0.2609 4.8167

30 15 0.4070 10.2256

35 10 0.3605 17.7387

40 41 1.7485 30.2382

45 12 0.6601 48.6280

50 12 0.7981 75.0420
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Table 3.5.
Number of iterations and running times for DSPI Example 5 under dis-
crete interdiction.

# Agents # Iterations Runtime (s)

5 5 0.1776

10 3 0.1627

15 3 0.2419

20 3 0.3164

25 3 0.4005

30 3 0.5155

35 3 0.5948

40 3 0.7387

45 3 0.8794

50 3 1.0385

Computation of Efficiency Losses

Using the decentralized algorithm and its potential to find multiple equilibria by

starting at different points, we empirically study the efficiency loss of decentralized

interdiction strategies in DSPI games. We focus first on Example 5, with the un-

derlying network represented in Figure 3.3. Before computing the average efficiency

losses empirically using our algorithms, we first establish a theoretical bound on the

worst-case price of anarchy, for the purpose of comparison.

Recall that there are F agents and the source-target pair for agent f is (a1, bf+1).

Noting that all paths for all agents contain either the arc (a1, a2) or the arc (a1, b1),

one feasible solution to the centralized problem is for each agent to interdict both

these arcs by 1/(2 + ε) for a total cost of 1. In this case the length of both arcs

become n/(2+ ε), giving a shortest path length of n/(2+ ε) for each agent. Note that
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this is not an equilibrium solution as agent 1 can deviate unilaterally to interdict arcs

(a1, b1) and (a2, b2) by 1/2 to obtain a shortest path length of (n+ ε/2)/(2 + ε).

A Nash equilibrium to this problem is given by the following solution. Agent f

interdicts the vertical arcs (a1, b1), . . . , (af , bf ) by 1/(f(f+1)) and the arc (af+1, bf+1)

by f/(f + 1). Each agent then has a shortest path length of n/(n + 1). Note that

all the sf -tf paths are of equal length for every agent. Therefore diverting any of the

budget to any vertical arc will result in unequal path lengths and a shorter shortest

path for any agent. Obviously, diverting the budget to interdict any of the horizontal

arcs is cost inefficient because of their higher interdiction cost 1 + ε. Thus no agent

has an incentive to deviate from this solution.

We now have a feasible solution to the centralized problem that has an objective

value of n/(2 + ε) for each agent, and a Nash equilibrium that has an objective value

of n/(n+ 1) for each agent. Therefore, the worst-case price of anarchy for the DSPI

game depicted in Figure 3.3 must be at least (n+ 1)/(2 + ε).

Using the regularized Gauss-Seidel algorithm we also compute lower bounds on the

worst-case price of anarchy and average efficiency losses for the same network topology

with varying number of agents. The instances we consider are obtained by varying ε

uniformly in the range of (1.5, 10). For purposes of comparison, the numerical results

are plotted in Figure 3.4 below. Note that the average-case efficiency loss is much

lower than the worst-case price of anarchy. For the particular graph structure under

consideration, we observe that the average efficiency loss grows at a much lower rate

than the worst-case efficiency loss. However this observation cannot be generalized

to other graph structures and such patterns may only be discernible by applying the

computational framework we presented.

Example 6 We further tested the decentralized algorithms for continuous interdic-

tion on random graphs to study average efficiency losses of equilibria of DSPI games

on networks with different topologies. To generate random graphs, we took the num-

ber of vertices and the density of the graph – the number of arcs in the random graph

divided by the maximum possible number of arcs – as inputs. The number of agents
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Figure 3.4. Efficiency loss with respect to the number of agents.

was chosen randomly from the interval (0, |V |/2); one agent set size was chosen per

vertex set size. Source-target pairs were chosen at random for each interdictor. Fix-

ing the vertex set, we populated the arc set by successively generating source-target

paths for the players until the desired density was reached. We thus ensured connec-

tivity between the source-target pairs for each player. Costs, initial arc lengths and

interdiction budgets were chosen from continuous uniform distributions. Arc inter-

diction costs were assigned uniformly in the range [1, 5]. The budget for each agent

was chosen uniformly from the interval [bf/10, bf/2], where bf =
∑

a∈A c
f
a. The initial

length of each arc was chosen uniformly from [1, 5].

For each combination of vertex set size, agent set size and graph density, we

generated 25 random instances by drawing values from the uniform distributions

described above for the various network parameters. For each instance, we used 10

different random permutations of the agents to run the decentralized algorithms in

an attempt to compute multiple equilibria. The lower bound on the price of anarchy

for the game was computed as the worst case efficiency loss over these 25 instances.
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The average efficiency loss over these instances was also computed. The results are

summarized in Table 3.6. Our experiments indicate that the average efficiency loss

and the worst-case price of anarchy tend to grow as the number of vertices and number

of agents increases; on the other hand, these measures of efficiency loss sometimes

do not appear to be monotonically increasing or decreasing in the density of the

underlying network.

Table 3.6.
DSPI Continuous Interdiction - Random Graphs

# Vertices # Agents Density Avg. Run Time (s) # Avg Iter. a.e.l p.o.a

5 3 0.25 0.0037 3 1.3133 1.5561

5 3 0.5 0.0038 3 1.3265 1.9529

5 3 0.75 0.0040 3 1.5099 2.3829

10 3 0.25 0.0065 4 1.5366 2.2078

10 3 0.5 0.0176 11 1.4538 2.3114

10 3 0.75 0.0132 8 1.4273 2.1342

15 4 0.25 0.0263 11 1.7091 2.9246

15 4 0.5 0.0939 33 1.7524 2.7904

15 4 0.75 0.1267 42 1.5695 2.1425

20 5 0.25 0.1269 34 2.1907 3.2885

20 5 0.5 0.2087 43 1.8523 2.7906

20 5 0.75 0.5416 100 1.7967 2.3782

25 7 0.25 0.7167 105 2.5631 4.8788

25 7 0.5 1.9564 207 2.3022 5.5794

25 7 0.75 1.8476 158 1.9884 2.4423

3.4 Decentralized Max-Flow Interdiction Games

In this section, we analyze decentralized max-flow interdiction games (DMFI)

models. These models may be used to describe situations in which adversaries wish

to maximize the flow of some good between two nodes on a network. The interdictors’
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aim is to minimize this maximum flow by means of taking actions to reduce arc

capacities on the network.

Formally, let the network on which the various agents act be described by the

digraph G = (V,A). Each arc (i, j) ∈ A has a capacity uij. For agent f ∈ F , the

adversary wishes to maximize the flow between source node sf and target node tf .

Agent f then wishes to minimize the maximum flow sf − tf flow. Each agent f then

solves the following optimization problem:

min
xf

θf (xf , x−f ) =


max
y

yf
tf sf

s.t.
∑
v∈V

yfuv −
∑
v∈V

yfvu = 0, ∀u ∈ V

yfa ≤ ua(x
f , x−f ), ∀a ∈ A\{(tf , sf )}


s.t.

∑
(u,v)∈A

cfuvx
f
uv ≤ bf

xfuv ≥ 0, ∀(u, v) ∈ A.

(3.46)

The x variables represent the actions of the interdictor, while the y variables represent

the decisions of the adversaries. That is, yuv is the flow on arc (u, v) on the aftermath

network. Note that by a standard construction, we add an artificial arc (t, s) to the

network and maximize the back flow on this arc.

As in the DSPI game, the effect of interdiction decisions (xf , x−f ) on the arc ca-

pacities depend on the type of interdiction. If interdiction is assumed to be continuous

and additive, then the relationship is given as follows:

uij(x
f , x−f ) = max

{
(u0

ij −
F∑
f=1

xfij), 0

}
, (3.47)

where xf is restricted to be component-wise non-negative.

If on the other hand interdiction is binary, the arc capacities are given by

uij(x
f , x−f ) = u0

ij(1− max
f∈{1,...,F}

xfij), (3.48)

and the xf variables are assumed component-wise binary.
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We leverage LP duality on the inner max flow problem to reformulate the DMFI

problem for player f as follows.

min
xf ,βf ,αf

∑
(i,j)∈A

βfijuij(x
f , x−f )

subject to βfij + αfi − α
f
j ≥ 0 ∀(i, j) ∈ A

αf
tf
− αf

sf
≥ 1

βfij ≥ 0, ∀(i, j) ∈ A.

(3.49)

Note that the strategic interaction between the players are restricted to the objective

functions of each player. Thus the model presented above is a typical NEP. However,

for DMFI games under continuous interdiction, the capacities uij are linear functions

of the interdiction variables x. Thus the objective function in problem (3.49) contains

non-convex bilinear terms. This makes the analysis of the DMFI model difficult. Note

that by standard combinatorial arguments, it is possible to argue that the variables

α and β can be restricted to be binary. However, in this case we end up with integer

programming models for each player’s optimization problem. We look at such a

formulation as an alternative to (3.49).

minimize
∑

(i,j)∈A

uijβ
f
ij

subject to αfj − α
f
i ≤ βfij +

uij − uij(xf , x−f )
uij

, ∀(i, j) ∈ A

αf
tf
− αf

sf
≥ 1∑

(i,j)∈A

cfijx
f
ij ≤ bf

xfij ≥ 0, ∀(i, j) ∈ A

0 ≤ βfij ≤ 1, ∀(i, j) ∈ A

αfi ∈ {0, 1}, ∀i ∈ V.

(3.50)

The variables α ∈ {0, 1}|V | represent an sf − tf cut on the graph G, αi being 1 if i is

on the tf side of the cut and 0 other wise. The parameter ufij is the initial capacity of

the arc (i, j). The variables βfij capture the fractional capacity remaining in the arc
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(i, j) on the cut defined by α. Thus the objective minimizes the capacity of the cut,

which is equivalent to maximizing the sf − tf flow.

3.4.1 Game Structure and Analysis

Generalized Nash Equilibrium Problem formulation

It is fairly straightforward to see that the model for the DMFI game where each

player’s problem is formulated as (3.49) is a typical NEP. On the other hand the

alternative formulation given in (3.50) is a GNEP, where the variables and functions

can be given as follows.

χf = (xf , βf , αf ),

θf (χf , χ−f ) =
∑

(i,j)∈A

uijβ
f
ij,

Ξf (χ−f ) =



χf = (xf , βf , αf )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αfj − α
f
i ≤ βfij +

uij − uij(xf , x−f )
uij

, ∀(i, j) ∈ A

αf
tf
− αf

sf
≥ 1∑

(i,j)∈A

cfijx
f
ij ≤ bf

xfij ≥ 0, ∀(i, j) ∈ A

0 ≤ βfij ≤ 1, ∀(i, j) ∈ A

αfi ∈ {0, 1}, ∀i ∈ V.

xf ∈ Xf



.

(3.51)

Existence of Equilibria

Existence analysis for the general DMFI game is difficult for the following reasons.

Under continuous interdiction, the formulation presented in (3.49) is an NEP with

non-convex bilinear objective functions. Although existence results can be shown for
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NEPs with quasiconvex or pseudoconvex objective functions, results for more general

nonconvex games are usually not available. Thus, in the absence of a straightforward

method to place the formulation within a tractable subclass such as potential or

supermodular games, providing an existence guarantee for this formulation remains

an open question.

On the other hand the formulation given in (3.50) is a GNEP where the functions

involved are linear in all the variables under continuous interdiction (after a suitable

transformation of the positive part term in the capacity functions). It seems possible

in this case to apply Theorem 3.3.1 to this formulation. However, the main difficulty

in this case is that while the functions involved are linear, there are integer variables

in the formulation. Thus the semicontinuity of the feasible set becomes questionable.

As such, we have not been able to provide the required semicontinuity proof that

guarantees existence of solutions to this GNEP formulation for the DMFI game.

As with the DSPI game, if we restrict our attention to case with common adver-

saries, i.e. a DMFI game where each interdictor attempts to minimize the maximum

flow between a common pair of nodes s and t, we can provide stronger results. In

essence, since the source and sink are the same for all the players, we can omit the

superscript f from the inner minimization problem in (3.46). In this case the ob-

jective function (without the superscript) θ(x) provides a natural potential function

for the primal NEP formulation for the game given in (3.46). Since the feasible set

for each player is compact under the continuous interdiction case, and finite under

the discrete interdiction case, we can guarantee existence of a solution which is the

potential minimizer. We formally present the result below.

Proposition 3.4.1 For the DMFI game, an equilibrium always exists if the source

and target nodes are the same for each player, i.e. sf = s and tf = t for f = 1, . . . , F .
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3.5 Minimum Cost Flow Interdiction

In the minimum cost flow interdiction game, the adversaries attempt to minimize

a linear cost flow function. The leaders attempt to maximize this min cost function

for their adversaries by using their resources to increase the adversary’s costs on each

arc.

3.5.1 Formulation

The players operate on the same network structure given by G = (V,A). We

are given demands at each node di such that
∑
i∈V

di = 0 and cost functions for each

adversary given by the vector c̄f . The min cost flow interdiction problem for each

interdictor may then be formulated as

max
xf

θf (xf , x−f ) =



min
z

∑
(i,j)∈A

zfij c̄
f
ij

s.t.
∑
j∈V

zfij −
∑
j∈V

zfji = dfi

zfij ≤ ufij(x
f , x−f ), ∀(i, j) ∈ A

zfij ≥ 0, ∀(i, j) ∈ A.


s.t.

∑
(i,j)∈A

cfijx
f
ij ≤ bf .

(3.52)

Using the dual of the inner minimization problem, we may reformulate (3.52) into

the following single level problem.

max
xf ,αf ,βf

∑
i∈V

dfi α
f
i −

∑
(i,j)∈A

ufij(x
f , x−f )βfij

s.t. αfi − α
f
j − β

f
ij ≤ c̄fij, ∀(i, j) ∈ A

βf ≥ 0∑
a∈A

cfax
f
a ≤ bf .

(3.53)
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If interdiction is additive and continuous, then the arc capacities are given by

uij(x
f , x−f ) = max

{
u0
ij −

F∑
f=1

xfij, 0

}
.

Under binary interdiction the arc capacities are given by

uij(x
f , x−f ) = u0

ij(1− max
f∈{1,...,F}

xfij).

3.5.2 Game Structure and Analysis

Out of the three types of decentralized network interdiction games, the minimum

cost flow version presents the most difficulties for analysis. This is not surprising

considering the fact that we cannot restrict the variables α and β to be binary. The

objective function also contains a biliear term in x and β. In the form given in (3.53),

the problem is an NEP with a non-convex (bilinear) objective and a polyhedral feasible

set.

One possible approach to analyze this problem is to push the bilinear term con-

taining the x variables into the constraint set. In this case we end up with a GNEP

with a linear objective and a non-convex feasible set, which nonetheless consists of in-

equalities with continuous functions. This formulation has a potential function much

like the formulations for the DSPI and DMFI games since the objective functions

end up independent of each other. We may then use the machinery of the objective

function and use the regularized Gauss-Seidel algorithm for non-convex problems.

However this formulation yields us no insight to prove existence of equilibria.

Another avenue to show existence of equilibria under continuous interdiction is to

look at the formulation (3.52) directly and show that it admits a potential function.

Under discrete interdiction, if we can show that the dual variables α and β take

discrete values, then existence of equilibria as well as convergence of best response

chains will follow from the potentiality property applied to finite games.
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4. POTENTIAL GAMES UNDER EXOGENOUS

UNCERTAINTY

The models presented in the previous chapter focus primarily on decentralized deci-

sion making in the deterministic setting, i.e. when all the problem parameters and

functions are known to all the players with certainty. The remainder of this disserta-

tion looks into the problem of studying the convergence of decentralized algorithms in

cases when some of the underlying parameters in each player’s problem is subject to

uncertainty. Specifically, we consider scenarios where the uncertainty is external, or

as we call it “exogenous”, by which we mean that the structure of the uncertainty is

known to all the players a priori. In other words, information such as the probability

distributions of random vectors is available to all the players.

The main goal of our research is to design appropriate sampling or approximation

schemes, which may be used in conjunction with decentralized algorithms, to compute

the solutions of NEPs under exogenous uncertainty. We utilize some recent advances

in the theory of approximations for NEPs, as well as decomposition methods for cer-

tain structured non-convex optimization problems, to obtain the desired convergence

results for the important class of potential games.

4.1 Introduction

Formally, we consider games involving a set of F players, wherein each player f

controls some decision variables xf and solves the following optimization problem:

minimize
xf

φf (x) = E [θf (xf , x−f ; ξ)]

subject to xf ∈ Xf .
(4.1)
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The objective function for player f depends not only on her own decision variables xf

and the other players’ variables denoted by x−f , but also on a common random vector

ξ that represents underlying uncertainty factors that affect all the players’ decisions.

Given the other players’ decisions, each player f attempts to minimize the expected

value of her objective function over the probability space (Ω,F , P ) for ξ. In this

sense, the players are assumed to be risk-neutral.

Following standard notation for Nash equilibrium problems as described in Chap-

ter 2, we denote the game defined above as NEP(φf , Xf )
F
f=1. A set of player decision

variables x∗ = (x∗1, . . . , x
∗
F )T ∈ X =

∏F
f=1Xf is a solution to NEP(φf , Xf )

F
f=1 if no

player has an incentive to deviate from x∗. In other words, we have

φf (x
∗
f , x

∗
−f ) ≤ φf (yf , x

∗
−f ) ∀yf ∈ Xf . (4.2)

Recall that a point x∗ ∈ X that satisfies (4.2) is called a solution or a Nash

equilibrium (NE) to the NEP(φf , Xf )
F
f=1.

For notational clarity, we refer to the problem defined above as SNEP(θf , Xf )
F
f=1.

This is to stress the fact that the NEP in question, i.e. NEP(φf , Xf )
F
f=1 is an equi-

librium problem under exogenous uncertainty. However, note that the two problems

are completely equivalent.

Our interest lies in designing provably convergent decentralized schemes for com-

puting solutions to SNEP(θf , Xf )
F
f=1. To be precise, we wish to design algorithmic

mechanisms wherein given the state of the game as represented by all the players’

decisions, each player may update their decisions solely based on their own payoffs

and constraints.

Specifically, we focus on the two main types of “best-response” mechanisms de-

scribed in Section 2.2 in Chapter 2, i.e. schemes in which at any stage of the algorithm,

each player computes an optimal solution to her own problem (4.1), given the latest

information about the decisions of the other players. The first algorithm we consider

is similar to a non-linear Gauss-Seidel type iterative scheme, where the players take

turns updating their solutions. The scheme is given in Algorithm 1. The second
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type of algorithm we consider updates player decisions in parallel, as opposed to the

sequential update scheme in Algorithm 1. In other words, at the kth iteration of the

algorithm, all the players update their decisions simultaneously taking as given the

decisions of the other players from the previous iteration, i.e. xk−1
−f . This Gauss-Jacobi

type scheme is given below in Algorithm 2.

Aside from their normative value in capturing the selfish rationality of Nash play-

ers, decentralized schemes such as Algorithms 1 and 2 also have the advantage of

being intuitive and easy to implement in practical settings. This is because of the

minimal requirements of information sharing amongst the players. Decentralized

schemes are also attractive computationally, since they are suited for distributed or

parallel computations. For instance, Algorithm 1 may be implemented in such a way

that each player’s problem is solved on local machines while updates are handed out

via minimal communication mechanisms. On the other hand, since player updates

are computed simultaneously in Algorithm 2, the Gauss-Jacobi scheme is eminently

suited for implementation in a parallel computing setting.

Due to these and other advantages, decentralized algorithms have found widespread

popularity amongst practitioners for solving NEPs. However, there remain significant

theoretical challenges in the analysis of such schemes. Indeed, even for the simple

best-response type mechanisms presented in Algorithms 1 and 2, proving convergence

for general NEPs remains an elusive goal. Even in the deterministic setting, these

schemes have been shown to converge to equilibria only for certain classes of games.

In this chapter, our focus is on providing such convergence results for potential

games under exogenous uncertainty. To be precise, the expectation terms in the

objective functions for each player are resolved by a sampling based approximation

scheme. Formally, we consider the following approximation to player f ’s problem:

minimize
xf

φ̂f (x) =
1

N

N∑
j=1

[θf (xf , x−f , ξj)]

subject to xf ∈ Xf .

(4.3)
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Here, player f ’s objective function φf (x) is approximated by φ̂f (x) by using a sample

{ξj}Nj=1 of size N from (Ω,F , P ). For the purposes of our analysis, we assume that

this sample is provided to all the players. The approximation of SNEP(θf , XF )Ff=1

where each player solves (4.3) instead of (4.1) is referred to as SAANEP(φ̂f , Xf )
F
f=1.

The main questions we seek to answer about the approximation scheme are the

following -

1. If we increase the sample size N , can we establish the asymptotic conver-

gence of solutions to SAANEP(φ̂f , Xf )
F
f=1 to solutions of the original game

SNEP(θf , Xf )
F
f=1?

2. Given a sample {ξj}Nj=1 of size N , can we solve SAANEP(φ̂f , Xf )
F
f=1 in a de-

centralized fashion with provable convergence?

4.1.1 Related Literature

There has recently been a lot of interest from the optimization community on

the topic of designing computational schemes to compute solutions to NEPs under

uncertainty. Closely related to our work is the problem of solving stochastic vari-

ational inequalities (SVIs). The exponential convergence of SAA methods for SVI

problems has been shown in [115]. There has also been a growing interest in design-

ing Stochastic Approximation (SA) schemes for SVI problems. Such schemes, where

function values and derivatives are approximated via simulation, have been shown to

converge under mild conditions [51,62]. Various generalizations and extensions of SA

type methods for SVIs, including some distributed methods, have been investigated

in [117]. However, in contrast to our approach, even distributed methods for solving

SVIs usually require some degree of coordination between the players in choosing

step-lengths or other algorithmic parameters.

Additionally, in the case of games under exogenous uncertainty, there is also the

question of resolving the expectation terms that distinguish SNEP(θf , Xf )
F
f=1 from a

deterministic NEP. The approach we use is that of using a Sample Average Approx-
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imation (SAA), φ̂f (·) in place of the expectation function E[φf (·)]. While we use the

SAA functions to directly approximate each player’s optimization problem, SAA can

also be used in conjunction with various reformulations to SNEP(θf , Xf )
F
f=1, including

variational inequality reformulations [37], complementarity reformulations, Nikaido-

Isoda function based optimization reformulations [111] etc. Thus all the reformulation

techniques outlined above lead to centralized algorithms to compute Nash equilibria

under uncertainty. In contrast, we wish to focus on decentralized algorithms.

Best-response mechanisms, such as the Gauss-Seidel and Jacobi methods pre-

sented in Algorithms 1 and 2, constitute the most fundamental forms of decentralized

algorithms for NEPs. As mentioned in Chapter 2, the main difficulty associated with

these algorithms is the theoretical challenge associated with proving their convergence

to equilibria, even in the deterministic setting.

4.1.2 Contributions

The main contribution of the research outlined in this chapter is the design

and analysis of a decentralized approximation scheme for computing the solutions

to SNEP(θf , Xf )
F
f=1 with provable asymptotic convergence. We propose a Sample

Average Approximation (SAA) method to resolve the expected value terms in each

player’s objective function. We utilize the theoretical tool of multi epi-convergence to

show the convergence of solutions to the SAA problem SAANEP(φ̂f , Xf )
F
f=1 to those

of the true problem.

Furthermore, by restricting our attention to potential games, we are able to show

the convergence of both sequential and parallel best-response sequences to Nash equi-

libria under fairly mild assumptions. We also present an implementation scheme for

both approaches within a high performance computing environment, to speed up the

computation of equilibria significantly.
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4.1.3 Outline

The remainder of the chapter is organized as follows. In Section 4.2, we introduce

player-wise convex potential games and state various properties of such games that

we use in our analysis. While we restrict our attention to this class of games for

our work, we also note that many problems of practical interest fall under this class.

Section 4.3 discusses the SAA approximation scheme for SNEP(θf , Xf )
F
f=1 in detail

and introduces the notion of multi epi-convergence, the main theoretical tool that

we use to show convergence of approximate solutions. In Section 4.4, details of

the sequential and parallel best-response algorithms are presented along with the

necessary regularity and convexity assumptions required to prove their convergence

to equilibria. The main theoretical results of our work, namely the convergence results

for each algorithm, are also given in this section.

4.2 Potential games under exogenous uncertainty

In this section, we introduce the notion of potential games under exogenous uncer-

tainty formally. We also establish conditions under which SNEP(θf , Xf )
F
f=1 admits

a potential function. The idea of player-wise convexity in objective functions is pre-

sented and a key result regarding the correspondence between solutions to potential

games and stationary points of the relevant potential minimization problem is given.

In order to establish the potentiality property for SNEP(θf , Xf )
F
f=1, we first con-

sider the deterministic variant obtained by fixing the random vector ξ to a particular

realization ξ̄. We refer to this problem as NEP(θ̄f , Xf )
F
f=1, where each player f solves

-

minimize
xf

θ̄f (x) = θf (xf , x−f ; ξ̄)

subject to xf ∈ Xf .
(4.4)

For the remainder of this paper, we make the following assumption on the under-

lying deterministic NEP(θ̄f , Xf )
F
f=1.
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Assumption 3 There exists a function P : X × Ω→ R such that

θf (xf , x−f ; ξ̄)− θf (yf , xf ; ξ̄) = P (xf , x−f ; ξ̄)− P (yf , x−f ; ξ̄), (4.5)

holds for f = 1, . . . , F and any fixed ξ̄ ∈ Ω.

Assumption 3 essentially states that for fixed values of the parameter ξ, the NEP(θ̄f , Xf )
F
f=1

has an exact potential function P . With Assumption 3 in place, we may readily

give the following results regarding the existence of a potential function for both

SNEP(θf , Xf )
F
F=1, and SAANEP(φ̂f , Xf )

F
f=1.

Lemma 4.2.1 Under Assumption 3, SNEP(θf , Xf )
F
F=1 has an exact potential func-

tion -

P̄ (x) = Eξ[P (x, ξ)].

Proof Integrating both sides of equation (4.5) over Ω, we obtain

Eξ(θf (xf , x−f ; ξ))− Eξ(θf (yf , xf ; ξ)) = Eξ(P (xf , x−f ; ξ))− Eξ(P (yf , x−f ; ξ)), (4.6)

for any x ∈ X and for any player f = 1, 2, . . . , F . In other words, P̄ is an exact

potential for SNEP(θf , Xf )
F
F=1.

Lemma 4.2.2 Under Assumption 3, SAANEP(φ̂f , Xf )
F
F=1 has an exact potential

function -

P̂ (x) =
1

N

N∑
j=1

[P (x, ξj)].

Proof By Assumption (3) we have

θf (xf , x−f ; ξj)− θf (yf , xf ; ξj) = P (xf , x−f ; ξj)− P (yf , x−f ; ξj),

for any yf ∈ Xf and for any player f = 1, . . . F . Adding these equations over

j = 1, . . . , N and dividing by N we obtain

φ̂f (xf , x−f )− φ̂f (yf , xf ) =
1

N

N∑
j=1

(θf (xf , x−f ; ξj)− θf (yf , x−f ; ξj))

=
1

N

N∑
j=1

(P (xf , x−f ; ξj)− P (yf , x−f ; ξj)) .

(4.7)
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In other words the function P̂ (x) = 1
N

∑N
j=1 P (x, ξj) is an exact potential function to

NEP(φ̂f , Xf )
F
f=1.

Note that we may relax Assumption 3 to hold for almost every ξ ∈ Ω and still have

valid exact potential functions for SNEP(θf , Xf )
F
F=1 and SAANEP(φ̂f , Xf )

F
f=1.

Example 1: Nash-Cournot Equilibrium

In order to illustrate the principles explained above, we consider the Nash-Cournot

equilibrium problem. Formally we have F participants or firms in a Cournot oligopoly.

Each firm chooses its production quantity qf ∈ Qf ⊂ R. Here the set Qf is assumed

to be a nonempty, convex and compact set that represents the production constraints

for firm f . The inverse demand function is given by F (Q) = a − b
∑F

f=1 qf . The

parameters a and b are assumed to be positive. Each firm’s production costs are

given by the strongly convex quadratic cost function cf (qf ).

For this problem, the Nash-Cournot equilibrium quantities for the firms come out

as a solution to the NEP(θf , Qf )
F
f=1, where each firm f solves -

maximize
qf

θf (q) = qf

(
a− b

F∑
f=1

qf

)
− cf (qf )

subject to qf ∈ Qf .

(4.8)

It is well known (Cf. [75]) that an exact potential function for NEP(θf , Qf )
F
f=1 is

given as follows -

P (q) = a

F∑
f=1

qf − b
F∑
f=1

q2
f − b

∑
1≤f<f ′≤F

qfqf ′ −
f∑
f=1

cf (qf ). (4.9)

Now suppose that the inverse demand function is subject to uncertainty. Formally,

suppose the parameters a and b depend on some random vector ξ with a probability
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space (Ω,F , P ). Then the stochastic version of the Nash-Cournot game is given by

SNEP(θf , Qf )
F
f=1. In our standard notation, we then have

φf (q) = E[θf (q; ξ)] = E

[
qf

(
a(ξ)− b(ξ)

F∑
f=1

qf

)
− cf (qf )

]

φ̂f (q) =
1

N

N∑
j=1

[
qf

(
a(ξj)− b(ξj)

F∑
f=1

qf

)
− cf (qf )

]
.

(4.10)

It is trivial to verify that exact potential functions for the problems SNEP(θf , Qf )
F
f=1

and SAANEP(φ̂f , Qf )
F
f=1 are given respectively by -

P̄ (q) = E

[
a(ξ)

F∑
f=1

qf − b(ξ)
F∑
f=1

q2
f − b(ξ)

∑
1≤f<f ′≤F

qfqf ′ −
f∑
f=1

cf (qf )

]
,

P̂ (q) =
1

N

N∑
j=1

[
a(ξj)

F∑
f=1

qf − b(ξj)
F∑
f=1

q2
f − b(ξj)

∑
1≤f<f ′≤F

qfqf ′ −
f∑
f=1

cf (qf )

]
.

(4.11)

We now introduce the notion of player-wise convexity in each player’s objective

function for the NEP(θf , Xf )
F
f=1. The fundamental idea behind player-wise convexity

is that once the other players’ decisions x−f are fixed, θf (·) is convex in the player’s

own variables xf . The formal definition is given below.

Definition 4.2.1 The NEP(θf , Xf )
F
f=1 is said to be player-wise convex if the sets Xf

are compact, convex sets and for each f = 1, . . . , F ,

θf (λxf + (1− λ)yf , x−f ) ≤ λ θf (xf , x−f ) + (1− λ) θf (yf , x−f ) ∀λ ∈ (0, 1), (4.12)

holds for any xf , yf ∈ Xf and x−f ∈ X−f .

The class of player-wise convex NEPs is an important subclass both from theoretical

and practical perspectives. In general, existence of equilibria can be guaranteed only

for player-wise convex NEPs. Moreover, if a player’s objective function is non-convex

in its own variables, then there is a possibility of multiple optimal solutions for that

player’s problem. This fact complicates both the theoretical analysis, as well as prac-

tical implementations of the equilibrium concept for such problems.
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Example 1 continued: Consider the Nash-Cournot game in Example 1. Once the

other players’ decisions q−f are fixed, player f ’s objective function is given as follows

-

θf (qf , q−f ) =

a− b F∑
f ′=1
f ′ 6=f

qf ′

 qf − bq2
f − cf (qf ).

Since b > 0, θf (·) is easily verified to be strongly concave once q−f is fixed. Because

the objective is to maximize θf (·), the Nash-Cournot game is player-wise convex.

We now establish an important property of player-wise convex potential games.

Note that an exact potential function P for NEP(θf , Xf )
F
f=1 is said to be player-wise

convex if for each player f = 1, . . . F , the following holds true for all xf , yf ∈ Xf and

each x−f ∈ X−f .

P (λxf + (1− λ)yf , x−f ) ≤ λ P (xf , x−f ) + (1− λ) Pf (yf , x−f ) ∀λ ∈ (0, 1). (4.13)

Lemma 4.2.3 Suppose the NEP(θf , Xf )
F
f=1 is player-wise convex and has an exact

potential function P , then P must also be player-wise convex.

Proof Since NEP(θf , Xf )
F
f=1 is player-wise convex, for any xf , yf ∈ Xf and for any

x−f ∈ X−f we have

θf (λxf + (1− λ)yf , x−f ) ≤ λ θf (xf , x−f ) + (1− λ) θf (yf , x−f ) ∀λ ∈ (0, 1). (4.14)

Let zf = λxf + (1 − λ)yf . Then the inequality (4.14) is equivalent to the following

statement.

λ (θf (zf , x−f )− θf (xf , x−f )) ≤ (1− λ) (θf (yf , x−f )− θf (zf , x−f )) . (4.15)

Indeed, one can simply replace the inequality (4.12) with the inequality (4.15) in

Definition 4.2.1.

Furthermore, NEP(θf , Xf )
F
f=1 admits an exact potential function P . We must

therefore have

θf (xf , x−f )− θf (yf , x−f ) = P (xf , x−f )− P (yf , x−f )∀xf , yf ∈ Xf , ∀x−f ∈ X−f .

(4.16)
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Combining the equation (4.16), with the inequality (4.15), and noting that zf ∈ Xf

due to the convexity of Xf ,we obtain the following result for the potential function.

λ (P (zf , x−f )− P (xf , x−f )) ≤ (1− λ) (P (yf , x−f )− P (zf , x−f ))

∀λ ∈ (0, 1), ∀xf , yf ∈ Xf , and ∀x−f ∈ X−f .
(4.17)

Clearly then, the potential function P must be player-wise convex.

This result is not surprising since it is easy to see that the exact potentiality

requirement means that once the other players’ variables x−f are fixed, the shape of

the potential function P (·, x−f ) must reflect the shape of player f ’s objective function

θf (·, x−f ). To make this more precise, consider the following reasoning. Fix any

x̄f ∈ Xf .

P (xf , x−f ) = P (x̄f , x−f ) + (P (xf , x−f )− P (x̄f , x−f ))

= P (x̄f , x−f ) + (θf (xf , x−f )− θf (x̄f , x−f ))

= (P (x̄f , x−f )− θf (x̄f , x−f )) + θf (xf , x−f ).

(4.18)

Therefore,

P (xf , x−f ) = Cf + θf (xf , x−f ), (4.19)

where Cf = (P (x̄f , x−f )− θf (x̄f , x−f )). Thus, fixing the other players’ variables x−f ,

the potential function P (·, x−f ) is an affine transformation of θf (·, x−f ), an operation

that preserves convexity.

Example 1 continued: For the Nash-Cournot equilibrium problem given in Example

1, once the other players’ decisions q−f are fixed, then the potential function can be

given as

P (q) =

[
qf

(
a− b

F∑
f=1

qf

)
− cf (qf )

]

−

a F∑
f ′=1
f ′ 6=f

qf ′ − b
F∑

f ′=1
f ′ 6=f

q2
f ′ − b

∑
1≤f̄<f ′≤F
f̄,f ′ 6=f

qf̄qf ′ −
F∑

f ′=1
f ′ 6=f

cf (qf )

 .
= θf (qf , q−f ) +K(q−f ).
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Since K(q−f ) does not depend on qf and since θf (qf , q−f ) has already been shown to

be convex in qf for fixed values of q−f , the potential function P (q) must be player-wise

convex.

For player-wise convex potential games with continuous objective functions for

each player, there is an important relationship between Nash equilibria and the set

of stationary points of the potential minimization problem. Before explaining this

result, we first state the continuity assumption.

Assumption 4 Each θf (·, x−f ; ξ) is continuously differentiable for any x−f ∈ X−f

and for any ξ ∈ Ξ.

Given Assumption (4), we have the following result.

Lemma 4.2.4 Suppose that NEP(θf , Xf )
F
f=1 is a player-wise convex NEP with an

exact potential function P and satisfies Assumption 4. Suppose further that x∗ ∈ X

is a stationary solution to

minimize
x

P (x)

subject to x ∈ X.
(4.20)

Then x∗ is a solution to the NEP(θf , Xf )
F
f=1.

Proof First note that under Assumption 4, it is easy to show the following:

∇xf θf (x) = ∇xfP (x) ∀x ∈ X . (4.21)

Indeed this is a simple consequence of holding all but one component of xf fixed in

equation (4.16) and taking limits.

Suppose now that x∗ is a stationary solution to the potential minimization problem

(4.20). In this case we have

(y − x∗)T ∇xP (x∗) ≥ 0 ∀y ∈ X. (4.22)

If we decompose the gradient into components, the inequality (4.22) is equivalent to

F∑
f=1

(yf − xf )T ∇xfP (x∗) ≥ 0. (4.23)
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Fix a player f . Denote x∗ = (x∗f , x
∗
−f ). Consider y = (yf , x

∗
−f ), where yf ∈ Xf .

Clearly y ∈ X . Moreover, we have yf ′ − xf ′ = 0 for any player f ′ 6= f . The

inequality (4.23) then implies the following.

(yf − xf )T ∇xfP (x∗) ≥ 0 ∀yf ∈ Xf

=⇒ (yf − xf )T ∇xf θf (x
∗) ≥ 0 ∀yf ∈ Xf ,

(4.24)

where the implication follows from equation (4.21). But this in turn means that x∗

is a stationary solution to player f ’s problem (4.18) with the other agents’ decisions

fixed at x∗−f . By the player-wise convexity of the Nash equilibrium problem, this also

means that x∗f is optimal to player f ’s problem.

Since the above reasoning holds for any player f = 1, . . . , F , x∗ is simultaneously

optimal to each of the players. Thus x∗ must solve the NEP(θf , Xf )
F
f=1.

Remark 4.2.5 Note that the converse statement is not easily shown. The main

difficulty is that if we start with a Nash equilibrium point x∗, in order to show its

stationarity with respect to the potential minimization problem, we need to show that

(y − x∗)T∇xP (x∗) ≥ 0 for any y ∈ X. But we only have (y − x)T∇xP (x∗) ≥ 0 for

any y = (yf , x∗−f ).

4.3 Approximating equilibria and multi-epiconvergence

One of the fundamental questions about SNEP(θf , Xf )
F
f=1 we seek to answer in

this paper is the following - if we approximate the expectation functions in each

player’s objective function using a fixed sample of the random vector ξ of size N ,

what type of convergence properties might we expect as N is taken to ∞? The

conditions under which such convergence properties may be analyzed depend heavily

on precisely how we solve approximations of SNEP(θf , Xf )
F
f=1.

For instance, under the potentiality assumption (Assumption 3), we may solve

the problem

minimize
x∈X

P̄ (x) = Eξ[P (x, ξ)], (4.25)
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to obtain a solution of SNEP(θf , Xf )
F
f=1. In this case we may consider approximating

the optimization problem (4.25) with the following SAA problem

minimize
x∈X

P̂ (x) =
1

N

N∑
j=1

[P (x, ξj)]. (4.26)

For this approach to approximating SNEP(θf , Xf )
F
f=1, standard results for SAA meth-

ods for optimization problem may then be applied (Cf. Chapter 5 [99]). However,

a major disadvantage of this approach is that while the individual player’s objective

functions may be convex in her own variables, the potential functions P̄ (·) and P̂ (·)

are usually not convex in the combined vector x. This is clearly illustrated in Ex-

ample 1. In this case, both solving the potential minimization SAA problem (4.26)

and establishing conditions for convergence of solutions of (4.26) to those of (4.25)

become significantly challenging tasks.

An alternative approach to solving SNEP(θf , Xf )
F
f=1 is to establish conditions un-

der which the expectation functions φf (xf , x−f ) are convex in the player’s own vari-

ables xf . In this case, the stochastic equilibrium problem can be seen to be player con-

vex, and we may stack the first order variational conditions on each player’s optimiza-

tion problem to obtain a variational inequality reformulation for SNEP(θf , Xf )
F
f=1.

To be precise, SNEP(θf , Xf )
F
f=1 can be shown to be equivalent to the stochastic

variational inequality1 SVI(X ,F(x)) where

F(x) =
(
∇xfE[θf (xf , x−f ; ξ)]

)
.

Sample average approximation methods for stochastic variational inequalities has

been a subject of recent research [16,51] and exponential convergence of such methods

has been reported for certain classes of SVI problems [115]. However, this approach

remains a centralized method for solving SNEP(θf , Xf )
F
f=1 and takes no advantage of

possible potentiality or supermodularity properties.

The primary goal of this paper is to create approximations of SNEP(θf , Xf )
F
f=1

and to solve these approximations in a decentralized way. Our basic strategy then

1The variational inequality problem VI(X ,F(x)) requires finding a vector x ∈ X such that (y −
x)TF(x) ≥ 0 for all y ∈ X .
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is to directly approximate the objective functions φf (x) with the sample average

functions φ̂f (x). In other words, we wish to study the behavior of solutions to

SAANEP(φ̂f , Xf )
F
f=1 in relation to solutions of SNEP(θf , Xf )

F
f=1 as the sample size

N → ∞. If we then impose Assumption 3, we may then solve SAANEP(φ̂f , Xf )
F
f=1

using decentralized methods to obtain candidate solutions to SAANEP(φ̂f , Xf )
F
f=1.

In order to show the desired convergence properties of SAANEP(φ̂f , Xf )
F
f=1, we

rely on the theoretical property known as multi-epiconvergence [50]. This property is

an extension of the well known epiconvergence concept into the multi-agent domain.

The formal definition of multi-epiconvergence is given below.

Definition 4.3.1 [50] The family of functions {φ̂f}Ff=1, where each φ̂f : Rnf → R,

is said to multi-epiconverge to the functions {φf}Ff=1 on the set X if the following

conditions hold for every f = 1, . . . , F and every x ∈ X :

1. For every sequence {xk−f} ∈ X−f that converges to x−f , a sequence {xkf} ∈ Xf

exists such that

lim sup
k→∞

φ̂f (x
k) ≤ φf (x).

2. For every sequence {xk} ∈ X converging to x,

lim inf
k→∞

φ̂f (x
k) ≥ φf (x).

Pang and Gurkan [50] proved that if the family {φ̂f}Ff=1 multi-epiconverges to the

family {φf}Ff=1, then solutions to the sampled problem SAANEP(φ̂f , Xf )
F
f=1 converge

to solutions of the true problem SNEP(θf , Xf )
F
f=1. The formal result is given below.

Theorem 4.3.1 [50] Suppose the sets Xf are closed for f = 1, . . . , F . Suppose fur-

ther that the family of approximate functions {φ̂f}Ff=1 multi-epiconverges to {φf}Ff=1

on the set X . If xN is a Nash equilibrium to SAANEP(φ̂f , Xf ) and xN → x∗ as

N →∞, then x∗ is a Nash equilibrium to the stochastic problem SNEP(θf , Xf )
F
f=1.

The required multi-epiconvergence of the family (φ̂f )
F
f=1 to (φf )

F
f=1 can be shown

under some straightforward regularity conditions as stated in the assumptions below.
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Assumption 5 For any x ∈ X , the functions θf (·; ξ) is continuous at x for almost

every ξ ∈ Ω, for each f = 1, . . . , F .

Assumption 6 For each f = 1, . . . , F , the functions θf (x, ξ) is dominated by an

integrable function, i.e. there exists a nonnegative valued measurable function g(ξ)

with E[g(ξ)] <∞ such that for each x ∈ X , |θf (x, ξ)| ≤ g(ξ) holds with probability 1.

By Theorem 2 [50] the continuous convergence of φ̂f to φf on X is a sufficient condition

for the required multi-epiconvergence. We use Theorem 7.48 [99], to state conditions

under which the continuous convergence may be shown.

Theorem 4.3.2 [99] Suppose that X is a nonempty compact set and that Assump-

tions 5 and 6 hold. Suppose further that the samples used to construct the functions

φ̂f (·) are i.i.d. Then the expected value functions φf (x) is finite valued and continuous

on X . Furthermore, φ̂(x) converges continuously (and uniformly) to φf (x) on X with

probability 1.

Example 1 continued: For the stochastic Nash Cournot equilibrium problem, con-

sider the case where a(ξ) and b(ξ) has bounded support, i.e. max
ξ
|a(ξ)| < ∞, and

max
ξ
|b(ξ)| <∞.

Under this assumption, it is easy to verify the multi-epiconvergence of the family

{φ̂f (q)}Ff=1 to the family {φf (q)}Ff=1 on Q =
∏F

f=1Qf . Indeed Assumption 5 is

trivially satisfied since for any fixed value of ξ, θf (q) is a bilinear polynomial in

q = (q1, . . . , qF )T . Since a(ξ) has bounded support, we may set g(ξ) = q̄f ā where

q̄f = max
qf∈Qf

|qf | and ā = max
ξ
|a(ξ)|.

Clearly g(ξ) is integrable since it is a constant independent of ξ. Furthermore, we

have

θf (q, ξ) = qf

(
a(ξ)− b(ξ)

F∑
f=1

qf

)
− cf (qf )

≤ qf a(ξ) ≤ q̄f ā = g(ξ),

(4.27)
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where the first inequality follows from the fact that b(ξ) > 0, cf (qf ) ≥ 0 and qf ≥ 0

for all qf ∈ Qf for each firm f = 1, . . . , F .

Since Qf is a nonempty, closed, bounded, convex set for each f by assumption,

we may apply Theorems 4.3.2 and 4.3.1 to show the convergence of solutions of

SAANEP(φ̂f (q), Qf )
F
f=1 to those of SNEP(θf (q), Qf )

F
f=1.

4.4 Algorithms and convergence

Our basic strategy is to compute solutions to SAANEP(φ̂f , Xf )
F
f=1 as candidate

solutions to SNEP(θf , Xf )
F
f=1. Under Assumption 3, SAANEP(φ̂f , Xf )

F
f=1 can easily

be seen to be a game with an exact potential function P̂ (·) (see Lemma 4.2.2). In this

case, we intend to utilize decentralized methods such as Gauss-Seidel or Gauss-Jacobi

best-response schemes to solve SAANEP(φ̂f , Xf )
F
f=1.

However it is possible to construct examples of games with exact potential games

where naive decomposition algorithms such as Algorithm 1 and 2 fail to converge

to equilibria [38]. Note also that in both the algorithms above, the update step

involves solving each player’s problem given the latest information available for the

other players’ decisions. However, if φf (·, x−f ) is not strongly convex, there may exist

multiple solutions to player f ’s problem. In this case there is also the natural issue

of which solution to choose and whether convergence can be established irrespective

of such choices.

A standard approach to tackle both issues mentioned in the last paragraph is to

use a regularization term on each player’s objective function. In other words, instead

of solving

minimize
xf

φf (xf , x
k
−f ) subject to xf ∈ Xf ,

we instead solve the following regularized problem -

minimize
xf

φf (xf , x
k
−f ) + τf ‖xf − x̄f‖2 subject to xf ∈ Xf . (4.28)
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Here x̄f is some reference point, usually taken as the current decision vector of the

player xkf . With the regularization scheme, we can show convergence of Gauss-Seidel

and Gauss-Jacobi schemes for SAANEP(φ̂f , XF )Ff=1 under various conditions.

Before stating the algorithms formally, we first state the following Lipschitz con-

dition on the gradients of each player’s objective function, required for showing con-

vergence of the regularized decomposition methods.

Assumption 7 For each f = 1, . . . , F , ∇xφ
f (·, ξ) is is Lipschitz continuous for each

ξ ∈ Ω.

We then have the following result regarding SAANEP(φ̂f , Xf )
F
f=1 based on the as-

sumptions on NEPθf (·, ξ), Xf )
F
f=1.

Lemma 4.4.1 Suppose NEP(θf (·, ξ), Xf )
F
f=1 is a player-wise convex NEP for each

ξ ∈ Ω and satisfies Assumptions 3, 4 and 7, then we have the following

(i) Each Xf is a compact, convex set.

(ii) Each φ̂f is continuously differentiable on X .

(iii) Each ∇xφ̂f is Lipschitz continuous on X .

(iv) The potential function P̂ is continuously differentiable on X with Lipschitz gra-

dients.

Proof By the player-convexity assumption, part (i) is trivially true. Parts (ii) and

(iii) are a straightforward consequence of the fact that φ̂f (x) is an affine combination

of the functions θf (x, ξj) for j = 1, . . . , N . Thus continuity and differentiability

properties as well as Lipschitz properties of the gradient are preserved.

For part (iv), we begin by noting that by Assumption 3, the potential function

P (x, ξ) must be continuously differentiable with Lipschitz gradients for any fixed

values of ξ. We may then apply the affine combination argument once more to argue

that these properties must also hold true for P̂ (x).
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4.4.1 Regularized Gauss-Jacobi algorithm

We first consider the regularized version of Algorithm 2 to solve the problem

SAANEP(φ̂f , Xf )
F
f=1. Pseudocode for the algorithm is given below in Algorithm 5.

Algorithm 5 Regularized Gauss-Jacobi Algorithm for SNEP(θf , Xf )
F
f=1

Step 0: Initialize - Set N > 0, τ > 0, x0 ← (x0
f )
F
f=1 ∈ X , k ← 0.

Step 1: Termination Check: IF xk satisfies termination criteria, THEN STOP

Step 2: Main Iteration:

FOR f = 1, . . . , F , let xk+1
f solve

minimize
xf

φ̂f (xf , x
k
−f ) + τ

∥∥xf − xkf∥∥2

subject to xf ∈ Xf .
(4.29)

Step 3: Update: xk+1 = (xk+1
f )Ff=1.

The algorithm is initialized by setting a sample size N for the approximation,

as well as choosing an initial feasible point x0 ∈ X . At each major iteration step

say k + 1, each player takes as given the decisions of the players from the previous

iteration, i.e xk. Each player f then solves the problem of minimizing the approximate

function φ̂(·, xk−f ) with an added regularization term.

The convergence of iterates of Algorithm 5 to approximate solutions of the problem

SNEP(θf , Xf )
F
f=1 is shown in two steps. Firstly, we leverage results on parallel block

update schemes for non-convex optimization problems in [97] to show that iterates of

the algorithm converge to stationary points of the potential minimization problem,

and thus solutions of SAANEP(φ̂f , Xf )
F
f=1. In the second step, we establish consis-

tency of the limit points of the algorithmic sequence to solutions of SNEP(θf , Xf )
F
f=1

as the sample size N →∞ using multi-epiconvergence.

We begin by showing that solving the regularized problem (4.28), is equivalent

to minimizing a similarly regularized potential function in player f ’s variables, while

keeping the other players’ decisions fixed.
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Lemma 4.4.2 Suppose Assumption 3 holds for SNEP(θf , Xf )
F
f=1. Fix x−f ∈ X−f ,

xkf ∈ Xf and τf > 0. Then

argmin
xf

(
θf (xf , x−f ) + τf

∥∥xf − xkf∥∥2

2

)
= argmin

xf

(
P (xf , x−f ) + τf

∥∥xf − xkf∥∥2

2

)
.

(4.30)

Proof Suppose x∗ ∈ argmin
xf

(
θf (xf , x−f ) + τf

∥∥xf − xkf∥∥2

2

)
. This is equivalent to

saying that for any xf ∈ Xf ,(
θf (x

∗
f , x−f ) + τf

∥∥x∗f − xkf∥∥2

2

)
≤

(
θf (xf , x−f ) + τf

∥∥xf − xkf∥∥2

2

)
⇔

(
θf (x

∗
f , x−f )− θf (xf , x−f )

)
≤ τf

(∥∥xf − xkf∥∥2

2
−
∥∥x∗f − xkf∥∥2

2

)
⇔

(
P (x∗f , x−f )− P (xf , x−f )

)
≤ τf

(∥∥xf − xkf∥∥2

2
−
∥∥x∗f − xkf∥∥2

2

)
⇔

(
P (x∗f , x−f ) + τf

∥∥x∗f − xkf∥∥2

2

)
≤

(
P (xf , x−f ) + τf

∥∥xf − xkf∥∥2

2

)
.

(4.31)

This is the same as saying x∗ ∈ argminxf

(
P (xf , x−f ) + τf

∥∥xf − xkf∥∥2

2

)
.

The convergence result for Algorithm 5 is summarized in the theorem below.

Theorem 4.4.3 Suppose NEP(θf (·, ξ), Xf )
F
f=1 is a player-wise convex NEP for each

ξ ∈ Ω and satisfies Assumptions 3, 4 and 7. Suppose further that τ is chosen such

that

2 cτ = min
f∈F

inf
x∈X

cτf (x) ≥ L∇P , (4.32)

where cτf is the co-efficient of strong convexity of P̂ (xf , x
k
−f ) + τ

∥∥xf − xkf∥∥2
. Then

the following statements hold true:

1. Every limit point x̂ of the sequence xk generated by Algorithm 5 is an equilibrium

to SAANEP(φ̂f , Xf )
F
f=1.

2. Suppose further that the required multi-epiconvergence in Theorem 4.3.1 is sat-

isfied. In this case, if x̂→ x∗ as N →∞, then x∗ solves SNEP(θf , Xf )
F
f=1.

Proof For part (i), we begin by noting that by Lemma 4.4.2, we may replace the

objective functions in Step 2 of Algorithm 5 with P (xf , x
k
−f ) + τ

∥∥xf − xkf∥∥2
. Given
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this fact, we show that Algorithm 5 effectively computes a stationary point of the

potential minimization problem (4.26) using Theorem 3 [97]. Indeed, it is easily

seen that Algorithm 5 is equivalent to the Exact Jacobi SCA Algorithm in [97], with

f1(x) = P̂ (x), I = {1, . . . , F , Ci = If = {1}, Kf = Xf with the step lengths γ = 1,

and the regularization matrix H(x) = I the identity matrix.

In order to show convergence of Algorithm 5 to a stationary point of (4.26), we

merely need to verify that the required regularity conditions are satisfied. But this is

easily verified as a consequence of Lemma 4.4.1.

The proof of part (i) is completed by noting that by Lemma 4.2.4, any stationary

point of (4.26) is also an equilibrium to SAANEP(φ̂f , Xf )
F
f=1.

Part (ii) is a direct consequence of the multi-epiconvergence property and Theorem

4.3.1.

4.4.2 Regularized Gauss-Seidel algorithm

As with the parallel best response scheme, we may also consider the regularized

version of the sequential best response method. This regularized Gauss-Seidel algo-

rithm is given below.

Algorithm 6 Regularized Sequential best-response (Gauss-Seidel)

Step 0: Initialize - Set x0 ← (x0
f )
F
f=1, k ← 0.

Step 1: Termination Check: IF xk satisfies termination criteria, THEN STOP

Step 2: Main Iteration:

FOR f = 1, . . . , F , let xk+1
f solve

minimize
xf

φ̂f (x
k+1
1 , . . . , xk+1

f−1, xf , x
k
f+1, . . . , x

k
F ) + τ

∥∥xf − xkf∥∥2

subject to xf ∈ Xf .
(4.33)

Step 3: Update: xk+1 = (xk+1
f )Ff=1.
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While convergence of Algorithm 6 to solutions of SAANEP(φ̂f , Xf )
F
f=1 can be

established under conditions similar to those for Algorithm 5, one can in fact weaken

the assumptions required using the analysis in [38].

Theorem 4.4.4 Suppose NEP(θf (·, ξ), Xf )
F
f=1 is a player-wise convex NEP for each

ξ ∈ Ω and satisfies Assumptions 3 and 4.Then the following statements hold true:

1. Every limit point x̂ of the sequence xk generated by Algorithm 6 is an equilibrium

to SAANEP(φ̂f , Xf )
F
f=1.

2. Suppose further that the required multi-epiconvergence in Theorem 4.3.1 is sat-

isfied. In this case, if x̂→ x∗ as N →∞, then x∗ solves SNEP(θf , Xf )
F
f=1.

Proof Note that under the given assumptions, SAANEP(φ̂f , Xf )
F
f=1 has player-wise

convex, continuously differentiable objective functions. Since there is no constraint

interactions amongst the player problems, we may directly employ Theorem 4.3 [38] to

establish part (i), noting that NEPs are special cases of generalized potential games.

The proof for part (ii) follows the same lines as Theorem 4.4.3.
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5. NUMERICAL RESULTS

In this chapter we use the algorithms developed in Section 4.4 to solve several exam-

ples of potential games under exogenous uncertainty. The main focus of this chapter

is on two practical applications, namely power market equilibrium under demand un-

certainty, and stochastic selfish routing games under exogenous uncertainty in edge

latencies.

Before presenting detailed numerical results for the examples, we first discuss the

computational set up used for our numerical experiments.

5.1 Computational scheme

One of the main advantages of Gauss-Jacobi type algorithms, such as Algorithm 2

and Algorithm 5, is the fact that the computation of player decision updates for each

iteration may be done in parallel. This is possible since finding xk+1
f only requires

xk−f . This scheme naturally lends itself to parallel computing architectures.

On the other hand, sequential best response schemes such as Algorithm 1 and

Algorithm 6 do not inherently lend themselves to parallelization. However, it must

be noted that in several interesting cases such as the traffic routing game to be

described below, multiple equilibria exist. Moreover such equilibria can often be

reached by varying the order of player updates within the Gauss-Seidel scheme, or

using different initial points for the algorithm. Such explorations of multiple update-

orders or sequences with varying starting points can also be done utilizing parallel

computing.

Our computational experiments are carried out on a desktop machine with a 3.4

GHz Intel Core i7-2600K quad core CPU and 8 GB of RAM. To solve the player

subproblems, we use the CPLEX 12.2 quadratic programming solver in MATLAB.
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Parallelization for the Gauss-Jacobi algorithms is implemented using the MATLAB

parallel computing toolbox functionality.

5.2 Nash-Cournot equilibrium in competitive power markets

In this section we consider a noncooperative game model for strategic interactions

between large power generating firms who bid into wholesale electricity markets and

the independent system operator (ISO) that controls and coordinates the operation

of the electric grid. Such models have become increasingly useful for the analysis of

deregulated electricity markets in the U.S. and elsewhere.

In general, electricity markets are resolved by a bidding process wherein generating

firms (GenCos) bid their supply functions while demand aggregators such as utility

companies bid their demand functions. The ISO then clears the market and assigns

quantities to be produced at each location on the grid and the corresponding nodal

prices. An equilibrium model for this problem, where the GenCos bid piecewise linear

cost functions, while consumers bid piecewise linear demand functions is studied

in [59]. However, in this work, we wish to study the strategic behavior of GenCos in

the presence of demand uncertainty. Therefore, we use the model presented in [71],

where the pricesat each node are determined by a linear inverse demand function.

We then model the underlying demand uncertainty by using random parameters in

the inverse demand function.

5.2.1 Model

Formally, consider a transmission network G = (N ,A), where N is the set of

nodes (buses) and A is the set of arcs (transmission lines). Suppose there are F

GenCos in the market. We denote the set of GenCos as F . We assume that each

GenCo f controls generation plants at multiple locations. In this sense, the decision

vector for the GenCo gfi captures how much power is produced at a node i ∈ N . The

cost of generation at a node i for GenCo f is captured by a non-negative, convex,
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quadratic function Cfi(gfi). The inverse demand at a node i is a function of the total

electricity available at u. We assume that the inverse demand is linear, with the price

given by

pi = (ai(ξ)− bi(ξ)(yi + gi)), (5.1)

where gi =
∑F

f=1 gfi is the total power generation at node i while yi is the net outflow

from the node.

The model we use incorporates demand variability by using the explicit depen-

dence of the inverse demand parameters ai and bi on the random variable ξ. We

assume throughout that the support sets of a(ξ) and b(ξ) are bounded as follows.

−∞ < ai ≤ ai(ξ) ≤ āi <∞,

0 < bi ≤ bi(ξ) ≤ b̄i <∞,
(5.2)

for each i ∈ N .

Each GenCo’s expected profit maximization problem can then be given as follows.

maximize
gf∈Xf

φf (gf , g−f , y) = E [θf (gf , g−f , y; ξ)] , (5.3)

where

θf (gf , g−f , y; ξ) =

[∑
i∈N

[
ai(ξ)− bi(ξ)(yi +

F∑
t=1

gti)

]
gfi −

∑
i∈N

Cfi(gfi)

]
. (5.4)

The setXf captures the production constraints for GenCo f . This set is assumed to be

a nonempty, convex, compact subset of the non-negative orthant. Note that the flow

variables y are set by the ISO, which solves the following social utility maximization

problem.

maximize
y

φISO(g, y) = E[θISO(g, y; ξ)]

subject to
∑
i∈N

yi = 0∣∣∣∣∣∑
i∈N

PTDFkiyi

∣∣∣∣∣ ≤ Tk, ∀k ∈ A,

(5.5)

where

θISO(g, y, ξ) =
∑
i∈N

[∫ yi+Gi

0

(ai(ξ)− bi(ξ)τi)dτi −
∑
f∈F

Cfi(gfi)

]
(5.6)
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The first constraint in (5.5) captures flow balance, while the second constraint repre-

sents the line capacities. The Kirchoff current and voltage laws are captured using the

power transmission distribution factor (PTDF) matrix. These constraints represent

the commonly used linearized DC flow model which is an approximation of the actual

AC power flow equations.

The objective function for the ISO represents the area under the inverse demand

function minus the total cost of generation, i.e. the system surplus. Once the integral

is resolved the objective function simplifies to the following.

θISO(g, y; ξ) =
∑
i∈N

[
ai(ξ)(yi +

∑
f∈F

gfi)−
bi(ξ)

2
(y2
i +

∑
f∈F

g2
fi)

]

−

bi(ξ)
yi

∑
f∈F

gfi +
∑
f∈F
t∈F
t6=f

gfigti

−
∑
f∈F

Cfi(gfi)


=

∑
i∈N

[
ai(ξ)yi −

(
bi(ξ)

2

)
y2
i − bi(ξ)yi

∑
f∈F

gfi

]

+
∑
i∈N

ai(ξ)
∑
f∈F

gfi −
bi(ξ)

2

∑
f∈F

g2
fi − bi(ξ)

∑
f∈F
t∈F
t6=f

gfigti −
∑
f∈F

Cfi(gfi)


(5.7)

We are interested in solutions to the game in which the GenCos and ISO simulta-

neously solve their respective optimization problems. That is, we wish to compute

solutions (g, y) such that gf is a solution to (5.3) for each Genco f given the decisions

of the other firms (g−f ) and the ISO (y). At the same time y solves the ISO’s problem

(5.5) given g.

We note here that this model assumes somewhat naive behavior on the part of the

generation firms, since typically the generation decisions are taken in advance of the

ISO’s flow decisions. In this case it is possible to consider scenarios where sophisti-

cated GenCos attempt to anticipate the effect of their decisions on the ISO’s problem.

Thus one could model the market equilibrium by including the ISO’s problem (5.5)
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explicitly within each GenCo’s problem (5.3). This results in an equilibrium problem

where each GenCo solves a bilevel optimization problem or an MPEC. Details of this

“endogenous” model may be found in [71].

We restrict our attention to the “exogenous” equilibrium model, where the GenCos

do not anticipate the ISO’s decisions, for multiple reasons. The endogenous model is

an equilibrium problem with equilibrium constraints (EPEC) for which even existence

of solutions is an unresolved question. Even if there exist solutions to the problem,

computing such equilibria is widely regarded to be a difficult task. So it is not

unreasonable to assume that GenCos look instead to the “exogenous” model as a

reasonable approximation of the market equilibrium.

In the following discussion, we show that the exogenous equilibrium model pre-

sented above belongs to the class of player-wise convex potential games, and that the

algorithms developed in the previous sections are indeed applicable to the problem.

Firstly, consider each GenCo’s objective function given in (5.4). For fixed values

of a(ξ) and b(ξ), convexity of θf in gf is guaranteed as long as bi(ξ) > 0 for each

i ∈ N . Under the same condition, one can also show the convexity of the ISO’s

objective θISO in the flow variables y. This takes care of the player-wise convexity

requirements. Moreover, the objective functions for each GenCo, as well as that of

the ISO, is a quadratic function of the g and y variables. As such, each of these

functions is continuously differentiable and has Lipschitz gradients.

Consider the following function:

P (g, y; ξ) =
∑
i∈N

[
ai(ξ)(yi +

∑
f∈F

gfi)− bi(ξ)yi
∑
f∈F

gfi −
(
bi(ξ)

2

)
y2
i

]

−

bi(ξ)
∑
f∈F
t∈F
t6=f

gfigti +
∑
f∈F

Cfi(gfi)


(5.8)
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Suppose g−f and y are fixed. Then we have

P (gf , g−f , y; ξ)− P (hf , g−f , y; ξ) =
∑
i∈N

[
ai(ξ)(gfi − hfi)− bi(ξ)yi(gfi − hfi)

−bi(ξ)
∑
t∈F
t6=f

gti(gfi − hfi)− (Cfi(gfi)− Cfi(hfi))
]

= θf (gf , g−f , y; ξ)− θf (hf , g−f , y; ξ).

(5.9)

Now if g is fixed, then we have

P (g, y; ξ)− P (g, x; ξ) =
∑
i∈N

[
ai(ξ)(yi − xi)− bi(ξ)gi(yi − xi)−

(
bi
2

)
(y2
i − x2

i )

]
= θISO(g, y; ξ)− θISO(g, x; ξ).

(5.10)

Thus we have shown that P (·) is an exact potential function for the exogenous equi-

librium model, for fixed realizations of ξ.

In order to establish the applicability of the decentralized approximation schemes,

Algorithm 5 and Algorithm 6 to solving this problem, all that remains to be shown

is that the objective functions are dominated by an integrable function. Recall that

the parameter bi(ξ), the cost function Cfi and the generation quantities gfi are all

assumed non-negative. We also assume that the variables y and g are (explicitly or

implicitly) bounded. Under these assumptions it is easy to show the required bounds

on the objective functions.

Lemma 5.2.1 Suppose the parameters a(ξ) and b(ξ) are bounded. Suppose further

that the feasible generation set Xf is bounded for each GenCo f ∈ F . Then the

objective functions θISO(g, y) and θf (g, y) satisfy Assumption 6

Proof Under the given assumptions we must have |gf | < ∞ for each f ∈ F . In

this case, we may restrict the flow variables y to some bounded set Y . This is easily

seen by examining the ISO’s objective function in 5.7 and noting that since bi(ξ) > 0,

setting any yi =∞ would result in θISO(g, y) = −∞, which clearly cannot be optimal.
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Thus we may safely assume the following implicit bounds for each i ∈ N and f ∈ F

-

−∞ < g
fi
≤ gfi ≤ ḡfi <∞,

−∞ < y
i
≤ yi ≤ ȳi <∞.

(5.11)

Observe that the objective functions in question are polynomial functions of a(ξ),

b(ξ), g and y. Thus the desired boundedness on the absolute values of the functions

may be obtained from (5.2) and (5.11) by repeated application of the product and

sum rules for absolute values1.

5.2.2 Experiments

In order to illustrate the performance of Algorithms 5 and 6, we first consider

the small three node example network given in Figure 5.1. There are three nodes

on the network all of which have positive demand. We assume that the reactances

of all the lines are equal. There are two GenCos acting on the network. Genco 1

has a generation unit at node 1, while Genco 2 has a unit at node 2. Both firms are

assumed to have generation costs given by Ci(gi) = cigi + dig
2
i . We assume that the

only constraint on generation is capacity of the production unit, i.e. 0 ≤ gi ≤ Ki.

We assume that the inverse demand co-efficients ai(ξ) and bi(ξ) are drawn from

uncorrelated truncated normal distributions. The various parameters of the problem

are summarized in Tables 5.1, 5.2 and 5.3. Table 5.1 presents the nodal generation cost

and inverse demand functions. The power transmission distribution factor matrix,

as well as the line capacities are given in Table 5.2, while Table 5.3 summarizes the

details of the inverse demand parameters, including the mean, standard deviation

and end points of the truncated normal distributions from which the intercepts ai(ξi)

are drawn.

To begin with, we take a fixed sample size of N = 5000. After sampling from the

distributions for ai(ξi), we employ Algorithms 5 and 6 to compute the solutions to the

deterministic SAA market equilibrium problem. From preliminary tests, we choose

1|a+ b| ≤ |a|+ |b| and |ab| = |a||b|.
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n1 n2

n3

l1

l3l2

Figure 5.1. Network 1

Node GenCo Cost Demand

1 1 5g1 + g2
1 a1(ξ1)− b(q1 + y1)

2 2 2g2 + 1.5g2
2 a2(ξ2)− b(g2 + y2)

3 - - a3(ξ3)− by3

Table 5.1.
Parameters for Network 1.

Node l1 l2 l3

n1 2/3 -1/3 0

n2 1/3 1/3 0

n3 2/3 2/3 0

Tk 1.5 1.8 1.2

Table 5.2.
PTDFs for Network 1.

to use a regularization parameter τ = 0, since both algorithms converge without

requiring regularization. We speculate that this result is due to the strong concavity
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Node µ(ai) σ(ai) ai āi bi

n1 25 5 15 35 1.2

n2 26.5 5 16.5 36.5 1.3

n3 28 5 18 38 1.5

Table 5.3.
Inverse demand parameters for Network 1

of the payoff functions for all the players involved. Numerical results for this one shot

sampling problem is summarized in Table 5.4.

Generation - (g∗1, g
∗
2) (10.2364, 8.6107)

Flow - y (-1.5, -0.6, -1.2)

Nodal price - p (15.2364, 14.9161, 25.3)

GenCo 1 optimal payoff 115.2615

GenCo 2 optimal payoff 103.8022

Gauss-Seidel major iterations 4

Gauss-Seidel running time 0.0272 secs

Gauss-Jacobi major iterations 5

Gauss-Jacobi running time 0.0136 secs

Table 5.4.
Results for Network 1 (N = 5000)

Note that while the sequential Gauss-Seidel algorithm takes one less major iter-

ation to converge, it is approximately 2 times slower than the parallel Gauss-Jacobi

algorithm. Both algorithms converge to the same equilibrium point. At the equilib-

rium point, both lines 1 and 3 are congested.
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In order to empirically examine the effects of sample size on the accuracy of the

approximation algorithms, we conduct experiments with multiple sampling runs at

multiple sample sizes. The results are presented in Figures 5.2 through 5.5

Figure 5.2. Optimal g1 vs N

For each fixed sample size N ∈ {50, 500, 5000}, we conduct 10 sampling runs and

solve the equilibrium problem using the approximation algorithms for each sample.

Figures 5.2 and 5.3 provide scatter plots of the optimal generation quantities g1

and g2 respectively, while figures 5.4 and 5.5 provide similar plots for the optimal

payoff values for GenCo 1 and GenCo 2. As expected, larger sample sizes result in

significantly less variance in the estimated solution quantities and payoffs.
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Figure 5.3. Optimal g2 vs N

5.3 Stochastic routing games

In this section, we consider the problem of routing traffic along the arcs of a

network, such as a road network or a communication network. The rich and varied

literature on research into such problems, and their strategic counterparts namely

selfing routing games, gives testament to their practical significance. We refer the

reader to the thesis [90] and the references [12,13,24,47] for a review on the analysis

of selfish routing games. However, our focus is on the so-called atomic selfish routing

games, where the costs or latencies associated with sending flow along an arc in the



107

Figure 5.4. Optimal payoff for GenCo 1 vs N

network is subject to some exogenous source of uncertainty, such as weather. The

setting of the games in question is described below.

5.3.1 Model

We consider a directed network G = (V,A), with vertex set V and arc (edge) set

A. We consider F players acting on this network. Player f wishes to direct df units

of flow from arc sf to tf . Each player is assumed to control a significant percentage

of the total flow on the network. In traffic routing literature, this property is referred

to as atomic traffic routing. We also assume that player f is able to split the df units
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Figure 5.5. Optimal profit for GenCo 2 vs N

of flow amongst any paths between sf and tf . In this sense, we only consider atomic

traffic routing games with splittable flow.

Each of the f players wish to minimize the cost of routing the desired flow across

the network. The cost of flow is most often associated with the delay in crossing arcs

of the network, also known as “latency”. We assume that the latencies are dependent

on the congestion on the network, i.e. that the latency on each arc is a factor of the

total flow on the arc.
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Let the decision variable for player f be denoted by xf = (x1
f , . . . , x

|A|
f ). Here xef

represents the amount of flow that f directs on arc e. A set of flow decisions xf ≥ 0

is feasible to player f if the following flow conservation conditions hold.

∑
(u,v)∈A

xuvf =


df if u = sf ,

0 if u /∈ {sf , tf},

−df if u = tf .

Given the set of decisions of all the players, denoted by x = (x1, . . . xF ), the latency

on any edge e ∈ A is given by the function

ce(xe) = ce

(
F∑
f=1

xef

)
.

In general, the function c(·) is assumed to be nonnegative, continuous and nonde-

creasing. Specifically, we consider the case where the cost function is linear in xe,

i.e.

ce(xe) = ae(ξ)xe + be(ξ). (5.12)

Note that the cost function is assumed to depend on the random vector ξ, which

captures the underlying sources of uncertainty such as weather. As in the previous

section, we assume that ae(ξ) and be(ξ) are assumed to be positive, bounded functions

of ξ.

The objective of each player is to minimize the average total latency of her flow

on the network. We denote this objective by θf , i.e.

θf (xf , x−f ; ξ) =
∑
e∈A

ce(xe)xef

=
∑
e∈A

ae(ξ)xef 2 +

be(ξ) + ae(ξ)
F∑

f ′=1
f ′ 6=f

xef ′

xef

 . (5.13)
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Since ae(ξ) > 0 by assumption, it is easy to see that θf (xf , x−f ) is convex in xf for

any fixed value of x−f . The optimization problem for each player f is then given by

minimize
xf

φf (xf , x−f ) = E [θf (xf , x−f )] = E

[∑
e∈A

ce(xe)xef

]

subject to
∑

(u,v)∈A

xuvf =


df if u = sf ,

0 if u /∈ {sf , tf},

−df if u = tf .

xuvf ≥ 0 ∀(u, v) ∈ A.

(5.14)

For fixed values of ξ, an exact potential function for the selfish routing game NEP(θf , Xf )
F
f=1

is given by

P (x, ξ) =
∑
e∈A

ae(ξ) f∑
f=1

xef
2 + be(ξ)

f∑
f=1

xef + ae(ξ)
F∑
f=1

F∑
f ′=1
f ′ 6=f

xefx
e
f ′

 . (5.15)

Thus the stochastic routing game described above is a player-wise convex game with

an exact potential function. Moreover, the objective function for each player f , i.e.

θf (xf , x−f ) is continuously differentiable in both xf and x−f . The gradients of the

objective function are linear in x for each ξ and therefore easily seen to be Lipschitz

continuous.

We can employ techniques similar to those used in the previous power market

example, to leverage the boundedness on the parameters a and b as well as the

variables x, in order to show that the routing game satisfies Assumption 6. We have

thus verified all the conditions required for the applicability of Algorithms 5 and 6 to

the problem of computing equilibria for the stochastic traffic routing game.

5.3.2 Experiments

We begin our numerical experiments with a small 2 player problem defined on the

network given in Figure 5.6. There are two players acting on the network. Player

1 wishes to route 10 units of flow from node n1 to node n5. Player 2 on the other
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n2

n3 n4

n6

n1 n5
l1

l2

l3

l4

l5 l6

l7

Figure 5.6. Network 2

hand wishes to route 10 units of flow from node n2 to node n6. The cost parameters

associated with the edges on the network are given in Table 5.5. Note that the

constant terms ae are assumed to be deterministic, while the linear coefficient be is

drawn from a truncated normal distribution with bounds [be, b̄e], mean µ(be) and

standard deviation σ(be).

Edge ID ae be b̄e µ(be) σ(be)

l1 10 1.5 4.5 3 3

l2 1 0.5 1.5 1 1

l3 1 0.5 1.5 1 1

l4 1 0.5 1.5 1 1

l5 1 0.5 1.5 1 1

l6 1 0.5 1.5 1 1

l7 10 1.5 4.5 3 3

Table 5.5.
Cost data for Network 2

As with the previous section, we begin our analysis by fixing the sample size at

N = 5000 and using both Algorithms 5 and 6 to solve the network traffic assignment

equilibrium problem. The results are summarized in Table 5.6. Note that in this case,
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the flow numbers capture the split flows between the 2 available options to each player.

For instance, the optimal flow for player 1 is to route 6.2498 units of flow directly

along the arc (n1, n5) and the remainder along the path (n1-n3-n4-n5). Unlike the

power market problem, the speedup for the Gauss-Jacobi scheme is only 1.15 for our

traffic assignment example. This is explained by the fact that most of the speedup

due to parallelization is lost due to the increased number of major iterations required

for the Gauss Jacobi algorithm relative to the sequential Gauss Seidel method.

Flow for P1 (6.2498, 3.7502)

Flow for P2 (6.2501, 3.7499)

P1 optimal payoff 53.9125

P2 optimal payoff 53.9109

Gauss-Seidel major iterations 9

Gauss-Seidel running time 0.0312 secs

Gauss-Jacobi major iterations 16

Gauss-Jacobi running time 0.0273 secs

Table 5.6.
Results for Network 1 (N = 5000)

We then run our experiments with sampling sizes drawn from N ∈ {50, 500, 5000}

and study the variance of the approximation results if we solve multiple runs of the

problem at each sample size. The results are presented in Figures 5.7 and 5.8, which

plot the optimal costs for the two players for various sampling runs.

Next we consider a larger 19 node network given in Figure 5.9. Consider a 6 player

selfish atomic routing game on this network. All the players wish to route 10 units of

flow from their source nodes to the target node 19. The source nodes are 1,3,5,7,9,

and 11 respectively. The cost parameters ae and be are drawn from truncated normal

distributions with data as given in Table 5.7 For this network, the naive Gauss Seidel

algorithm (Algorithm 1) in 36 iterations. However, the naive Gauss Jacobi algorithm
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Figure 5.7. Optimal cost for P1 vs sample size N

Edge ae be b̄e µ(be) σ(be)

Outer circle edges 1 0.5 1.5 1 1

Inter circle edges 3 1.5 4.5 3 3

Inner circle edges 1 0.5 1.5 1 1

Inner circle to target edges 5 2.5 7.5 5 5

Table 5.7.
Cost data for Network 3

fails to converge even at the limit of 1 million major iterations. In this case, we

use the regularized Gauss Jacobi algorithm (Algorithm 5). By choosing a maximum
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Figure 5.8. Optimal cost for P2 vs sample size N

major iteration limit of 1000, and adaptively increasing the regularization parameter

τ , we find that the algorithm converges for τ > 0.7297 for an error tolerance in x of

10−6.

For this network, we study the variation in convergence time and the number of

major iterations required for convergence for various combinations of regularization

parameter τ and the error tolerance in x. The results are given in Figures 5.11 through

5.15.

Figures 5.11 and 5.10 plot the convergence time and major iterations against τ .

Here the regularization parameter is varied between the range 0.75 ≤ τ ≤ 1.95. From

Figure 5.10, we observe that the number of major iterations the algorithm takes to
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Figure 5.9. Network 3: example network for stochastic routing

converge to equilibrium reaches a minimum at τ = 0.9 approximately, and then starts

to rise as we increase τ .

The importance of the regularization parameter is made even clearer by Figures

5.13 and 5.12. As τ increases beyond 1, both the time to convergence and the number

of major iterations to convergence increases. At τ = 10, the algorithm is approxi-

mately 6.7 times slower than at τ = 1. These results underline the need to compute
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Figure 5.10. Network 3: Algorithm 5 major iterations vs τ

the appropriate τ to ensure good performance of the regularized method Algorithm

5

We also conduct an empirical study of how our parallel best response scheme scales

as we employ more and more processors. For the 6 player Network 3, the results of

scaling are presented in Figure 5.16. The blue curve marks the actual convergence

time as we increase the number of cores used. The red curve represents a perfect

linear scaling relative to the sequential convergence time. We observe that as the

number of processors increases, the speedup is approximately linear (i.e. if we emply

N processors, the time taken tN is approximately t1/N where t1 is the serial processing

time). The variations from linearity are mainly due to parallel overhead, as well as

the inconsistency in solution times between player problems at each iteration which

cases non-uniformity in job completion times across processors.
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Figure 5.11. Network 3: Algorithm 5 convergence time vs τ

Figure 5.12. Network 3: Algorithm 5 major iterations vs τ
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Figure 5.13. Network 3: Algorithm 5 convergence time vs τ

Figure 5.14. Network 3: Algorithm 5 convergence time vs error tolerance
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Figure 5.15. Network 3: Algorithm 5 major iterations vs error tolerance

Figure 5.16. Network 3: Algorithm 5 Convergence time vs # processor
cores
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6. EXTENSIONS

In this chapter, we discuss several important extensions to the theory presented in

Chapter 4. To begin with, we consider the question of solving SAANEP(φ̂f , Xf )
F
f=1

approximately and whether such solutions are asymptotically consistent with respect

to solutions of SNEP(θf , Xf )
F
f=1. We also discuss briefly the idea of modified best

response schemes, wherein each player’s problem is solved inexactly.

Another natural extension to the sampling-based approximation and decentralized

computations presented in Chapter 4, is to consider disparate sampling amongst

the players. The convergence of this kind of approximation schemes is difficult to

establish. We briefly discuss some promising research directions and recent research

related to this problem.

Finally, we also consider the issue of approximating equilibria in the context of gen-

eralized Nash games. The challenges associated with extending multi-epiconvergence

to the GNEP domain are outlined.

6.1 Approximate and inexact best response algorithms

The theoretical results for the convergence of the regularized best response al-

gorithms presented in Chapter 4 assume the computation of exact solutions to the

sampled problem SAANEP(φ̂f , Xf )
F
f=1. However, in a practical setting, such a strat-

egy is difficult, if not outright impossible to implement. In most cases, bounds on

the difference in norms between successive iterates, either in the decision space or the

payoff space, are used for finite termination. In this context the question of asymp-

totic convergence of approximate solutions to SAANEP(φ̂f , Xf )
F
f=1, as well as solution

quality of the candidate output by a best response algorithm takes on relevance.
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In this section, we first consider the case where we use approximate solutions

of the best response mapping for SAANEP(φ̂f , Xf )
F
f=1 as candidate solutions to

SNEP(θf , Xf )
F
f=1, and analyze the asymptotic convergence of these candidates. Specif-

ically, consider using the following termination criteria for the regularized Gauss-

Jacobi scheme (Algorithm 5) -

F∑
f=1

[
φ̂f (x

k
f )− φ̂f (xk+1

f )− τ

2

∥∥xkf − xk+1
f

∥∥2
]
≤ εN . (6.1)

The condition given above in (6.1) may easily be verified by two function evaluations

for each player f , which may be computed in parallel.

Suppose now that as we consider larger and larger sample sizes N for computing

φf (·), we also use progressively smaller tolerance bounds εN . We wish to answer the

question of the asymptotic convergence of solution points generated by Algorithm 5

under the termination condition (6.1), to solutions of SNEP(θf , Xf )
F
f=1. The main

tool we use is the convergence of approximate solutions to optimization reformulations

SNEP(θf , Xf )
F
f=1 based on the sampled Nikaido-Isoda function (defined in 2.3.2) , as

given in [51]. We state the result formally below.

Theorem 6.1.1 Assume that NEP(θf (·, ξ), Xf )
F
f=1 is a player-convex NEP for all

ξ ∈ Ω. Let the point x(kN ,N) be generated by applying Algorithm 5, with a sample of

size N , to SAANEP(φ̂f , Xf )
F
f=1. Suppose that the required multi-epiconvergence in

Theorem 4.3.1 is satisfied. If εN → 0 and x(kN ,N) → x∗ as N → ∞, then x∗ solves

SNEP(θf , Xf )
F
f=1.

Proof Consider the value function associated with the Nikaido-Isoda function for

SAANEP(φ̂f , Xf )
F
f=1.

Vγ(x) = max
y∈X

F∑
f=1

[
φ̂f (xf , x−f )− φ̂f (yf , x−f )−

τ

2
‖xf − yf‖2

]
. (6.2)

We first show that Vγ(x
(kN ,N)) ≤ εN . Indeed we can rearrange (6.2) as follows.

Vγ(x) =
F∑
f=1

[
φ̂f (xf , x−f )− min

yf∈Xf

(
φ̂f (yf , x−f ) +

τ

2
‖xf − yf‖2

)]
. (6.3)
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Therefore we have

Vγ(x
(kN ,N)) =

F∑
f=1

[
φ̂f (x

(kN ,N)
f , x

(kN ,N)
−f )

]
−

F∑
f=1

[
min
yf∈Xf

(
φ̂f (yf , x

(kN ,N)
−f ) +

τ

2

∥∥∥x(kN ,N)
f − yf

∥∥∥2
)]

=
F∑
f=1

[
φ̂f (x

(kN ,N)
f , x

(kN ,N)
−f )

]
−

F∑
f=1

[(
φ̂f (x

(kN+1,N)
f , x

(kN ,N)
−f ) +

τ

2

∥∥∥x(kN ,N)
f − x(kN+1,N)

f

∥∥∥2
)]

≤ εN .

(6.4)

Here the first inequality follows from the fact that x(kN+1,N) is generated by solving the

regularized Gauss-Jacobi iteration with respect to x(kN ,N), while the second inequality

follows from the termination condition (6.1).

We have thus shown that the point x(kN ,N) is an approximate solution to the NI

function reformulation for SAANEP(φ̂f , Xf )
F
f=1. The proof can now be completed

by simply invoking Theorem 5 in [51], and noting that the required convexity and

multi-epiconvergence assumptions are equivalent to the given assumptions.

In its current form, the termination condition (6.1) does not allow a result similar

to Theorem 6.1.1 for the regularized Gauss-Seidel method (Algorithm 6). This is

because an iterate component xkf of Algorithm 6 is a best response to the updated

rival strategy tuple, rather than the older tuple x−1
−f . Thus, establishing an error

bound on the Nikaido-Isoda function for the terminal point xkN of Algorithm 6 is

much harder.

The convergence result in Theorem 6.1.1 can be used to form a computational

framework where we vary both sample size N and the error bound εN across multiple

outer iterations. The idea is similar to the stochastic approximation framework [67,

85], in that initial outer iterations involve using small sample sizes and solving the

resulting deterministic problem to a relatively low precision level. The output is

then used as a starting point for the next outer iteration. The hope is that as the
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sample size increases and the error tolerances become tighter, providing a “good”

starting point eases the computational burden of solving the larger problem to greater

precision. However, at the present time, it is an open question whether this scheme

can have good theoretical or practical convergence properties.

The approach outlined above considers approximation on a global level in terms

of the Nikaido-Isoda function via the termination condition (6.1). In contrast, we

might also think about using approximation in the individual player problems solved

at each iteration within the decentralized schemes. However, in this case we require a

modification to the algorithms. Specifically, rather than updating the player decisions

to locally optimal solutions given the previous iterate, we use the tuple of players’

best responses as a candidate descent direction. We state this version of the update

rule for the Gauss-Seidel algorithm below.

Formally, suppose given x̄ ∈ X, xBR
f solves player f ’s regularized problem, i.e.

xBR
f (x̄−f , τ) = argmin

xf∈Xf

[
θf (xf , x̄−f ) + τ ‖xf − x̄f‖2] .

Pseudocode for the inexact Gauss Seidel method is given in Algorithm 7.

Algorithm 7 Inexact Sequential best-response (Gauss-Seidel)

Step 0: Initialize - Set x0 ← (x0
f )
F
f=1, k ← 0.

Step 1: Termination Check: IF xk satisfies termination criteria, THEN STOP

Step 2: Main Iteration:

FOR f = 1, . . . , F ,

Compute zkf such that
∥∥∥zkf − xBRf (xk,f−f , τ)

∥∥∥ ≤ εkf .

Set xk+1
f = xkf + γkzkf .

Set k ← k + 1.

GOTO Step 1.

Recall that xk,f−f = (xk+1
1 , . . . , xk+1

f−1, x
k
f+1, . . . , x

k
F ). Convergence of Algorithm 7,

depends on the choice of the tolerance parameter εkf as well as the step size parameter
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γk. The two parameters need to be chosen carefully and in tandem in order to ensure

good performance.

Theorem 6.1.2 Suppose NEP(θf (·, ξ), Xf )
F
f=1 satisfies all the assumptions for The-

orem 4.4.4. Suppose further that the potential function P is coercive over X and

that the parameters γ and ε satisfy the following properties - (i) γk ∈ (0, 1], (ii)

γk → 0, (iii)
∑∞

k=1 γ
k < ∞, (iv)

∑∞
k=1(γk)2 < ∞ and (v)

∑∞
k=1 ε

k
fγ

k < ∞ for each

f = 1, . . . , F . Then the following results hold.

1. Every limit point x̂ of the sequence xk generated by Algorithm 7 is an equilibrium

to SAANEP(φ̂f , Xf )
F
f=1.

2. Suppose further that the required multi-epiconvergence in Theorem 4.3.1 is sat-

isfied. In this case, if x̂→ x∗ as N →∞, then x∗ solves SNEP(θf , Xf )
F
f=1.

Proof For part (i), we begin by noting that by Lemma 4.4.2, xftextBR(x̄, τ) ∈

argminxf∈Xf
[P (xf , x̄f ) + τ ‖xf − x̄f‖2]. Given this fact, it is easy to show that Al-

gorithm 7 computes a stationary point of the potential minimization problem (4.26)

using Theorem 4 [97]. Indeed, it is easily seen that Algorithm 7 is equivalent to

the Inxact Gauss-Seidel SCA Algorithm in [97], with f1(x) = P̂ (x), I = {1, . . . , F},

Ci = If = {1}, Kf = Xf with the regularization matrix H(x) = I the identity matrix.

In order to show convergence of Algorithm 7 to a stationary point of (4.26), we

merely need to verify that the required regularity conditions are satisfied. But this is

easily verified as a consequence of Lemma 4.4.1.

The proof of part (i) is completed by noting that by Lemma 4.2.4, any stationary

point of (4.26) is also an equilibrium to SAANEP(φ̂f , Xf )
F
f=1.

Part (ii) is a direct consequence of the multi-epiconvergence property and Theorem

4.3.1.

Similarly, we can also think of an inexact version of Algorithm 5, as given below.

The requirements for the algorithmic parameters γ and ε for Algorithm 8 are the

same as those for Algorithm 7. We state the convergence result for Algorithm 8 below

without proof.
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Algorithm 8 Inexact Parallel best-response (Gauss-Jacobi)

Step 0: Initialize - Set x0 ← (x0
f )
F
f=1, k ← 0.

Step 1: Termination Check: IF xk satisfies termination criteria, THEN STOP

Step 2: Main Iteration:

FOR f = 1, . . . , F ,

Compute zkf such that
∥∥zkf − xBRf (xk−f , τ)

∥∥ ≤ εkf .

Set xk+1
f = xkf + γkzkf .

Set k ← k + 1.

GOTO Step 1.

Theorem 6.1.3 Suppose NEP(θf (·, ξ), Xf )
F
f=1 satisfies all the assumptions for The-

orem 4.4.4. Suppose further that the potential function P is coercive over X and

that the parameters γ and ε satisfy the following properties - (i) γk ∈ (0, 1], (ii)

γk → 0, (iii)
∑∞

k=1 γ
k < ∞, (iv)

∑∞
k=1(γk)2 < ∞ and (v)

∑∞
k=1 ε

k
fγ

k < ∞ for each

f = 1, . . . , F . Then the following results hold.

1. Every limit point x̂ of the sequence xk generated by Algorithm 8 is an equilibrium

to SAANEP(φ̂f , Xf )
F
f=1.

2. Suppose further that the required multi-epiconvergence in Theorem 4.3.1 is sat-

isfied. In this case, if x̂→ x∗ as N →∞, then x∗ solves SNEP(θf , Xf )
F
f=1.

One of the interesting open research questions that arise out of our discussion in

this section is whether the inexact best-response schemes outlined in Algorithms 8

and 7 can be combined with a termination condition like 6.1 to design a sequential

sampling inexact best-response algorithm. If such an algorithm is convergent, it

would provide a natural way to ease the computational burden of finding approximate

equilibria to SNEP(θf , Xf )
F
f=1 to some predetermined precision.
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6.2 Disparate sampling schemes

All the algorithms presented in this dissertation operate under the common as-

sumption that the sample paths {ξk} used by each player at each iteration are exactly

the same. This is a reasonable assumption if the application in question is an en-

gineered system, where the Nash model is usually used for the purpose of designing

distributed algorithms. In this case, the sampling might be done in common by an

external or central agency and distributed to the agents.

However in many real life scenarios, it is more reasonable to consider disparate

sampling schemes, where each agent is assumed to utilize different samples of the

random vector ξ, all drawn from the same distribution. This is certainly the case

where the agents involved are separate entities or people. Even in the case of dis-

tributed implementation for engineered systems, it is reasonable to assume that the

sampling is done locally using a pseudo-random number generator with different seeds

on different machines.

In light of this issue, a natural question to ask is the following - do the convergence

properties of Algorithms 5 and 6 hold if the samples used by each agent f are different,

i.e. agent f uses a sample {ξkf}, instead of a common sample {ξk}. It is intuitive to

think that this will indeed be the case, since under the potentiality assumption if the

players draw samples of the same size (say N), then as N → ∞ the error between

the potential function values computed by each player will reduce to zero.

We provide an example to illustrate the reasoning presented above. For the three

node Nash Cournot power market equilibrium example presented in section 5.2.2,

we compare the output for Algorithm 6 computed using uniform sampling as well

as disparate sampling across the players. The results are summarized in Figures 6.1

through 6.4.

The figures illustrate the fact that in general for a fixed sample size N , there is

more variance in the solutions computed using disparate sampling. However as the
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Figure 6.1. Genco 1 equilibrium quantity vs N (Disparate Sampling)

Figure 6.2. Genco 2 equilibrium quantity vs N (Disparate Sampling)
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Figure 6.3. Genco 1 equilibrium profit vs N (Disparate Sampling)

Figure 6.4. Genco 2 equilibrium profit vs N (Disparate Sampling)
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sample size N increases, the solutions of the algorithm tend to converge to the true

solution for both uniform as well as disparate sampling schemes.

These experiments indicate that at least for the small example that we consid-

ered of a player-wise convex potential game under uncertainty, disparate sampling

schemes provide convergent approximation algorithms. We are currently exploring

research on establishing these convergence properties in theory. The main challenge

in this problem is that if the agents use different samples, the sampled determinis-

tic equivalent equilibrium problem SAANEP(φ̂f , Xf )
F
f=1 need not necessarily have a

potential function. In this case, we must rely on error estimation results to analyze

the difference between potential function values P̂f estimated by each player given a

sample of fixed size N , relative to the true potential function value P . We leave this

problem for future work.

6.3 Approximation of generalized Nash equilibria

In this section, we examine whether the decentralized approximation schemes

presented in Chapter 4 may be extended to the realm of generalized Nash equilibrium

problems. The primary motivation behind the following discussion is the increasing

number of generalized Nash models being used in application areas such as wireless

communications networks and traffic network analysis.

One of the main challenges associated with proving convergence results of decen-

tralized algorithms for GNEPs is the presence of coupled constraints. Indeed, it is

very easy to construct examples where best responses result in infeasibility for player

problems. However, we consider the case where the linking constraints amongst the

player problems are “shared”. Specifically, consider the GNEP(θf , Xf )
F
F=1 where each

player solves the following problem:

minimize
xf

θf (xf , x−f )

subject to xf ∈ Xf (x−f ).
(6.5)
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This GNEP is said to have shared constraints if there exists a nonempty, closed set

X ∈ Rn such that for each player f = 1, . . . , F ,

Xf (x−f ) = {xf ∈ Df : (xf , x−f ) ∈ X}, (6.6)

where Df ∈ Rnf is a nonempty closed set that captures the non-shared constraints

for player f . In the form of parametric constraints, typically we have X = {x ∈ Rn :

g(x) ≤ 0}, where g : Rn → Rm is a vector function that is usually assumed to be

convex in x.

It is easy to see that if we start with a jointly feasible x ∈ X ∩
∏F

f=1 Df and let a

player f deviate unilaterally, the resulting decision tuple will still be feasible for the

other players. This is precisely because of the shared nature of the linking constraints.

Note that if we let multiple players best respond to a given x simultaneously, the

resulting decision tuple might not necessarily be feasible to the GNEP. In essence,

this means that the convergence results for regularized Gauss-Seidel algorithms go

through for player-wise convex GNEPs1 with shared constraints [38]. However, no

such convergence result is possible for the regularized Gauss-Jacobi algorithm.

In view of these facts, it is natural to think of applying sampling schemes, com-

bined with Algorithm 6 to solve these special GNEPs in the presence of exogenous

uncertainty in the objective functions. The main difficulty however is that the multi-

epiconvergence property defined in [50] is designed for NEPs. Extending the multi-

epiconvergence concept into the domain of GNEPs is a nontrivial task. Indeed, the

main tool used in proving the convergence result summarized in Theorem 4.3.1 is the

following fact.

Theorem 6.3.1 [50] The family of functions {φ̂f}Ff=1 multi-epiconverges to the

family {φf}Ff=1 on X if and only if for every f = 1, . . . , F and every sequence

{xk−f} ⊂ X−f converging to some x∞− f ∈ X−f , the sequence of uni-component func-

tions {ψkf} where

ψkf (xf ) = φ̂f (xf , x
k
−f ), xf ∈ Xf

1A GNEP is player-wise convex if the objective function θf (·, x−f and the feasible set Xf (·, x−f are
convex.
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epiconverges to the uni-component function

ψ∞f (xf ) = φ̂f (xf , x
∞
−f ), xf ∈ Xf

on the set Xf .

Theorem 6.3.1 allows us to use the machinery of epiconvergence argue that if we

construct a sequence {xkf} such that xkf ∈ argminxf∈Xf
ψkf (xf ), and xkf → x∗f ∈ Xf ,

then x∗f ∈ argminxf∈Xf
ψ∞f (xf ). Since this holds for each f = 1, . . . , F simultaneously,

x∗ must be an equilibrium for NEP(φ̂f , Xf )
F
f=1.

However, in the case of GNEP(φf , Xf )
F
f=1, the sequence {xk} is constructed such

that

xkf ∈ argmin
xf∈Xf (xk−f )

ψkf (xf ).

Thus epiconvergence of {ψkf} to ψ∞f is insufficient to ensure convergence of solutions

of GNEP(φ̂f , Xf )
F
f=1 to solutions of the true GNEP(φf , Xf )

F
f=1. We need some ap-

propriate extension of epiconvergence to cases where the underlying feasible sets also

vary, albeit perhaps in a structured fashion. We are currently pursuing research on

this issue.
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7. SUMMARY AND FUTURE WORK

The main focus of this dissertation is on the analysis of decentralized algorithms

for computing solutions of Nash games. Our research was motivated by the myr-

iad applications that have recently come into focus where Nash equilibrium is used

as a modeling framework for strategic interactions between selfish agents. In many

such scenarios, examining the convergence properties of decentralized schemes, such

as best-response methods, is an important task. From a computational perspective,

our work has important implications in the implementation of best-response methods

for certain classes of Nash games, especially in high performance computing frame-

work. On the other hand, our analysis also paves the way for obtaining a better

understanding of how real agents reach a particular equilibrium.

A summary of our work on the two major topics of this dissertation, namely

network interdiction games and potential games under exogenous uncertainty, is given

below. Each section also presents ideas for future research.

7.1 Network interdiction games

In Chapter 3, we introduced decentralized network interdiction (DNI) games and

gave formulations for three classes of games – decentralized shortest path interdiction

(DSPI) games, decentralized maximum flow interdiction (DMFI) games and decen-

tralized minimum cost flow interdiction (DMCFI) games. We analyzed the theoretical

properties of DSPI games: in particular, we gave conditions for the existence of equi-

libria and examples where multiple equilibria exist. We also showed that DSPI games

belong to a special class of games called potential games. This property was key in

establishing several of the theoretical results we presented.
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We showed that the DSPI game under continuous interdiction is equivalent to a

linear complementarity problem, which can be solved by the Lemke’s algorithm. This

constitutes a convergent centralized method to solve such problems. We also presented

decentralized heuristic algorithms to solve DSPI games under both continuous and

discrete interdiction. Finally, we used these algorithms to empirically evaluate the

worst case and average efficiency loss of DSPI games.

We also presented formulations for other classes of network interdiction games

where the agents’ obstruction functions are related to the maximum flow or min-

imum cost flow in the network. Establishing theoretical results and studying the

applicability of the decentralized algorithms to other classes of decentralized network

interdiction games are natural and interesting extensions of our work on DSPI games.

In our study of DSPI games, we made the assumption that the games have com-

plete information; that is, the normal form of the game – the set of agents, agents’

feasible action spaces, and their utility functions – is assumed to be common knowl-

edge to all agents. In addition, we made the implicit assumption that all input

data are deterministic. However, data uncertainty and lack of observability of other

agents’ preferences or actions are prevalent in real-world situations. For such settings,

we need to extend our work to accommodate games with exogenous uncertainties, as

well as cases with incomplete information.

One might also be interested in designing interventions to reduce the loss of ef-

ficiency resulting from decentralized control. This leads to the topic of mechanism

design. Such a line of work also defines a very important and interesting future

research direction.

7.2 Potential games under exogenous uncertainty

In Chapter 4, we presented decentralized approximation schemes for a class of

games called potential games under exogenous uncertainty. The primary motiva-

tion for our work is the need for efficient algorithms to compute equilibria to games
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where the players’ actions are subject to uncertainty whose sources are external and

knowledge of whose structure is public.

We leveraged some recent results in the analysis of approximations of Nash equi-

libria, especially the concept of multi-epiconvergence to show that sampling based

approximation schemes can be successfully used to build computational methods for

games under exogenous uncertainty. Such approximation schemes, when combined

with decentralized algorithms were then shown to converge to equilibria as the sample

size grows large. Specifically, we gave convergence results for parallel and sequential

best response algorithms, under suitable regularization schemes. The conditions we

require for the convergence results are fairly mild.

In order to test the decentralized approximation algorithms presented in Chapter

4, we present two relevant application examples, stochastic traffic routing games and

power market equilibrium problems. In the former we consider atomic selfish routing

games with splittable flow. We perform numerical experiments for the routing games

that illustrate good empirical performance for our algorithms. For power market

equilibria, we consider equilibrium between electricity generation companies and an

independent system operator. Under the assumption that the generation companies

cannot anticipate the actions of the ISO, we show that the market equilibrium is in

fact a potential game. We also present numerical results for a small test case.

Numerical experiments for both applications are carried out using CPLEX and

MATLAB’s parallel computing toolbox. For the instance of power market equilib-

rium problem that we tested, as well as small instances of the stochastic traffic rout-

ing games, the results show good empirical performance of the naive Gauss-Seidel

algorithm (Algorithm 1) as well as the naive Gauss-Jacobi algorithm (Algorithm 2).

However, for larger instances of the stochastic routing game, we find it necessary to

employ the regularized Gauss-Jacobi method (Algorithm 5), since the naive version

fails to converge. In this case, we observe that the convergence properties of the

algorithm are highly dependent on the regularization parameter τ . This parameter

needs to be carefully tuned in order to ensure good practical performance of the algo-
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rithm. A preliminary analysis of the parallelization efficiency for Algorithm 5 is also

presented.

We note that the approach presented here marks a starting point for investigations

on the convergence properties of decentralized algorithms for various games under un-

certainty. From a computational perspective, there are several natural extensions and

questions that arise from our work. While we have established the asymptotic consis-

tency of estimators generated by the approximation scheme, an important question

that remains to be answered is rate of convergence as well as the quality of solutions

generated using finite sample sizes.

It is reasonable to assume in some scenarios, such as distributed optimization

settings, that all the players are able to draw the same sample from the underlying

random vector’s probability distribution. However in the more general setting it is

natural to ask whether the convergence properties of the algorithms would hold up if

the players draw distinct samples from the distribution.

From the modelling perspective, our analysis assumes risk neutral behavior from

the players. It is an open question whether the algorithms will also perform well for

risk averse equilibrium models. Additional conditions might be required, for instance

on the structure and properties of the risk measure, to ensure that favorable properties

such as potentiality for the underlying deterministic game carries over to the risk-

averse formulation. Another open question is whether the analysis may be extended to

games of incomplete information, i.e. for the computation of Bayesian Nash equilibria.

While we conjecture that a direct extension is possible for Bayesian potential games

with finite type spaces, the case of continuous type spaces presents a challenging

research direction.



REFERENCES



136

REFERENCES

[1] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On Nash equilibria
for a network creation game. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 89–98. ACM, 2006.

[2] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter. A survey on
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