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ABSTRACT  

Large projects evaluation rises well known difficulties because -by definition- they 
modify the current price system; their public evaluation presents additional difficulties 
because they modify too existing shadow prices without the project. 

This paper analyzes –first- the basic methodologies applied until late 80s., based on the 
integration of projects in optimization models or, alternatively, based on iterative 
procedures with information exchange between two organizational levels. New 
methodologies applied afterwards are based on variational inequalities, bilevel 
programming and linear or nonlinear complementarity. Their foundations and different 
applications related with project evaluation are explored. 

As a matter of fact, these new tools are closely related among them and can treat more 
complex cases involving –for example- the reaction of agents to policies or the 
existence of multiple agents in an environment characterized by common functions 
representing demands or constraints on polluting emissions. 

______________________________________________________________________ 

* I am indebted to professor Jaume BARCELÓ BUGEDA , Universitat Politècnica de 
Catalunya-UPC, for his comments on the original text. 
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1.-INTRODUCTION 

This Survey refers to new methodologies adapted to problems generated by public 
evaluation of large projects. Its immediate motivation is related with the exploration of 
a set of topics related with climate change economics, published in a collective book in 
20091. One consequence of this exploration has been this new analysis of a previous 
line of research already focused on large project evaluation2. 

Until the 80s, the most widespread methods tended to be conceived as planning 
procedures -centralized or not- characterized by information exchange between two 
levels of decision; this characterization is especially true in the cases of Dantzig-Wolfe 
and Benders algorithms. 

New methodologies included are variational inequalities, bilevel programming and 
linear or nonlinear complementarity; relevant applications are also analyzed. Special 
attention is dedicated to the difficulties created by discrete variables or -in other words- 
the problems posed by non-convexities. 

These new tools can treat more complex cases than the traditional ones such is the case 
of the reaction of agents of belonging to a second level to the policies set by a first 
hierarchical level or the existence of multiple centers of decision in an environment of 
common constrains that may represent functions of joint demand or constraints on 
common pollution emissions. Finally, in an Appendix, the special topic of project 
programs and  budged constraints is analyzed. 

2.- MARGINAL PROJECTS  EVALUATION 

2.1.-Introduction to marginal projects evaluation 

Let us suppose it is necessary to evaluate a new steel plant in a medium-size economy. 
The point of departure is a given set of prices, quantities, revenues, etc. in the economy. 
The eventual adoption of any of the investment alternatives available to the steel plant 
would change current set. Under these conditions ¿does it make sense to use the initial 
configuration to assess the alternatives ? If not ¿how to proceed? 

In order to analyze this basic question we will assume is available a model of the 
economy in which we will proceed to integrate the model of the steel plant in order to 

                                                           
1 VEGARA J.M. (1987) Evaluación pública de grandes proyectos de inversión por integración en 
modelos macroeconómicos, Instituto de Estudios Fiscales, Madrid 

2 Some partial results were presented  to the Technical Workshop on Cost-Benefir Analysis on climate 
change adaptation, Spanish Climate Change Bureau-OECC, Universidad Autónoma de Madrid, 
September 2009, Madrid 
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evaluate its alternative designs. Specifically, let us consider the model of the economy is 
a multi-sectoral and multi-period optimization one; a model like one relative to Mexico 
included in GOREUX L.M., MANNE A . (1973) or the one relative to the Spanish 
economy included in SEBASTIAN C. (1976). See also WESTPHAL LL (1971), Ch.R. 
BLITZER PB CLARK, TAYLOR L. (1975), GOREUX L.M. (1977), JANSSEN 
J.M.L., PAU L.F. or STRASZAK A. (1979) 3. 

The economy model –without the Project- is to find the 
0m -vector 

0x   of continuous 

variables such that:  

       
0

0 0. ( )
x

Max w F x=                                                   (2.1) 

                              12 0 1( )A x b≤                                              (2.2) 

                                   0 0x ≥                                      (2.3) 

Let 12(.)A  be a 1n -vector of functions and v
∧

a 1n -vector be the vector of dual 

variables corresponding to constraints (2.2). Let us suppose the project impact on the 
economy is marginal and equal to a differential vector db .; as it is well known, under 
this conditions and according to the economic interpretation of dual variables, the 

variation of the objective function is equal to  
T

v db
∧

.  Consequently, if a project is 
marginal, existing shadow prices can be used to evaluate project impact. Acceptation 

rule is 0
T

v db
∧

> .This is the conventional approach considering projects as “marginal 
perturbations”. Large projects are not marginal by definitions. DRÈZE J. and STERN 
N. (1987)4 have analyzed these perturbations in a framework including also “policies” 
defined as modifications of the parameters of the model (2.1.)-(2.3). 

The project model 

The need for public evaluation stems from the existence of project impacts on the global 
economy, mainly contributions to demand and resource consumption.  Consequently, 
we must incorporate project impacts in the economy.  

Let 1x  be a 1m -vector of variables specific to the project. They are continuous 

variables and subject to  2n  constraints, specific to the Project: 

                                                           
3  WESTPHAL  L. (1971) Planning Investments with Economies of Scale, North Holland Pu., Amsterdam; BLITZER 
Ch.R., CLARK P.B., TAYLOR L. (1975) Economy-wide Models and Development Planning, Oxford University 
Press, New York; GOREUX L.M. (1977) Interdependence in Planning. Multilevel Programming Studies of the Ivory 
Coast, The Johns Hopkins University Press, Baltimore, London; JANSSEN J.M.L., PAU L.F., STRASZAK A.(1979) 

Models and Decision Making in National Economies, North-Holland, Amsterdam. As is well known, the 
World Bank developed many initiatives in this field. 

4 DRÈZE J., STERN, N. (1987) The Theory of Cost-Benefit Analysis, in AUERBACH.A.J., FELDSTEIN M. (1987), 
Volume II. 
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               21 1( )A x  ≤   2b                                                         (2.4) 

                         1x   ≥   0                                                         (2.5) 

 

Centralized project evaluation  

First we will proceed to evaluate the project using a centralized approach. Let us 
consider the model called “principal” with the project incorporated: 

  0 0. ( )
ox

Max w F x=                                                                (2.6) 

  11 1( )A x   +   12 0( )A x    ≤   1b                                            (2.7) 

  21 1( )A x                             ≤   2b                                            (2.8) 

                                    1 0, 0x x ≥                                                   (2.9)  

In the objective function the only relevant variables are the central ones. In constraints 
(2.7), the vector of functions 

11 1( )A x expresses project impact on the global economy 

and constraints (2.8) are specific to the project. The above model, therefore, is adapted 
for a central project evaluation. 

2.2.- Decentralized Projects evaluation 

From model (2.6)-(2.9) we can construct a new model relative to the Project: 

                          1 11 1 w       ( )TMax v A x
∧

= −                                                         (2.10) 

                              21 1( )A x   ≤   2b                                      (2.11) 

                                               1x  ≥   0                                      (2.12) 

Where vector v
∧

is the 1n -vector corresponding to the dual variables of central 

constraints (2.7) in the “principal model” (2.6)-(2.9). This is the problem corresponding 
to the Project Evaluation Center-PEC. We will call it the “reduced problem”. 

It can be proofed that -under some specific conditions- the optimum of “reduced” 
(2.10)-(2.12) belongs to the solution of the “principal” (2.6) - (2.9); that  is to say, if 
project managers know a) its specific constraints; b) projects impacts on the economy 
and c) the optimal vector of optimal dual variables of global constraints (2.7) in the 
“principal” then the optimal solution of (2.10)-(2.12) coincides with the solution of  
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(2.6) - (2.9). Therefore, optimal shadow prices in the “principal” can be used to evaluate 
the project in the “reduced” (2.10)-(2.12). 

However, as can be noticed, in the general case there is circularity in the procedure 
because shadow prices computation is simultaneous with the determination of optimal 
solution in the program (2.6)-(2.9). In the general case -with non marginal projects- 
there is no possibility for decentralized project evaluation without interaction with the 
model of the economy: decentralized evaluation is only possible when project impacts 
are marginal, that is, when

1 1 1( )A x  is a differential vectordb . 

Certainly, this result is not surprising since otherwise it would be possible to determine 
the economic impact resulting from a non marginal project without knowing its optimal 
design.  

Definition and conditions of separability5 

A "reduced" problem (2.10)-(2.12) is called "separable" from a “principal” one (2.6)-
(2.9) if every optimal solution of the “reduced” problem is generated by an optimal 
solution of the principal. Therefore -in the example considered- when  any optimal  
solutions of the model used to evaluate the project in a decentralized way is generated 
by an optimal solution of the model used for a centralized evaluation. In this context 
therefore, project evaluation is a separability problem. 

Separability of the reduced problem from the principal one is basically related to the 
uniqueness of the optimal solution of the reduced problem. A sufficient condition for a 
given optimal solution of the reduced problem to be unique is that its objective function 
be strictly convex. This is not case of linear optimization programs; for this reason there 
in no separability in this case 6. 

Objective functions and constraints 

Let us consider a graphical illustration of separability. The initial problem is to find the 
solution of: 

         
1 2 3

0 1 2
, ,
. ( , )

x x x
Max w F x x= =                                        (2.13) 

  1 1 12( ,  ) a x x b≤                           (2.14) 

                                                           
5 BESSIÈRE Fr. and .SAUTER E. proofed that if the various functions verify certain conditions -
specially differentiability and convexity- the existence of a unique solution in the reduced problem is a 
sufficient condition of separability. BESSIERE F., SAUTER,E. (1968) Optimization and subopti-
mization: the method of extended models in the non-linear case, Management Science,  September 1968 

6 See BESSIERE F., SAUTER,E. (1968). Another common case of non-separability happens when there 
is degeneracy, as it is very common in transportation and networks problems. These issues have been 
analyzed in the context of optimal control theory in continuous or in discrete time; see ALBOUY M. 
(1972) La régulation économique dans l´entreprise, Vols.I, II, Dunod, Paris 
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   12 22)( ,x xa b≤                  (2.15) 

  13 32)( ,x xa b≤                 (2.16) 

                                                1 2, 0x x ≥                                        (2.17) 

Let 
^ ^

1 2( , )x x  be the optimum. The graphic representation of this problem can be seen 

in Fig. 2.1. 

 ______________________________________________________________________  

 

_________________________________________________________________ 

Figure 2.1. 

 

¿Is it possible to get the same optimal solution by solving the problem without 
constraint (2.15)? According to separability theory the reduced problem will be: 

      
1 2

^

0 1 2 1 1 2
,

1. ( , ) , )(
x x

Max z F x x v xa x= −                                      (2.18) 

           12 22)( ,x xa b≤                                         (2.19) 

             13 32)( ,x xa b≤       (2.20) 

    1 2, 0x x ≥                                                 (2.21) 
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_____________________________________________________________________ 
  

   

______________________________________________________________________ 

Figure 2.2 

Numerical value of 
^

1v  is equal to the optimal value of the dual variable associated to 

the suppressed constraint. It is intuitive that in order to get the same optimal solution me 
need to modify the objective function. 

Let us consider an economic interpretation of this example. Let us suppose the principal 
(2.13) - (2.17) models a firm maximizing its benefits and that constraint (2.14) express 
the limitation of carbon dioxide emissions imposed by the regulator. The result shows 

that it is possible to obtain the same optimal plan by imposing a tax equal to 
^

1v . The 

example illustrates the equivalence between a constraint and a suitable modification of 
the objective function. Obviously, the formal equivalence does not mean equivalence of 
the institutional conditions necessary for proper operation in both cases. 

Next, we will analyze existing methodological alternatives in order to deal the problems 
raised by non-marginality. 

3.-LARGE PROJECTS  EVALUATION 

In order to solve the problems generated by large project evaluation there are two basic 
methodologies. There are two different approaches: 

a) evaluation by integration 

b) iterative procedures 

 

3.1.-Evaluation by integration 

There are different applications of evaluation by integration. See WESTPHAL 
L.E.(1971)7 and GOREUX, L.M.(1977)8 .VEGARA J.M. (1987)9 contains an 
                                                           
7 WESTPHAL L. (1971) Planning Investments with Economies of Scale, Nort Holland Pu., Amsterdam 
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application to the  Spanish economy. See also  GOREUX  L.M., MANNE A. (1977) or 
ECKAUS R.S., ROSENSTEIN-RODAN P.N.(1973) 10. Section [4] in this Survey 
contains additional applications. 

The approach by integration has the advantage that makes possible to use optimization 
models including binary variables so that it is feasible to deal  problems associated with 
fixed costs, economies of scale and not-convexities in general, and also those related to 
the existence of alternatives among other highly relevant features. 

The main limitation of this approach is that it assumes a single decision center for the 
global economy and, consequently, information centralization 

3.2.-Iterative procedures 

This approach is a direct application of different existing iterative algorithms applied to 
the solution of large mathematical programming problems. Basic algorithms are 
Dantzig-Wolfe and Benders. 

   

Let as consider the linear version of the global economy with the project, (2.6)-(2.9): 

                   
0 1

0 0
,
. T

x x
Max w c x=

                                                      (3.1)    

                11 1 12 0 1A x A x b+ =                                                       (3.2)                  

                    21 1A x                =  2b                                                      (3.3) 

                         1x , 0x    ≥   0                                                      (3.4) 

The model includes only one Project but can be generalized to include several projects 
if using the initial form of Dantzig-Wolfe model 11. 

                                                                                                                                                                          
8 Chapter 15 in MANNE A. (1977) Interdependence in Planning, The Johns Hopkins University Press, 
Baltimore and London 

9 VEGARA J.M.(1987) Evaluación pública de grandes proyectos de inversión por integración en modelos 
macroeconómicos, Instituto de Estudios Fiscales, Madrid.  This model was used to evaluate a new 
integral steel plant in Spain by using the multisectoral and multiperiod model of the spanish economy 
contained in SEBASTIÁN C. (1976) El crecimiento económico español 1974-1984: proyecciones 
mediante un modelo multisectorial de optimización, Fundación del INI, Programa de Investigaciones 
Económicas, The integrated model MACROSID included binary variables in the steel plant submodel. 

10 GOREUX L.M., MANNE A. (1973) Multilevel Planning: Case Studies in Mexico, North Holland 
Pu.Co Amsterdam, London; ECKAUS, ROSENSTEIN-RODAN P.N.(eds.) Analysis of development 
problems, North Holland Pu, New York 

11
  DANTZIG G.B, WOLFE D. (1961) The decomposition algorithm for linear programs, Econometrica, 

oct.1961, 29, 4. For additional contributions see WHINSTON A. (1964) Pricing Guides in Decentralized 
Organizations, in New Perspectives in Organizational Research, edited by COOPER W.W. at al., John 
Wiley & Sons, New York, where they relaxed linearity constraints. BAUMOL W.J., FABIAN T. (1964) 



 

 

10

10

Let us consider only the constraints specific to the model: 

21 1A x                =  2b                                                      (3.5) 

                         1x    ≥   0                                                      (3.6) 

   The points belonging to (3.5)-(3.6) can be computed as convex linear combinations of 

the extreme points 1kx : 

    

1

1 1 1

1

k

j j

j

x xλ
=

=∑                                          (3.7) 

    

    

1

1

1

1
k

j

j

λ
=

=∑                                                                  (3.8) 

                     0jλ ≥  ,     j∀                                                      (3.9) 

By substituting vector 1x  in (3.1)-(3.4) we get a problem called the “extreme problem” 

in 0x  and 1 jλ . The essential feature of Dantzig-Wolfe algorithm is that the extreme 

problem can be solved by using simplex method of linear programming without the 
initial totality of extreme points. 

Let us consider the next problem (3.10)-(3.12) where ku corresponds to the k   

iteration of the procedure: 

           
1

11 1. T
k

k

x
uM w A xax −=                                           (3.10) 

                           21 1A x   =  2b                                                       (3.11) 

                                   1x   ≥  0                                                        (3.12) 

Any solution of this problem is an extreme point 1 jx  that can be formulated as a 

convex linear combination of the relevant extreme points. 

The algorithm proceeds as follows: 

                                                                                                                                                                          

Decomposition, Pricing for Decentralization and External Economies, Management Science, Vol.XI was 
focused on the issue of internalizing externalities and RUEFFLI T.W. (1971) A Generalized Goal 
Decomposition Model, Management Science, Vol.17, No.8 developed a three-level organization model 
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1.-CP computes a provisional price vector associated to constraints (3.2) and 

communicates vector 11
T

ku A− to the CPE. This vector is a provisional evaluation of 

the unit net impact of the project. 

2.- CEP solves (3.10) - (3.12) i.e. maximizes the net value of project contribution valued 
using the provisional prices and considering only their own constraints. CEP 

communicates to CP the new provisional plan, 1 jx  and the associated value 
kw  of the 

objective function to be used in the test of optimality. 

3.-CP applies the test of optimality and if it is verified proceeds to compute the optimal 
solution as a linear convex combination of previous solutions.  

In this case, therefore, there is no decision decentralization. Dantzig-Wolfe algorithm 
uses continuous variables and therefore cannot be used to deal with non convexities. 

b.-Benders algorithm 12 

Let us consider the problem: 

                         
0 ,x y

Max z  =   0 0
Tc x                                       (3.8) 

                               11A y   +  10A 0x   ≤   1b                                                  (3.9) 

                                                    0x   ≥   0                                                        (3.10)                                                        

y   €  Y                                        (3.11) 

Variables y  are specific to the Project and can be binary: they must belong to a given 

set Y . Constraints (3.9) express Project impact on the economy. The objective function 

depends exclusively on central variables 0x . Let  ẑ be the optimal value of the 

objective function.  

Given y y=  (3.12) the dual of (3.8)-(3.11) 13 is to find vector u  such that: 

   
1 11

. ( )Tminw u b A y= −                                                 (3.13    

    11 0 T Tu A c≥                                         (3.14) 

                                                           
12

 BENDERS J.F.(1962) Partitioning procedures for solving mixed-variables programming models, 
Numerische Mathematic, Vo,4, 352-252 

13
 The singularity of Benders algorithm is generated by this partial dualization of the global problem. This 

is particularly relevant in the presence of discrete variables. 

 



 

 

12

12

                      0u≥                          (3.15) 

The convex polyhedron of feasible solutions associated with the dual of (3.12)-(3.13) 

does not depend ony ; the polyhedron has K  vertex. The optimum will correspond to 

one vertex of the polyhedron, supposed unique. Therefore, our problem is equivalent to 

find vectork u such that: 

   1 11min. ( )T
k

k K
w u b A y

∀ ∈
= −  

In the optimum of primal and dual ̂w = ẑ so that:  

    . T
o o

x X
Max c x

∈
=  1 11min. ( )T

k
k K

w u b A y
∀ ∈

= −      

where: 

   [ ]0 011
/ ( ), 0X x Ax b A y x= ≤ − ≥  

Outside the optimum the relation is:      0 0 1 11( )T Tc x u b A y≥ −  

Therefore, original problem (3.8)-(3.11) is equivalent to find 0x  andy  such that:  

   0 1 11max (T

y xo
Max c b A y −

                                                  (3.16) 

      11A y   +  10A 0x   ≤   1b                                                 (3.17)                 

                   0x   ≥   0                                                 (3.18)    

                               y   €  Y                                                     (3.19) 

Given the equality in the optimum between the values of primal and dual objective 
functions so that to solve: 

              1 11min ( )k
k

k Ky Y
Max u b A y

−

∀ ∈∈

 −  
            

                              y   €  Y                                    

is equivalent to solve: 

             .Max z                                                                       (3.20)   

   1 11min ( )T
kk K

z u b A y
∀ ∈

≤ −                              (3.21) 
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                              y   €  Y                                                                 (3.22) 

Therefore, if the totality of extreme point were known, problem (a)-(b) would be 
equivalent to solve: 

   1 11min ( )T
k

k K
u b A y

∀ ∈
−                                              (3.23)    

                  y   €  Y                                                                (3.24) 

The algorithm  

Initially all the vertices of (3.13) are un known: they have to be generate iteratively. The 
algorithm basically consists of the following steps: 

1-CP determines an extreme point 1u  of: 

             10 0    T Tu A c
∧

≥                                                                         (3.25) 

                   u  0≥                                                                           (3.26) 

This vector plays the role of a provisional price and it is communicate to the CEP, 
simultaneously with the value of "resources" 

1ub
 used by the CEP. 

2 - The CEP solves the problem: 

          .
y

Max α                                          (3.27) 

1 1( )Tu b Ayα ≤ −                                                 (3.28) 

y   €  Y                                         (3.29) 

Vector y  is a “provisional project specification” which is communicated to CP.  

3- CP solves its own problem taking “provisional project specification” as given: 

      0 0max T

xo
z c x=                                          (3.30) 

   1 11oAx b A y= −                                         (3.31) 

           0x   ≥   0                                                (3.32) 
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CP applies the optimality test. If the optimum has not yet been reached he must 
compute another provisional price vector

ku  using (3.13) - (3.14), generating  another 

constraint (3.28) in Step 2 14.  

In Step 2, the CEP solves its own problem with one additional constraint (3.28) 
generating upper bounds for the objective function value. This constraints include not 
only prices but also quantities. The set of hyperplanes defined by constraints (3.28) 
generates "dome" constraining values of z to be maximized in order to induce the CEP 
to compute the optimum. 

A special interest of Benders algorithm derives its capacity to solve mathematical 
programming problems including discrete variables such as those associated with the 
presence non-convexities, fixed costs or the presence of alternative decisions, aspects 
that cannot be formulated in models with continuous variables 15. This is possible 
because CP communicates constraints including prices and quantities. As in Dantzig-
Wolfe- information is decentralized but the final decision is not 16. 

Independently of their economic interpretation 17, the algorithms of Dantzig-Wolfe and 
Benders are used to solve optimization problems large because their approach involves 
dividing global problem into subproblems. 

Algorithmic-heuristic procedures 

A complementary approach is so-called algorithmic-heuristic procedures, developed 
initially by KORNAY J. (1969)18 and based on alternating algorithmic and  heuristic 
steps based on the knowledge and experience of planners. The basic idea is to multiply 
information transmitted in each step in order to accelerate convergence. 

                                                           
14

  It is feasible to generate several vectors in each step in order to accelerate convergence by reducing the 

number of information exchanges between CP and CEP. 

15 See VIETORISZ T. (1963) Industrial Development Planning Models with Economies of Scale, Papers 
of the Regional Science Association, 12, 157-92 and also Decentralization and Project Evaluation under 
Economics of Scale and Indivisibilities, Industrialization and Productivity, New York, United Nations, 
Bulletin 12 1968, 25-58 

16 It is possible to integrate Dantzig-Wolfe and Benders to operate with more complex structures. See 
VEGARA JM, SEBASTIAN C. (1975).Project evaluation in a two level framework, Econometric Society 
World Congress, Toronto, september 1975 

17
  See Chapters 3 and 7 de LASDON L.S. (1970) Optimization Theory for Large Systems, The 

MacMillan Co., New York US 

 

18 KORNAI J.(1969) Man-machine Planning, Economics of Planning, vol.9, 9, January.  See also 
KORNAI J.(2006) By Force of Thought, The MIT Press, Cambridge USA 
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Model MACROSID –mentioned in Note 9- integrated in a multisectoral and 
multiperiod model of the spanish economy was solved by Jaume BARCELO y Antonio 
DE LECEA using this approach. 

4.- MODELS WITH ENDOGENOUS PRICES 

In a seminal paper SAMUELSON P. A. (1952)19 introduced the idea that a particular 
optimization problem can generate the conditions corresponding to an equilibrium in a 
market. Specifically, maximizing the total surplus of producers and consumers in a 
partial equilibrium model is obtained as a condition the equality between price and 
marginal cost characteristic of competitive markets. The possibility to endogenize 
market prices makes possible to simulate market equilibria using mathematical 
optimization models with appropriate objective functions 20. 

If demand is linear, the simplest formulation of total surplus is quadratic. Moreover, the 
dual variable of the constraint that expresses the relationship between supply and 
demand is equal to market price. The problem formulation can be extended without 
difficulty to the case of several products or several periods.Consider the inverse 
function of demand for the good  j : 

  ( )j j j jp a d q= −                    ( 4.1) 

Lel us  ( )jC q  be the production cost of jq . The algebraic expression of total surplus 

is:: 

  1/ 2( ) ( )j j j j j jS a p q p q C q= − + −                                 (4.2) 

or, taking into account the inverse demand of (4.1):  

  
21/2 ( )j j j j jS a q d q C q= − −                                                     (4.2) 

The simplest complete model is, therefore:  

  
2. 1/ 2 ( )j j j j jMax S a q d q C q= − −                                      (4.3)  

subject to constraints expressing:  

a) supply must be greater or equal to demand  

b) used resources must not be greater than availabilities  

                                                           
19  SAMUELSON P.A. (1952) Spatial Price Equilibrium and Linear Programming, American Economic 
Review, Vol.42, pp.283-303 

20 See  TAKAYAMA T., JUDGE,G.G. (1971) Spatial and Temporal Price and Allocation Models, North 
Holland, Amsterdam 
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c) variables must be nonnegative. 

Taking into consideration K-K-T conditions we get: 

  
'( )j jp C q=       (4.5) 

and dual variables associated with supply/demand constraints are equal to market prices.  

DULOY J.H., NORTON R.D (1973)21 applied this approach to mexican agriculture. 
This methodology can be used to analyse different forms of regulation, as can be seen in 
GREENBERG H.J., MURPHY F.H. (1985)22 . 

It is also interesting the model of the energy sector MARKAL: a linear programming 
model including different demand functions and existing technological alternatives; the 
model computes the emissions of greenhouse gases. The objective function to maximize 
is consumers and producers surplus; the model  can be applied to a country level or to 
the world scale, differentiating eighteen regions. The general structure of the model can 
be seen in FISHBONE J.G., ABILOCH H.(1981) 23. Greenhouse gas emissions can be 
constrained so that it is possible to analyze the impacts of this internalization policy on 
different demands and on production technologies including carbon sequestration. 

There are MARKAL versions integrating international transactions including those 
related with emissions permits. See RAFAJ P., KYPREOS S., BARRETO L. (2005)24. 

     *   *   *  

Next we will explore new tools and new possibilities made possible by: 

-variational inequalities 

-bilevel programming 

-complementarity 25 

                                                           
21  DULOY J.H., NORTON R.D (1973) CHAC, A programming model of mexican agriculture, pp.291-
337 in GOREUX L.M., MANNE A.S (1973) Multi-level planning: case studies in Mexico, North Holland 
Pu. Co. Amsterdam 

22  GREENBERG H.J., MURPHY F.H.(1985) Computing Market Equilibria with Price Regulations 
Using Mathematical Programming, Operations Research, Vol.33, No.5. HAZELL P.B.R., NORTON 
R.D. (1986) 22 Survey on quadratic programming and applications in agriculture models is very 
interesting and useful.  

23  FISHBONE J.G., ABILOCH H.(1981) MARKAL, a linear-programming model for energy systems 
analysis: Technical description of the BNL version, International Journal of Energy Research, Vol.5, 
Issue 4, pp.353-375 

24
 RAFAJ P., KYPREOS S., BARRETO L. (2005) Flexible carbon mitigation policies: analysis with a 

global multi-regional MARKAL model. In HAURIE A., VIGUIER L.eds. (2005) The Coupling of 
Climate and Economic Dynamics, , Springer Dordrecht, Berlin 
 

25 This Survey does not include models like MERGE, used to evaluate greenhouse emission mitigation 
policies and including as objective function an aggregate welfare function and an aggregate production 
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There are strong relationships among these different tools and methodologies as can be 
seen in the Introduction  of Volume II of FACCHINEI F. PANG J-S (2003) 26. VI 
problems are the less structured formulation: they represent the most general 
formulation. 

 

5.-VARIATIONAL INEQUALITIES .  

5.1.-Introduction to VI 

A finite variational inequalities problem ( , )V I F K  is to find vectors  

* nx K∈ ⊂ ℜ  such that: 

  
* *( ) ( ) 0TF x x x− ≥ ,                x K∀ ∈                           (5.1) 

where ( )F x is a continuous function : nF K → ℜ and K  is nonempty, closed 

convex set.  

                                                                                                                                                                          

function. See MANNE A., MENDELSOHN R.,RICHELS R. (1995) MERGE. A model for evaluating 
regional and global effects of GHG reduction policies, Energy Policy, Vol.23, No.1.  

Neither includes POLES model family: a world scale simulation energy model, regionally desagregated 
and using recursive simulation methods in a parcial equilibrium framework. POLES models are focused 
on existing interactions among energy sectors and climate change; see HIDALGO I.(2005) Introducción a 
los modelos de sistemas energéticos, económicos y medio-ambientales: descripción y aplicaciones del 
modelos POLES, Revista de economía mundial, 2005, 33-75 

As it is well known, the specificity of Integral Assessment Models-IAM consists in their capacity to 
analyze, first, existing interactions between economic activity –specially from energy sectors- and climate 
change and, second, the implications of policies useful to mitigate carbon dioxide emissions and other 
greenhouse emissions. IAM are optimization models such us RICE or DICE, or simulation models 
designed to deal with these complex interactions or to explore the consequences of parameter uncertainty. 
This is tge case model PAGE2002. See NORDHAUS W.D, YANG Z. (1996) A Regional Dynamic 
General-Equilibrium Model of Alternative Climate-Change Strategies, The American Economic Review, 
Vol.86, No.4, pp.741-765; NORDHAUS W.D. Rolling the DICE: (193) An optimal transition path for 
controlling greenhouse gases, Resources and Energy Economics,, 15, 27-50.NORDHAUS W.D., BOYER 
J.(2000) Warming the World: Economic Models of Global Warming, Internet edition; the book is 
published by  MIT Press. HOPE C. (2006) The Marginal Impact f CO2 from PAGE2002: An Integrated 
Assessment Model Incorporating the IPCC´s Five Reasons for Concern, The Integrated Asessment 
Journal, Vol.6, Iss.1, .As a matter of fact, Integrated Assessment Models refer  to policies.  

26 See FACCHINEI F., PANG J-S. (2003) Finite-Dimensional Variational Inequalities and 
Complementarity Problems, Springer-Verlag, New York.  
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NAGURNEY´s geometric interpretation of inequality (5.1.1) states that a point x , 

belonging to a set K is a solution of ( , )VI F K  if and only if ( )F x  forms a non-

obtuse angle with vectors ( )y x−  for any y  belonging to K 27. 

     *     *     * 

A simple VI exemple is the relationship between price and excess supply in a simple 
partial equilibrium model:  

 
* *( )( ) 0E p p p− ≥          [ ]min max,p p p∀ ∋  

where 
*( )E p    is the excess demand function. 

 

Equation systems and VI  

Given the equations system( ) 0F x =  it is possible to formulate the following 

Proposition: let
nK = ℜ  and let function : n nF ℜ ℜ֏  be a given function. 

Vector 
* nx ∈ℜ  is a solution of ( , )nVI F ℜ  if and only if 

*( ) 0F x = .  

Proof: if 
*( ) 0F x =  then (5.1.1) is verified as an equality. Inversely, if 

*x satisfy  

(5.1.1) taking 
* *( )x x F x= −  this implies: 

 
* *( ) ( ( ) 0T TF x F x− ≥   or  

* 2|| ( ) || 0F x− ≥                (1.2) 

As a result 
*( ) 0F x =  and 

*x  solves the equations systems. 

Relationship between VI and optimization problems 

Optimization problems with constraints can be formulated as VI problems. Let us 
consider next problem:  

     min ( )f x                                                       (5.2) 

                                                           

27  Using a different notation, the problem can be formulated as find vectors  
* nx K∈ ⊂ℜ  such that: 

    ( *) ,( *)  0TF x x x− ≥            K∀ ∈  
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                       x K∀ ∈                                                      (5.3) 

It can be proofed that if f is continuous and differentiable andK is a closed, convex 

set then *x  solves next VI problem: 

       
*) ) 0. (( T x xgrad f x − ≥            x K∀ ∈                          (5.4) 

It can also be proofed that if ( )  f x is a convex function and *x  is a solution of  

( ),VI f K∇  then *x  is a solution of the optimization problem (5.2)-(5.3). 

Variational inequalities problems are also strongly connected with equilibrium 
problems. We will see it immediately28. 

Relations between VI and Mathematical Problems with Equilibrium Constraints-MPEC 

As already emphasized there are strong relationships between VI and the other 
methodologies. Let us consider too the case of Mathematical Problems with 
Equilibrium Constraints-MPEC29. MPEC problems are optimization problems with two 

sets of variables 
nx∈ℜ  and 

my∈ℜ  in which some or all constraints can be 

defined as variational inequalities. Vector y  is called the primary vector and vector x 

is the parameter vector.  

Let us take next two functions : n mf +ℜ → ℜ  and : n m mF +ℜ → ℜ . Set 

n mZ R +⊂  is non-empty and closed. For every 
nx∈ℜ , : n mC ℜ → ℜ is a  

set-valued map such that ( )C x  is a closed convex set in 
mℜ . 

A MPEC takes the form: 

    
,

min ( , )
x y

f x y                                                          (5.5) 

( , )x y Z∈                                             (5.6) 

( )y S x∈                                                      (5.7) 

                                                           
28 See KONNOV I.(2007) Equilibrium Models and Variational Inequalities, Elsevier Science, 
Amsterdam, The Netherlands. Existing relations between VI and Linear and Nonlinear Complementarirty 
will be analyzed in Section [7.1] 

29 LUO Z-Q, PANG J-S, RALPH D.(1996) Mathematical Programs with Equilibrium Constraints, 
Cambridge University Press, New York 
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where for each x X∈ ,  ( )S x  is the solution set of a VI problem defined by the pair 

( , ), ( )F x y C x . 

“Equilibrium constraints” makes reference to set ( )y S x∈  and refers to the fact that 

we are interested in the cases in which these relations express equilibrium conditions 
modelled as variational inequalities.  

5.2.-VI applications 

The first VI problem was formulated by SIGNORINI in 1959. Afterwards,  HARTMAN G.J.,. 
STAMPACCHIA G.(1966) introduced VI in mechanics. Years after,  SMITH 
M.J.(1979) applied VI to network traffic problems, a field in which S.DAFERMOS and  
A.NAGURNEY 30 have been very active.  

FACCHINEI F., PANG J-S (2003) identify as “source problems” those related with 

economic issues: 

-Nash or Nash-Cournot equilibria 

-oligopolistic market models of electric sector, specially when producers do not control 
transmission sector and sell energy to an independent operator 

-general equilibrium models specially walrasian equilibrium   

See also Chapter 10 of KONNOV I. (2007) 31 for additional applications. Sections [8.1] 
and [8.2] of this Survey include two applications of VI related with pollution emission 
permits markets, the first one, and with the energy system in USA, the second. 

  

6.-BILEVEL PROGRAMMING 

6.1.-Introduction to bilevel programming 32 

A linear bilevel problem is a hierarchical optimization problem. The first level or the 

leader´s problem is to find vector y such that: 

                                                           
30  A. (1999) Network Economics: A Variational Inequality Approach, Kluwer Academic Pu. See also 
NAGURNEY A. Equilibrium modeling, analysis and computation: the contributions of Stella Dafermos 
(1991), Operations Research, 39, 9-12. 

31
  KONNOV I.(2007) Equilibrium Models and Variational Inequalities, Elsevier Science, Amsterdam, 

The Netherlands 

32  In the 70s. CANDLER W., NORTON R. (1977) Multi-Level Programming and Development Policy, 
Working Paper No.258, World Bank, Washington DC (may 1977) published one of the first applications  
of VI in economics.  See also, CANDLER W. TOWNSELY R. (1982) A Linear Two-Level Programming 
Problem, Computer and Operations Research, Vol.9, No.1, pp.59-76 



 

 

21

21

   1 2min. ( , ) T T

y
F x y c x d y= +                          (6.1.1) 

              1 1 1A x B y b+ ≤                  (6.1.2) 

The second level or the follower problem is –given y - find vector x  such that: 

   2 2min. ( , ) T T

x
f x y c x d y= +                (6.1.3) 

   2 2 2A x B y b+ ≤                   (6.1.4) 

Given the linear structure, once the leader selects ,x  2
Tc x  is a constant that does not 

play any role. 

Model (6.1.1)-(6.1.4) has some similarities with Dantzig-Wolfe model (3.1)-(3.4) but 
there is a crucial difference: in bilevel programming the second level has it own 
objective function.  

    *    *    * 

Let us now consider where 1 2,n nX Y⊂ ℜ ⊂ ℜ , :F X Y× → ℜ , 

1: mG X Y× → ℜ , :f Y → ℜ , :g X Y× → ℜ . The second level problem 

or the follower´s problem is to find vector x  -given y - such that 33: 

    min [ , ]
x

f x y                                                         (6.1.5)                           

                                   ( , ) 0g x y ≤                                                          (6.1.6)  

Vectory  defines the “environment” of the second level problem and is fixed by the 

first level. Let ( )yφ  be the solution set of (6.1.5)-(6.1.6) problem.  

First level problem is to find vector y  solving: 

                                                           
33 DEMPE S (2002) Foundations of Bilevel Programming, Kluwer Academic  Publishers, Dordrecht.  See 
also. DEMPÉ S.(2003) An Annotated Bibliography on Bilevel Programming and Mathematical Programs 
with Equilibrium Constraints,  Optimization, 52, 33-359. Sea also COLSON B., MARCOTTE P., 
SAVARD G.(2007) An overview of bilevel optimization, Annals of Operations research, Vol.153, No.1, 
September, and also VICENTE L.N., CALAMAI P.H. (1994) Bilevel and Multilevel Programming: A 
Bibliographical Review, Journal of Global Optimization, 5, 291-306; COLSON B.,MARCOTTE P., 
SVARD g. (2005) Bilevel Programming: A Survey, 4OR, 3, 87-107 
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   min [ ( ), ]
y

F x y y                                      (6.1.7) 

   [ ( ), ] 0G x y y ≤                                          (6.1.8) 

   ( ) ( )x y yφ∈               (6.1.9) 

Figure 6.1 reflects this particular structure. Given this particular structure these 
problems are also called “mathematical programs with optimization problems in the 
constraints”. 

 

 

______________________________________________________________________ 

 

 

    2nd. level reaction : ( )x y                    y is the 2n level  

  

 

_____________________________________________________________________________

Figure 6.1 

           min [ ( ), ]
y

F x y y                                       

                      [ ( ), ] 0G x y y ≤                                         

               ( ) ( )x y yφ∈    

min [ , ]
x

f x y                                          

                    ( , ) 0g x y ≤                                                   



 

 

23

23

 

Let vector u  be dual variables corresponding to second level constraints (6.1.6). If 
regularity conditions are verified, K-K-T conditions corresponding to second level are 
necessary conditions for the optimum. Therefore, global model can we written in the 
form:   

  
, ,

min [ ( ), ]
x y u

F x y y                                       (6.1.10) 

  [ , ] 0G x y ≤                                 (6.1.11) 

( , , ) 0xL x y u∇ =                                 (6.1.12) 

  ( , ) 0Tu g x y =                                            (6.1.13) 

             0u ≥                                                         (6.1.14)                                      

If second level problem (6.1.5)-(6.1.6) is convex and has a unique solution problems 
bilevel problem (6.1.5)-(6.1.9) and (6.10)-(6.14) are equivalent.  

Relation of BP with policies 

BRINER A., AVRIEL M.(1999) 34 have emphasized, “policy analysis” consists on two 
interrelated problems, a) the choice of optimal policy  from the point of view of the 
objectives, and b) the prediction of systems reaction. Bilevel models integrate both 
aspects. 

In his 2009 “Presidential Address” to the European Economic Association, in 
Barcelona, Nicholas STERN emphasized public policy analysis has failed “to make 
non-marginal change central to analysis”. The distinction between projects and policies 
can be seen in  DRÈZE J., STERN, N. (1987) The Theory of Cost-Benefit Analysis 35,  

Optimistic and pessimistic solutions 

It is not obvious the second level problem posses a unique solution. If this is the case 
and -in order to simplify- we consider first level constraints does not depend on the 
decision of the follower, then there are two ways to face the above problem: 
                                                           
34 BREINER A., AVRIEL M. (1999) Two-Stage Approach for Quantitative Policy Analysis Using 
Bilevel Programming, Journal of Optimization Theory and Applications, Vol..100, No.1, pp 15-27 

35 The distinction between projects and policies can be seen in  DRÈZE J., STERN, N. (1987) The Theory 
of Cost-Benefit Analysis, el Vol.II de  AUERBACH. A.J., FELDSTEIN M. (1987) Handbook of Public 
Economics, Vols.I and II  North Holland Pu., New York, Vol.II de  AUERBACH. A.J., FELDSTEIN M. 
(1987) Handbook of Public Economics, Vols. I and II  North Holland Pu., New York 
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a) optimistic or weak version 
b) the pessimistic version or strong 

Optimistic version takes the form: 

 ( )o yϕ = min[ ( ( ), ) : ( ) ( )]
x

F x y y x y yψ∈             (6.1.16) 

where ( )yψ  is the solution set mapping of the leader´s problem. The leader will take 

this option if he anticipates the follower will support by taking among the set 

( ) ( )x y yψ∈ , the most convenient decisions for him, the leader. In other words, if  he 

anticipates the follower –among their equivalent decisions- will take the one 
maximizing the leader´s´objective function. 

Pessimistic solution is relevant when -on the contrary- cooperation with the leader is not 
allowed for institutional reasons or because he has risk aversion and, therefore, he wants 
to limit potential damages generated by follower´s decision. 

Pessimistic solution takes de form: 

 min[ ( ) : ( ) 0]p
y

y G yϕ ≤      (6.17) 

where: 

 ( )p yϕ = max[ ( ( ), ) : ( ) ( )]
x

F x y y x y yψ∈         (6.14) 

Generally ( )p yϕ  and ( )o yϕ  are discontinuous, non differentiable and non 

concave so that optimization is not easy. 

The general model may include binary variables. See BARD J.  (1998) Chapter .6 for 
the algorithmic difficulties rised by this aspect 36. In this case, again,  decentralization is 
not possible using only prices. 

6.2.-Bilevel programming applications 

Principal applications of BLP in economics are: 

-Stackelberg games 

-Cournot-Nash games 

-principal-agent problems 

                                                           
36  BARD J.F. (1998) Practical Bilevel Optimization, Kluwer Academic Pu. Dordrecht 
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-environmental economics.   

See DEMPE S.(2002)37. Sections [8.3] and [8.4] in this Survey include two applications 
of BLP specially relevant from the point of view of our analysis and related with waste 
generation and taxes the fitst one, and with price support policy for biofuels the  second. 

 

7.-LINEAR AND NONLINEAR COMPLEMENTARITY.  

 

7.1.-INTRODUCTION 38 

Let  q   be a n -vector and M  a nxn matrix. A linear complementarity problem  is 39 

to find vectors 
nz∈ℜ and 

nw∈ℜ  such that : 

                w, z 0≥                                                                                     ( 7.1.1 ) 

          q Mz w+ =                                                                                   ( 7.1.2 ) 

          0Tz w=                                                                                  ( 7.1.3 ) 

LCP can be solved by using the simplex algorithm or some variant thereof. This 
approach makes possible to solve numerically problems with special structures that are 
of interest from various points of view. 

 
The CLP was in the beginning a way of unifying mathematical linear, nonlinear 
programming and bimatricial games. 

Quadratic programming.  

                                                           
37 DEMPE S. (20029kkpñ) Foundations of Bilevel Programming, Kluwer Academic  Publishers, 
Dordrecht, Cap.12. DEMPE S. (2003) An Annotated Bibliography on Bilevel Programming and 
Mathematical Programs with Equilibrium Constraints,  Optimization, 52, 33-359 

38 LCP were formulated during the 40s.; the field was not consolidated until the 60s. COTTLE R.W., 
PANG J-S., STONE R.E.(2009) The Linear Complemetarity Problem, SIAM, Philadelphia. 

 

39 COTTLE R.W., PANG J-S., STONE R.E.(2009) The Linear Complemetarity Problem, SIAM, 
Philadelphia. 
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Let us consider the problem, find vector nx∈ ℜ such that:                                             

 min. 1/ 2T T

x
z c x x Qx= +                                                       (7.1.4) 

    Ax b≥                                                                     (7.1.5) 

             0x ≥                                                                    (7.1.6) 

where 
nxnQ∈ℜ is a symmetric matrix, ,n nxnc R A∈ ∈ℜ  and 

mb∈ℜ . Let us x
∧

 

be a local optimum of problem (7.1.4)-(7.1.6); then there is a vector of dual variables, 
u , such that the pair ,x u satisfies K-K-T conditions. Problem (7.1.4)-(7.1.6) is 

therefore equivalent to solve LCP(q, M), (7.1.1)-(7.1.3) taking:  

     
c

q
b

 
=  − 

                      0

TQ A
M

A

−
= 
 

 

 

Obviously, if  matrix Q is a zero matrix, the problem is linear. 

Non linear complementarity and VI problems 

Complementarity is a particular case of VI as can be seen considering the problem find 

vector 
*x  such that: 

                                     
* 0x ≥                                                   (7.1.7)  

                              
*( ) 0f x ≥                                        (7.1.8) 

                  
*( ) ( ) 0Tx f x =                                                            (7.1.9) 

 

7.3.-COMPLEMENTARITY APPLICATIONS 40. 

There are numerous applications of complementarity in economics. See, in particular, 
FERRIS, M.C., PANG J.S. (1997) survey 41  and the Cap.10 of KONNOV; see also 

                                                           
40 FERRIS M.C., PANG J.S.(1997) Engineering and economic applications of complementarity 
problems,  SIAM Rev. Vol.39, no. 4 

41 FERRIS M.C., PANG J.S.(1997) Engineering and economic applications of complementarity 
problems, SIAM Review. Vol.39, no. 4. During the 70s there were relevant applications of VI to 
economics: TAKAYAMA T., HASHIMOTO,H. (1984) A comparative Study of Linear Complementarity 
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MURTY K.G., YO F-T (1997) MURTY42 and references included in FACHINEI F., 
PANG J-S.(1997) 43.  

Applications outlined above can be grouped around the following themes: 
-traffic and congestion; 
-network design; 
-walrasian general equilibrium problems; 
-invariant capital stock; 
-models of non-cooperative games, especially the prisoner's dilemma and 
- oligopolistic markets. 

Sections [8.45] and [8.6] contain two relevant applications of related with the gaz sector 
in USA, the first, and with the energy sector in Spain, the  second. 

 

8.-APPLICATION; SELECTED  EXEMPLES 

8.1.-Polution and emissions permits markets. 

From the perspective of this survey is of particular interest NEGURNEY A, DHANDA 
KK (2000) on the environment and emissions permit markets44, an enlarged version of  
NAGURNEY N., DHANDA KK (1996). 

The model includes multiproduct firms producing the same products in oligopolistic 
markets and generating various polluting emissions. Companies operating in the permits 
market have a global target defined by the governement 45.  The model takes the form of 
a VI system. 

                                                                                                                                                                          

Models and Linear Programming Models in Multiregional Investment Analysis, World Bank, Division 
Working Paper No. 1984-1 and HANSEN T., MANNE A.(1974) Equilibrium and Linear 
Complementarity. An Economy with Institutional Constraint on Prices, World Bank are two good 
exemples. 

42 Cap.10 KONNOV I.(2007) Equilibrium Models and Variational Inequalities, Elsevier Science, 
Amsterdam, The Netherlands.. MURTY K.G., YO F-T (1997) Linear complementarity, linear and 
nonlinear complementarity. Internet Edition 

43 See Section [1.4] in FACCHINEI F., PANG J-S. (2003) Finite-Dimensional Variational Inequalities 
and Complementarity Problems, Springer-Verlag, New York 

44 NAGURNEY N.,DHANDA K.K.(1996) A variational inequality approach for marketable pollution 
permits, Computational Economics, Vol.4. No.4 (363-384); NAGOURNEY A., DHANDA K.K. (2000) 
Marketable pollution permits in oligopolistic markets with transaction costs, Operations Research, 48, 3, 
424 

45 Vease MONTGOMERY W.D. (1972) Markets in licenses and efficient pollution control programs, 
Journal of Economic Theory, 5, 747-756; STAVINS R.N. (1995) Transaction costs and tradeable permits, 
Journal of Environmental Economics, 29, 133-148. 
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Companies receive an initial permits allocation and they can participate in permits 
transactions; he market is supposed to be perfectly competitive. This is a mechanism 
inducing firms to internalize the externalities generated by emissions but leaving each 
company the decision on how best to respond to the price of permits set at the market. 

Oligopolistic firms maximize their profits taking into account production costs and 
abatement costs associated to emissions reduction and also to permit prices in the 
market. Equilibrium is a non-cooperative Nash-Cournot game 46.  

K-K-T conditions associated to companies optimization problem, taken together with 
conditions expressing market equilibria in markets -including in emission permits 
markets- is a VI problem. Finally, the article includes numerical examples of the model, 
analyzes its qualitative properties of the same and also presents an adapted algorithm. 

8.2.- Energy policy models for the United States. 

After the oil embargo, the USA administration developed Project Independence 
Evaluation System-PIES in order to represent the energy systems of the country and to 
assess policies adapted to different scenarios 47. The model included   production, 
processing, conversion, distribution, transportation and consumption activities; its main 
inconvenient is its static nature and its very limited analysis of impacts on the 
environment. 

Further development resulted in the National Energy Modeling System-NEMS for the 
period 1990-2020. See EIA (2009) 48. NEMS solved principal PIES shortcomings. The 
model is articulated on various regionalized models. NEMS includes, specifically: 
 
-demand module for residential, commercial, industrial and transportation demands 
considered in terms of nonlinear functions; 

-supply module, expressing supply curves for different types of fuels: oil, gas, coal and 
renewable energies; 
-conversion / transmission model associated with the power sector and refineries.  

This module is formed by linear programs whose objective include market prices that 
are also included in demand and supply modules; 

-finally, the model includes a macroeconomic module and an international one. The first 
one connects NEMS with the rest of the economy, generating key economic projections 
                                                           
46  TIROLE J.(1989) The Theory of Industrial Organization, The MIT Press, Cambridge USA  

47 See OGAN W. (1975) Energy Policy Models for Project Independence, Computers & Operations 
Research, Vol.2, pp.251-271 and AHN,B-H (1979) Computation of Market Equilibria for Policy 
Analysis, Garland Publishing, Inc. New York & London 

48 See www.eia.doe.gov, specially EIA (2009) The National Energy Modelling System, EIA, Washington.  
Recommendations for the design and development of NEMS contained in the report The National Energy 
Modeling System, National Academy Press, are very interesting. 
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that determine the supply and demand of energy derived from the various assumptions 
of potential growth of the economy. The international module provides supply curves or 
import prices of various fuels. 

 
These modules are interconnected by the “interaction module” that plays a central role 
in the iterative numerical algorithm that solves supply and demand modules to achieve a 
balance between price and quantity among different production and demand sectors. See 
Figure 8.1. The algorithm used is the Gauss-Seidel method simulating a walrasian 
auctioneer in the role of determining the equilibrium prices. 

______________________________________________________________________ 
 

 

Source: www.eia.doe.gov. 

____________________________________________________________________ 

Figure 8.1 
 

NEMS uses the fact that many constraints for the model takes the form of NCP / VI and 
use dual variables as prices in another module. The overall pattern can be solved by 
combining equations demand and K-K-T conditions of the conversion modules / 
transmission. 

The model can be used to analyze -among others topics- issues such as sector reactions 
to policies to mitigate carbon dioxide emissions such as taxes or the establishment of 
emission permit markets or changes in the conditions of world oil or natural gas 
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markets. Periodical reports are produced at the request of political institutions such as 
the White House or Congress. 

GABRIEL,S.,KYDES A.,WHITMAN,P.(2001) contains the reformulation of NEMS in 
terms of NLC/VI 49; their approach is better adapted for a simultaneous, non sequential 
approach.   

8.3.-Waste generation and taxes 

The application of bilevel programming contained in AMOUZEGAR MA, K. 
MOSHIRVAZIRI (1999) is particularly interesting from the standpoint of this Survey. The 

model also includes binary variables 50. 

The problem is to decide the capacity and location of treatment plants for hazardous 
waste in California. The first approach is based on the conventional approach, based on 
an mixed variable, integrated model of a single-level, minimizing the total cost of the 
system. This approach does not take into the crucial consideration that companies have 
their own objective function.  

The second model is based on a bilevel approach in which the Central Authority-CA 
may introduce taxes that encourage businesses to reduce waste generation. The 
objective function of the CA is to minimize the total cost and the second level prolem is 
a linear program with continuous and integer in which some of the objective function 
coefficients of the second level is determined by the first level, in particular using taxes. 

It will be noted the aggregate of all enterprises constitutes the second level: this is  one 
of the limits of this model from the point of view of considering it as a tool to explore 
the implications of the policy decided by the CA. 

Another notable application is contained in DEMPE S., KALASHNINOV.V, RIOS-
MERCADO R. (2005) 51 concerning the gas sector in USA. 

8.4.- Price support policy for bifuels 

                                                           
49

  GABRIEL,S.,KYDES A.,WHITMAN,P.(2001) The National Energy Modelling System: A Large-
Scale Energy-Economic Equilibrium Model, Operations Research Vol.4, No.1, january-february 2001,pp 
14-25.  

 

50 AMOUZEGAR M.A., MOSHIRVAZIRI K. (1999) Determining optimal control policies: An 
application of bilevel programming, European Journal of Operational Research, 119, pp.100-120 

51 DEMPE S.,KALASHNIKOV V. RÍOS-MERCADO R. (2005) 51 Discrete Bilevel Programming: 
Application to a Natural Gas Cash-Out Problem, European Journal of Operational Research, 16, 2. 
DEMPE S. (2002) Foundations of Bilevel Programming, Kluwer Academic  Publishers, Dordrecht, 
Cap.12,; DEMPE S. (2003) An Annotated Bibliography on Bilevel Programming and Mathematical 
Programs with Equilibrium Constraints,  Optimization, 52, 33-359 

51 BARD J.F. (1998) Practical Bilevel Optimization, Kluwer Academic Pu. Dordrecht 
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The purpose of these application of bilevel programming presented in DEMPE (2002) 52  
is to reduce pollution caused by conventional fuels through a policy of encouraging the 
production and use of  biofuels. In order to get this objective government will reduce 
the price of non-food agricultural products used by the petrochemical industry 
producing biofuels. 

The main instrument used by the government for this purpose are tax credits to reduce 
the price paid for the petrochemical industry for non-food agricultural products and, 
simultaneously, to devote a minimum area for such production. The government 
determines the new price minimizing total value of tax credits. Therefore, there is a 
conflict between the government and farmers while the industry is neutral. 

In this context of industry neutrality, the price paid by industry to farmers  for non-food 
agricultural products must not exceed the sum of tax credits received by the industry per 
unit of biofuel plus biofuel market price plus market price of byproducts minus the cost 
of converting one unit of non-food agriculture product  into biofuels and the expected 
profit per unit corresponding to the biofuel industry. 
 

Farmers seek to maximize their profits under the new conditions and their key decisions 
is related to their production of food and nonfood products to produce biofuels and the 
maintenance of land fallow, according to the policy of the European Union. Farmers are 
also subject to other constraints on land availability, generated by agronomic criteria or 
reflecting EU policies that lead to different subsidies. 

This is a bilevel programming problem. The government is the first level and farmers 
are the second level. There is a common variable: the price paid by industry to farmers 
for non-food agriculture products used in the production of biofuels by the industry. 

8.5.-A complementarity model of natural gaz markets 

The model of the gas industry in the USA is an application of linear complementarity 
including only continuous variables; designed for a three years time horizon cannot deal  
for increases in capacity 53. 

The model has a regional structure and includes a network of pipelines, defined by 
directed arcs, connecting regions. Demand differentiate three seasons. Operator groups 
considered are: a) pipelines operators; b) production operators managing  exploration 
and gas production; c) marketers selling to residential, commercial, industrial and 
electrical sectors; d) storage operators, e) peak demand operators and finally f) 
consumers. All the agents operate in competitive environments except marketers. 

                                                           
52  Chapter  12 of DEMPE S.(2002) Foundations of Bilevel Programming, Kluwer Academic  Publishers, 
Dordrecht. 

53 See GABRIEL S. , KIET S., ZHUANG J. (2005) A Mixed Complementarity-Based Equilibrium Model 
of Natural Gas Markets, Operations Research. Vol.53, September-october, pp.799-818. A Mixed LCP 
includes also free variables and equality constraints. See KONNOV I.V.. VOLOTSKAYA E.O. (2002) 
Mixed Variational Inequalities and Economic Equilibrium, Journal of Applied Mathematics, 2:6, 289-31 
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Pipelines belong to a regulated market with only one company. Producer and consumer 
regions are at the ends of arcs of the pipeline. Production operators are located at the 
network nodes and manage exploration and production in competitive markets. 
Conditions exist for clearing at each node. 

K-K-T conditions and market clearing conditions define each operator. Global model is 
a mixed nonlinear complementarity problem. The authors analyze  existence and 
uniqueness of solutions and explore some numerical results. On this basis the authors 
have developed the model applied 54. 

 

8.6.-The European Emissions Trading Directive and the Spanish Electricity Sector 

An application of complementarity approach to the Spanish electrical sector is 
contained in LINARES P. et al. (2006) 55. The application models the sector taking into 
account that companies react to an aggregate demand curve and are also subject to a 
constraint expressing demand of emission permits as a function of permits price. Firms 
maximize their profits so that there is no single objective function but as many as 
companies in the sector56.  

Income of companies depends on the price of electricity and also on transactions   in the 
emissions permits markets. The authors formalize the model taking into account the 
oligopolistic behavior of companies. 

The global model is:             

1 1 1

1

( , , )e p

feq p p

Max w q p pπ= ... ( , , )
F

e p
F F Ffeq p p

Max w q p pπ=    (8.6.1) 

 1 1( ) 0h q ≤  ...  ( ) 0F Fh q ≤    (8.6.2) 

           1 0q ≥   ...          0Fq ≥     (8.6.3) 

                                                           
54  The model applied to the natural gas sector in USA is published in GABRIEL S., KIET S., ZHUANG 
J. (2005) A large-scale linear complementarity mode of the North American natural gas market, Energy 
Economics, 27, 639-665 

55 LINARES P., SANTOS F.J., VENTOSA M., LAPIEDRA L.(2006) Impacts of the European Emissions 
Trading Scheme Directive and Permit Assignment Methods on the Spanish Electricity Sector, Energy 
Journal, Vol.21, No.1 

56 The model takes into account that European emissions market has not specific emissions constraints for 
the electrical sector. The presentation in this Survey does not include this special feature. 
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Electricity demand function is:       

     

F
e e e e

f
f

p p qα= − ∑                       (8.6.4) 

and permit demand function is:  

  

F
p p p p

f
f

p p qα= − ∑       (8.6.5) 

Constraints (8.4)-(8.5) plus K-K-T conditions corresponding to optimization problems 
(8.6.1)-(8.6.3) constitute a non linear complementarity problem.  

As already mentioned, in this model companies have their own objective function and 
his behavior is subject to their global effects at the sector level. This capacity to 
incorporate constraints common to the various agents is very powerful. . 

Dual variables in the model have the conventional mathematical and economic 

interpretation so that they can be used to evaluate marginal changes. 

9.-CONCLUSIONS 

Until the 80's, the methods discussed in this Survey tended to be considered as planning 
procedures, centralized or not; this was especially true in the case of Dantzig-Wolfe and 
Benders algorithms. This trend was most likely due to narrow proximity and strong  
interactions  -existing during this initial period - between the communities of 
researchers belonging to the fields of mathematical programming and of economic 
theory. 

As it is well known, during the initial period mathematical programming was strongly 
intertwined with economic theory, as has been pointed out by SCARF H. (1990) 57 In 
this sense, it is well known the relevant role played in the origins of mathematical 
programming not only DANTZIG but also other researchers such as ABRAMOVITZ, 
ARROW, CHENERY, HURWICZ, KOOPMANS, SAMUELSON and UZAWA 
among others 58. This close connection no longer exists today: both fields seem to be 
developed by two different scientific communities.   

                                                           
57  SCARF H.E.(1990) Mathematical Programming and Economic Theory, Operations Research, vol 38, 
No.3, may-june 

58
  See ABRAMOVITZ M. et al. (1959) The allocation ef economic resoouces, Stanford University Press, 

Stanford USA. ARROW,K. “Optimization, Decentralization and Internal Pricing in Business Firms, in 
Contributions to Scientific Research in Management, UCLA, Western Data Processing Center, 1959. 
ARROW K. (1987) Oral History I: an Interview, in FEIWEL G.R.(1987) Arrow and the Ascent of 
Modern Economic Theory. Macmillan, London. ARROW K., HURWICZ L. (1960) Decentralization and 
Computation in Resource Allocation, in Essays in Economic and Econometrics, edited by PFOUTS R.W., 
The University of North Carolina Press, Chapel Hill. CHENERY H.B. (1959) The Interdependence of 
Investment Decisions. ABRAMOVIYZ M. et al. (1959). KOOPMANS T.C. (1951).Activity analysis of 
production and allocation, Lohn Wiley & Sons, New York USA. SAMUELSON P.A. (1949)  Market 
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It should be noted that a relevant limitation of methodologies of the first period is that 
the corresponding optimization techniques can treat, basically, with problems 
characterized by a single objective function or using it in order to generate partial 
equilibrium prices. New methodologies open different possibilities related to: a) market 
equilibrium, b) the existence of several agents operating at the same level or in a 
hierarchical framework, c) the incorporation of the reactions of an agent in the second 
level with its own objective function, and d) the inclusion of  constraints common to 
several agents. 

The conventional approach to constrained optimization continues to be relevant to many 
fields of application 59. Special algorithms of the first stage retain their relevance but 
basically play a role as computation procedures efficient for large problems, without 
focusing on the economic interpretation of the process:  Dantzig-Wolfe Benders 
algorithms are still relevant from this perspective 60. 

 

Annex 1.- AN  NUMERICAL  EXEMPLE  OF  SEPARABILITY  

Let us consider the problem: 

   
2 2
1 2 1 2. 6 3Minz x x x x= + − −  

    

2 2
1 2

1 2

4

0

x x

x x

+ ≤
− ≤  

The optimum is  ( 2, 2)and 

^

1u = 3/2.                 

According to Chapter [2.] if we want to suppress the second constraint the new 
modified objective function will be: 

                                                                                                                                                                          

Mechanism and Maximization, Rand Corporation, P-69. UZAWA H. (1960) Market Mechanisms and 
Mathematical Programming, Econometrica, Vol.28, 4  october, in ABRAMOVIYZ M. et al..(1959). 

59  See the applications included in KALSER H.K., MESSER K.D. (2012) Mathematical Programming 
for Agricultural, Environmental and Resource Economics, J.Wiley or related with environment in 
GREENBERG H.J.(1995) Mathematical Programming Models for Environmental Quality Control, 
Operations Research, Vol.43, No.4, july-august. See also the applications to energy, telecommunications, 
transportation, water reservoirs, air pollution and agriculture in PARDALOS P.M, RESENDE , G.C. 
ed.(2002) Handbook of Applied optimization, Oxford University Press, Oxford UK 

60 DAVID FULLER J., CHUNG W. (2008) Benders decomposition for a class of a variational 
inequalities, European Journal of Operational Research, 185 (2008). O bien FULLER J.D., CHUNG 
W.(2005) Dantzig-Wolfe Decomposition of Variational Inequalities, Computational Economics, Volume 
25, Number 4 
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^
2 2
1 2 1 2 1 1 2. 6 3 ( )Min z x x x x u x x= + − − − −        

    
2 2

1 2 4x x+ ≤     

Or in numerical terms:  

  
2 2
1 2 1 2. (15/ 2) (3/ 2)Min z x x x x= + − −  

    
2 2
1 2 4x x+ ≤  

The optimum is again ( 2, 2). 

_____________________________________________________________________ 

Annex 2.- PROGRAMS OF PROJECTS AND BUDGET CONSTRAINTS 

The analysis of budget constraints requires binary variables in order to specify existing 
alternatives and their impact on budgetary constraints. PEARCE D., ATKINSON G., 
MOURATO S. (2006)61 contains an heuristic discussion of this topic; however, they 
don’t emphasize the need to apply a formal combinatorial approach. Let us consider two 
examples consider, the first one with three non-exclusive projects with a budget 
constraint equal to 100. Choice criteria is Net Present Value 62. 

 

Table 1 

_____________________________________________________________________  

 Project         Investment               NPV  

 1                          100                     100                             

 2                            50                       60                              

 3                            50                       70                          

______________________________________________________________________ 

If we classify projects according to selection criteria, the decreasing order of projects 
will be 1-3-2 and if the choice of project 1 is made, total budget is used and NPV will 

                                                           
61 PEARCE D., ATKINSON G., MOURATO S.(2006) Cost-Benefit Analysis and the Environment, 
OECD, Paris 

62  PEARCE D., ATKINSON G., MOURATO S. (2006) Table 4.1, p.69 
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be 100. On the contrary, by selecting projects 2 and 3, budget will we exhausted but 
now NPV would be 130 with a total NPV equal to 130. The selection process can not be 
sequential 

 Selection process cannot be sequential. Next, let us consider another example: 

______________________________________________________________________ 

Project Cost-C   Gross profits P           NPV         ratio P/C    ratio NPV/C 

______________________________________________________________________ 

1              100                    200                  100               2.0                 1.0 

2                50                    110                    60               2.2                 1.2 

3                60                    120                    70               2.0                 1.17 

 

Let us suppose budget constraint is equal to 115. Choosing first project 1 there is no 
room for any other project so that total Net Value is equal to 100. Conversely, if chosen 
projects are 2 and 3, Net Value is equal to 130. 

This kind of problems can be formulated in terms of binary programs. Let
iI be the 

investment of project i , 
iR  its profitability, and P  the total budget. Problem 

formulation is:                    

                         

3

1

. i i
i

Max w R X
=

=∑

 

                          

3

1
i i

i

I X P
=

≤∑             

                                iX binarias         

This is one example of. so called “knapsack problem” well known in the field of 
Operations Research. 63.The already indicated possibility to incorporate binary variables 
in bielevel programs64 is an open way to deal with budget constraints. 

                                                           
63 PLANE D.R., McMILLAN jr C. (1971) Discrete Optimization, Prentice-Hall, Englewood Cliffs. See 
also WEINGARTNER H.M. (1966) Capital Budgeting of Interrelated Projects: Survey and Synthesis, 
Management Science, No.7, pp.486-516 and by the same author (1967)  Mathematical programming and 
the analysis of capital budgeting problems , Markham Pu.Co 
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Relevance of evaluation order 
 

Evaluation results are not independent of the order in which projects are considered. 
STARRET D.A. (1988) 65 formulated a simple graphic example with two major projects 
in which the decision depends on the order in which projects.  

______________________________________________________________________ 

 

                Case 1                                    Case 2 

____________________________________________________________________ 

Figure A.2.1 

Figure A.2.1 shows a case where two non marginal projects, 
1a and 

2a , are evaluated. 

When they are evaluated independently –Case 1- both are acceptable but became 
unacceptable when they are taken together. Acceptance may depend on the order in 
which they are evaluated, as can be seen in Case 2: if 

1a is first evaluated, then 
2a  

should be rejected and vice versa. 

_____________________________________________________________________ 

 

Annex 3. LINEAR COMPLEMENTARITY: A NUMERICAL EXEMPLE  

Let us consider next problem: 

  1 2 3min 10  40 20w x x x= − + +  

                                                                                                                                                                          
64 Chapter 6, BARD J.F. (1998) Practical Bilevel Optimization, Kluwer Academic Pu. Dordrecht  

65 STARRET D.A. (1988) Foundations of public economics, Cambridge University Press.  234-236. 
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   1 2 3 118 3 20x x x y− + − =  

        1 2 3 23 2 13 30x x x y− + − − =  

                         1 2 3 1 2, , , 0x x x y y ≥    

                        

       K-K-T conditions are: 

                1 2 118 3 10u u v− + = −        

                 1 2 22 40u u v− + + =          

                1 2 33 13 20u u v− + =           

                        , , , 0j j i ix u y v ≥    ,i j∀ ∀        

                         0i i j ju y x v= =     ,i j∀ ∀  

Therefore, the problem is equivalent to find w and z such that:  

  w, z 0≥  

         q Mz w+ =                   

                   0Tz w=             

with: 

                                           
c

q
b

 
=  − 

                               

 

           
0

TQ A
M

A

−
= 
 

     

being: 
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