SOLVING TRI-LEVEL LINEAR PROGRAMMING PROBLEM BY A NOVEL HYBRID ALGORITHM

S.F. TAYEBNASAB ${ }^{1}$, F. HAMIDI ${ }^{1}$, M. ALLAHDADI ${ }^{1}$, §

Abstract

This paper presents a revised hybrid algorithm to solve a tri-level linear programming problem, a generalization of a bi-level one, involving three decision makers at the upper, middle, and lower levels. The decision-making priority is from top to bottom and the decision of each decision maker affects the decision space of others. A hybrid algorithm has been already proposed to solve this problem, but it does not ensure to converge whereas the proposed novel revised algorithm lacks this drawback and ensures convergence.

Keywords: Tri-Level Linear Programming, Convergence, Sequential Linear Complementary Problem, Decentralized Decision Making.

AMS Subject Classification: 90-XX, 91A65

1. Introduction

Tri-level programming that lies under a family of multi-level programming [13] derived from Stackelberg game theory [12], is a model developed for the modeling of decentralized decision-making problems that involve decision makers distributed throughout a tri-level hierarchy. The tri-level decision making has been developed in a tri-level hierarchy to achieve an interaction and compromise among the decision makers who are called the leader in the upper level and the followers in the middle and lower levels. To optimize their objectives, decision-makers start making their personal decisions in the upper level and continue in the middle and then in the lower levels [16]. The existing tri-level programming studies have focused mainly on the results of linear models. For instance, Bard and Falk [2] stated the necessary optimal conditions for tri-level linear programming (TLP) problems based on the Stackelberg game theory, generalized the rational reaction sets for each decision maker, and presented the cutting plane algorithm to solve TLP problems. White [15] introduced the penalty function method for TLP problems. Other methods including that of Kuhn-Tucker $[1,8]$, branch and bound algorithm [8, 3], and Kth-best

[^0]algorithm [16] have been developed to solve bi-level linear programming (BLP) and TLP problems. Wen et al. [14] presented a hybrid method to solve TLP problems. Lai et al. [10] give a tri-level model to mitigate coordinated attacks on electric power systems, Gu et al. [6] offer a tri-level model for a private road competition problem. Moreover, some meta-heuristic algorithms and fuzzy approaches have been proposed for solving multilevel programming problems (See [7, 11] for example). This paper has been so organized as to present the mathematical form of the TLP problem and the required definitions in Section 2, provide the solution methods for the sequential and revised sequential linear complementary problems in Section 3, explain the novel TLP problem algorithm (and a numerical example to show how it runs) in Section 4, and, finally, conclude the findings in Section 5.

2. TRI-LEVEL LINEAR PROGRAMMING

In a tri-level hierarchical decision making problem, each decision maker optimizes its objective in each level, and variables in each level are controlled by the decision-makers in the same level. Since selecting values for variables of each level can affect decisions made at other levels, the objective function can change in each level. Effort is now made to introduce the TLP problem which is a generalization of the BLP problem.
Consider the following TLP problem:

$$
\begin{align*}
\text { level3 } & \max \left(f_{3}=c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}:\left(x_{3}\right)\right) \\
\text { level } & \text { s.t. } \max \left(f_{2}=c_{21} x_{1}+c_{22} x_{2}:\left(x_{2} \mid x_{3}\right)\right) \\
\text { level1 } & \text { s.t. } \max \left(f_{1}=c_{11} x_{1}:\left(x_{1} \mid x_{2}, x_{3}\right)\right) \tag{1}\\
\text { s.t.: } & A x_{1}+B x_{2}+C x_{3} \leq b \\
& x_{1}, x_{2}, x_{3} \geq 0,
\end{align*}
$$

where, $\max \left(f_{3}=c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}:\left(x_{3}\right)\right)$ shows the maximization of f_{3} on x_{1}, x_{2}, and x_{3}, but in the third level problem only x_{3} is controlled, $\max \left(f_{2}=c_{21} x_{1}+c_{22} x_{2}:\left(x_{2} \mid x_{3}\right)\right)$ shows the maximization of f_{2} on x_{1} and x_{2} for the fixed value of x_{3}, but in the second level problem only x_{2} is controlled, $\max \left(f_{1}=c_{11} x_{1}:\left(x_{1} \mid x_{2}, x_{3}\right)\right)$ shows the maximization of f_{1} on x_{1} for the fixed values of x_{2} and x_{3}, x_{1} is the vector of the decision variables for the first level problem with dimensions $n_{1} \times 1, x_{2}$ is the vector of the decision variables for the second level problem with dimensions $n_{2} \times 1, x_{3}$ is the vector of the decision variables for the third level problem with dimensions $n_{3} \times 1, \mathrm{~A}$ is the technological coefficients matrix for the first level variables with dimensions $m \times n_{1}, \mathrm{~B}$ is the technological coefficients matrix for the second level variables with dimensions $m \times n_{2}, \mathrm{C}$ is the technological coefficients matrix for the third level variables with dimensions $m \times n_{3}, c_{11}, c_{21}$, and c_{31} are the cost coefficients vectors for the first level variables in respectively the first, second, and third level problems with dimensions $1 \times n_{1}, c_{22}$ and c_{32} are the cost coefficients vectors for the second level variables in respectively the second and third level problems with dimensions $1 \times n_{2}, c_{33}$ is the cost coefficients vector for the third level variables in the third level problem with dimensions $1 \times n_{3}$, and b is the system resources capacity vector with dimensions $m \times 1$.
It is worth noting that TLP is a tri-level linear resource control problem that controls the third level of x_{3} which in turn changes the resource space of the first and second level by the $A x_{1}+B x_{2} \leq b-C x_{3}$ constraint and controls the second level of x_{2} that changes the resource space of the first level by fixing x_{2} and the $A x_{1} \leq b-B x_{2}-C x_{3}$ constraint.
2.1. Points and definitions. First, we define S_{1}, S_{2}, and S_{3} as follows:
$S_{1}=\left\{x: A x_{1}+B x_{2}+C x_{3} \leq b\right\}$ is a convex set of R^{n} where $x=\left(x_{1}, x_{2}, x_{3}\right)$ and
$n=n_{1}+n_{2}+n_{3}$.
$S_{2}=\left\{x: x \in S_{1} \cap\left\{x \in R^{n} \mid c_{11} \widehat{x}_{1}=\max \left(f_{1}=c_{11} x_{1}:\left(x_{1} \mid \widehat{x}_{2}, \widehat{x}_{3}\right)\right)\right\}\right\}$ is a set of rational reactions of f_{1} on S_{1} that does not need to be convex.
$S_{3}=\left\{x: x \in S_{2} \cap\left\{x \in R^{n} \mid c_{21} \widehat{x}_{1}+c_{22} \widehat{x}_{2}=\max \left(f_{2}=c_{21} x_{1}+c_{22} x_{2}:\left(x_{2} \mid \widehat{x}_{3}\right)\right)\right\}\right\}$ is a set of rational reactions of f_{2} on S_{3} that does not need to be convex.
Therefore, the TLP can be shown as:

$$
\begin{gathered}
\max \left(c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}:\left(x_{3}\right)\right) \\
\text { s.t. }: \max \left(c_{21} x_{1}+c_{22} x_{2}:\left(x_{2} \mid x_{3}\right)\right) \\
\text { s.t. }: x \in S_{2}
\end{gathered}
$$

or

$$
\begin{gathered}
\max \left(c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}:\left(x_{3}\right)\right) \\
\text { s.t. }: x \in S_{3}
\end{gathered}
$$

which is, in fact, the optimization of the linear function on a non-convex region.

Theorem 2.1. : if x is the extreme point of S_{3}, then it will be the extreme point of S_{2} as well as S_{1}.

Proof: refer to [14].

3. SEquential linear complementary problem (SLCP) METHOD

To solve BLP problems, Bialas and Karwan [5] presented the generally non-convergent SLCP method; then, Judice and Faustino [9] modified it for convergence. Next, both are reviewed.
Consider the following BLP problem:

$$
\begin{array}{lc}
& \min _{y \in R_{+}^{m}=\left\{y \in R^{m}: y \geq 0\right\}} c x+d y \\
\text { s.t. } & \min \quad c \in R_{+}^{n}=\left\{x \in R^{n}: x \geq 0\right\} \tag{2}\\
& a x \\
\text { s.t. } & A_{1} x+A_{2} y \geq b
\end{array}
$$

and

$$
\begin{array}{ll}
& \left.\min \begin{array}{ll}
& \\
& a x \\
\text { s.t. } \quad & A_{1} x+A_{2} x \geq b,
\end{array} \text { 促 }: x \geq 0\right\} \tag{3}
\end{array}
$$

where A_{1} and A_{2} are $r \times n$ and $r \times m$ dimensional matrices, respectively.
If $S=\left\{(x, y) \in R^{n \times m}: A_{1} x+A_{2} y \geq b, x, y \geq 0\right\}$ set is bounded, the dual model of (3) will be:

$$
\begin{array}{ll}
& \max \left(b-A_{2} y\right)^{t} u \\
\text { s.t. } & A_{1}^{t} u \leq a \tag{4}\\
& u \geq 0
\end{array}
$$

If α and β are the slack variables vectors corresponding to the primal and dual constraints, respectively, writing KKT conditions for (3) will result in the following BLP-equivalent nonconvex optimization problem:

$$
\begin{array}{ll}
& \min \quad c x+d y \\
\text { s.t. } \quad & \alpha=-b+A_{1} x+A_{2} y \\
& \beta=a-A_{1}^{t} u \tag{5}\\
& x^{t} \beta=u^{t} \alpha=0 \\
& x, y, u, \alpha, \beta \geq 0 .
\end{array}
$$

Therefore, the (\bar{x}, \bar{y}) absolute minimum of the BLP can be found by solving the non-convex program (5). In the SLCP method, the following parametric LCP is obtained by defining parameter λ and replacing the objective function of (5) with the $c x+d y \leq \lambda$ constraint:

$$
\begin{align*}
& \operatorname{LCP}(\lambda) \tag{6}\\
& {\left[\begin{array}{c}
\alpha \\
\beta \\
\nu_{0}
\end{array}\right]=\left[\begin{array}{c}
-b \\
a \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \lambda+\left[\begin{array}{ccc}
0 & A_{1} & A_{2} \\
-A_{1}^{t} & 0 & 0 \\
0 & -c & -d
\end{array}\right]\left[\begin{array}{l}
u \\
x \\
y
\end{array}\right]} \\
& x, y, u, \alpha, \beta, \nu_{0} \geq 0, x^{t} \beta=u^{t} \alpha=0 .
\end{align*}
$$

The SLCP algorithm involves finding the $\operatorname{LCP}(\bar{\lambda})$ solution ($\bar{\lambda}$ is the smallest value of λ) so that the LCP (λ) may have a solution for which the SLCP method solves a sequence of the $\operatorname{LCP}\left(\lambda_{k}\right)$ where $\left\{\lambda_{k}\right\}$ is a decent sequence defined as follows:

$$
\begin{array}{r}
\text { Upper bound of } c x+d y \text { on } S=\lambda_{0} \\
\lambda_{k}=c x^{k-1}+d y^{k-1}-\left|\gamma_{k}\left(c x^{k-1}+d y^{k-1}\right)\right| \tag{7}
\end{array}
$$

where $\left(x^{k-1}, y^{k-1}\right)$ is the solution to $\operatorname{LCP}\left(\lambda_{k-1}\right)$ and γ_{k} is a small positive number. The process will end in iteration k if $\operatorname{LCP}\left(\lambda_{k}\right)$ does not yield a solution. In such a case, the solution of $\operatorname{LCP}\left(\lambda_{k}\right),\left(x^{k-1}, y^{k-1}\right)$, will confirm the following inequality:

$$
\begin{equation*}
0 \leq c x^{k-1}+d y^{k-1}-V A L \leq\left|\gamma\left(c x^{k-1}+d y^{k-1}\right)\right| \tag{8}
\end{equation*}
$$

where $V A L$ is the value of the objective function in the optimal solution. Hence, if the defined set S is bounded and nonempty, the algorithm will find the optimal $-\epsilon$ solution of the BLP:

$$
\begin{equation*}
\epsilon=\left|\gamma_{k}\left(c x^{k-1}+d y^{k-1}\right)\right| . \tag{9}
\end{equation*}
$$

If γ_{k} is small, the $\left(x^{k-1}, y^{k-1}\right)$ solution from $\operatorname{LCP}\left(\lambda_{k-1}\right)$ is usually the BLP optimal solution.
3.1. The SLCP algorithm. The SLCP algorithm is as follows:

Step 1- let $k=0$ and λ_{0} be the upper bound of $c x+d y$ on S .
Step 2- Solve $\operatorname{LCP}\left(\lambda_{k}\right)$. If it yields a solution, go to Step 3. Otherwise, let $\left(x^{k}, y^{k}\right)$ be its solution:

$$
\lambda_{k+1}=c x^{k}+d y^{k}-\left|\gamma_{k+1}\left(c x^{k}+d y^{k}\right)\right|
$$

where γ_{k+1} is a constant value. Let $k=k+1$ and repeat Step 2.
Step 3- If $k=0$, the BLP is infeasible. Otherwise, $\left(x^{k-1}, y^{k-1}\right)$ is the optimal $-\epsilon$ solution of the BLP where ϵ is obtained from (9).
The efficiency of the SLCP algorithm depends mainly on how $\operatorname{LCP}\left(\lambda_{k}\right)$ is solved. We will now describe the BRES algorithm using an artificial variable. Consider $\operatorname{LCP}\left(\lambda_{k}\right)$ as follows:

$$
\begin{array}{ll}
\text { (a). } & w=q+M z+N y \\
\text { (b). } & w, z, y \geq 0 \tag{10}\\
\text { (c). } & z_{i} w_{i}=0, i=1, \ldots, r+n,
\end{array}
$$

where

$$
\begin{gathered}
w=\left[\begin{array}{c}
\alpha \\
\beta \\
\nu_{0}
\end{array}\right] \in R^{r+n+1}, z=\left[\begin{array}{l}
u \\
x \\
\hline
\end{array}\right] \in R^{r+n}, q=\left[\begin{array}{c}
-b \\
a \\
\lambda_{k}
\end{array}\right] \in R^{r+n+1}, M=\left[\begin{array}{cc}
0 & A_{1} \\
-A_{1}^{t} & 0 \\
0 & -c
\end{array}\right]_{(r+n+1) \times(r+n)}, \\
N=\left[\begin{array}{c}
A_{2} \\
0 \\
-d
\end{array}\right]_{(r+n+1) \times m}
\end{gathered}
$$

Let z_{0} be an artificial variable andpbe a nonnegative vector on the condition that $p_{i}>0$ for each i where $q_{i}<0$. Consider the following:

$$
\begin{array}{ll}
& \min z_{0} \\
\text { s.t. } & w=q+z_{0} p+M z+N y \\
& z, w, y, z_{0} \geq 0 \tag{11}\\
& z_{i} w_{i}=0, i=1, \ldots, r+n
\end{array}
$$

The BRES algorithm is a revision of phase 1 of a two-phase simplex with an artificial variable [4]. The optimal solution of (11) can be obtained only by using the solutions that satisfy the constraints in (11). To ensure this condition, the non-basic variable z_{i} or w_{i} with positive decrease cost coefficient can be nominated as the entering variable if its complementary z_{i} or w_{i} is also non-basic or becomes so in this iteration. Accordingly, the BRES algorithm may have three endings:
$T E R M=1$ - Optimal solution $(\bar{w}, \bar{z}, \bar{y})$ for (11) with $\bar{z}_{0}=0$.
$T E R M=2$ - Optimal solution $(\bar{w}, \bar{z}, \bar{y})$ for (11) with $\bar{z}_{0}>0$.
$T E R M=3-$ A non-optimal basic solution for (11) while there is no candidate for the entering variable.

In case $1(T E R M=1),(\bar{w}, \bar{z}, \bar{y})$ is the solution to LCP (10). In case $2(T E R M=2)$, this LCP does not yield a solution. In case $3(T E R M=3)$, there is no conclusion on whether there is a solution; the revised BRES method has been designed for both the first two as well as case 3 .
After some introductory points, effort will be made to address the revised BRES method. In model (10), Like linear programming, solutions (z, w, y) that satisfy linear constraints (a) and (b) are called feasible. The solution will be complementary if variables z_{i} and w_{i} satisfy constraint (c). The enumeration method tries to find the complementary solution using only the system's basic feasible solutions (a). For this purpose, the following tree (Figure 1) is examined, where i_{1}, i_{2}, \ldots are integer numbers from $\{1, \ldots, r+n\}$ set. In node 1 , the initial feasible solution is found through Phase 1 of a two-Phase simplex algorithm with an artificial single variable. Each of the other nodes is generated by solving a subproblem that involves the minimization of z_{i} or w_{i} under the LCP linear constraints and some $z_{i}=0$ or $w_{i}=0$ constraints. For instance, to generate node 4 of tree (Figure 1), it is necessary to solve the following linear program (12):

Figure 1. Tree of the BRES algorithm.

$$
\begin{array}{ll}
& \min \quad z_{i 2} \\
\text { s.t. } & w=q+M z+N y \\
& z, w, y \geq 0 \tag{12}\\
& z_{i 1}=0
\end{array}
$$

Such a linear program is solved by a revision of Phase 2 of a two-Phase simplex method and two cases may occur:

1. If the minimized variable equals zero, it will be taken zero in all the paths down the tree.
2. If the minimized variable value is positive, the node has been fathomed and the branching is accomplished.
The enumeration method solves the LCP through generating consecutive tree nodes according to the process described above. The algorithm either finds the LCP solution (which will be the first feasible complementary solution) or proves that it does not have a solution (all the tree nodes have been fathomed).
3.2. Revised BRES method. Consider node 1 generation from tree (Figure 1) (i.e. finding the first feasible LCP solution discussed earlier). This is done by solving the following linear program:

$$
\begin{array}{ll}
& \min z_{0} \\
\text { s.t. } & w=q+z_{0} p+M z+N y \tag{13}\\
& z, w, y, z_{0} \geq 0
\end{array}
$$

where p is a non-negative vector on the condition that for each i where $q_{i}<0, p_{i}>0$ and z_{0} is an artificial variable. Since the objective is to find a complementary feasible solution, the BRES algorithm can be used to solve such a linear program. If this algorithm ends with $T E R M=1$, the solution to LCP (10) has been found, and if it ends with $T E R M=2$, the LCP does not have a solution and the enumeration process will stop. If
$T E R M=3$ occurs, the z_{0} value can still reduce if one step of the simplex pivot (belonging to the column with positive decrease cost coefficient) is executed. When $T E R M=3$, the revised BRES algorithm involves the execution of such a pivot step and reuse of the BRES method and then the process is repeated; this algorithm can also be used to generate any other k node. Since, as discussed earlier, generating a node involves minimizing variable z_{i}, or w_{i}, the revised BRES algorithm for generating node k is as follows:
Step 1- Let $N C P$ be the number of the $\left(z_{i}, w_{i}\right)$ pairs of complementary variables where both w_{i} and z_{i} are basic in the solution (if $k=0, N C P=0$).
Step 2- Use the BRES algorithm; if the feasible complementary solution has been found, let $T E R M=1$ and $N C P=0$, go to Step 4. If the BRES algorithm ends with $T E R M=1$ or $T E R M=2$, go to Step 4 ; otherwise, $(T E R M=3)$, go to Step 3 .
Step 3- Let $N C P=N C P+1$ and then run one step of the simplex pivot (belonging to the column with positive decrease cost coefficient). Go to Step 2.
Step 4- If $T E R M=1$ and $N C P=0$, the LCP solution has been found and the enumeration process will stop, if $T E R M=1$ and $N C P>0$, node k will be generated, and if $T E R M=2$, node k cannot be generated and is fathomed.
The revised BRES method is implemented in the following example (for more details, refer to [9]).

Example 3.1.

$$
\begin{aligned}
& \min _{y_{1}}-y_{1} \\
& \text { s.t. } \\
& \min _{x_{1}} \quad x_{1} \\
& \text { s.t. }: 2 x_{1}+y_{1} \geq 10 \\
& 2 x_{1}-y_{1} \geq-6 \\
& x_{1}-2 y_{1} \geq-21 \\
& -2 x_{1}-y_{1} \geq-38 \\
& -2 x_{1}+y_{1} \geq-18 \\
& x_{1}, y_{1} \geq 0
\end{aligned}
$$

4. REVISED HYBRID ALGORITHM

Now, a novel hybrid method is proposed that makes use of the Kth-best algorithm and the revised BRES instead of the BRES method, and ensures the method convergence because, as noted in Section 3, the BRES method is not always convergent.
Step 1- Let $k=1$ and $\alpha=0$. To obtain the optimal solution of $\widehat{x}_{[1]}$, solve problem $\left(T_{1}\right)$ by the simplex method. Let $T=\emptyset$ and $W=\left\{\widehat{x}_{[1]}\right\}$. Go to Step 2.

$$
\begin{aligned}
\left(T_{1}\right): & \max \left(c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}:\left(x_{3}\right)\right) \\
\text { s.t. }: & x \in S_{1}
\end{aligned}
$$

Step 2- Solve problem $\left(T_{2}\right)$ through the bounded simplex method.

$$
\begin{aligned}
\left(T_{2}\right): & \max c_{11} x_{1} \\
\text { s.t. }: & x \in S_{1} \cap\left\{x \in R^{n} \mid x_{2}=\widehat{x}_{2}, x_{3}=\widehat{x}_{3}\right\}
\end{aligned}
$$

Suppose this problem has the optimal solution $\left(\bar{x}_{1}, \widehat{x}_{2}, \widehat{x}_{3}\right)$. If $\bar{x}_{1} \neq \widehat{x}_{1}$, then $\widehat{x} \notin S_{2}$; therefore, \widehat{x} is not in S_{3}. Go to Step 3. If $\bar{x}_{1}=\widehat{x}_{1}$, then $\widehat{x} \in S_{2}$. Go to Step 5 .
Step 3- Suppose $W_{[k]}$ represents a set of extreme points. x adjacent to $\widehat{x}_{[k]}$ so that $c_{3} x \leq c_{3} \widehat{x}_{[k]}$. Update T and W as follows:

$$
T=T \cup\left\{\widehat{x}_{[k]}\right\}, W=\left(W \cup W_{[k]}\right) \backslash T .
$$

Step 4- Let $k=k+1$ and select $\widehat{x}_{[k]}$ so that $c_{3} \widehat{x}_{[k]}=\max \left\{c_{3} x \mid x \in W\right\}$. Go to step 2. Step 5- (First-best check) - Find the optimal solution to the following problem:

$$
\begin{aligned}
\left(T_{3}\right): & \max c_{21} x_{1}+c_{22} x_{2} \\
\text { s.t. }: & x \in S_{1} \cap\left\{x \in R^{n} \mid x_{3}=\widehat{x}_{3}\right\} .
\end{aligned}
$$

Suppose the problem has an optimal solution ($\widehat{x}_{1}^{*}, \widehat{x}_{2}^{*}, \widehat{x}_{3}$). Check if point ($\widehat{x}_{1}^{*}, \widehat{x}_{2}^{*}, \widehat{x}_{3}$) belongs in S_{2} by solving the following problem:

$$
\begin{aligned}
\left(T_{4}\right): & \max c_{11} x_{1} \\
\text { s.t.: } & x \in S_{1} \cap\left\{x \in R^{n} \mid x_{2}=\widehat{x}_{2}, x_{3}=\widehat{x}_{3} .\right.
\end{aligned}
$$

The optimal solution ($\bar{x}_{1}, \widehat{x}_{2}^{*}, \widehat{x}_{3}$) is obtained. If $\bar{x}_{1}=\widehat{x}_{1}^{*}$, then solution $\left(T_{3}\right)$ is in S_{2}. For S_{3} - Check, go to Step 6. If $\bar{x}_{1} \neq \widehat{x}_{1}^{*}$, then, solution $\left(T_{3}\right)$ is not in S_{2}; put $\alpha=c_{21} \widehat{x}_{1}+c_{22} \widehat{x}_{2}$ and go to Step 7 .
Step 6- If $\left(\widehat{x}_{1}^{*}, \widehat{x}_{2}^{*}\right)=\left(\widehat{x}_{1}, \widehat{x}_{2}\right)$, then $\widehat{x} \in S_{3}$ and, hence, \widehat{x} is the solution to the tri-level problem and stop. Otherwise $\widehat{x} \notin S_{3}$, go to Step 3 .
Step 7- (CP-check) Solve the following system using the revised BRES method presented in the SLCP algorithm:

$$
\begin{aligned}
\left(T_{5}\right): & A x_{1}+B x_{2}+y=b-C x_{3} \\
& (A)^{t} u-\nu=\left(c_{11}\right)^{\prime} \\
& c_{21} x_{1}+c_{22} x_{2} \geq \alpha+\delta \\
& u^{t} y=0,\left(x_{1}\right)^{t} \nu=0 \\
& x_{1}, x_{2}, y, u, \nu \geq 0,
\end{aligned}
$$

where δ is a sufficiently small positive number. If finding a feasible solution for $\left(T_{5}\right)$ is not possible, $\left(\widehat{x}_{1}^{*}, \widehat{x}_{2}^{*}\right)$ is the solution to the bi-level problem (level 2 and level 1) where x_{3} has a value equal to \widehat{x}_{3}, then $\widehat{x} \in S_{3}$ and \widehat{x} is the optimal solution to the tri-level problem and stop. Otherwise $\widehat{x} \notin S_{3}$, go to Step 3 .
4.1. Convergence of the revised hybrid algorithm. The hybrid algorithm starts with the Kth-best algorithm [16] to search for the Kth-best extreme point over the entire feasible solution region of S_{1} which is bounded and has finite extreme point (note that $S_{3} \subset S_{2} \subset S_{1}$). Therefore, since the $c_{3} \widehat{x}$ objective function is non-increasing after the next optimal solution is found in different iterations, and there are only a finite number of bases, the algorithm will be fathomed after a finite number of iterations (since the points being studied are generated by the Kth-best algorithm, there will be no rotation). Note that in Step 7, the CP-check is also convergent because it has made use of the revised BRES method (Section 3). Additionally, if the hybrid algorithm stops in Step 7 with the absolute optimal solution, the algorithm will be fathomed with a small deviation (δ) from the absolute optimal solution.

Example 4.1. [14]. Let us solve the following tri-level problem using the proposed revised hybrid algorithm.

$$
\begin{align*}
& \max \quad-4 x_{1}+3 x_{2}+7 x_{3}:\left(x_{1}\right) \\
& \text { s.t. }: \max x_{2}:\left(x_{2} \mid x_{3}\right) \\
& \text { s.t. }: \max x_{1}:\left(x_{1} \mid x_{2}, x_{3}\right) \\
& \text { s.t. }: \\
& \quad x_{1}+x_{1}+x_{3} \leq 3 \tag{14}\\
& \quad x_{1}+x_{2}-x_{3} \geq 1 \\
& \quad x_{1}-x_{2}+x_{3} \leq 1 \\
& \quad-x_{1}+x_{2}+x_{3} \leq 1 \\
& \quad x_{3} \leq 0.5 \\
& \quad x_{1}, x_{2}, x_{3} \geq 0
\end{align*}
$$

Variable x_{i} is controlled by level $i(i=1,2,3)$.
Step 1- Let $k=1$ and $\alpha=0$, solve problem (15) by the simplex method:

$$
\begin{array}{ll}
& x \equiv\left(x_{1}, x_{2}, x_{3}\right)^{t} \\
& \\
\text { s.t. }: & x_{1}+x_{1}+x_{3} \leq 3 \\
& x_{1}+x_{2}-x_{3} \geq 1 \\
& x_{1}-x_{2}+x_{3} \leq 1 \tag{15}\\
& -x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{3} \leq 0.5 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

The solution to problem (15) is $\widehat{x}_{[1]}=(0,1,0)^{t}$. Put:

$$
T=\emptyset, W=\left\{\widehat{x}_{[1]}\right\}
$$

Step 2- Solve problem (16) by the bounded simplex method:

$$
\begin{array}{ll}
& \max x_{1} \\
\text { s.t. }: & x_{1}+x_{1}+x_{3} \leq 3 \\
& x_{1}+x_{2}-x_{3} \geq 1 \\
& x_{1}-x_{2}+x_{3} \leq 1 \tag{16}\\
& -x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{2}=1 \\
& x_{3}=0 \\
& x_{1} \geq 0 .
\end{array}
$$

The solution to problem (16) is $\bar{x}=(2,0,1)^{t}$ where $\bar{x} \neq \widehat{x}_{[1]}=(0,1,0)^{t}$ hence $\widehat{x}_{[1]} \notin S_{2}$ and $\widehat{x}_{[1]} \notin S_{3}$.
Step 3- The extreme points adjacent to $\widehat{x}_{[1]}$ are $\left\{(1,0,0)^{t},(1,2,0)^{t},\left(0.75,0.75,0.5^{t}\right)\right.$:
Now we will obtain $W_{[1]}$ which shows a set of extreme points x adjacent to $\widehat{x}_{[1]}$ so that $c_{3} x \leq c \widehat{x}_{[1]}$.
$c_{3}=(-4,3,4), c_{3} \widehat{x}_{[1]}=3, c_{3}(1,0,0)^{t}=-4$
$, c_{3}(1,2,0)^{t}=2, c_{3}(0.75,0.75,0.5)^{t}=2.75 \Longrightarrow W_{[1]}=\left\{(1,0,0)^{t},(1,2,0)^{t},(0.75,0.75,0.5)^{t}\right\}$ $T=T \cup\left\{\widehat{x}_{[1]}\right\}=\left\{(0,1,0)^{t}\right\}, W=\left(W \cup W_{[1]}\right) \backslash T=W_{[1]}$.
Step 4-Let $k=k+1=2$, find $\widehat{x}_{[2]}$ as follows:

$$
c_{3} \widehat{x}_{[2]}=\max \left\{c_{3} x\right\}=\max \{-4,2,2.75\}=2.75 \Longrightarrow \widehat{x}_{[2]}=(0.75,0.75,0.5)
$$

Step 2-Solve problem (17):

$$
\begin{array}{ll}
& \max x_{1} \\
\text { s.t. }: & x_{1}+x_{1}+x_{3} \leq 3 \\
& x_{1}+x_{2}-x_{3} \geq 1 \\
& x_{1}-x_{2}+x_{3} \leq 1 \tag{17}\\
& -x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{2}=0.75 \\
& x_{3}=0.5 \\
& x_{1} \geq 0 .
\end{array}
$$

The solution to problem (17) is $\bar{x}=(1.75,0.75,0.5)^{t}$ where $\bar{x} \neq \widehat{x}_{[2]}=(0.75,0.75,0.5)^{t}$; hence $\widehat{x}_{[2]} \notin S_{2}$.
Step 3- The set of extreme points adjacent to $\widehat{x}_{[2]}$ are:

$$
\begin{aligned}
& \quad\left\{(0,1,0)^{t},(1.25,1.25,0.5)^{t},(1,0.5,0.5)^{t}\right\} \\
& c_{3} \widehat{x}_{[1]}=2.75, c_{3}(0,1,0)^{t}=3, c_{3}(1.25,1.25,0.5)^{t}=2.25, c_{3}(1,0.5,0.5)^{t}=1 \\
& \quad \Longrightarrow W_{[2]}=\left\{(1.25,1.25,0.5)^{t},(1,0.5,0.5)^{t}\right\}, T=T \cup\left\{\widehat{x}_{[2]}\right\}=\left\{(0,1,0)^{t},(0.75,0.75,0.5)^{t}\right\} \\
& \quad W=\left(W \cup W_{[2]}\right) \backslash T \Longrightarrow W=\left\{(1,0,0)^{t},(1,2,0)^{t},(1.25,1.25,0.5)^{t},(1,0.5,0.5)^{t}\right\} \\
& \text { Step 4- Let } k=k+1=3: \\
& c_{3} \widehat{x}_{[3]}=\max _{x \in W}\left\{c_{3} x\right\}=\max \{-4,2,2.25,1\}=2.25 \Rightarrow \widehat{x}_{[3]}=(1.25,1.25,0.5)^{t} \\
& \text { Step 2-Solve problem (18): }
\end{aligned}
$$

$$
\begin{array}{ll}
& \max x_{1} \\
\text { s.t. }: & x_{1}+x_{1}+x_{3} \leq 3 \\
& x_{1}+x_{2}-x_{3} \geq 1 \\
& x_{1}-x_{2}+x_{3} \leq 1 \tag{18}\\
& -x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{2}=1.25 \\
& x_{3}=0.5 \\
& x_{1} \geq 0 .
\end{array}
$$

The solution to problem (18) is $\bar{x}=(1.25,1.25,0.5)^{t}$ where $\bar{x}=\widehat{x}_{[3]}$; hence $\widehat{x}_{[3]} \in S_{2}$. Step 5- Solve problem (19):

$$
\begin{array}{ll}
& \max \quad x_{1} \\
\text { s.t. }: & x_{1}+x_{1}+x_{3} \leq 3 \\
& x_{1}+x_{2}-x_{3} \geq 1 \\
& x_{1}-x_{2}+x_{3} \leq 1 \tag{19}\\
& -x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{3}=0.5 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

The solution to problem (19) is $\left(\widehat{x}_{1}^{*}, \widehat{x}_{2}^{*}, \widehat{x}_{3}\right)^{t}=(1.25,1.25,0.5)^{t}$. The following problem is solved to check if $\left(\widehat{x}_{1}^{*}, \widehat{x}_{2}^{*}, \widehat{x}_{3}\right)$ belongs in S_{2} :

$$
\begin{array}{ll}
& \max x_{1} \\
\text { s.t. }: & x_{1}+x_{1}+x_{3} \leq 3 \\
& x_{1}+x_{2}-x_{3} \geq 1 \\
& x_{1}-x_{2}+x_{3} \leq 1 \tag{20}\\
& -x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{2}=1.25 \\
& x_{3}=0.5 \\
& x_{1} \geq 0 .
\end{array}
$$

The solution to problem (20) is $\left(\bar{x}_{1}, \widehat{x}_{2}^{*}, \widehat{x}_{3}\right)^{t}=(1.25,1.25,0.5)^{t}$. Since $\bar{x}_{1}=\widehat{x}_{1}^{*}, \widehat{x}^{*} \in S_{2}$, for S_{3}-Check go to Step 6 .

Step 6- Since $\left(\widehat{x}_{1}^{*}, \widehat{x}_{2}^{*}\right)=\left(\widehat{x}_{1}, \widehat{x}_{2}\right)$, in fact $\widehat{x}_{[3]}=\widehat{x}^{*}$; hence, $\widehat{x}_{[3]} \in S_{3}$, and $\widehat{x}_{[3]}$ is the optimal solution to the tri-level problem. Therefore, $x^{\star}=(1.25,1.25,0.5)$ is the absolute optimal solution, stop.

5. Conclusions

The tri-level linear programming problem has more complexity compared to the bi-level one because it is necessary, when designing its solution algorithm, to consider the effects of the decisions of three decision makers on one another. To solve TLP problems, this paper combines the Kth-best and the revised BRES methods and proposes a novel hybrid algorithm a feature of which is to converge on the tri-level optimal solution; the algorithm's implementation capability has been illustrated through a numerical example.

References

[1] Bard, J. and Falk, J., (1982), An explicit solution to the multi-level programming problem, Computer and Operations Research 9, pp. 77-100.
[2] Bard, J. and Falk, J., (1982), Necessary conditions for the linear three-level programming problem, in: Proceedings of the 21st IEEE Conference on Decision and Control 21, pp. 642-646.
[3] Bard, J. and Moore, J. T., (1990), A branch-and-bound algorithm for the bilevel programming problem, SIAM Journal on Scientific and Statistical Computing 11, pp. 281-292.
[4] Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D., (1990), Linear Programming and network flows, 2nd ed. New York: Wiley.
[5] Bialas, W. F. and Karwan, M. H., (1984), Two-level linear programming, Management Science 30, pp. 1004-1020.
[6] Gu, Y., Cai, X., Han, D. and Wang, D. Z. W., (2019), A tri-level optimization model for a private road competition problem with traffic equilibrium constraints, European Journal Of operational Research, 273, pp. 190-197.
[7] Han, J., Zhang, G., Hu, Y. and Lu, J. , (2015), Solving tri-level programming problems using a particle swarm optimization algorithm, In Proceedings of the 10th IEEE Conference on Industrial Electronics and Applications, Auckland, New Zealand, 15-17 June, pp. 569-574.
[8] Hansen, P., Jaumard, B. and Savard, G., (1992), New branch-and-bound rules for linear bilevel programming, SIAM Journal on Scientific and Statistical Computing 13, pp. 1194-1217.
[9] Judice, J. J. and Faustino, A. M., (1988), The solution of the linear bilevel programming problem by using the linear complementary problem, Investigacao Operacional 8, pp. 77-95.
[10] Lai, K., Illindalan, M. and Subramaniam, K., (2019), A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment, Applied energy 235, pp. 204-218.
[11] Sakawa, M. and Nishizaki, I., (2012), Interactive fuzzy programming for multi-level programming problems: A review, Int. J. Multicrit. Decis. Making 2, pp. 241-266.
[12] Stackelberg, H. V., (1952), Theory of the Market Economy, Oxford University Press, New York.
[13] Vicente, L. and Calamai, P., (1994), Bilevel and multilevel programming: a bibliography review, J. Global Optim. 5, pp. 291-306.
[14] Wen, U. P. and Bialas, W. F., (1986), The hybrid algorithm for solving The three-level linear programming problem, Computers and Operations Research 13, pp. 367-377.
[15] White, D., (1997), Penalty function approach to linear trilevel programming, Journal of Optimization Theory and Applications 93, pp. 183-197.
[16] Zhang, G., Lu, J., Montero, J. and Zeng, Y., (2010), Model, solution concept, and Kth-Best algorithm for linear trilevel programming, Inf. Sci. 180, pp. 481-492.

Seyyedeh Farkhondeh Tayebnasab is a Ph.D. Candidate in Applied Mathematics at the University of Sistan and Baluchestan. She earned her M.Sc. (Applied Mathematics) from University of Sistan and Baluchestan, and B.Sc. (Mathematics) from University of Yasouj, Iran. Her research interests include Operations Research and Applications.

Farhad Hamidi is an Assistant Professor in the Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran. He received his Ph.D. degree in applied mathematics, operations research from University of Sistan and Baluchestan, Zahedan, Iran in 2013. His research interests include multilevel programming and fuzzy optimization.

Mehdi Allahdadi is an Associate Professor in the Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran. His research interests include optimization and linear programming under uncertainty.

[^0]: ${ }^{1}$ University of Sistan and Baluchestan, Faculty of Mathematics, Department of Mathematics, Zahedan, Iran.
 f.tayebnasab@pgs.usb.ac.ir; ORCID: https://orcid.org/0000-0002-4451-3591. f_hamidi@math.usb.ac.ir; ORCID: https://orcid.org/0000-0003-0450-6028. m_allahdadi@math.usb.ac.ir; ORCID: https://orcid.org/0000-0002-0574-0580.
 § Manuscript received: April 25, 2019; accepted: April 3, 2020.
 TWMS Journal of Applied and Engineering Mathematics, Vol.11, No. 1 © Işık University, Department of Mathematics, 2021; all rights reserved.

