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ABSTRACT: This paper is an extension of the K th-best approach [4] for solving bilevel linear programming problems 

with integer variables. NAZ cut [2] and A-T cut [3]  are added to reach the integer optimum. An example is given to show 

the efficiency of the proposed algorithm. 

 

Keywords: A-T cut, bilevel linear integer programming, K th-best approach, NAZ cut.  

 

 

I. INTRODUCTION 

 
              Bilevel programming has been proposed for dealing with decision processes involving two decision makers with a 

hierarchical structure. A bilevel programming problem (BLPP) consists of two levels, namely, the first level and the second 

level. The first level decision maker is called the leader and the second is called the follower. The follower executes its 

policies after and in view of, the decisions of higher level decision maker i.e. leader. In terms of applications, bilevel 

programming has been used in many domains, e.g. to design optimization problems in process system engineering [6], 

design of transportation network [11], agricultural planning [9], management of multi-divisional firms [14]. 

              Many researchers have designed algorithms for the solution of the BLPP [1, 4, 5, 8, 10]. However, there has been 

very little attention in the literature on both the solution and the application of bilevel problems involving discrete 

decisions. This is mainly because these problems pose major algorithmic challenges in the development of effective 

solution strategies. For the solution of the purely integer linear BLPP, a branch and bound type of enumerative solution 

algorithm has been developed by Moore and Bard [12]. Cutting plane and parametric solution approaches have been 

developed by Dempe [7]. Saharidis and Ierapetritou [15] gave an algorithm for the resolution of mixed integer BLPP based 

on Benders decomposition method.     

            In this paper we focus on the integer linear bilevel programming problem, in which all involved functions are linear. 

The aim of this paper is to present an extended K  th-best approach for finding the integer solution to a bilevel 

programming problem by introducing A-T cut to the reduced feasible region obtained after using NAZ cut. 

 

 

II. DESCRIPTION OF NAZ CUT AND A-T CUT FOR INTEGER LINEAR PROGRAMMING PROBLEMS 

 

Consider the pure linear integer programming problem as follows: 

                           

0,

..

),(max

21

2211

221121





xx

bxAxAts

xcxcxxf

                                        (1) 

                            21, xx   are integers                        

The linear programming relaxation can be obtained by omitting the integer restrictions. 
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First we solve the linear programming relaxation. Let the solution be ),( 21

  xxx . If 


x  

 is all integer, then the problem is solved. 

Let the 
th

k component of 


x  be non integer with
 kk ax . 

The nearest integer values to kx  are  

                 ][1  kk ax  and  },{1][2   kkk aax   for  2,1k . 

where ][t  is the largest integer less than or equal to t  and }{t is the smallest integer greater than or equal to t . 

With such bifurcations we can find all the 
n2  points in the surrounding of the non-integer solution


x . Denote the set of 

indices of these 
n2  points by

0
S . If all these points lie outside the feasible region we move to the next integer feasible 

points obtained from .1 
kk ax   

Let the objective value at 


x  be


Z . Thus, the objective function level plane at 


x  will be .  Zcx  

Now we find the difference
0

ii cxZd  
, ,0

Si , i.e., the difference between the objective function value at non 

integer solution and the objective function values at the surrounding integer points, as suggested by Rabbani and Adhami 

[13]. Where ,'0
sxi  

0
Si , are surrounding integer points around


x . 

Now we search for the feasible point
0

ix , which has a minimum positive difference from the objective function value.  

Let G be the set of indices 
0

Si  for which sxi '0
are feasible. 

Let }min{ 00

i
Gi

kk ddxx   

A plane passing through this integer point and parallel to the objective hyperplane will be .00
Zcx   

Clearly 
 ZZ

0
 

The NAZ cut is now introduced as  

             
00

Zcx   

which reduces the feasible region. 

Here 
0

Z  acts as a lower bound for the integer solution to the problem. 

Let 
0

x  be defined as: 

);,,,(
000

21

0 k

n

kk
x       

00
Sk   

Now to find the integer optimum solution we add the A-T cut at 
0

x  as  

               
n

j

n

j
Sk

k

jjx
1

1

00

0 . 

 

III. THE PROCEDURE 

 

Using the common notation in bilevel programming, the integer linear bilevel programming ILBP problem can be written 

as follows: 

                           ,),(max 2211211
, 21

xcxcxxf
xx

    where 2x  solves 
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                            22212 ),(max
2

xdxxf
x

                                                                    (2) 

                             s.t.  ,2211 bxAxA   

                            ,0, 21 xx  21, xx   are integers  

where 1c  is an 1n -dimensional row vector, 2c  and 2d are 2n - dimensional row vectors, 1A  is an 2nm -matrix and 

b is an m -dimensional column vector . We assume that the polyhedron S  defined by the common constraints is 

nonempty and bounded. 

Firstly we solve the linear programming LP relaxation for leader’s problem associated with (2) using simplex method i.e., 

we solve, 

                                  2211211 ),(max xcxcxxf   

                                  s.t.  ,2211 bxAxA                                                                (2a) 

                                            0, 21 xx  

 Let the solution be


x . If the solution is non integer we add the NAZ cut ,00

22

0

112211 zxcxcxcxc   which 

passes through
0

x , where ),( 0

2

0

1

0
xxx  is the integer point inside the feasible region and 

0
z  is the value of leader’s 

problem at
0

x . 

Now to find the integer optimum solution we add the A-T cut   
n

j

n

j
Sk

k

jjx
1

1

00

0  at
0

x . 

Let 


][]2[]1[ ,, Nxxx   denote the N ordered basic feasible solutions to the ILBP for (2a) such 

that
  ]1[][ ii cxcx , )1,,1(  Ni  . 

Let 1S  be the projection of S onto the leader’s decision space. For each ,1]1[ Sx 
 a feasible solution to the ILBP 

problem (2) is obtained by solving the following integer linear programming problem: 

                                   22
2

max xd
x

  

                                   s.t.   ,]1[122

 xAbxA                                                         (2b) 

                                  02 x and integer. 

For the above problem also we can find the integer optimum by using NAZ cut and A-T cut. Let )( ]1[


xM denote the set of 

optimal solution to (2b). We assume that for any fixed choice of leader, follower has some room to respond, i.e., 

.)( ]1[ 
xM  Hence, the feasible region of the leader, called the inducible region IR, is  

           IR= )}(,:),{( ]1[21121

 xMxSxxx . 

With the above extensions in the K th-Best algorithm we can find the integer optimum solution for the bilevel 

programming problems.  

 

 

The procedure can be summarized in the following steps: 
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Step 1.  Set 1i . Solve (2a) with the simplex method. If the solution is non integer then add NAZ cut and A-T cut to 

obtain integer optimum solution as


]1[x . Let )( ][

 ixW  and .T  Go to Step 2. 

Step 2.  Solve (2b) for integer optimum solution using NAZ cut and A-T cut. Let this solution be denoted by .~x  

If
 ][

~
ixx , stop; 


][ix  is the global optimum to (2). Otherwise, go to Step 3. 

Step 3.  Let ][iW  denote the set of adjacent extreme points x  of 


][ix  such that
 ][icxcx . 

Let )( ][

 ixTT  and 
c

i TWWW  )( ][ . Go to step 4. 

Step 4.   Set 1 ii  and choose


][ix  so that ).(max][ cxcx Wxi    Go to step 2. 

 

IV. NUMERICAL EXAMPLE 

 

Consider the following ILBP problem: 

                          2121 2218),(max
1

xxxxf
x

  

                          where 2x  solves: 

                          21211 2),(max
2

xxxxf
x

                                                             (3) 

                           s.t.     1022417 21  xx  

                                     3997684 21  xx  

                                     0, 21 xx  , 21, xx  are integers. 

The first step of the above procedure is to solve the linear programming problem  

                         2121 2218),(max xxxxf   

                          s.t.     1022417 21  xx                                                              (3a) 

                         3997684 21  xx  

                          0, 21 xx   

We get the non integer solution as 66.21 
x , 36.22 

x  and 96.99),( 21 
xxf  

We round off the non integer solution to the nearest four integer points as (2, 2), (2, 3), (3, 2) and (3, 3). The respective 

differences are  

96.198096.99  ;  04.210296.99  ;  96.19896.99  ;  04.2012096.99   

We are left with only one feasible point (2, 2), which gives the minimum positive difference. Now the NAZ cut and A-T 

cut passing through the integer point (2, 2) can be derived respectively as  

            802218 21  xx  

and 

            421  xx   

Now solving the problem (3) with these additional constraints we obtain the integer optimum solution as  

           01 
x , 42 

x  and 88),( 21 
xxf  

Let )4,0(]1[ 
x , the first best solution. Set )}4,0{(W and .T  
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To determine if 


]1[x  is an element of )( ]1[


xM we solve 

                         

                          21211 2),(max xxxxf                                    

                           s.t.     1022417 21  xx  

                                     3997684 21  xx                                                          (3b) 

                                     0, 21 xx  

                                     01 x   

                                     21, xx  integer. 

After adding the required NAZ cut and A-T cut we get the integer optimal solution as  

)4,0(~ x . Hence, 
 ]1[

~ xx  

Therefore, )4,0(
x  is the global optimal solution to ILBP problem (3). 

 

V CONCLUSION 

 

We have extended the Kth-best algorithm for solving linear bilevel programming problems with the help of NAZ cut for 

integer programming along with the A-T cut. This algorithm gives us the integer solution for bilevel programming 

problems with much computational ease. 

 

REFERENCES 
[1]    J.F. Bard, “An Algorithm for Solving the General Bilevel Programming Probem”. Mathematics of Operations Research. Vol. 8, No.2, pp. 260-272, 

1983. 

[2]    A. Bari, and Q. S. Ahmad, “NAZ cut for Integer Programming”. Pure and Applied  Mathematika Sciences. Vol LVII, No.1-2, 87-94, 2003. 

[3]    A. Bari, and T. Alam, “Search for Integer Optimum after Adding NAZ cut”. Pure and Applied Mathematika Sciences. Vol.  LXII, No. 1-2, pp. 77-83, 

2005. 

[4]    W. F. Bialas, and M. H. Karwan, “Two Level Linear Programming”, Management Science, Vol. 30, No. 8, pp.1004-1020, 1984. 

[5]   M Campelo and S. Scheimberg, “A Simplex Approach for Finding Local Solutions of a Linear Bilevel Program by Equilibrium Points” Annals of 
Operations Research.  

        Vol. 138, pp. 144-157, 2005. 

[6]   P. A. Clark and A.W.Westerberg, “Bilevel Programming for Steady-State Chemical Process Design – I. Fundamentals and Algorithms”. Comput. 

Chem. Eng. Vol. 14, No. 1, pp. 87-97 , 1990. 

[7]    S. Dempe, “DiscreteBilevelOptimizationProblems”.http;//www.mathe.tufreiberg.de/ dempe, TU Chemnitz. 

[8]     N.P. Faísca, V. Dua,  B. Rustem, P.M. Saraiva, E.N. Pistikopoulos, “Parametric Global Optimization for Bilevel Programming”. Journal of Global 
Optimization. Vol. 38, pp. 609-623, 2007. 

[9]    J. Fortuny-Amat, B. McCarl, “A Representation and Economic Interpretation of a Two-Level Programming Problem”. Journal of Operations 
Research Society. Vol. 32, No. 9, pp. 783-792, 1981. 

[10]   J. Judice, and A. Faustino,  “A Sequential LCP method for Bilevel Linear Programming”. Annals of Operations Research. Vol. 34, pp. 89-106, 1992. 

[11]   L.J. LeBlanc, and D.E. Boyce, “A Bilevel Programming Algorithm for Exact Solution of Network Design Problem with User-Optimal Flows”. 
Trans. Res.-Part B, Vol. 20, pp.259-265, 1985. 

[12]  J.T. Moore, and J.F. Bard. “The Mixed Integer Linear Bilevel Programming  Problem”. Operations Research. Vol. 38, pp. 911-921, 1990. 

[13] Q. Rabbani, and A.Y. Adhami, “A Note on NAZ cut for Integer Progrmming” Pure and Applied Mathimatika Sciences, Vol. LXVIII, No. 1-2, pp. 75-

77, 2008 

[14] J. Ryu, V. Dua, E.N. Pistikopoulos, “A Bilevel Programming Framework for Enterprise-Wide Process Networks under uncertainty”. Comput. Chem. 
Eng. Vol. 28, pp. 1121-1129, 2004. 

[15] G.K. Saharidis, and M. G. Ierapetritou, “Resolution Method for Mixed Integer  Bilevel Linear Problems Based on Decomposition Technique”. J. 
Glob. Optim. 2008. 

http://www.ijirset.com/

