279 research outputs found

    Automated tracing of myelinated axons and detection of the nodes of Ranvier in serial images of peripheral nerves

    Get PDF
    The development of realistic neuroanatomical models of peripheral nerves for simulation purposes requires the reconstruction of the morphology of the myelinated fibres in the nerve, including their nodes of Ranvier. Currently, this information has to be extracted by semimanual procedures, which severely limit the scalability of the experiments. In this contribution, we propose a supervised machine learning approach for the detailed reconstruction of the geometry of fibres inside a peripheral nerve based on its high-resolution serial section images. Learning from sparse expert annotations, the algorithm traces myelinated axons, even across the nodes of Ranvier. The latter are detected automatically. The approach is based on classifying the myelinated membranes in a supervised fashion, closing the membrane gaps by solving an assignment problem, and classifying the closed gaps for the nodes of Ranvier detection. The algorithm has been validated on two very different datasets: (i) rat vagus nerve subvolume, SBFSEM microscope, 200 Ă— 200 Ă— 200 nm resolution, (ii) rat sensory branch subvolume, confocal microscope, 384 Ă— 384 Ă— 800 nm resolution. For the first dataset, the algorithm correctly reconstructed 88% of the axons (241 out of 273) and achieved 92% accuracy on the task of Ranvier node detection. For the second dataset, the gap closing algorithm correctly closed 96.2% of the gaps, and 55% of axons were reconstructed correctly through the whole volume. On both datasets, training the algorithm on a small data subset and applying it to the full dataset takes a fraction of the time required by the currently used semiautomated protocols. Our software, raw data and ground truth annotations are available at http://hci.iwr.uni-heidelberg.de/Benchmarks/. The development version of the code can be found at https://github.com/RWalecki/ATMA

    Vision-based techniques for automatic marine plankton classification

    Get PDF
    Plankton are an important component of life on Earth. Since the 19th century, scientists have attempted to quantify species distributions using many techniques, such as direct counting, sizing, and classification with microscopes. Since then, extraordinary work has been performed regarding the development of plankton imaging systems, producing a massive backlog of images that await classification. Automatic image processing and classification approaches are opening new avenues for avoiding time-consuming manual procedures. While some algorithms have been adapted from many other applications for use with plankton, other exciting techniques have been developed exclusively for this issue. Achieving higher accuracy than that of human taxonomists is not yet possible, but an expeditious analysis is essential for discovering the world beyond plankton. Recent studies have shown the imminent development of real-time, in situ plankton image classification systems, which have only been slowed down by the complex implementations of algorithms on low-power processing hardware. This article compiles the techniques that have been proposed for classifying marine plankton, focusing on automatic methods that utilize image processing, from the beginnings of this field to the present day.Funding for open access charge: Universidad de Málaga / CBUA. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The authors wish to thank Alonso Hernández-Guerra for his frm support in the development of oceanographic technology. Special thanks to Laia Armengol for her help in the domain of plankton. This study has been funded by Feder of the UE through the RES-COAST Mac-Interreg pro ject (MAC2/3.5b/314). We also acknowledge the European Union projects SUMMER (Grant Agreement 817806) and TRIATLAS (Grant Agreement 817578) from the Horizon 2020 Research and Innovation Programme and the Ministry of Science from the Spanish Government through the Project DESAFÍO (PID2020-118118RB-I00)

    Modelagem de abundância com drones : detectabilidade, desenho amostral e revisão automática de imagens em um estudo com cervos-do-pantanal

    Get PDF
    Entender como a abundância de uma espécie se distribui no espaço e/ou no tempo é uma questão fundamental em ecologia e conservação e ajuda, por exemplo, a elucidar relações entre a heterogeneidade de paisagens e populações ou compreender influência de predação na distribuição de indivíduos. Informações de tamanho populacional também são essenciais para avaliar risco de extinção, monitorar populações ameaçadas e planejar ações de conservação. Modelar a abundância de cervos-do-pantanal (Blastocerus dichotomus), sendo um grande herbívoro da América do Sul, pode ser importante para entender relações da espécie com a variação espacial da produtividade primária, das áreas úmidas que a espécie ocupa e do seu principal predador, a onça- pintada. Além disso, por estar ameaçado de extinção, estimar a abundância de cervos pode contribuir para avaliar populações relictuais da espécie, assim como monitorar populações após grandes eventos, como os incêndios de 2020 no Pantanal. Porém, acessar estimativas de abundância confiáveis de maneira eficiente requer métodos robustos que levem em conta os possíveis erros nas contagens e que forneçam as estimativas em tempo hábil, além de um desenho amostral otimizado para aproveitar os recursos geralmente escassos. Os drones tem aparecido como uma ferramenta versátil e custo-efetiva para amostragem de populações animais e vêm sendo aplicados para várias espécies diferentes nos mais variados contextos ecológicos. Como um método emergente, o uso de drones na ecologia fornece oportunidades para explorar novas possibilidades de amostragem e análise de dados, ao mesmo tempo em que pode apresentar novos desafios. Nesta tese, i) exploro oportunidade e desafios na utilização de drones para modelagem de abundância de animais, abordando questões de erros de detecção, desenho amostral e como lidar com os grandes bancos de imagens gerados; e ii) aplico os métodos desenvolvidos para estudar a variação na abundância de cervo-do- pantanal, assim como estabelecer uma abordagem para monitoramento robusto e efetivo dessa espécie. Assim, no primeiro capítulo, conduzo uma revisão na literatura descrevendo os potenciais erros de detecção que podem enviesar estimativas de abundância com drones, buscando soluções atuais para lidar com esses erros e identificando lacunas que precisam de desenvolvimento. Nessa revisão, destaco o potencial dos modelos hierárquicos para estimar abundância em amostragens com drone. No segundo capítulo, aplico amostragens espaço-temporalmente replicadas com drone, analisadas com modelos hierárquicos N-mixture, para entender o efeito de processos topo-base (distribuição de onças-pintadas) e base-topo (disponibilidade de forragem de qualidade e corpos d’água) na distribuição da abundância de cervos-do- pantanal. Nesse estudo, encontrei que, na época seca, os cervos se concentram em áreas de alta qualidade (maior disponibilidade de forragem e próximas a corpos d’água), mesmo sendo a região em que é esperado maior efeito da predação. No capítulo 3, em um estudo com simulações, avalio o desempenho de modelos N-mixture para estimativas de abundância a partir de amostragens espaço-temporalmente replicadas, explorando otimização de esforço amostral e o impacto de um protocolo com observadores duplos na acurácia das estimativas. No capítulo 4, desenvolvo uma abordagem para estimar abundância com drone usando observadores múltiplos na revisão das imagens, sendo um dos observadores baseado em um processamento semiautomático usando algoritmos de inteligência artificial. Nesse estudo, exploro técnicas de aprendizado profundo de máquina, com redes neurais convolucionais, acessíveis para ecólogos, treinando algoritmos para detectar cervos nas imagens de drone. Além de ajudar a elucidar questões sobre as relações do cervo-do-pantanal com aspectos diferentes da paisagem do Pantanal, as abordagens exploradas e desenvolvidas aqui têm um grande potencial de aplicação, ajudando a estabelecer os drones como uma ferramenta eficiente para modelagem e monitoramento populacional de diversas espécies animais, e particularmente de cervos.Understanding how abundance distributes in space and/or time is a fundamental question in ecology and conservation, and it helps, for example, to elucidate relationships between landscape heterogeneity or predation and populations. Information on the population size also is essential to evaluate extinction risk, monitor threatened species and plan conservation actions. Abundance modeling of marsh deer (Blastocerus dichotomus), as a large herbivore of South America, may be important to understand the relationships of this species with spatial variation in primary productivity, in the availability of wetlands that the species inhabits, and in the distribution of its main predator, the jaguar. Moreover, since marsh deer threatened to extinction, estimating its abundance can be contribute in assessments of relictual populations, as well as in monitoring the species after big events, such as the Pantanal 2020 megafires. However, efficiently assessing reliable abundance estimates require robust methods that account for possible sources of error in counts while providing the estimates timely. An optimized sampling design is also important, in order to make the best use of the usual scarce resources. Drones have raised as a versatile and cost- effective tool for sampling animal populations, and they have been applied for several species in a wide variety of ecological contexts. As being an emergent method, the use of drones in ecology provides opportunities to explore novel possibilities of sampling and analyzing data, while potentially presenting new challenges. In this thesis I: i) explore opportunities and challenges in the use of drones for animal abundance modeling, approaching issues about detection errors, sampling design and how to deal with the huge image sets generated from drone flights; and ii) apply the developed methods to study the spatial variation in marsh deer abundance and to establish an approach to monitor this species robustly and efficiently. Thus, in the first chapter, I carry on a literature review describing potential sources of errors that may bias abundance estimation with drones and the current solutions to address them, identifying gaps that need development. In this review, I highlight the potential of hierarchical models for abundance estimations from drone-based surveys. In the second chapter, I apply spatiotemporally replicated drone surveys, analyzed with N-mixture models, to understand the influence of bottom-up (forage and water) and top-down (jaguar density) variables on the spatial variation of marsh deer local abundance. In such study, I found that, in the dry season, the deer concentrate in high quality areas (high-quality forage available and close to water bodies), even these regions being expected to present higher predation risks. In chapter 3, in a simulation study, I evaluate the performance of N- mixture models for abundance estimation from spatiotemporally replicated surveys, exploring optimization of sampling effort and the impact of a double-observer protocol on estimation accuracy. In chapter 4, I develop a pipeline to estimate abundance from drone-based surveys using a multiple-observer protocol in which one of the observer is a semiautomated procedure based on deep learning algorithms. In such study, I explore deep learning techniques with convolutional neural networks that are accessible for ecologists, and train algorithms to detect marsh deer in drone imagery. Besides helping to elucidate questions about the relationships of marsh deer with landscape variables in Pantanal, the approaches explored and developed here have a great potential of application in order to establish drones as an efficient technique for population modeling and monitoring of several wildlife species, and particularly the marsh deer

    Doctor of Philosophy

    Get PDF
    dissertationMedical knowledge learned in medical school can become quickly outdated given the tremendous growth of the biomedical literature. It is the responsibility of medical practitioners to continuously update their knowledge with recent, best available clinical evidence to make informed decisions about patient care. However, clinicians often have little time to spend on reading the primary literature even within their narrow specialty. As a result, they often rely on systematic evidence reviews developed by medical experts to fulfill their information needs. At the present, systematic reviews of clinical research are manually created and updated, which is expensive, slow, and unable to keep up with the rapidly growing pace of medical literature. This dissertation research aims to enhance the traditional systematic review development process using computer-aided solutions. The first study investigates query expansion and scientific quality ranking approaches to enhance literature search on clinical guideline topics. The study showed that unsupervised methods can improve retrieval performance of a popular biomedical search engine (PubMed). The proposed methods improve the comprehensiveness of literature search and increase the ratio of finding relevant studies with reduced screening effort. The second and third studies aim to enhance the traditional manual data extraction process. The second study developed a framework to extract and classify texts from PDF reports. This study demonstrated that a rule-based multipass sieve approach is more effective than a machine-learning approach in categorizing document-level structures and iv that classifying and filtering publication metadata and semistructured texts enhances the performance of an information extraction system. The proposed method could serve as a document processing step in any text mining research on PDF documents. The third study proposed a solution for the computer-aided data extraction by recommending relevant sentences and key phrases extracted from publication reports. This study demonstrated that using a machine-learning classifier to prioritize sentences for specific data elements performs equally or better than an abstract screening approach, and might save time and reduce errors in the full-text screening process. In summary, this dissertation showed that there are promising opportunities for technology enhancement to assist in the development of systematic reviews. In this modern age when computing resources are getting cheaper and more powerful, the failure to apply computer technologies to assist and optimize the manual processes is a lost opportunity to improve the timeliness of systematic reviews. This research provides methodologies and tests hypotheses, which can serve as the basis for further large-scale software engineering projects aimed at fully realizing the prospect of computer-aided systematic reviews

    Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations

    Get PDF
    Despite the need for quality land cover information, large-area, high spatial resolution land cover mapping has proven to be a difficult task for a variety of reasons including large data volumes, complexity of developing training and validation datasets, data availability, and heterogeneity in data and landscape conditions. We investigate the use of geographic object-based image analysis (GEOBIA), random forest (RF) machine learning, and National Agriculture Imagery Program (NAIP) orthophotography for mapping general land cover across the entire state of West Virginia, USA, an area of roughly 62,000 km2. We obtained an overall accuracy of 96.7% and a Kappa statistic of 0.886 using a combination of NAIP orthophotography and ancillary data. Despite the high overall classification accuracy, some classes were difficult to differentiate, as highlight by the low user’s and producer’s accuracies for the barren, impervious, and mixed developed classes. In contrast, forest, low vegetation, and water were generally mapped with accuracy. The inclusion of ancillary data and first- and second-order textural measures generally improved classification accuracy whereas band indices and object geometric measures were less valuable. Including super-object attributes improved the classification slightly; however, this increased the computational time and complexity. From the findings of this research and previous studies, recommendations are provided for mapping large spatial extents

    Overview of the gene ontology task at BioCreative IV

    Get PDF
    Gene Ontology (GO) annotation is a common task among model organism databases (MODs) for capturing gene function data from journal articles. It is a time-consuming and labor-intensive task, and is thus often considered as one of the bottlenecks in literature curation. There is a growing need for semiautomated or fully automated GO curation techniques that will help database curators to rapidly and accurately identify gene function information in full-length articles. Despite multiple attempts in the past, few studies have proven to be useful with regard to assisting real-world GO curation. The shortage of sentence-level training data and opportunities for interaction between text-mining developers and GO curators has limited the advances in algorithm development and corresponding use in practical circumstances. To this end, we organized a text-mining challenge task for literature-based GO annotation in BioCreative IV. More specifically, we developed two subtasks: (i) to automatically locate text passages that contain GO-relevant information (a text retrieval task) and (ii) to automatically identify relevant GO terms for the genes in a given article (a concept-recognition task). With the support from five MODs, we provided teams with >4000 unique text passages that served as the basis for each GO annotation in our task data. Such evidence text information has long been recognized as critical for text-mining algorithm development but was never made available because of the high cost of curation. In total, seven teams participated in the challenge task. From the team results, we conclude that the state of the art in automatically mining GO terms from literature has improved over the past decade while much progress is still needed for computer-assisted GO curation. Future work should focus on addressing remaining technical challenges for improved performance of automatic GO concept recognition and incorporating practical benefits of text-mining tools into real-world GO annotation

    Text summarization towards scientific information extraction

    Get PDF
    Despite the exponential growth in scientific textual content, research publications are still the primary means for disseminating vital discoveries to experts within their respective fields. These texts are predominantly written for human consumption resulting in two primary challenges; experts cannot efficiently remain well-informed to leverage the latest discoveries, and applications that rely on valuable insights buried in these texts cannot effectively build upon published results. As a result, scientific progress stalls. Automatic Text Summarization (ATS) and Information Extraction (IE) are two essential fields that address this problem. While the two research topics are often studied independently, this work proposes to look at ATS in the context of IE, specifically in relation to Scientific IE. However, Scientific IE faces several challenges, chiefly, the scarcity of relevant entities and insufficient training data. In this paper, we focus on extractive ATS, which identifies the most valuable sentences from textual content for the purpose of ultimately extracting scientific relations. We account for the associated challenges by means of an ensemble method through the integration of three weakly supervised learning models, one for each entity of the target relation. It is important to note that while the relation is well defined, we do not require previously annotated data for the entities composing the relation. Our central objective is to generate balanced training data, which many advanced natural language processing models require. We apply our idea in the domain of materials science, extracting the polymer-glass transition temperature relation and achieve 94.7% recall (i.e., sentences that contain relations annotated by humans), while reducing the text by 99.3% of the original document
    • …
    corecore