71 research outputs found

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions

    DISEÑO DE UN PROTOTIPO DE EXOESQUELETO PARA REHABILITACIÓN DE MANO

    Get PDF
    ResumenEn el presente artículo se muestra el diseño y el análisis cinemático de un prototipo de exoesqueleto para la rehabilitación de mano. El dispositivo se diseña para que sea capaz de desarrollar movimientos independientes en cada uno de los dedos, tomando en cuenta la antropometría de personas mexicanas y considerando factores de ergonomía, funcionalidad, diseño para el ensamble y la manufactura. Como resultado se presenta el prototipo de exoesqueleto para rehabilitación de mano, indicando los materiales utilizados, así como el análisis cinemático de los dedos. El diseño es evaluado mediante simulaciones numéricas en MATLAB® para el análisis cinemático del exoesqueleto, mostrando su espacio de trabajo.Palabra(s) Clave: Diseño mecánico, Exoesqueleto, Rehabilitación. DESIGN OF AN EXOSKELETON PROTOTYPE FOR HAND REHABILITATION AbstractThe present article shows the design of an exoskeleton prototype for hand rehabilitation. The device has been designed to develop independent movement in each finger and taking into account the Mexican people’s anthropometry and considering ergonomic factors, functionality, design for assembly and for manufacturing. As results we present the prototype of exoskeleton for hand rehabilitation, indicating the used materials, as well as the kinematic analysis of the fingers. The design is evaluated by numerical simulations in MATLAB® for the exoskeleton kinematic analysis, showing its workspace.Keywords: Exoskeleton, Mechanical design, Rehabilitation

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Tactile displays, design and evaluation

    Get PDF
    Fritschi M. Tactile displays, design and evaluation. Bielefeld: Universität Bielefeld; 2016.This thesis presents the design and development of several tactile displays, as well as their eventual integration into a framework of tactile and kinesthetic stimulation. As a basis for the design of novel devices, an extensive survey of existing actuator principles and existing realizations of tactile displays is complemented by neurobiological and psychophysical findings. The work is structured along three main goals: First, novel actuator concepts are explored whose performance can match the challenging capabilities of human tactile perception. Second, novel kinematic concepts for experimental platforms are investigated that target an almost unknown sub-modality of tactile perception: The perception of shear force. Third, a setup for integrated tactile-kinesthetic displays is realized, and a first study on the psychophysical correlation between the tactile and the kinesthetic portion of haptic information is conducted. The developed devices proved to exceed human tactile capabilities and have already been used to learn more about the human tactile sense

    Elbow exoskeleton mechanism for multistage poststroke rehabilitation.

    Get PDF
    More than three million people are suffering from stroke in England. The process of post-stroke rehabilitation consists of a series of biomechanical exercises- controlled joint movement in acute phase; external assistance in the mid phase; and variable levels of resistance in the last phase. Post-stroke rehabilitation performed by physiotherapist has many limitations including cost, time, repeatability and intensity of exercises. Although a large variety of arm exoskeletons have been developed in the last two decades to substitute the conventional exercises provided by physiotherapist, most of these systems have limitations with structural configuration, sensory data acquisition and control architecture. It is still difficult to facilitate multistage post-stroke rehabilitation to patients sited around hospital bed without expert intervention. To support this, a framework for elbow exoskeleton has been developed that is portable and has the potential to offer all three types of exercises (external force, assistive and resistive) in a single structure. The design enhances torque to weight ratio compared to joint based actuation systems. The structural lengths of the exoskeleton are determined based on the mean anthropometric parameters of healthy users and the lengths of upperarm and forearm are determined to fit a wide range of users. The operation of the exoskeleton is divided into three regions where each type of exercise can be served in a specific way depending on the requirements of users. Electric motor provides power in the first region of operation whereas spring based assistive force is used in the second region and spring based resistive force is applied in the third region. This design concept provides an engineering solution of integrating three phases of post-stroke exercises in a single device. With this strategy, the energy source is only used in the first region to power the motor whereas the other two modes of exercise can work on the stored energy of springs. All these operations are controlled by a single motor and the maximum torque of the motor required is only 5 Nm. However, due to mechanical advantage, the exoskeleton can provide the joint torque up to 10 Nm. To remove the dependency on biosensor, the exoskeleton has been designed with a hardware-based mechanism that can provide assistive and resistive force. All exoskeleton components are integrated into a microcontroller-based circuit for measuring three joint parameters (angle, velocity and torque) and for controlling exercises. A user-friendly, multi-purpose graphical interface has been developed for participants to control the mode of exercise and it can be managed manually or in automatic mode. To validate the conceptual design, a prototype of the exoskeleton has been developed and it has been tested with healthy subjects. The generated assistive torque can be varied up to 0.037 Nm whereas resistive torque can be varied up to 0.057 Nm. The mass of the exoskeleton is approximately 1.8 kg. Two comparative studies have been performed to assess the measurement accuracy of the exoskeleton. In the first study, data collected from two healthy participants after using the exoskeleton and Kinect sensor by keeping Kinect sensor as reference. The mean measurement errors in joint angle are within 5.18 % for participant 1 and 1.66% for participant 2; the errors in torque measurement are within 8.48% and 7.93% respectively. In the next study, the repeatability of joint measurement by exoskeleton is analysed. The exoskeleton has been used by three healthy users in two rotation cycles. It shows a strong correction (correlation coefficient: 0.99) between two consecutive joint angle measurements and standard deviation is calculated to determine the error margin which comes under acceptable range (maximum: 8.897). The research embodied in this thesis presents a design framework of a portable exoskeleton model for providing three modes of exercises, which could provide a potential solution for all stages of post- stroke rehabilitation

    Human-Machine Interfaces using Distributed Sensing and Stimulation Systems

    Get PDF
    As the technology moves towards more natural human-machine interfaces (e.g. bionic limbs, teleoperation, virtual reality), it is necessary to develop a sensory feedback system in order to foster embodiment and achieve better immersion in the control system. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing a wide bandwidth of information. To provide this type of feedback, it is necessary to develop a distributed sensing system that could extract a wide range of information during the interaction between the robot and the environment. In addition, a distributed feedback interface is needed to deliver such information to the user. This thesis proposes the development of a distributed sensing system (e-skin) to acquire tactile sensation, a first integration of distributed sensing system on a robotic hand, the development of a sensory feedback system that compromises the distributed sensing system and a distributed stimulation system, and finally the implementation of deep learning methods for the classification of tactile data. It\u2019s core focus addresses the development and testing of a sensory feedback system, based on the latest distributed sensing and stimulation techniques. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives, and the used methodology and contributions; as well as six studies that tackled the development of human-machine interfaces

    Comparison of DC Motors and Dielectric Elastomer Actuators For Wearable Wrist Exoskeletons

    Get PDF
    Paralysis or loss of strength resulting from stroke requires patients to undergo extensive rehabilitation therapy. It is known that intensive therapy contributes significantly to recovery, but as the number of surviving stroke patients increases, it is difficult for clinics to provide patients with the optimal level of therapy. Robotic devices for wrist rehabilitation have been developed to lessen these problems, but at the moment they are physically large and must be used within a clinical setting. More benefit could be obtained if the devices were portable, so that they could be used by the patients on a daily basis. To reduce the size of these devices, other means of actuation need to be considered, as currently DC motors and the required transmission are too large and heavy. Dielectric elastomer actuators (DEAs) may provide a solution to the actuation problem. The focus of this thesis was to compare DC motors with DEAs for use in a wearable wrist exoskeleton to assist with stroke rehabilitation. A simple setup of the forearm, wrist, and hand was developed for testing DC motors and DEAs. For testing the DC motors, kinematic and dynamic models of the arm were created to develop an inverse dynamics controller used to control the movement of the hand. DEAs were fabricated and tested to determine their capabilities in terms of force and range of motion. Based on the data collected, an electromechanical model was optimized to characterize the behavior of the DEAs. The results show that a single DEA strip is not capable of providing the force or range of motion required for a wearable wrist exoskeleton. Future work can be done to improve DEA design so that they may actuate a wearable wrist exoskeleton or could also be considered for use in other wearable rehabilitation devices
    corecore