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Abstract

As the technology moves towards more natural human-machine interfaces (e.g. bionic

limbs, teleoperation, virtual reality), it is necessary to develop a sensory feedback

system in order to foster embodiment and achieve better immersion in the control

system. Contemporary feedback interfaces presented in research use few sensors and

stimulation units to feedback at most two discrete feedback variables (e.g. grasping

force and aperture), whereas the human sense of touch relies on a distributed network

of mechanoreceptors providing a wide bandwidth of information. To provide this

type of feedback, it is necessary to develop a distributed sensing system that could

extract a wide range of information during the interaction between the robot and

the environment. In addition, a distributed feedback interface is needed to deliver

such information to the user. This thesis proposes the development of a distributed

sensing system (e-skin) to acquire tactile sensation, a first integration of distributed

sensing system on a robotic hand, the development of a sensory feedback system that

compromises the distributed sensing system and a distributed stimulation system, and

finally the implementation of deep learning methods for the classification of tactile data.

It’s core focus addresses the development and testing of a sensory feedback system,

based on the latest distributed sensing and stimulation techniques. To this end, the

thesis is comprised of two introductory chapters that describe the state of art in the

field, the objectives, and the used methodology and contributions; as well as six studies

that tackled the development of human-machine interfaces.
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The first study presents the realization of a novel, flexible, screen-printed e-skin

based on P(VDF-TrFE) piezoelectric polymers. A complete set of sensing arrays was

designed and fabricated to sensorize a robotic hand (particularly the Michelangelo

hand by Ottobock). Moreover, it represents the first step toward the development

of skin patches to be used in different scenarios (e.g., prosthetic hand). Particularly,

it presents a validation methodology to examine the behavior of the sensors. The

characterization results showed compatibility between the modeled behavior of the

sensors to the measured mechanical force at the skin surface, which in turn proves

that both the fabrication and assembly processes were successful. This paves the way

to define a practical, simplified and reproducible characterization protocol for e-skin

patches and the development of the skin patch.

The second study presents the experimental assessment and characterization of an

interface electronic system for piezoelectric tactile sensors. The system is based on a

low-power arm-microcontroller and a DDC232 device. The sensing arrays developed

and tested in the first study were used to validate the interface electronics. Electrical

and electromechanical setups have been implemented to assess the response of the

interface electronic with the PVDF-based sensors we developed and are part of the first

study, described in Chapter 3. The results of electrical and electromechanical tests

validate the correct functionality of the proposed system. This study represents the

second step toward the development and integration of a sensory feedback system in

various applications.

The third study represents a further assessment of the sensing system that is based

on the PVDF sensors and the interface electronics described in Chapter 3 and Chapter

4 respectively. In particular, first, it presents the development of a skin patch (multi-

layer structure) that could be used to sensorize a robotic hand or develop sensorized

glove. Second, it shows the characterization of the developed skin patch. Third, it

validates the sensing system. Moreover, the study aims at developing methods for noise
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filtering and detection of a touch. The experimental assessment demonstrated that the

developed skin patch and the interface electronics indeed can detect different touch

patterns and stimulus waveforms. Moreover, the results of the experiments defined the

frequency range of interest and the response of the system to realistic interactions with

the electronic skin.

The fourth study describes the development of a novel embedded electrotactile

feedback system for hand prostheses using matrix electrodes and electronic skin. The

system was developed for tactile feedback integrating advanced distributed sensing

(e-skin) and stimulation (matrix electrodes). Specifically, the study presents a new

approach of integrating the e-skin (described in Chapter 3) onto the curved surfaces

of a prosthetic finger. Next, a method to process the tactile data and extract contact

information from the e-skin. The data processing method, as well as a communication

protocol to transmit the processed data to the stimulation unit, were implemented

within the embedded electronic system (described in Chapter 4). Finally, an exper-

imental assessment was conducted to demonstrate that the developed components

properly work together. The experimental assessment demonstrated that the developed

system indeed delivered the desired functionality i.e., a timely distributed electrotactile

feedback on the static and dynamic contact patterns, which was easily perceived and

interpreted by the subjects.

The fifth study describes the development of a novel electrotactile feedback system

for teleoperation using distributed electronic skin and distributed feedback interface.

Specifically, the study presents the integration of the complete set of sensing arrays

presented in the first study onto a mockup of the Michelangelo prosthetic hand. The

system comprises six flexible sensing arrays (described in Chapter 3) integrated on the

fingers and palm of a robotic hand, embedded electronics (described in Chapter 4),

a multichannel stimulator, and seven flexible electrodes placed on the volar side of

the subject’s hand. The data processing method, as well as a communication protocol
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to transmit the processed data to the stimulation system, were implemented in this

study. Finally, an experimental assessment was conducted to demonstrate that the

developed system is working properly. The experimental assessment demonstrated

that the developed system indeed delivered a timely distributed electrotactile feedback,

which was easily interpreted by the subjects.

The sixth study proposed a novel touch modality classification framework using

Recurrent Neural Networks. In particular, it explores the potential of such networks

for touch modality classification. For this purpose, the study proposes two methods

that are based on two separate networks to capture long-term dependence from tactile

data. Moreover, the study proposes a case-specific approach to dataset organization

to address the peculiarities of tactile data within the aforementioned networks. the

proposed methods have been experimentally validated with a real dataset and compared

to the state-of-the-art achievements. The experimental results demonstrate that the

proposed approach achieves a reduction in the number of FLOPs i.e., in-memory

storage compared to the same problem in the state of the art. the proposed methods

achieved high accuracy on a 3-class touch modality dataset. This study opens interesting

perspectives for near-sensor processing with critical constraints.

In conclusion, by adopting innovative methodologies in sensing, processing, and

stimulation methods, this thesis advances the overall development of a sensory feedback

for human-machine interface. Moreover, this research could lead to high-bandwidth

and high-fidelity transmission of tactile information in human-machine applications

that could improve the end-user experience and facilitate embodiment.
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Chapter 1

Introduction

Human-machine interfaces (HMIs), as a window of communication between the user

and the equipment, robot, or virtual world, are the key elements for achieving effective,

intuitive, and seamless manipulation to complete the tasks. As these interactions

become more complex there is a keen interest in developing technologies that enrich

the interaction between humans and robots. Industry experts are predicting substantial

growth for the HMI market. According to one report, the market is set to grow at

a 9% compound annual growth rate up through 2019. Driving this growth is an

increased demand for automation and efficiency in the workplace, both of which are

tasks accomplished by an HMI. With the aid of advanced technology, HMI evolves from

conventional control terminals to more diversified and creative alternatives. As a result,

more realistic interactions between users and machines eventually satisfy the additional

needs beyond the simple controlling of objects. An ideal HMI should provide bilateral

communication between the user and the machine [2]. The ideal goal is to enable the

user to not only control the machine but also perceive it as if it were being touched

directly. Conventional HMIs have been widely applied in robotic systems, such as

rehabilitation robots [3, 4], motion gesture monitoring [5], and biological health moni-

toring [6]. However, most of the conventional HMI solutions are still a long way from
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2 Chapter 1. Introduction

improving utility and promoting the feeling of embodiment, as well as, establishing

an immersed experience by enabling users to sense virtual objects. Mostely, this is

related to the absensce of sensory feedback systems in most of the conventional HMI.

For example, although there is an impressive development of prosthesis technology, the

insufficient sensory feedback still makes many amputees reluctant to use these products

[7, 8]. According to statistics, 88% of respondents believe that sensory feedback is

necessary for the control of prosthetic hands [9]. Besides, many studies have also

indicated the significance of sensory feedback in hand prostheses [10, 11]. Similarly,

realistic and transparent sensory feedback is expected to improve the performance

and the dexterity in executing telemanipulation tasks [12]. Therefore, developing a

bidirectional HMI with reliable control and rich perception capabilities improve the

motor control of the machine.

Currently, most robotic hands merely focus on improving the mechanical structure

and control strategies to obtain better performance, However none of it (i.e., commer-

cial or research hands) could ensure comprehensive feedback. For example, taking top

commercial myoelectric hands such as Bebionic by steeper [13] and Michelangelo hand

by OttoBock [14], and i-limb Ultra-revolution by Ossur [15], enables users to perform

basic daily tasks, yet none of them could provide tactile information without visual

feedback. Apart, only VINCENT evolution 3, provide tactile feedback, the grasping

force applied by the prosthesis is translated into vibration profiles [16] and still, no

reports confirmed its effectiveness. Clinically wise, SensorHand [14] contains a three-

dimensional force sensor, which measures the shear force to automatically change the

grip force to prevent slipping of grasped objects.

The human skin and afferent nerves provide the central nervous system with

various sensory information, which is essential for perceiving the environment that

surrounds us. The skin of the human hand is innervated by many types of mechanore-

ceptors, which are responsible for perceiving pain, thermal, kinesthetic, and tactile (e.g.,
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texture, skin’s motion, pressure) sensations [17]. A wide range of application scenarios,

haptic information is required to enrich interaction fidelity of user’s awareness [18].

For example, These haptic information is considered crucial for facilitating an effective

human-machine/computer interaction [19, 20]

The implementation of sensory feedback is a long-standing challenge [21]. To this

aim, the information from tactile sensors is transmitted to the user using different kinds

of feedback interfaces. The last few decades have witnessed tremendous progress in the

development of electronic skins (e-skins) for robot sensing. Research into developing

soft tactile sensors that are constructed from soft, thin, flexible, stretchable, and

lightweight materials is nowadays also beginning to attract increasing attention. These

soft sensors represent an emerging class of technologies [22] that have the potential

to improve the ability of robots to possess the physical properties and somatosensory

functionalities of natural human tissue. The characteristics of such technologies make

them ideally suited as artificial skin with adequate elasticity to conform to multiple

surfaces and sufficient mechanical compliance to make them safe and comfortable for

physical human-robot interaction [23]. While there have been promising developments

in tactile sensor technologies over recent years [24–26], many of these are rigid or

bulky and do not meet the desired mechanical characteristics of artificial skin.

Knowing that afferent nerves can be stimulated by electric, mechanical, and ther-

mal stimuli, several haptic interfaces have been developed to deliver tactile information

captured by the tactile sensors [18]. At present, developing a haptic interface has

both invasive and non-invasive solutions. Although the invasive HMI has high spatial

resolution and preferable precision, its cost and risk are also high, making it still stay in

the experimental stage. On the other hand, the non-invasive HMI is favored in research

and the market due to its low cost, high safety, and ease of use. The most common

non-invasive methods employed to elicit sensory feedback are kinesthetic feedback and
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sensory substitutions methods that rely on vibrotactile, mechanotactile, electrotactile

stimulation, etc. [27].

The human sense of touch relies on the dense network of mechanoreceptors to

provide spatially distributed information (e.g., pressure distribution). To provide high-

resolution tactile information mimicking the human sense of touch, this information first

needs to be measured by adequate artificial systems integrating a high-density network

of sensing units. For transmitting the tactile information coming from distributed

sensing system to the user, a homologous spatial distribution of tactile stimulators is

needed. Endowing a robot with a distributed sensing system combined with distributed

feedback interface would enable high-bandwidth bilateral communication between

the user and the robot. Despite the tremendous progress in the development of e-skin

and effective feedback interfaces, few examples of distributed sensing and stimulation

systems have been used in human-machine interfacing (e.g., prosthetics, teleoperation).

In some cases, multichannel interfaces have been used to encode up to two discrete

variables (e.g., grasping force and aperture) [28]. There have been many investigations

on the nature of these artificial sensory feedback systems, yet all the developed systems

have been limited by a small information transfer bandwidth [29].

While distributed sensing system technologies are now available in the autonomous

robotic domain, only a few examples of these systems integrated into human-machine

interfacing for robotic hands have been reported [30–32]. In this context, this thesis

presents the development of a sensory feedback system for bilateral HMI. Figure

1.1 presents a close-up image of the proposed system. The proposed system would

comprise:

• Electronic skin: An electronic skin (e-skin) to mimic the tactile receptors and cover

the robotic hand. The realization of the screen-printed e-skin and characterization

is considered the first basic corner of this thesis’s achievements and contributions.
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Figure 1.1 Proposed Sensory feedback system using electronic skin and electrotactile
stimulation

• Processing unit: An embedded electronic system integrating signal conditioning,

data acquisition, and tactile data processing. The assessment of the embedded

electronics is the second basic corner of this thesis’s achievements and contri-

butions. In addition to the development of new processing, methods to reduce

system noise and extract contact information were developed.

• Feedback interface: A non-invasive electrotactile based stimulation system is

used to deliver the captured information into feedback signals through surface

electrodes attached to the skin of the user. Several methods have been developed

to interpret tactile data in real-time and efficiently deliver artificial tactile informa-

tion (recorded by artificial skin) to the user through a multichannel electrotactile

stimulation.
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1.1 Motivation

With the advancement of the technologies for high-density tactile sensing and electrotac-

tile stimulation, the goal of developing bilateral HMI becomes reachable. Remarkable

research efforts had been done to develop a high-bandwidth HMI; however, it is still not

achieved. Our pivotal goal is a feedback system that is compromised of a dense network

of tactile sensors and stimulators to provide the feeling of touch over the whole surface

of the robotic hand. Such a system would provide a completely new experience to the

user, improving utility and facilitating the feeling of embodiment to the level that is far

beyond the conventional systems based on discrete sensing and stimulation.

The main objective of this thesis is to develop a high-bandwidth sensory feedback

system that would provide the user with the sense of touch. The system compromises

a piezoelectric polymer sensory array acting as an artificial skin to measure tactile

information and an electrotactile stimulation interface to convey the acquired tactile

information to the users (e.g., amputees, robot operators, virtual reality, etc.). This

thesis proposed the idea of integrating an artificial distributed tactile sensing and

stimulation systems into a robotic hand (Michelangelo prosthetic hand [14]) to provide

high-fidelity and high-bandwidth tactile feedback to the users. This idea has been

established on one hand by developing artificial tactile sensing arrays (e-skin) for the

hand that mimic human skin features, testing its reliability and efficient functionality,

and developing a novel method for e-skin integration on the robotic hand. On the other

hand, by developing optimized methods/tools (such as coding, electrode configuration)

for the transmission of sensory feedback acquired from the artificial skin through non-

invasive multichannel electrotactile stimulation and test its effectiveness in delivering

tactile information to the user.
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1.2 Contributions

The following thesis merely focuses on the tactile feedback system, and its principal

contributions fall into three main parts of the application: the sensing system, tactile

data processing and classification, and the feedback interface.

1.2.1 Distributed tactile sensing system

In the follow-up procedure of realizing a distributed tactile sensing system, the first

three studies were conducted to validate the functionality of the different parts of the

sensing system (i.e., e-skin and electronics).

• In the first study, we developed a testing methodology to validate the functionality

of the novel screen-printed PVDF-based sensory arrays while being embedded

into an elastic protective layer and working in thickness mode.

• In the second study, an embedded electronics used for signal acquisition and data

processing has been experimentally assessed.

• The third study presents the realization of the skin patch and the experimental

testing of the sensing system i.e., embedded electronics and skin patch.

1.2.2 Sensory feedback system

In the follow-up procedure of developing a bilateral HMI, two feedback systems were

developed to provide tactile feedback. Two studies were conducted aiming to prove

the feasibility of two feedback systems in providing high-bandwidth tactile information

through distributed sensing and simulation interfaces.

• The fourth study presents a novel system for tactile feedback for prosthetic

hand integrating the sensing system and a multipoint stimulation. The sensing
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system was integrated into the mockup of the Michelangelo prosthetic hand. To

demonstrate the feasibility, the system was tested in healthy subjects who were

asked to recognize touch patterns presented on the electronic skin. Such systems

would allow mimicking spatially distributed natural feedback, thereby facilitating

the control and embodiment of the artificial device into the user body scheme.

• The fifth study describes a novel technology that relies on distributed sensing and

stimulation to convey comprehensive tactile feedback to the user of a robotic end-

effector. The system comprises the sensing system which covers the full robotic

hand (fingertips and palm), an embedded electronics, a multichannel stimulator,

and seven flexible electrodes placed on the volar side of the subject’s hand. The

system was tested in healthy subjects who were asked to recognize touch patterns

applied on the electronic skin. The proposed system is an important step towards

the development of a high-density human-machine interfacing between the user

and a robotic hand.

1.2.3 Tactile Data processing and classification

The sixth study presents the implementation of small-size (memory), low-latency, low-

complexity tactile data classification model based on shared-weights Recurrent Neural

Networks (RNN) models e.g., LSTM and GRU. This work has reduced more than 99%

of FLOPs, and more than 98% of model size with respect to the adopted models in the

literature. This study opens the opportunities to implement this solution on embedded

hardware in the future work.

1.3 Thesis Outline

Chapter 2 introduces an inter-comparison between sensing and feedback techniques,

addressing their features, advantages, and disadvantages. Finally, it introduces the
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motivation of our approach of using distributed sensing system and non-invasive

electrotactile distributed stimulation interfaces to extract and deliver high bandwidth

tactile information.

Chapter 3 presents the first study conducted on the tactile sensing part. It presents

the validation of a fully screen-printed tactile sensing arrays based on P(VDF-TrFE)

piezoelectric polymers. This chapter describes the experimental setup and procedures

used for the characterization of sensors behavior while being embedded by the protec-

tive layer. Several coupling scenarios were developed which led to a new methodology

of testing e-skin patches (i.e., validation protocol for e-skin).

Chapter 4 describes the second study conducted to test the sensing part. It presents

the experimental assessment of an embedded electronic system for piezoelectric tactile

sensors. Electrical and electromechanical setups have been implemented to assess the

response of the interface electronic with the sensing arrays developed and tested in the

first study. The study was the second step toward the development and integration of

the sensing system in various applications.

Chapter 5 presents the development and characterization of a skin patch (multi-

layer structure) to be used to sensorize a robotic hand. The chapter presents the

experimental assessment of the skin patch and the response of the sensing system to

different type of stimulus. Moreover, the study aims at defining the frequency range

of interest and developing signal processing methods for noise cancellation and touch

detection.

Chapter 6 presents a novel method for integrating skin patches onto the Michelan-

gelo prosthetic hand. A skin patch was used to sensorize the index finger of the mockup

of the Michelangelo prosthetic hand. In addition, the chapter presents the development

of an electrotactile feedback system for prosthetic hands using a single skin patch and

a single matrix electrode. The feasibility of the developed system and the processing

9
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methods was demonstrated by conducting experiments to test the ability of the system

to deliver tactile information to the users.

Chapter 7 presents the development of a high bandwidth electrotactile feedback

system for teleoperation using electronic skin and matrix electrodes. The chapter

presents the integration of the complete set of skin patches presented in the third

chapter onto a mockup of the Michelangelo prosthetic hand. Moreover, it describes

the tactile data processing method implemented to extract tactile information, as well

as a communication protocol to transmit the extracted information to the user’s hand.

The feasibility of the developed system and methods was demonstrated by conducting

experiments on healthy subjects.

Chapter 8 describes the deployment of RNN for tactile data classification. Tactile

data of real dynamic touch modalities were processed as time series data using two

RNNs. The study proposes a data organization methodology as well.

Chapter 9 summarizes the thesis in a general outlook. It discusses the impact of

the methods used in this thesis that would pave the way for the development of an

efficient bilateral HMI. Finally, recommendations and future work are reported.

10



Chapter 2

Feedback Systems for Sense of Touch

2.1 Introduction

The parallel advances across neuroscience, neuroengineering, electronics, and robotics

in recent years have led to the development of advanced robotic hands. Nevertheless,

real-time, accurate, and reliable control of robotic hands remains to be effectively

achieved [33]. Users of conventional robotic hands lose the ability to feel when or how

an object is being grasped and thus cannot adequately modulate the hand movements.

There is still an unmet need to develop more realistic and sophisticated sensory feedback

systems to provide a sense of utility, immersion, or embodiment of robotic hands, which

is one of the main focuses of scientists presently. The development of a sensory feedback

loop mimicking the natural sensory feedback loop starts with sensors that can detect

various stimuli from the surrounding environment and physical world. From the use

of basic piezoresistive elements to advanced biomimetic implementations, scientists

have been exploring how to best mimic and replace subdermal receptors for improved

grasping control in robotic hands (e.g., prostheses).

Technology of current tactile sensors increased pressure sensitivity and high-fidelity

signal resolution which allow the classification and discrimination of many surface

11



12 Chapter 2. Feedback Systems for Sense of Touch

properties. This is done through digital signal and waveform processing as well as

statistical and machine learning techniques. To reiterate, such techniques are used to

process the sensors signals and extract tactile information that will be processed and

delivered to the user through feedback interfaces. Implanted electrodes can interface

directly with intact afferent neurons, mimicking stimuli that would be perceived as

sensory stimulations from the robotic hand. Non-invasive extra-dermal systems have

also been developed to provide sensory feedback [34]. In addition, surface electrode

systems have been used to stimulate different parts of the user’s skin depending on

the application (e.g., residual limb of amputees, shoulder of post-stroke patients, or

hand for teleoperation). This chapter aims to provide a comprehensive review of

current technologies and new developments of tactile sensing systems, tactile data

processing and classification, and feedback strategies that have been used to deliver

tactile information to the users. The review will focus mainly on sensing and feedback

methods developed for prosthesis and teleoperation. Finally, it provides the motivation

of our approach of using distributed sensing system and non-invasive electrotactile

distributed stimulation interfaces to deliver high bandwidth tactile information and to

obtain comprehensive feedback.

2.2 Tactile Sensing Systems

Sensors for robotic hands transduce various modalities of tactile stimuli aiming at

recreating naturalistic perception. Today’s tactile sensing systems encounter many

challenges that limit their integration in robotic hand systems (e.g., prosthetic systems)

such as designs issues, spatial distribution, low signal to noise ratio (SNR), cross

talk, wireless communication, and the lack of signal processing and machine learning

methods to encode the acquired data from tactile sensors [35]. The main design

requirements are summarized in Table 2.1. It is expected that artificial tactile sensors

12



2.2 Tactile Sensing Systems 13

Table 2.1 Design requirements for tactile sensing system

Design criteria Character guideline

Detectable force range (Dy-
namic range)

0.01N-10N

Spatial resolution ≥ 1mm for small sensing areas (e.g. fingertips)
≥ 5mm for large sensing arrays (e.g. limbs, torso,
etc.)

Sensor frequency bandwidth
(sensor response time )

0.1 Hz -1kHz , About 1kHz (1ms)

Mechanical sensing detection
capability

Normal and shear forces; vibrations

Sensor System characteristics Mechanical: Flexible, stretchable, conformable
and soft, robust and durable.
Electrical: Low power, minimal wiring and cross
talk, electrically and magnetically minimal sensi-
tivity.

Sensor response Monotonic, not necessarily linear, low hysteresis,
stable and repeatable

Temporal variation Both dynamic and static

demonstrate small spatial resolution (≥ 1mm for fingertips, 5 mm for hand palm), high

sensitivity varying from 0.01 to 10 N, which extend along with the tactile frequency

range (<1Hz- 1 kHz), low hysteresis, fast and linear response (less than 1 ms), wide

dynamic range and high reliability. Furthermore, it needs to exhibit high electro-

mechanical bandwidth to detect fast events (e.g., incipient slip) and customizable shape

of e-skin patches and sensor number. Additionally, low cost, low power consumption,

and scalability are major factors for the robotic application.

2.2.1 Tactile sensing techniques

Enabling tactile sensation particularly in upper limb prostheses is still not as mature as

that in other fields (such as robotics, touch screens, etc.), yet the achievements could be

adopted into this field. Given that grasping is one of the major functions of hands, most

13
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Table 2.2 Characteristics of different tactile sensing techniques used for e-skin fabrication

Tactile sensors Working principle Advantages Disadvantages

Piezoresistive Its resistance varies
with the deforma-
tion caused by ap-
plied force.

Simple electronics;
High sensitivity;
Resistant to interfer-
ence

Hysteresis;
Temperature Sensi-
tivity;
Fragile and Rigid;
High power con-
sumption

Capacitive Its capacitance
varies with the de-
formation caused
by applied force.

Sensitivity of small
force change;
Reliability;
Dynamic and static
force measurement;
Low temperature sensi-
tivity;
Low power consump-
tion.

Limited spatial res-
olution;
Noise sensitivity;
Complex electron-
ics;
Cross-talk between
elements;
Hysteresis

Piezoelectric An electric voltage
will be produced
when a force ap-
plied to it.

No need for power sup-
ply;
High reliability;
Fast dynamic response;
High sensitivity;
High accuracy

Low spatial reso-
lution High tem-
perature sensitivity
Inability to sense
static value.

Optical The intensity or the
spectrum of light
varies with the ap-
plied force.

Immune to electromag-
netic fields;
High spatial resolution;
Wide sensing range;
Good reliability

Fragile and rigid;
Large size;

studies of tactile sensing focus on grasp force or pressure to prevent slip and achieve a

stable grasp. The measured characteristics of touch, however, can be not only force and

pressure, but also stiffness, texture, or shape. Thus, different sensing techniques are

desired to be synthesized to realize a human-like tactile sensing system [36].

The following is a review of the available tactile sensing techniques which have

the potential to be applied in robotic hands and specifically in prosthetic hands, namely,

resistive sensors (such as strain gauges and piezoresistive), capacitive sensors, piezo-

14
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electric sensors, and optical sensors. Table 2.2 summarizes the advantages and disad-

vantages of each of the aforementioned sensing techniques.

2.2.1.1 Piezoelectric sensors

Piezoelectric materials transfer mechanical stress into an electrical potential. Piezoelec-

tric sensing is one of the few sensing techniques that do not require a power supply,

which is considered an outstanding advantage. Besides, it also exhibits high sensitivity,

reliability, and fast dynamic response. It’s wide response range of 0 to 1 kHz makes it a

good choice for vibrations measurement [37].

Various piezoelectric materials can be used for constructing piezoelectric tactile

sensors. The most widely used one is polyvinylidene fluoride (PVDF). PVDF has

many advantages like mechanical flexibility, dimensional stability, high piezoelectric

coefficients, formability into very thin sheets (5 µm), and relatively low price. Moreover,

it has a fast and accurate response to high-frequency vibrations. Polymers such as

PDMS have been used in mesa micro-structures to achieve flexible and sensitive sensors

[38]. Another promising piezoelectric material is zinc oxide (ZnO) nanotransducer

because of its high flexibility and biocompatibility [39, 40]. ZnO is proposed to be a

good candidate material for pressure and temperature sensor to be applied to prosthetic

limbs.

During the past years, piezoelectric sensors have been used for the detection of

slip [39], texture [41, 42], roughness [43] and stiffness [44]. Thus, many surface

characteristics can be completely determined using piezoelectric sensors. However,

piezoelectric tactile sensors also have inherent drawbacks, the greatest one of which is

the inability to measure static contact forces. Moreover, robustness and sensitivity to

temperature are lacking.

15
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2.2.1.2 Resistive sensors

Resistive sensors measure internal changes in resistance due to an externally applied

force. Resistive sensors have been used to detect the normal force, shear force, lateral

strain, and bending strain through the conversion of such mechanical changes into an

electrical resistance [45, 46].

Certainly, sensors that are more useful for robotic hands are those which are

more sensitive to a range of low-impact forces that would typically be experienced at

the fingertips. Jorgovanovic et al. presented the static and dynamic characterization

of piezoresistive sensors used for detecting the positions of prosthetic finger joints

[47]. Kane et al. [48] proposed a piezoresistive stress sensor array with high spatial

resolution comparable to the human dermis. It exhibited a high potential for dexterous

manipulation applications. Various applications with piezoresistive tactile sensors can

also be found in stress and force measurement [48], stiffness of soft tissues detection

[49], and for fingertip sensing [50] etc.

2.2.1.3 Capacitive sensors

Generally, a capacitive sensor consists of a dielectric material sandwiched between

two parallel conductive layers. The capacitance between the two layers varies with

the deformation of the dielectric material as a result of the force applied to the sensor.

The capacitive sensor is considered the most sensitive sensor for detecting small force

changes. Moreover, it exhibits high sensitivity, robust performance, a large dynamic

range, temperature sensitivity, and low power consumption [51]. It can be used for both

dynamic and static force measurement. Additionally, their sensitivity to noise leads to

relatively complex electronics for noise filtration. Many designs for pressure detection,

shear force sensing, and texture recognition were proposed in the literature [52]. The

capacitive touch sensor array was integrated into a prosthetic hand thumb finger in

[53]. Capacitive sensors have been also deployed for multi-axis force measurement for
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gripping and object manipulation, texture recognition [51], shear sensing [54], and

touch screen application [55], etc. Another capacitive tactile sensor was presented for

gripping force measurement with a sensor range of 0-3000 mN [53].

2.2.1.4 Optical sensors

Optical sensors have been used for tactile signal transduction, measuring optical vari-

ations across semitransparent media due to physical deformation upon contact and

pressure [56]. Optical sensors maintain high sensitivity and resolution while being

immune to electromagnetic interference from nearby sources [54]. These sensors are

subject to less hysteresis and time response than other types of devices due to the

immediate response of light intensity to strain in the device. Recently, a prosthetic

finger was developed using a sensor with a looped optical waveguide [57].

2.2.2 Robot hands equipped with tactile sensors

The human tactile sense is excellent for extracting significant tactile information about

the object nature [58, 59]. Most information can be obtained through the vision in

autonomous manipulation of a robot hand, but when the object is obscured by the

robot hand and fingertips, accurate estimation of the pose is disturbed, and accuracy is

limited [60]. At this time, it needs tactile sensors that can provide accurate information.

Many robotics researchers have focused on achieving human tactile sensation by

deploying different tactile sensing techniques [61]. Below is an overview of sensorized

artificial robotic hands, developed in the framework of research projects in autonomous

manipulation and tactile sensing applications.

Mounting tactile sensors on the palm with flat surfaces is relatively straightforward,

one of the simplest ways involving using double side tape. However, attaching tactile

sensors on fingers and fingertips is a complex process as curved surfaces with a small

radius of curvature must be considered. Many robot hands are equipped with tactile

17



18 Chapter 2. Feedback Systems for Sense of Touch

Figure 2.1 (a) Shadow Dexterous Hand that has been covered with a tactile skin [62], (b)
the BioTac multimodal tactile sensor installed on the Shadow robot hand by replacing two
last links of the finger [63], (c) a 3D-shaped rigid tactile sensing array with 12 sensing
elements attached to the fingertip of the Shadow robot hand [50], (d) the fluidic robot
hand with combined piezoelectric and piezoresistive tactile sensors that can sense high-
frequency vibrations due to the absence of electric motors [64], (e) the SKKU robot hand
[65], (f) the robot hand ofthe iCub humanoid robot with tactile sensors on the fingertips
and the palm [66], (g) a finger with tactile sensor ofthe 3-fingered high-speed robot hand
[67], (h) the Tekscan tactile sensing system consisting of 349 taxels with the Shadow robot
hand [68], (i) the Allegro robot hand with PPS RoboTouch capacitive arrays [69].
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sensors, especially at the fingertips [61, 70, 71, 29, 72], An example of a robot hand

with tactile sensors on the fingertips, phalanges, and palm [62] can be seen in Figure

2.1.a. Tactile sensors should be either: (a) flexible and appropriately shaped to envelop

a given surface, as in iCub tactile fingertip sensors (see Figure 2.1.b [73]); (b) rigid and

shaped as an attachment part, e.g. [50] or [74] where a 3D-shaped tactile sensing array

and an ellipsoid F/T sensor replace the fingertips of the Shadow robot hand as shown

in Figure 2.1.c [75]. The Universal robot hand has 102 taxels on fingertips and 70

taxels on the rest of the links [76]. An optical tactile array of 41 taxels with the ability

to measure normal and tangential forces has been placed on the tips of a two-fingered

robot system [56]. Figure 2.1.d shows the Fluidic hand [77] with modified version of

the Weiss sensors [78]. The dexterous Gifu III robot hand (Figure 2.1.e) has a sensing

array of 859 piezoresistive taxels [79]. The robot hand of the iCub humanoid robot [80]

has sensors on the fingertips and palm, but not on the middle and proximal phalanges

(see Figure 2.1.f). Outstanding in speed performance, the Lightweight High-Speed

Multi-fingered Hand System [67] integrates Center-of-Pressure (CoP) sensor for the

force measurements and PVDF based high sensitive tactile sensor for slip detection,

as shown in Figure 2.1.g [81]. Figure 2.1.h shows the Shadow Hand equipped with

the Tekscan tactile sensing system (Model 4256E), which was used for contact shape

recognition [68]. In another manipulating setup, off-the-shelf capacitive arrays have

been installed on the fingertips of the four-fingered “Allegro” robot hand (Figure 2.1.i)

[69].

In addition to the sensing system described above, some sensing systems were

developed for robotic grippers. The Robotiq adaptive gripper was covered by capacitive

pressure sensing arrays, which were used for the recognition of the type of the slip

[82]. In [60] an 8 × 8 tactile array based on piezoresistive rubber has been attached

onto the grippers of the 3-fingered Schunk SDH hand for classifying deformable objects.
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The Seashell effect sensors [83], which also provide proximity information, have been

installed on the PR2 robot grippers.

In addition to the sensing techniques explained in section 2.2.1, a wide variety of

commercial sensor systems have been developed for robotic hands. The most relevant

for tactile sensing are BioTac [84], Weiss [85], TekscanTM [86], Peratech [87], and

DigiTacts [88]. Although these technologies are very advanced, they also present

limitations. Among main issues:

• Narrow applicability (e.g., BioTac only available for fingertips)

• High power consumption (Weiss 250 mW)

• Large sensor array size and/or thickness (Peratech: large size, e.g. 15 × 36 cm2,

Weiss: large thickness, i.e. 2cm for fingertips),

• Low framerate (Weiss 400 f/s, TekscanTM 200 f/s, DigiTacts 100 f/s),

• Low resolution (DigiTacts, 22 taxels), 6) difficult system integration (TekscanTM

complex wiring), and high price (e.g. BioTac).

These drawbacks limit system applicability in situations that require compact,

robust, flexible, and power-efficient solutions, as for prosthetic applications.

2.2.3 Tactile sensors on prosthetic hands

Conventional sensorized prosthetic hands possess two kinds of sensors: position sensors,

for providing hands with proprioceptive information, and force sensors, for estimating

mechanical interactions with the environment. However, the measured characteristics

cannot be limited to force or position only; ideally, they should also include stiffness,

texture, shape, etc. Osborn et al. have used them in the development of a closed-loop

upper limb prosthetic system that measures contact force to detect object slippage and
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reduce grip strength to prevent breaking of the objects [89]. Other tactile sensors use

piezoelectricity, and they are usually employed to measure dynamic forces/pressures.

Southampton hand used two different types of sensors on the fingertips to restore

tactile information: piezoelectric sensors based on PZT for slippage detection and FSR

sensors for measuring force [90]. Finally, looking at the commercial prosthetics hands,

only the Senor Hand from Otto Bock is provided with a slippage detecting system (i.e.

SUVA sensor system) while the recent models such as i-Limb, the Bebionic are not yet

provided with force or tactile feedback [91, 92].

2.3 Interface electronics system

The interface electronics system takes as input the tactile signals from the sensors

and processes them to extract meaningful information to be conveyed to the user

through the feedback interface. It includes the interface, acquisition system, tactile data

processing, and decoding system. This section presents an overview of the electronic

circuits dedicated to interface different types of tactile sensors (capacitive, resistive,

and piezoelectric).

Many researchers have worked on developing interface electronics dedicated to

acquiring and process electrical signals from tactile sensors [93, 94]. For example, Rossi

et al. [95] proposed a design that could be integrated between the prosthetic limb and

the patient body. The design is based on a CC3200 Texas Instruments Launchpad board

and a signal conditioning circuit composed of a charge amplifier. The four input sensors

signals were acquired, sampled, and then sent through Wi-Fi to the PC in continuous

mode at an average 111 mA current consumption. Handling many sensors to provide

high-resolution tactile information was also considered in the literature. For instance, a

tactile sensor suite in [96] can handle more than 32 taxels mounted in the palm and

fingers. Each finger pad carries sensors connected directly to FPGA, and all pads are
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connected through an SPI interface. The tactile sensors are scanned, and the data are

preprocessed in the palm unit with a power consumption of around 1.175 mW (235 mA

at 5V). Schmitz et al. [66] proposed a PCB of sensors and charge to voltage converter

AD7147. The AD7147 handles up to 13 inputs channels through a switch matrix and

provides an I2C serial bus for communication. This allows building a chain of sensor

PCBs with an I2C connection in between and a microcontroller master board connected

to one of the sensor PCBs for acquiring data. Authors in [97] proposed NI-sbRIO-9632

mainboard connected to DDC112 to provide high-resolution measurements for the gas

concentration of the two photo detectors inputs.

Most of the recent interface electronics are based on charge amplifier and data

acquisition (DAQ) boards [98]. Despite the developments of tactile sensors and their

interface electronic units presented in the literature, the developed interface electronic

units were not wearable devices especially from the hardware size and energy consump-

tion point of view. Wearable devices must be capable of performing the requested tasks

with minimal time latency and minimum energy consumption, therefore, powered by a

small battery size [99].

2.4 Signal processing and classification

In the robotics literature, tactile feedback has been widely used for telemanipulation,

haptic devices, and prosthetic hands [72]. The use of tactile information for object

exploration and recognition, material classification, and slip prediction has recently

become rather popular as it is reflected in [61, 71, 29, 72]. Signal processing and

feature extraction algorithms are crucial to properly decode and translate tactile sensor

signals into useable tactile information. General statistical algorithms and machine

learning techniques have been applied to the problem of extracting tactile information.
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The Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) are

leading techniques for preprocessing and simplifying signal output from sensors. The

FFT is most used for temporal signals from sensors. For example, it characterizes

surface features by correlating the frequency of pressure changes across a tactile sensor

[100, 101]. The FFT captures the different frequencies of pressure changes, which

can be directly used as a subset of features in machine learning strategies [102, 103].

DWT is often used only when FFT results fail to produce satisfactory features of the

touched object (e.g. surface characteristic) [104]. Like FFT, DWT can also be used for

feature extraction for machine learning strategies. Wavelet filters can also be applied

for the processing of raw signals, DWT can be used for creating high-pass and low-

pass filters that can construct the original frequency and the temporal information.

Classical statistical features of the raw signal have also been used to provide engineered

features for machine learning algorithms. Classical statistical features include variance,

standard deviation, power, kurtosis, mean, median, max, mode, and range [105]. A

combination of features from FFT, DWT, statistical measures, and raw temporal signals

provides a more comprehensive description of the surrounding. Statistical and learning

algorithms including decision trees (DT), support vector machines (SVM), extreme

learning machines (ELM), gradient boosting machines (GBM), maximum likelihood

estimations (MLE), k-means clustering (KM), and k nearest neighbors (KNN) are used

to categorize and identify many properties of the touched object. Finally, Supervised

machine learning algorithms with labeled training data (DT, SVM, ELM, GBM) have

dominated the literature [72].

Advances in computational resources and applied algorithms have allowed for the

high sampling rates and real-time processing needed for responsive feedback systems.

For example, using processed signals from the sensorized hand allows for a secondary

closed-loop system within the hand itself to modulate hand positions and grasping

forces [106].
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2.5 Feedback techniques

In this section, we will preview the different methods deployed to provide non-invasive

sensory feedback as an HMI. The review will focus on the usage of such methods

for restoration of the sense of touch in prosthetics and provide tactile feedback in

teleoperation.

2.5.1 Vibrotactile feedback

Vibrotactile stimulation is provoked by mechanical vibration normal or transverse

to the skin surface. Mechanical vibration conveys tactile information by modulating

vibration frequency, amplitude, duration, timber, or spatial location [107]. The quality

of vibrotactile stimulus perception depends on the frequency of the vibration (∼ 10Hz

to 500 Hz, which corresponds to the bandwidth of the human tactile sense) [108], the

body position, and age of the subject [109]. Vibrotactile devices delivering variable

pressure on the skin have been employed [110], for instance, it has been implemented

to establish proprioceptive communication between the user and the robotic hand.

For example, It is suitable for myoelectric prostheses and EEG- based prostheses (e.g.

i-Limb myoelectric prostheses Ottobock [14], MANUS [111], Fluid [112] and Smart

hands [113]) since no interference with electrical signals.

2.5.2 Electrotactile Feedback

Electrotactile (or electrocutaneous) stimulation elicits tactile sensations within the skin

by passing low current to stimulate afferent nerve endings in the PNS [108]. Tactile

information is delivered through electrotactile stimulation by modulating the electrical

components of the pulse waveform i.e. current amplitude (1-20 mA), pulse waveform

(monophasic/biphasic, rectangular/sinusoidal), frequency, pulse width, duration of

pulse bursts, electrode properties i.e. size(small/large), conducting material and
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location [114, 27]. The variety in the stimulation parameters leads to delivering high

bandwidth of tactile information to the user. Electrotactile stimulation can elicit a range

of sensations like tingling, itch, vibration, buzz, touch, pressure, pinch, and sharp or

burning pain [115] depending on the stimulation parameter and the location. Since

there are no moving mechanical parts, the electrotactile systems consume less power,

have low weight, produce less noise, and respond faster compared to other tactile

feedback systems. Several electrotactile displays have been developed as sensory aids

for hearing [116] and vision [117] and can also be used to create perceptual illusions

of surface changes [118].

2.5.3 Mechanotactile feedback

Mechanotactile feedback is modality-matched sensory feedback. It involves the use of

physical pressure or tangential stretch mechanisms that elicit the sensation of applied

force [119]. It has a high user acceptance despite its large weight, bulky size, and

high-energy consumption since it can provide the user with a natural feeling of force

and pressure unlike electrotactile and vibrotactile stimulation methods [27, 28].

2.5.4 Kinesthetic feedback

Unlike tactile feedback, force feedback relates to the kinesthetic sense, it involves

positions, velocities, and forces sensed through muscles and tendons [110]. It can

provide information about hand position and strength applied. Devices that provide

kinesthetic feedback are usually grounded, since the display of the force or motion

is delivered through a tool, such as PHANToM [120] or Omega [121]. For example,

haptic clinical devices, such as robotic systems have notably been used to guide the

movements of paralyzed limbs of patients [122].

25



26 Chapter 2. Feedback Systems for Sense of Touch

2.6 High-bandwidth feedback system

In the initial years of robotics, there were very few developments of artificial skin

[123]. Perhaps the earliest example of e-skin realization is from the 1970s when

an artificial hand covered with skin was explored to detect grip strength, slip, and

certain properties of a held object such as texture and hardness [124]. In the late

1980s, the use of infrared sensors on a large area of the robotic arm was shown to

avoid contact [125]. Nowadays, robots are expected to be involved in tasks requiring

physical interaction with the environment, objects, or humans. As a result, there is

an increased focus on developing artificial skins with tactile capabilities [59, 126]

and safe physical contact [127, 128]. Cutaneous skin-like devices have also found

applications in wearable systems as the second skin or tattoolike skin to measure

various physiological parameters to monitor health conditions [129–131]. In all these

cases, it is important to consider the sensor distribution, the readout, and a suitable

integration strategy [132]. Distributed sensing embedded in robotic systems enhances

human-robot interaction and is important for safety reasons. However, a large area of

tactile skin and the concomitant increase in the number of taxels present challenges

with regards to optimal data acquisition and wiring. The number of sensing taxels

should be easily changeable for arbitrary surfaces to enhance the performance of the

system.

Endowing a robotic hand with many sensors will present a challenge in processing

data and delivering tactile information to the user. The increase in the number of

integrated sensors must be followed by distributed feedback channels to provide

the user with high bandwidth of information about the touched object. Distributed

stimulation interfaces comprise a matrix of stimulation units that are placed on the skin

surface. Due to many stimulation channels with independently controllable parameters,

such an interface can deliver rich stimulation patterns that are modulated in space

and time, thereby providing a high-bandwidth communication channel between the
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human and the machine. Matrix interfaces have been presented and tested in the past

for sensory substitution [27, 133–136].

In summary, with the availability of the technology for high-density tactile sensing

and electrotactile stimulation, the important goal of providing comprehensive feedback

from the robotic hand to the user comes within reach. Significant research efforts had

been done however still required to address the challenges. The ultimate goal is a

robotic hand covered with a dense network of tactile sensors to develop the feeling of

touch over the whole surface of the hand. Such a robotic hand would provide a whole

new experience to the user, improving utility and facilitating the feeling of embodiment

to the level that is far beyond the conventional systems based on discrete sensing and

stimulation.
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Chapter 3

Development and Validation of

Screen-printed Electronic Skin Based

on Piezoelectric Polymer Sensors

3.1 Introduction

Electronic skin (e-skin) is a touch-sensitive, electronic system that incorporates func-

tional and structural materials coupled to a suitable electronic interface for sensor

signal acquisition. Tactile data processing algorithms might provide information about

contact properties (e.g., contact force [137] or contact shape [138]), given properties

of the contact object (such as surface texture [139], object shape [140]), or contact

events (e.g., discrimination between touch modalities [141]), to cite some examples.

Artificial skin systems are implemented in a wide range of applications, such as robotics,

prosthetics and teleoperation systems [61, 37, 142].

As the functional properties of the electronic skin mostly depend on the sensor type,

it is worth focusing on the sensor itself. Various tactile sensors have been developed,

like piezoelectric, piezoresistive, capacitive, optical, electromagnetic, ultrasonic, etc.
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[61]. The development of tactile sensors based on piezoelectric polymers has been

extensively investigated in recent years due to their interesting features. They exhibit

high sensitivity, fast dynamic response and a large operating frequency range (from <1

Hz to 1 kHz), covering the whole frequency bandwidth of human skin mechanoreceptors

[37]. Drawbacks of these materials are their poor temperature stability and their

inability to measure static forces [142].

Different piezoelectric materials, such as quartz single crystals, ceramics and

polymers, have been used to fabricate piezoelectric tactile sensors. Polymer materials,

especially polyvinylidene fluoride (PVDF) and its (TrFE) Trifluoroethylene copolymers,

exhibit ultra-sensitivity, flexibility and piezo, pyro and ferroelectric stability. Moreover,

they have been proven to be good candidates for flexible tactile sensors, suitable for

dynamic tactile sensing, and to be integrated into artificial electronic skin [37]. Regtien

et al. [143] presented the advantages of P(VDF-TrFE) as tactile sensors, and Khan

et al. [144] demonstrated fully screen-printed tactile P(VDF-TrFE) sensor arrays for

robotic applications. Hsu et al. proved the strain sensitivity of PVDF-arrays on flexible

substrates [145], and Tien et al. exploited the sensing multimodality with P(VDF-TrFE)

gated OFETs for the simultaneous detection of pressure and temperature [146]. In

general, the cross-sensitivity between temperature and pressure sensing in ferroelectrics

(therefore also in PVDF) can become an issue; hence, a separation of the piezo- and

pyroelectric effects may be advantageous [147].

PVDF is a semi-crystalline polymer synthesized by the polymerization of the H2

C=CF2 monomer. Its copolymer, Poly (vinylidene fluoride trifluoroethylene) or P(VDF-

TrFE), is a ferroelectric material that does not need to undergo the mechanical stretching

of the molecular chains along one of the transversal axes, leading to easier fabrication.

Different fabrication technologies have been reported for P(VDF-TrFE)-based sensors,

such as spin coating, electrospinning, sol-gel, chemical vapor deposition, microma-

chined mold transfer and inkjet printing [148]. The frequently used techniques, such
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as spin coating and inkjet printing, have limitations of process speed and overlay reg-

istration accuracy in multilayered structures. Despite the high lateral resolution, the

patterning of large areas through ink-jet printing requires the repeated deposition of

droplets, which often results in a nonuniform layer thickness and edges. In addition, the

patterning of P(VDF-TrFE) after spin coating requires photolithography, which leads to

an increased complexity of the manufacturing process. The cost-effectiveness and faster

fabrication of sensors over large areas indeed make screen- printing a very attractive

technique [149].

Hoda et al. recently developed fully screen-printed tactile sensing arrays (in the

following: sensing patches) based on P(VDF-TrFE) piezoelectric polymers for prosthetic

applications [150], where arrays of piezoelectric polymer sensors provided of their

metal contacts have been screen-printed on a transparent, plastic foil. The same

fabrication process has been used to design and fabricate ad-hoc sensing patches to

be mounted over two different systems, i.e., an assistive sensorized glove and the

Michelangelo prosthetic Hand by Ottobock [14].

The focus of this study is the validation of the manufacturing technology, i.e.,

ascertaining that these printed sensors are working as expected. Characterizing sensor

behavior directly would be a quite complex, lengthy, risky and hardly reproducible

process. In addition, direct contact of the indenter with the sensor would have various

shortcomings: (1) the contact would hardly be uniformly distributed, as both the

indenter and sensor surfaces have natural roughness; (2) the contact surface could then

not be precisely determined; (3) the direct indenter contact leads to sensor damage.

Therefore, an indirect procedure is proposed here: it requires the integration of a

protective layer on top of the sensing patch, giving rise to what we call the skin patch.

As sensors are embedded into the mechanical structure of the skin, a model is needed

to relate the applied force to sensor charge response, accounting for stress transmission

through the cover layer. The reference for this approach is a validated model of
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analogous skin structure based on a rigid substrate, PVDF piezoelectric polymer sensors

and the same (elastic) protective layer [151].

In particular, the study presented in this chapter reports the experimental setup and

procedures which allow for a fast characterization of piezoelectric sensors embedded

into an elastic layer and working in thickness mode (i.e., pure compression mode).

For that, direct compression tests have been replaced by indentation tests over the

skin surface, performed continuously over the whole frequency range of interest for

tactile applications (<1 Hz–1 kHz). The model cited in the previous paragraph [151]

has thus been used to estimate the d33 piezoelectric coefficient of each sensor from

the measure of both a basic mechanical action at the skin surface and sensor charge,

meaning P(VDF-TrFE) sensor electromechanical characterization. Finding d33 values

aligned with expected values from the literature in turn validates each sensor and the

skin fabrication technology. Finally, a protocol for quick e-skin validation is provided.

This chapter presents the analyzed results related to P(VDF-TrFE) electromechanical

characterization and sensor validation by comparing the d33 piezoelectric coefficient

with values found in the literature. It is organized as follows: Section 3.2 presents

the materials and methods, briefly illustrating the e-skin design and technology, the

reference skin model and the experimental setup. The results related to the validation

of screen printed sensor arrays are reported in Section 3.3. Finally, discussion and

conclusive remarks are given in Section 3.4 and 4.7. The content of this chapter is

presented in [152].

3.2 Materials and Methods

3.2.1 Electronic Skin Design

Fully screen-printed, flexible sensing patches based on P(VDF-TrFE) piezoelectric poly-

mer sensors have been fabricated by JOANNEUM RESEARCH [153] (in the following,

32



3.2 Materials and Methods 33

Figure 3.1 Illustration of the manufacturing process flow of printed ferroelectric sen-
sor arrays based on polyvinylidene fluoride-trifluoroethylene P(VDF-TrFE) repeated units
(reprinted with permission from JOANNEUM RESEARCH (JNR)). (a) Substrate; (b) Bottom
Electrodes; (c) Active sensors based on P(VDF-TrFE) film + Top electrodes (1); (d) Top
electrodes (2); (e) Connecting lines.

JNR). They patented a low-temperature, sol-gel based synthesis for P(VDF-TrFE) inks

[154]. The main steps of the overall manufacturing process used by JNR to print

ferroelectric sensor arrays based on P(VDF-TrFE) repeated units is illustrated in Figure

3.1. The fabrication of these sensing patches is done by screen- printing at a Thieme

LAB 1000. A transparent and flexible (175 µm thick) DIN A4 plastic foil (Melinex®

ST 725 from DuPont Teijin films, USA) is used as the substrate; it ensures high flexibil-

ity and good adhesion of the functional materials applied during the screen-printing

process (Figure 3.1.a). First, the circular bottom electrodes of the P(VDF-TrFE) are

screen-printed (Figure 3.1.b). In the second step, the ferroelectric polymer P(VDF-TrFE)

is screen-printed onto the bottom electrodes, followed by a short curing step at 110 °C.

The curing step supports the formation of the crystalline piezo- and pyroelectric -phase

and accelerates evaporation of the solvent. Figure 3.1.c also includes the third step of

screen-printing the top electrodes. Either PEDOT: PSS or silver or carbon have been

used as these top electrodes [155]: it is worth noting that the carbon layer (Figure

3.1.d) is alternative to the usage of PEDOT:PSS or silver (Figure 3.1.c). Conductive

silver ink has been used for electrical interconnections (Figure 3.1.e).
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Figure 3.2 (a) Cross sectional view of a single sensor unit: Indicative thicknesses of the
various layers have been extracted from scanning electron microscopy (SEM) pictures sent
in private communications; (b) Sketch of the sensing patch; (c) Picture of a real sample.

A final UV-curable lacquer layer is deposited on top for overall sensor protection.

The poling procedure then aligns in the thickness direction randomly oriented dipoles

contained in P(VDF-TrFE) crystallites. This has been achieved by hysteresis poling

of each sensor with an alternating electric field at a frequency between 2 and 10 Hz

and a magnitude of 100 MV/m, corresponding to twice the coercive field strength.

Final geometries of sensor array patches have been obtained through cutting the

manufactured foil with a Trotec Speedy 300 laser. The full deposition process has

been thoroughly presented in [142, 155], to which the reader is referred for further

details. Figure 3.2 depicts (a) the cross-sectional view of a single sensor unit and (b)

the structure of a sensing patch built on a sensor array and (c) a photo of Two sets of

sensing patches that have been designed and manufactured. The former is intended

for a textile glove with sensorized fingertips and palm, while the latter includes skin

patches for the fingers and palm of the prosthetic Michelangelo Hand designed by

Ottobock [14]. Sensor densities of the fingertips and of the palm have been oriented by

psychophysical measurements of the spatial acuity of the human skin [59]. Usually to

define the point-localization threshold, a stimulus is presented to the skin, followed in

time by a second stimulus that may or may not be applied to the same site. Observers

are required to say whether the two stimuli occur at the same or different locations.
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Figure 3.3 Design of different sensing patches. (a) Sensing array for right hand tactile
glove: Palm 1 two 4 × 2 arrays 16 taxels, taxel diameter = 2 mm, center-to-center pitch
= 0.9 cm. Palm 2 - 4 × 2 array = 8 taxels, taxel diameter = 2 mm, center-to-center
pitch = 1 cm. Index, Middle, Ring, Little, and Thumb - 8 taxels, taxel diameter = 1 mm,
center-to-center pitch = 1 cm. (b) Sensing array for left hand tactile glove. (c) Sensing
array for Michelangelo prosthetic hand: M.Middle 13 taxels, taxel diameter = 1 mm.
M.Index 16 taxels, taxel diameter = 1 mm. M.Palm 12 taxels, taxel diameter = 2 mm.
M.Little and M.Ring - 4 taxels, taxel diameter = 1 mm. M.Thumb - 15 taxels, taxel diameter
= 1 mm.

35



36
Chapter 3. Development and Validation of Screen-printed Electronic Skin Based on

Piezoelectric Polymer Sensors

The point localization threshold is 1–2 mm on the fingertip and around 1 cm on the

palm. These values are only for reference, as the spatial acuity of the artificial skin

is strongly dependent upon the thickness and on the material of the protective layer,

as demonstrated in [151]. In particular, we refer to the proportionality coefficient γ

plotted in [151], which gives a measure of the skin spatial acuity through the sensor

receptive field, i.e., the spatial concentration of the mechanical stress information

around a single sensor. The γ coefficient depends on the thickness of the elastic cover

layer, and vanishes at a distance between the point force and the sensor axis, that

marks the transition to the region where the force does no longer affect the given

sensor. Five different patch geometries have been experimentally characterized, and

the correspondent results are presented in the current chapter. The patch layouts are

shown in Figure 3.3.

3.2.2 Experimental Setup

Twelve skin patches of five categories (the A, B, C, D and E samples, as shown in

Figure 3.3) were tested using the mechanical chain shown in Figure 3.5 and described

in [151]. Each sensing patch was integrated on a rigid substrate and covered by an

elastic protective layer, thus building a skin patch (see the bottom part of Figure 3.5).

In particular, the same elastomer material has been used for stress transmission as

in [151]. Building a skin structure that mimics, as close as possible, the conditions

imposed by the model presented in [151] has two implications. On the one hand, we

would like to enable sensors to work in a pure compressive mode. This would require

that the coupling does not lead to the development of normal stresses T1 and T2 in

the sensors which are comparable to T3. Operationally, in order to be able to keep

the sensing patch intact for use after the validation stage, we have simply laid it over

a rigid substrate with no further mechanical constraints (for better clarity, see Figure

3.6). This implies that the boundary conditions at the contact sensing patch, the rigid
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Figure 3.4 Experimental setup. Top: Block Diagram, Bottom: Pictures of the setup. The
blue dotted line shows the alignment of the testing elements.
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Figure 3.5 The applied coupling scenario.

substrate, would be a simple roller. On the other hand, the upper protective layer

is kept in contact with the substrate, constraining the lateral boundary of its bottom

surface with double-sided adhesive tape (Model 3M300L, 3M). This scheme allows

one to assume a roller type boundary condition at the elastomer at the bottom with

constrained boundaries. The applied coupling scenario is illustrated in Figure 3.6. A

rigid plate was fixed on the moving head of an electromechanical shaker (Brüel and

Kjaer, Minishaker Type 4810 from HBK company, Germany). A rigid spherical indenter

(R = 4 mm) and a piezoelectric force transducer (Model 208C01, PCB Piezotronics,

MTS system, were coupled on the upper head of the rigid frame. The skin patch

assembled on the rigid circular plate was then mounted on a fixed support and faced

down side. During the tests, we applied a mechanical input (force) and measured the

electrical output (charge). A preload was first applied to guarantee indenter-PDMS

contact during the whole mechanical stimulation. The value of the preload has been

controlled by a laser (Waycon LAS TM10), allowing us to fix the displacement of

the rigid plate at a certain value for a certain preload, through displacement–force

calibration curves. A swept sine signal was provided to an electromechanical shaker

by a graphical user interface (GUI) developed with NI LabVIEW on a host PC and NI

DAQ data acquisition board. The signal was amplified using a Power Amplifier (Type

2706). All of these elements have been accurately aligned before any test. Forces in
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Figure 3.6 Sketch of the general working mechanism of the P(VDF-TrFE) sensor: The
Hertzian input force (with contact radius a) is transmitted to the sensor (with radius rT )
through the elastomer layer of thickness h. With the presupposition that the sensor works
solely in compressive mode, it directly converts the received normal stress T3 into electrical
displacement D3 , through a characterizing piezoelectric coefficient, namely the d33 (1). A
charge amplifier is used to convert the total sensor charge into voltage

the frequency range of (0.5–1 kHz) have been applied through the spherical indenter

shown in Figure 3.5 and coupled to the electromechanical shaker. The force transducer

(stimulus) and the charge developed by the sensor (response) were conditioned by PCB

Sensor Signal Conditioner (482C54) and processed in frequency to give the System

Response Function (FRF) at each frequency step. We recall that FRF corresponds to the

ratio between the Fourier transform of the output charge and that of the input force.

3.2.3 Reference Skin Structure and Model

As mentioned in the introduction, in order to validate sensor behavior without damaging

the sensors themselves, the sensing patches need to be integrated into a rigid substrate

and covered by an elastomer. Hence, the indenter force is applied to the surface of the

protective layer and transmitted to the sensors, working in thickness mode. In order to

derive the stress acting on the sensor, our previous model [155] has been used, and is
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briefly summarized below (Figure 3.7). The ultimate use of the model is to estimate

the electrical sensor output (i.e., charge) from a measure of a basic mechanical action

at the skin surface. In other words, using the constitutive relationship of the sensors

working in thickness-mode (purely compressive), one might write:

Q3 = πr2
T d33T 3 (3.1)

where Q3 is the total sensor charge measured by the charge amplifier [156], rT is

the sensor radius, d33 is the P(VDF-TrFE) piezoelectric coefficient and T 3 is the normal

stress component T3 averaged over a single sensor. The application of the model leads

to the following relationship between the charge and the applied force F3 :

Figure 3.7 Results for the numerical COMSOL simulations for the finite case. The pro-
portionality coefficient σ between average normal stress rT on the sensor and overall
(Hertzian) contact force F3 (2) is plotted versus the imprint radius a (contact size) scaled
by the elastomer thickness h. Note that the applied force is centered on the sensor. The two
curves are associated to two different sensor sizes: rT = 1 mm (sensors on the palm), rT =
0.5 mm (sensors on the fingertip).
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Q3 = −d33
2
3

(
rT

h

)2
σ

(
a

h
,
rT

h

)
F3 (3.2)

where h is the elastomer thickness, a is the contact radius and σ is an output

function of the theory, expressed as a double integral to be solved numerically, for each

chosen value of rT

h
and a

h

The radius a of the imprint is related to the applied load F3 by the equation:

a3 = −3F3R

4E
(1− v2) (3.3)

where R is the indenter radius, and E and are Young’s modulus and the Poisson

ratio of the elastic protective layer, respectively. Note that the given preload affects the

contact radius a 3.3, while the amplitude of the dynamic swept sine force determines the

PVDF charge. On the contrary, the dynamic component does not affect the computation

of the contact radius, as the dynamic signal amplitude is negligible with respect to the

preload.

For a given skin geometry, associated with a specific rT

h
, (3.2) allows one to

estimate the effective piezoelectric coefficient d33 of each P(VDF-TrFE) sensor, once

the charge Q3 and the (normal) applied force F3 centered on that specific sensor have

been measured. Comparison with the expected value of d33 [142, 155] helps validating

sensor functioning.

The effect of the finite thickness of the elastomer layer has been expressed by the

value of sigma for the given skin geometry presented in this chapter and calculated

numerically through FEM simulations, as discussed in [151]. In particular, we consid-

ered an elastic, virtually incompressible, medium (Poisson ratio sufficiently close to

0.5) consisting of a layer of finite thickness h = 2.5 mm, length l = 40 mm and width

b = 20 mm. Length and width of the layer have been chosen arbitrarily, with the sole

requirement of the distance between the elastomer side and the sensor center being
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much larger than the sensor radius, such as to justify the assumption that the lateral

boundaries do not significantly affect the stress field acting on the sensor. The elastomer

surface is presumed to be subjected to an external Hertzian pressure distribution, the

contact radius a being dependent from R, F3, E and , as for (3.3). The indenter radius

R is 4 mm in all the present study, the employed value for the elastomer modulus E is

the result of the experimental characterization of the elastic layer reported in [151]

and corresponds to 16 MPa (slope of the linear portion of the stress–strain curve),

while is assumed to equal 0.5. As said above, the contact radius is mainly a function

of the given preload, as the dynamic signal amplitude is negligible with respect to the

preload itself. As discussed in the previous section, a roller type boundary condition was

assumed at the lower boundary, while the perimeter is constrained. The proportionality

coefficient sigma, which allows to estimate the d33 value of each sensor (3.2), based

on the measured ratio between Q3 and F3, is reported in Figure 3.4. The value of

the contact radius a changes with the following preload values: PL = 0.6, 1, 2 and

3 N. It is worth pointing out that the present results are consistent with those found

in Seminara’s work [151]. As well, note that values of σ obtained for palm sensors

differ slightly from the fingertip ones, as σ depends on the ratio rT

h
(recall (3.2)). In

addition, we have verified the consistency of the experimental setup for the sensing

patch with the pure compressive mode assumption. Then, we have performed a series

of simulations aiming to evaluate the stress tensor in the sensing patch as a function of

the preload, subject to a roller type boundary condition at the bottom and free lateral

boundaries. These simulations show that the normal stresses T1 and T2 keep at least an

order of magnitude smaller than T3 within the sensing patch. Recalling the complete

constitutive relationship [37]:

D3 = d31T1 + d32T2 + d33T3 (3.4)
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Figure 3.8 (a) Normal sensor, (b) Fault in the sensor top electrode (pole), (c) Cut in the
sensor tracks, due to short circuits during the poling procedure, (d) Shortcuts between
sensor tracks.

and noting that d31 and d32 are smaller than d33 [37], we end up concluding that the

assumption of pure compressive mode was sufficiently adequate for the experimental

setting.

3.3 Results

3.3.1 Morphology of the sensing arrays: Issues

All sensing patches have been visually inspected using first a photo scanner (EPSON

perfection V800 photo) and then an optical microscope (Nikon eclipse LV100 and Wild

M32). Some fabrication defects have been detected (see Figure 3.8). They are listed

below:

• Faults in the top sensor electrode. The choice of silver ink for the top electrode

has been the result of a compromise between resolution, conductivity and top-

electrode performance. Using silver, the printing resolution was very good and

the conductivity was very high at the 100 °C temperature treatment. At a careful

examination, small defects were detected, due to solvents in the ink (Figure

3.8.b). However, this does not heavily compromise sensor behavior.
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Figure 3.9 The heat map of the fabrication substrate (DIN A3) prone to shrinkage.

• Interrupted tracks (Figure 3.8.c). During high-voltage hysteresis poling, sensor

lines burned for current exceeding a given threshold due to short circuits between

top and bottom electrodes (caused by their too small distance).

• Short circuits. They occurred between sensor lines or due to the misalignment

between top and bottom electrodes (Figure 3.8.d). The high spatial resolution led

to too small distances between lines and top/bottom electrodes, causing short-

circuits due to the shrinkage of the whole DIN A3 fabrication substrate during

high temperature treatment. Figure 3.9 shows the heat map of the substrate

prone to shrinkage. We observed that certain sensing patches (such as M.Palm)

lie on the blue sweet spot, corresponding to less shrinkage. This guarantees a

44



3.3 Results 45

larger number of working sensors. Other samples (such as palm right 2) are on

the red zones, associated with high shrinkage. This causes higher number of short

circuits, which in turn leads to less working sensors than expected.

In summary, the required high resolution (i.e., small sensor size, short distance

between the top and bottom electrodes, short distance between the sensor tracks)

is challenging. In particular, such fine structures cannot be distributed over such a

large area (DIN A3) if the substrate is not dimensionally stable during all process steps

(including sensor polarization). How these fabrication defects affected sensor behavior

is illustrated in this Section.

3.3.2 Experimental tests

A series of experiments were conducted to extract the sensor behavior, i.e., ultimately

their d33 values, from indentation tests on the skin surface, by using the model illustrated

in Section 3.2.3. Before running each test, a preload has been applied to guarantee

indenter-skin contact during the entire mechanical stimulation. As specified in Section

3.2.3, the preload is responsible for determining the contact radius a (3.3), as for all

tests the amplitude of the dynamic oscillation is maintained low enough (Fdyn = 0.09 N)

not to significantly affect the contact area. Different P(VDF-TrFE) sensing patches have

been tested as described in Section 3.2.2. We applied a swept sine signal from 0.5 Hz

up to 1000 Hz by the electromechanical shaker at each sensor epicenter on the e-skin

outer surface, causing e-skin indentation aligned with each sensor center. We recorded

the sensor frequency-response function one-shot over the whole frequency range. The

numerical model described in Section 3.2.3 has been integrated into the LabVIEW

software, directly giving the frequency behavior of the d33 piezoelectric modulus (both

real and imaginary parts) of each solicited sensor, calculated from the sensor frequency

response function as for (3.2). Sigma values have been extracted from Figure 3.4, each

time in accordance with the specific preload and sensor radius.
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Figure 3.10 Example of the frequency behavior of both the real (white curve) and imaginary
(red curve) part of the d33 piezoelectric coefficient. The scale for the Im (d”= D33) is on
the right y-axis.

3.3.2.1 Frequency Range Selection

In a preliminary stage, we investigated the minimal value of the applied preload that

ensured a stable behavior of d33 . Multiple tests at preloads less than 1 N have been run

over the whole frequency range (0.5 Hz–1000 Hz), especially at preload 0.6 N. Main

observation is that this low value for the preload does not ensure a stable contact during

oscillations of the indenter over the skin patch, due to the dynamic amplitude of the

indenter oscillation being not enough smaller than the preload itself. This causes noisy

behavior for the d33 . For that reason, in the rest of the study, the results at this preload

are not reported. Then, tests have been done at preloads 1, 2 and 3 N. It turned out that

resonances do exist, and their characteristic frequencies depend upon the preload. In

the 300–750 Hz range, a systematic preload-dependent resonance peak is responsible

for sign flipping of the real part of the d33 coefficient. At low preloads (i.e., PL = 1 N)

the resonance falls in the 300–500 Hz range, while at higher preloads (i.e., PL = 2, 3 N)
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the resonance shifts to the 500–750 Hz frequency range. Around 950 Hz, a mechanical

resonance appears due to high vibrations from the shaker system while stopping. As

reported in Seminara’s work [151], resonances may derive from a variety of causes

(e.g., movable contacts, contact surface asperities, motor-induced vibrations), which

cannot be reliably controlled. The model can only be applied with dynamic contacts

with forcing frequencies that fall outside the range of any notable resonance [151].

Therefore, a non-resonant 50–250 Hz frequency range has been identified, where the

frequency response function is systematically quite flat. In particular, the imaginary

part of the d33 piezoelectric coefficient, which accounts for any viscoelastic component

of the response, is systematically roughly an order of magnitude smaller than the

real (elastic) part. The aforementioned statements are clarified in the representative

example reported in Figure 3.10, where both the real and imaginary parts of d33 are

expressed as a function of frequency, and the non-resonant.

Based on these results, hereafter the imaginary part of the d33 coefficient will be

ignored and “Re” will be removed from the notation. In other words, the system is

treated as purely elastic. Moreover, each run has been performed, stimulating the skin

over the whole frequency range, yet the corresponding d33 response is averaged over

the non-resonant range only.

3.3.2.2 Systematic sensor validation

Each sensing patch has been tested by stimulating the e-skin surface with the same

indenter (R = 4 mm) aligned with the epicenter of each selected sensor. As mentioned

in Section 3.3.2.1, each run has been performed at small force amplitude (Fdyn = 0.09

N), and the corresponding d33 response has been averaged over the non-resonant range

to get a single value of that coefficient for each sensor. Two sets of data have been

obtained. The former data set (96 sensors in total, 10 different samples, four categories

of patches) focuses on Palm sensors (i.e., sensors with diameter = 2 mm, belonging to
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Table 3.1 Palm patches categories (Data set 1, palm sensors)

Category Category name Number of tested patches Number of sensors\patch
Category 1 Palm left 2 3 8
Category 2 Palm right 2 4 8
Category 3 Palm right 1 1 16
Category 4 M.Palm 2 12

arrays designed to cover the palm), all tested at different preloads (Figure 3.11). On the

other hand, the second data set (eight sensors, two samples, Michelangelo little) focuses

on finger sensors (i.e., sensors with diameter = 1 mm, belonging to arrays designed

to cover the fingertips). One-way analysis of variance (ANOVA) and Tukey–Kramer’s

honestly significant difference (HSD) test, for the post-hoc pairwise comparison, were

used to test the statistically significant difference in the mean performance among the

tested conditions.

• First Analysis: Palm Sensors We selected four palm patch designs that vary

in their positions and sensor number. These designs have been classified into

four categories as reported in the Table 3.1 below. Figure 3.11 illustrates how

these categories are distributed over the A3 substrate used for patch fabrication.

A comparative study has been performed to examine whether the shape and

position over the A3 fabrication substrate affected the sensor behavior at different

preloads.

Sixty seven sensors out of the whole set (96 sensors) have been selected, eliminat-

ing sensors that did not work due to fabrication failures (see Section 3.3.1) and

few sensors that gave physically unacceptable values for d33. Note that the number

of malfunctioning sensors was quite high for this first fabrication batch, due to

those issues discussed in Section 3.3.1. Figure 3.12 shows the cloud distribution

of the averaged d33 values for the palm sensors.
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Figure 3.11 Compared categories (CAT1, CAT2, CAT3 and CAT 4) and heat map on the A3
fabrication substrate.(a) Heat map of the fabrication and the selected categories for testing,
(b) Zoom in view for each category’s location.

All categories have been analyzed in order to check whether any dependence

of the patch behavior on the specific category existed. This was needed to

understand if a specific patch position affected sensor behavior, e.g., due to not

uniform polarization or other unwanted effects related to the shrinkage of the

substrate during the fabrication process. The results presented in Figure 3.12
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Figure 3.12 (a) Cloud distribution of working palm sensors. (b) Working palm sensors(c)
Category 1 (palm left 2). (d) Category 2 (palm right 2). (e) Category 3 (palm right 1). (f)
Category 4 (M.palm). Statistical study: One-way analysis of variasnce (ANOVA) (p < 0.05),
average d33 vs preload.
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Figure 3.13 Average d33 vs. patches at PL = 1 N, 2 N, and 3 N, arranged respectively as
(a), (b) and (c). The four categories and all corresponding patches can be distinguished on
the x-axis.
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Figure 3.14 (a) Average d33 vs. preload. Sensors belonging to categories 1 and 4, only. To
avoid dot superposition, values associated with the same preload are plotted such that dots
do not lie on the same vertical line .Average d33 for each sensor at PL = 1 N (top), 2 N
(middle) and 3 N (bottom). (b) Average d33 for each sensor at PL = 1 N, (c) Average d33
for each sensor at PL = 2 N (d) Average d33 for each sensor at PL = 3 N

show that indeed sensor response to preload does significantly depend on the

category, which is associated to a specific position on the substrate. In particular,
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Figure 3.15 Average d33 vs. preload for the three analyzed patches belonging to category
1: (a) Palm left 2.2., (b) Palm left 2.3 and (c) Palm left 2.4 (bottom).

note that results for categories 2 (Figure 3.12.b) and 3 (Figure 3.12c) show a

dependence of d33 on the preload, which turns out not to be statistically significant.

It is worth pointing out that categories 2 and 3 are those located in the red zone

of the heat map, where strong substrate shrinkage occurred. In order to check

the effectiveness of the sensor fabrication technology, we have then decided to
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discard results referring to categories 2 and 3. On the other hand, it is reassuring

to note that, as shown in Figure 3.13, patches belonging to the same category

(including those in the red zone) are statistically equivalent among themselves,

a result which does suggest the reproducibility of the fabrication process for

each patch. Results for all sensors belonging to the two categories located in the

sweet spot associated with low shrinkage (i.e., categories 1 and 4) are plotted

in the Figures 3.14 and 3.14. They show d33 values mostly compatible with the

state of the art [142]. It turns out that as the preload increases, the average d33

decreases, and values for different sensors exhibit a lower dispersion. In Figure

3.14, a best-fit line is used to compute the average of the d33 values associated

with all sensors. Data related to the highest preload (=3 N) are well fitted using

a d33 value equal to approximately 22 pC/N, while data corresponding to the

lower preload (=1 N) yield a d33 value of approximately –46 pC/N. To conclude

results on the first batch, we have performed a more detailed analysis of results

obtained for category 1, analyzing the behavior of each patch belonging to that

category. Results are plotted in Figure 3.15, which shows a statistically significant

systematic decrease of the d33 coefficient with a preload for all three patches.

• Second Analysis (Preliminary): Finger Sensors A complementary case study

has been performed in order to check whether the proposed method could be

extended to sensors with lower diameter (i.e., finger sensors) or not. To this

aim, a second data set only including finger sensors was analyzed. It is worth

remarking that the alignment procedure was particularly critical in this case:

the small sensor size would require an alignment system to more precisely align

the indenter with the sensor center for reliable sensor characterization using the

current model. This is the reason why this analysis has been only performed on a

low number of sensing patches. Two samples of Michelangelo little finger located

on the sweet spot (see Figure 3.16-Top) were tested using the experimental setup
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and method reported above. Each sample has four taxels with 1 mm diameter

each. Figure 3.16 shows the analyzed results after applying one- Way ANOVA

using Tukey–Kramer’s HSD test. As for the palm, the results indicate a significant

statistical difference of d33 at different applied preloads and a systematic decrease

of d33 at increasing preload.

3.4 Discussion

Table 3.2 shows a conclusive summary of the findings which emerged from the different

experimental studies performed. A broad outcome of the performed tests is that both

palm and finger sensors share the same statistically significant systematic decrease of

d33 with preload. In the first analysis, for all categories, the patches are statistically

equivalent among themselves when belonging to the same category, which proves the

reproducibility of the whole deposition process. Excluding categories located in the red

zone (i.e., CAT 2 and CAT 3) of the heat map, which is associated with high shrinkage,

the single sensors belonging to the other two categories (CAT 1 and CAT 4) show a

piezoelectric behavior (i.e., d33 values), which is quite compatible with the current state

of the art [145]. On the other hand, the behavior of the d33 versus preload for CAT 2

and CAT 3 in the red zone shows no alignment with the decreasing behavior observed

for patches located in the sweet spot. This result is a hint at the need of employing

smaller fabrication substrates in future e-skin manufacturing, in order to considerably

reduce red zones, which are not compliant to the expected sensing behavior.

Focusing on categories located in the sweet spot, all analyzed patches belonging

to categories 1 and 4 have quite systematic decreasing behavior for d33 vs. PL. This

has been checked using one-way ANOVA for statistical analysis and Tukey–Kramer’s

HSD test for the post-hoc pairwise comparison. Systematically, average d33 behavior at

PL = 1 N is statistically different from that at PL = 3 N, both for the two categories
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Figure 3.16 Finger sensors (Michelangelo Little, ML) located in the sweet spot on the heat
map of the A3 fabrication substrate. Bottom: Average d33 vs. preload for the two samples
of Michelangelo little: ML.1 and ML.2. Statistical study: one-Way ANOVA (p < 0.05)
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Table 3.2 Summary of results.

Sensor
location

Study Number of
patches

Preload working
sensors

Average
d33

Standard
Error

PL = 1 N -34.014 2.29

All sensors 10 PL = 2 N 67 -29.49 1.47

PL = 3 N -20.65 1

PL = 1 N -53.22 3.98

Category 1 3 PL = 2 N 18 -33.77 1.91

PL = 3 N -23.88 1.23

PL = 1 N -21.26 2.39

Palm Category 2 4 PL = 2 N 23 -26.04 2.83

(red zone) PL = 3 N -16.34 1.58

PL = 1 N -29.92 4.13

Category 3 1 PL = 2 N 23 -36.07 3.84

(red zone) PL = 3 N -26.92 2.89

PL = 1 N -34.07 3.75

Category 4 2 PL = 2 N 13 -23.07 3.75

PL = 3 N -17.61 1.14

PL = 1 N 4 -41.5 1.14

Finger All sensors 2 PL = 2 N 8 -16.87 1.95

PL = 3 N 8 -12.06 1.35

(Figure 3.12.a,d) and for single patches from category 1 (Figure 3.14). This would

be compatible with a non-linearity of d33 with respect to the preload, and with some

nonlinearity in the stress–strain curve observed for this elastomer layer around 2 MPa

[154]. In the second analysis, similar results were obtained for the finger sensors,

despite the high distribution error, which emerges from the low number of sensors

tested.

57



58
Chapter 3. Development and Validation of Screen-printed Electronic Skin Based on

Piezoelectric Polymer Sensors

The dispersed behavior of d33 (i.e., sensor response) does depend on both the

fabrication process (including deposition and assembly) and on the alignment of the

indenter with the sensor center. A laser-like positioning system could be used in the

future to align the indenter precisely, thus avoiding errors due to wrong positioning.

As for the fabrication process, these errors are the results of different factors including

different point-to-point values for the sensor radius and/or for the local layer thickness

and inhomogeneity in PVDF film polarization. These combined factors are considered

intrinsic in the whole fabrication process, and could not be decoupled in the proposed

tests.

In Section 3.2.3, we described how we coupled the sensing patch to the substrate

and to the protective layer, to be able to test sensor behavior without damaging the

sensors themselves. Applying double-sided adhesive tape all over the sensors in the

validation stage is not feasible unless the cover layer is the final layer, because sensors

would be damaged during tape removal (Figure 3.17).

It would be also better to avoid the adhesive tape between the substrate and the

sensors themselves, as damages may occur during tape removal.

Therefore, the choice of the coupling procedure is somehow obliged in the val-

idation stage. Operationally, as described in Section 3.2.3, we placed double-sided

adhesive tape around the sensing patch (Figure 3.18, solution1), to rigidly couple to the

substrate the protective layer on its boundaries, thus keeping in place the sensing patch

itself. We also proved through simulations that this configuration leads to negligible

normal stresses other than T33 , thus confirming that sensors work in thickness model,

as required by the model.

However, this coupling procedure can only be used in the validation stage, as

discussed in the following. In real applications shear contact forces on the skin surface

will be possible, which requires using a real rigid coupling between the sensing patch

and both the cover layer and the substrate (Figure 3.18, solution 2), to avoid any sliding
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Figure 3.17 Sensor electrodes have been severely damaged after coupling with adhesive
tape all over the skin patch. (a) An overall adhesive tape coupled sensor, (b) Impaired top
electrode of sensor after removing the adhesive tape.

due to shear forces. This is achieved in practice by using an adhesive layer below and

all-over the sensing patch itself. Care would only be needed during tape integration

as non-uniform stress transmission and sensor bending can be naturally induced by

the inclusion of air bubbles into the coupling adhesive layer. An underestimation of

the d33 value is expected due to the addition of deformable adhesive layers between

the sensor and both the substrate and the cover, which are not accounted for in the

model. This leads not to be perfectly compliant with the model, as normal stresses other

than T3 may contribute to the measured charge: preliminary simulations confirmed

this prediction and hint at a contribution of normal T1 and T2 stresses, which is not

negligible with respect to the normal T3 component. New models and more extensive

simulations will be thus needed to describe the real application system.

A time-saving protocol for future sensing patch validation can be extracted as

an outcome of the analysis presented in this chapter. It could be summarized as
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follows. As a first step, the sensing patch is to be coupled to the rigid substrate by

only applying double-sided adhesive tape around the patch perimeter (Figure 3.18,

solution 1). As shown in Figure 3.18 solution 1, the protective layer can then be

applied on top of the sensing patch, being rigidly coupled to the substrate through

the double-sided adhesive layer. After mounting the skin patch built as such along the

mechanical chain illustrated in Figure 3.5, the indenter is to be aligned with a reference

sensor. A laser positioning system would facilitate such a procedure, thus reducing

the dispersion of sensor behavior. Avoiding complete systematic measures at different

preloads, which are not needed if the scope is a check of the sensor manufacturing

process, an indentation test over the non-resonant frequency range (50–250 Hz) can

be quickly run at an average preload (i.e., =2 N). This procedure lasts no more than a

few seconds. The indenter is then released and moved over a distant sensor, to avoid

artifacts due to the relaxation of the protective layer after indenter release. The same

procedure as before is performed, consisting of applying the given preload, running the

indentation test, releasing the indenter and moving the indenter over a distant sensor.

The same scheme is applied on all sensors belonging to the sensing patch. The result

of the whole procedure is a single value of the d33 piezoelectric coefficient for each

sensor, averaged over the non-resonant frequency range. An error signal can be set up

to notify if any of the sensors has a value of d33 which differs from the expected value

by more than a previously defined tolerance. It is important to note that, except for the

initial coupling procedure and first indenter centering, the rest of the procedure can

be automatized, reducing to a few minutes the validation of a sensing patch built of

15–20 sensor units.
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Figure 3.18 Illustration of different coupling methods.

3.5 Conclusion and Future Work

This study tackled some of the challenges related to employing electronic skin systems

in real applications. In particular, this mainly requires validating the building blocks

of the e-skin system, i.e., the sensing patches, and finding adequate ways to integrate

these sensing patches into an electronic skin structure which also includes structural

elements. Both these steps are preliminary to include the e-skin system into the target

system, e.g., a glove or a prosthetic hand.

First, a set of tools is thus needed for the validation of the fabrication technology

of the sensing patches. Throughout this study, a non-invasive method to validate the

deposition technique of piezoelectric polymer sensors working in thickness mode has

been defined and demonstrated. In particular, this chapter reports the validation of
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the fabrication technology of flexible screen-printed sensing patches based on P(VDF-

TrFE) piezoelectric polymers. This method is independent of the specific deposition

technique and can cover a large number of applications requiring the employment of

artificial tactile sensing through e-skin based on piezoelectric polymer sensor such as

P(VDF-TrFE).

Extensive preliminary tests with an electromechanical setup have been performed

on four different patch geometries/categories for the palm and one patch geometry

for the fingertips. In particular, twelve sensing patches have been characterized (10

palm patches and two fingertip patches), 104 sensors in total (96 palm sensors and

8 fingertip sensors). P(VDF-TrFE) sensors worked in thickness-mode and a protective

layer has been integrated on top of the sensing patch for stress transmission and sensor

protection. Dynamic skin indentation with normal force centered on each sensor has

been performed, with three different preloads (1, 2 and 3 N). An average value of the

d33 coefficient over a non-resonant frequency range has been extracted for each sensor,

without damaging the sensor itself. Obtaining expected (modeled) behavior of the

electrical response of each sensor to measured mechanical (normal) force at the skin

surface proves that the combination of both fabrication and assembly processes was

successful.

Throughout the study course, several issues were observed such as substrate shrink-

age that occurred during the fabrication process, leading to shortcuts. The proposed

validation and characterization provided us with cues to optimize the fabrication of the

next-line batches such as choosing smaller fabrication substrates (and smaller masks,

accordingly).

The study demonstrated that for every sensing category (i.e., CAT1, CAT 2, CAT 3

and CAT 4), the sensing patches are statistically equivalent among themselves, which

proves fabrication reproducibility, one of the main requirements when fabricating large

volumes.
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More specifically, after excluding the sensing categories that fall in the red zone

of the heat map, i.e., that have been prone to high substrate shrinkage, the remnant

sensors show d33 values which are quite compatible with the state of art. All the sensing

patches that lie in categories 1 and 4 have a systematic declining behavior for d33 versus

preload. This in turn is compatible with the nonlinearity of d33 with respect to the

preload and with the few nonlinearities in the stress–strain curve observed for the

PDMS protective layer [151]. The same behavior was observed from tested fingertips

sensors, belonging to patches that were specifically chosen as lying in the sweet spot on

the heat map.

The chapter presented an effective, repeatable and simple characterization protocol

to validate the skin patches. A laser positioning system would be useful to align

the indenter with the sensor center, therefore reducing errors arising from indenter

misalignment, especially when testing fingertip sensors characterized by small radius.

Future studies should take this into account. A critical limitation of the developed

model is the inability to predict the behavior of artificial sensors in real applications,

since this would require another sensor integration procedure, including double-sided

adhesive layers on both sensing patch surfaces to avoid sliding. This could be done in a

future work.

The usage of e-skin patches in real scenarios (e.g., biomedical applications requir-

ing sensorized gloves or robotics) would likely lead to film degradation and consequent

P(VDF-TrFE) aging and fatigue. Estimating the piezoelectric d33 coefficient from the

overall system response function is a practical tool to measure the reliability of e-skin

degradation, whenever embedded sensors are not accessible anymore for a direct char-

acterization. The model presented in this chapter could be adapted to take into account

the coupling procedure required to avoid sliding, including the deformable adhesive

layers. However, measuring how the film degrades over time implies differentially
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comparing the current value of d33 to an initial value, with no influence of the wrong

estimation of that absolute initial value.
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Chapter 4

Experimental Assessment of the

Interface Electronic System for

PVDF-Based Piezoelectric Tactile

Sensors

4.1 Introduction

Recent advances in electronic systems are playing a key role in enabling tactile sensing

systems to be used for important and critical applications, such as restoring the sense

of touch in prosthetics [150]. These applications interact with the surrounding environ-

ment through tactile sensors using different transducing methods, such as capacitive

[157], piezo-resistive [158], and piezoelectric [159]. Piezoelectric tactile sensors are

able to detect contacts and slip, and provide the possibility to estimate applied forces.

To meet the application requirements, suitable interface electronic system are needed

to amplify and measure the electrical response generated from the tactile sensors.
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When aiming for the reconstruction of accurate contact/touch, such as shape and

texture, large numbers of tactile sensors should be deployed. These sensors have to

provide high sensitivity, flexibility, and a wide frequency range e.g., polyvinylidene

fluoride (PVDF) based piezoelectric sensors [36]. Finally, the frequency of interest for

the dynamic interaction range from 0 up to 1 kHz [37]. Unfortunately, few researchers

had focused on developing dedicated IE for tactile sensors considering the above

mentioned requirements dealing with portable interface electronic systems. Taking into

consideration the described requirements, an interface electronic system integrated

with the tactile sensor array has been developed [160]. The system is introduced as a

wearable tactile sensing system that can be employed in HMI. The IE design is based

on low power ARM-microcontroller and low-current input analog-to-digital converters

that features multiple input channels (i.e., 32 sensors) [160].

In this chapter, the experimental characterization of the interface electronics with

the piezoelectric PVDF-based tactile sensors is presented. Section 4.2 reports the state

of the art showing the recent developments in IE systems for tactile sensing. In Section

4.3, the tactile sensing system blocks, along with its implementation, are described.

The experimental setup and method for the characterization of the interface electronics

with the piezoelectric PVDF-based sensors are illustrated in Section 4.4. Then, the

experimental results are presented in Section 4.5. After that, the signal to noise and

distortion and the effective number of bits of the system are analyzed in Section 4.6

followed by conclusions in Section 4.7. The content of this chapter is presented in

[161].

4.2 Background

Interfacing tactile sensors have been given particular importance in research works

in the last years. Studies have targeted sensor characterization where the proposed
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electronics are responsible for collecting sensor signals for analyses and to examine

the behavior/response of the sensor [162], [163]. Dedicated interface electronics have

been designed for integration purposes in specific applications [160], [156], [1], i.e.,

robotics.

The characterization of PVDF-based piezoelectric sensors has been done by studying

their sensitivity with or without protective layers with the variation of the contact force.

In particular, when used for acquiring the electrical signals of piezoelectric sensors, the

IE was mainly composed of a charge amplifier and a DAQ device for digitizing and

filtering the signals. In [162], a prototype of a sensor array, 4 × 2 of a ceramic type,

was characterized. The output of the sensors is conditioned using TLV2772 operational

amplifier and then sampled through a DAQ device (National instrument, USB-6009).

Similarly, the DH5862 device was used in [163][ to measure signals of one tactile unit

(4 sensors) of a patch with 3 × 2 tactile units (24 sensors). Signals are result of applying

three-axis contact forces where normal and shear forces are loaded on the surface of

the tactile unit. The output signals, resulting from applying sinusoidal normal force

using a shaker in the frequency range 4–500 Hz with variable amplitude in the range of

0–1.5 N, were then collected by an NI-DAQ device (USB-6343). A dedicated IE system

was proposed in [163], where the authors presented a design methodology to define

the metrics required in assessing the developed IE prototype. The prototype design

depends on the sensor charge value that should be detected. So, tests were performed

to check the prototype behavior when coupled to integrated PVDF sensors. The IE is

composed of an op-amp (OPA348) and a low pass filter. Results reported a sensitivity

of about 5.7 pC/N after the PVDF sample had been stimulated with a shaker with

fixed frequency (i.e., 230 Hz) at variable force amplitude (i.e., 0.2–0.6 N). Moreover,

the IE circuit in [1] adopts a dual-channel analog to digital converter DDC112U and

an FPGA Xilinx Spartan®-6. The results demonstrated the feasibility of the proposed

circuit with 0.6 pC/kPa average sensitivity in the frequency range from 10 Hz to 250 Hz.
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Furthermore, the functionality of the interface electronics system developed in [1] has

been assessed and its implementation was experimentally characterized in [164]. In

[160], we proposed a wearable IE system aimed at providing tactile sensory feedback in

prosthetic applications. The design provides the possibility to interface 32 piezoelectric

tactile sensors with a low power budget maintaining real-time operation.

4.3 Tactile Sensing System

4.3.1 Piezoelectric Tactile Sensor

The study presented in chapter 3 validated the technology of the piezoelectric sensors

and demonstrated the functionality in terms of the piezoelectric coefficient. Since the

sensors and the coupling methodology were validated in that study, in this study we used

the same sensors and the same methodology (Soultion 1, see Figure 3.18). Moreover,

the interface electronics has been developed to interface such sensors. Therefore, in

order to validate the interface electronics, one sensing array was selected from the two

sets presented in Section 3.2.1.

4.3.2 Piezoelectric Tactile Sensor Model

The behavior of the piezoelectric sensor is a function of the reaction of piezoelectric

transducer layers under an applied contact stress, see Figure 3.6. Accordingly, the

amount of generated charges from the sensor are a function of the amplitude of

the applied force. Thus, to estimate such an amount, it is important to have an

electromechanical model that shows a relation between the sensor charge and the

contact stress. For that, the mathematical mechanical model described in [1] has been

adopted. The derived model finds the relationship between the applied mechanical

stimulus and the corresponding charge that will be measured by the IE. Equation
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(4.1) represents the open-circuit voltage generated by the piezoelectric sensor when a

constant vertical stress (T3) is applied:

VOC = −qsensor

Cp

= −d33Apiezo

Cp

T3 (4.1)

where qsensor is the amount of charge generated upon T3 stress, d33 is the longitudi-

nal piezoelectric charge coefficient, (T3) is the mechanical stress, (Cp) is the equivalent

capacitance between the electrodes of the piezoelectric film, and (Apiezo) is the loaded

piezoelectric area. Since the sensor is covered with a protective layer of thickness (h),

the direct applied stress is not (T3).

According to Equation (4.1), the authors in [1] defined an electrical circuit consist-

ing of a voltage source (VOC) connected in series with a capacitor (Cp). This represents

an equivalent electrical model of the piezoelectric sensor. Thus, the output charge

(qsensor) of the electrical model—equivalent to the output of the real sensors is calcu-

lated in Equation (4.2) [1]. Furthermore, Equation (4.2) will be used to calculate the

charge generated from the model at the input of the analog-to-digital converter of the

IE.

qsensor = CpVp sin 2πfTINT (4.2)

where (f) is the frequency of the input signal, converted from current-to-voltage ev-

ery (TINT ) by internal integrators provided by the analog to digital converter (DDC232):

Equation (4.2) will be used as a reference point for the electrical validation of the IE in

Section 4.5.

69



70
Chapter 4. Experimental Assessment of the Interface Electronic System for PVDF-Based

Piezoelectric Tactile Sensors

4.3.3 The Interface Electronic System

4.3.3.1 Requirements and Specifications

The development of an interface electronic system necessitates possessing quantitative

information about the application requirements, such as defining the contact stress/-

force range and the electrical response of the piezoelectric sensor. These dynamics have

been quantified in [165] and can be used as a reference point for defining electronic

design specifications. Based on their estimations, the application range goes from

50 Pa to 5 MPa (over 5 orders of magnitude) resulting in a charge response ranging

from 0.01 pC to 1 nC. However, the range of interest according to [166] is to cover

stresses of the order 10,100 kPa for normal manipulation tasks and those lower than

10 kPa correspond to gentle touches. Given the considerations above and based on

the frequency range of interest for the electronic skin application mentioned in [37],

the designed interface electronics should be able to measure an input charge up to

hundreds of pC with a large frequency bandwidth up to 1 kHz. Thus, the sampling rate

must satisfy the Nyquist condition (above 2 kSps). Moreover, the design must take into

consideration a large number of input sensors that will be integrated into the prosthetic

glove attached to the amputee’s forearm.

4.3.3.2 Block Diagram and Circuit Design

This section describes the block diagram and the implementation process for the IE

shown in Figure 4.1, which has been proposed in [160]. The IE comprises two main

components: (1) the DDC232 and (2) the BL600. The DDC232 is a 32-channel analog-

to-digital converter (DDC232), interfaced at the side of the sensors (32 sensors) with a

current offset circuit. The offset circuit is necessary to handle the bipolar charge-output

of the sensor that generates both positive and negative charges when stimulated. This

can be done by connecting voltage reference equal to (Vref/2) at the input of the
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Figure 4.1 Interface electronic printed board circuit (left) and block diagram of the DDC232
(right)

DDC232 converter. The 32 sensors are connected to the 32 available integrators in the

DDC232 so that the current-to-voltage integration can be continuous in time. For the

32 inputs, the output of the 64 integrators are switched to 16 delta-sigma converters

via multiplexers where the first 32 integrators are digitized while the other 32 are

in the integration mode. The second component is the BL600 module, a low-power

ARM-Cortex M0 based microcontroller. It is connected to the ADC using a synchronous

serial interface to configure the conversion rate and control the reading process of the

converted data [167]. The conversion process is controlled by a CLK pin (configured at

frequency 10 MHz) connected to the system clock of the microcontroller. The results of

each conversion are stored in a shift register. The output signal (DVALID) goes low to

indicate that data are valid and it triggers the controller to start the retrieving process.

The retrieved data format can be configured to be either 20 bits or 16 bits. This is done

by writing to the 12-bit onboard configuration register the corresponding format value.
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Three pins DIN-CFG, CLK-CFG, and RESET pins of the ADC are used to write to this

register and set the feedback capacitance of the integrators.

The SPI peripheral of the microcontroller has been enabled for controlling the

conversion and data retrieval process using the Keil-ARM IDE. The ADC is initialized

to convert data with a 16-bit resolution and configured to cover the maximum input

charge response by selecting the maximum value of the integrator feedback capacitance,

Cf = 87.5 pF; the BL600 module begins the write operation to the register by holding

CONV to control the switching between integrators and setting the RESET signal.

After that, the configuration process starts by shifting in the configuration data on

the configuration register data input (DIN-CFG) on the falling edge of the CLK-CFG

(the configuration register clock input). After the configuration is done, a clock signal

CLK at a frequency of 10 MHz is generated by the BL600 to operate the ADC. Then, a

CONV signal of 1 kHz frequency is generated to convert data of 32 channels at 2 kSps.

Sampled data are retrieved by the microcontroller and shifted out on the falling edge

of the serial data clock (DCLK) generated at 4 MHz frequency. Finally, data are sent

to the PC via UART-to-USB port at a baud rate of 115,200 bits per second (bps) to be

collected in the MATLAB tool and further analyzed.

4.4 Experimental Setup and Methods

After design implementation, two experimental tests were performed: electrical and

electromechanical. In the electrical test, the equivalent sensor model was implemented

by connecting a function generator in series with a capacitor and followed by the

interface electronic, as shown in Figure 4.2. The interface electronics acquire and

sample the sinusoidal waveforms produced by the source generator. Then, the sampled

data are sent to the PC to reconstruct the original signal where results were verified in

Section 4.5, according to Equation (4.2).
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Figure 4.2 Block diagram of the electrical setup; equivalent circuit of sensor (left) connected
to interface electronics; generated signals are reconstructed by the interface electronics (IE)
and sent to the PC.

After the electrical validation of the design, an electromechanical setup was per-

formed to study the functionality of the IE with real sensors. In the electromechanical

test, the frequency of the stimulus applied on the sensor has been fixed while the

stimulus amplitude was changing by controlling the shaker through a source generator,

see Figure 4.3 (Top). The IE connected to the sensor patch measures the generated

charges and sends the recorded data to the LabVIEW software. LabVIEW receives the

measured applied force from the PCB Piezotronics conditioner as well. In particular,

the shaker was controlled to apply 1.2 N as the maximum force with the maximum

shaking frequency at 400 Hz.

The mechanical chain used for measurements is shown in Figure 4.3 (Bottom)

and it is described in Section 3.2.2. Before running each test, a preload was applied

to guarantee indenter-PDMS contact during the whole test. Two tests were done

on the same sensors and under the same conditions (same coupling and indenter

positioning). In the first test, the charge generated by the sensor was conditioned

and processed by the PCB Sensor Signal Conditioner (482C54), while in the second

test, the generated charge was processed by the interface electronics. In the two tests,

the electromechanical stimulus measured by the piezoelectric force transducer was

conditioned and processed by the PCB Sensor Signal Conditioner (482C54). A graphical
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Figure 4.3 Experimental setup. Top: Block Diagram, Bottom: Pictures of the setup.

user interface (GUI) developed with NI LabVIEW on a host PC and NI PCI-4461 DAQ

data acquisition board was used to collect and visualize both the force transducer

(stimulus) and the generated charge.
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Figure 4.4 (a) The theoretical fit-line is calculated from Qtheoretical = CpVp sin(2fTINT)
derived from the equations presented in [1]; (b) shows the output of the IE relative to input
signals generated from the source generator.

4.5 Experimental Results

This section presents the experimental results obtained from both electrical and elec-

tromechanical tests.

4.5.1 Electrical Measurements Results

The electrical setup illustrated in Figure 4.2 was used to validate the interface elec-

tronics. An equivalent piezoelectric sensor model, composed of the source generator

connected in series with a capacitor of 22 pF, is connected to the IE. The IE was config-

ured to acquire data sampled at 2 kSps. The sampled data was sent to the PC where it

was analyzed using MATLAB. The test was done by generating a sine waveform, from

the source generator, of a specific frequency at which the IE measures the specified

signal at different amplitudes (from 100 mV up to 9 V). The same scenario was repeated

at different frequencies within the targeted bandwidth (i.e., 1 Hz–1 kHz). Figure 4.4.a
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shows that the charge measured with a 100 Hz input sine wave as a function of the

amplitude is close to the theoretical results computed from Equation ((4.2). The same

test was performed for several frequencies and the results illustrated in Figure 4.4.b

verify, according to Equation (4.2) (Qtheoratical = CpVpsin(2πfTINT )), that the amount

of charge becomes larger as the input frequency increases. Moreover, the non-linearity

error was estimated using the best-fit method, where 2.3% for the average error was

recorded. Therefore, the results validate the correct functionality of IE in measuring

charges, which are close to the theoretical results.

The frequency response of the DDC232 depends on its integrators and the 3-dB

bandwidth location is affected according to the integration time. Since the DDC232 is

converting data at 2 kSps (means Tintegration = 500 µs), then according to [167], around

900 Hz bandwidth is within a 3 dB gain. This offers a wide range of frequencies (up to

1 kHz) that can be set for testing. According to datasheet [167] and based on the fact

that the DDC is a current-input analog to digital converter, the maximum input current

that can be acquired is around 216 µA. Thus, at the maximum current, the signal is at

the digital full-scale and any further increase in signal amplitude results in an error. For

this reason, the error was realized when the injected signals of high frequencies (above

400 Hz) reached amplitudes above 6 V. Therefore, DDC will reconstruct signals up to 1

kHz frequency at amplitudes up to approximately 3 V. So, high-frequency signals at

high amplitudes were not included in the test.

4.5.2 Electromechanical Measurement Results

Figure 4.5.a shows the behavior of the IE in detecting and measuring the change

of charges as a function of force. Although the obtained results meet the concept

expressed in Equation ((4.2) that as force increases charge increases, the conditioner

was included in the test to be a reference point for evaluating the behavior of the IE.

In addition to force conditioning, the conditioner features charge conditioning from
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Figure 4.5 (a) IE output measurements with real sensors; (b) conditioner output measure-
ments with real sensors.

Figure 4.6 (a) Sensitivity as a function of frequency; (b) measured charges at the minimum
detectable force (0.01 N).

piezoelectric sensors. Then, the IE was disconnected from the sensors and replaced by

a conditioner. The test was repeated under the same conditions (sensor coupling and

positioning) and the corresponding force and charge measurements were recorded. It
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Figure 4.7 Example of an input signal at 100 Hz of frequency in time and frequency
domains.

is noticed, as expected from Figure 3.7.b, that when increasing the force, an increase of

the amount of charge is observed. We can deduct from Figure 4.5 that the IE is able

to detect and measure the linear change of input charges within the given frequency

and force ranges, 20–350 Hz and 0.2–1.2 N, respectively, with slight differences in

charge values. The difference in charge values between IE and conditioner can be

observed from the sensitivity curve reported in Figure 4.6.a. The plot demonstrates the

increase in sensitivity (1.5–31.96 pC/N) as a function of frequency. The sensitivities

have been estimated by calculating the slopes of the measured charge versus force

within the frequency range 20–400 Hz. By analyzing the figure, it seems that the

difference between the IE and the conditioner is almost constant and, thus, it is possible

to apply setup calibration to find the empirical difference value. Moreover, in order

to demonstrate the ability of the IE in acquiring data at higher frequencies, a test was

done by fixing the frequency at 400 Hz and adjusting the amplitude—controlling the

shaker—to reach the minimum force value. Results presented in Figure 4.6.b show that

the IE is able to measure charges obtained under minimum applied force (0.01 N).
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Figure 4.8 SINAD and ENOB variation with respect to applied forces.

4.6 Signal to Noise Ratio Analysis

This section presents the analysis carried out to study the measured signal with respect

to noise by using methods as adopted in [164]. The noise may be a result of harmonic

distortion added to the input signal or at the output of the IE circuits described above

as we are analyzing the signal output of the whole system, i.e., sensors and interface

electronics. Such noise contributes directly to the signal-to-noise ratio of the design.

IEEE in [168] has defined test methods for analog to digital converters, i.e., the signal

to noise and distortion ratio (SINAD) and the effective number of bits (ENOB). In

particular, SINAD is used to measure the degradation of the signal by unwanted signals

in noise and distortion. It is the ratio of total signal power level to the noise and

distortion power. Also, SINAD provides the basis for calculating the ENOB, which

specifies the number of bits of the signal that is above the noise floor. Figure 4.8

illustrates the SINAD and ENOB curve versus frequency where SINAD was computed

by calculating the ratio of the root-mean-square (rms) of the fundamental signal to
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the root-mean-square of noise and distortion. After normalizing the input data to scale

between 0 and 4.09 V (ADC reference voltage), FFT has been applied to distinguish the

fundamental signal from other harmonics and noise existing in the spectrum. Finally,

the amplitude of the signals in the spectrum have been measured and substituted in

the equation below to calculate the SINAD:

SINAD = 20 log rms(As)
rms(n + k) (4.3)

where As is the amplitude of fundamental signal and (n + k) is the amplitude of

noise and distortion. Moreover, we used Equation (4.4), derived in [169], to compute

the ENOB after applying a fast Fourier transformation (FFT) to the data recorded in the

previous test. Figure 4.7 shows an example of an input signal at 100 Hz: (a) original

signal in the time domain, (b) reconstructed signal after ADC conversion, and (c) the

FFT of the signal demonstrating the fundamental signal at 100 Hz of frequency.

ENOB =
SINAD − 1.76 dB + 20 log

(
full scale amplitude

input amplitude

)
6.02 (4.4)

Figure 4.8 shows consistent behavior of the IE over a frequency where around

14 bits out of 16 of the digitized signal are above the noise floor. So, this will be an

advantage to retain more accurate data and, thus, acquiring tactile data with a high

resolution.

4.7 Conclusion

This chapter presented an experimental assessment of new wearable interface elec-

tronics proposed for interfacing PVDF-based piezoelectric tactile sensors for prosthetic

application. Interface electronics is composed of a low-power ARM-Cortex M0 microcon-

troller and a DDC232 analog-to-digital converter to interface 32-input tactile sensors.
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The system has been experimentally evaluated by electrical and electromechanical tests

where results demonstrate charge estimation within the force range 0.01 to 1.2 N (10

kPa–1.4 MPa) with approximately 0.2 pC charge value readable by the IE at 0.01 N,

lowest input force. Results validate the proper functionality of the interface electronics

in measuring the dynamic range of charges estimated within the force range of interest

to cover normal manipulation tasks and stresses of orders up to 100 kPa. An average

signal-to-noise and distortion ratio of about 56 dB was measured for applied forces

from 0.2 to 1.2 N. Therefore, the results demonstrate the suitability of the proposed

system for acquiring tactile bipolar signals with high-resolution after achieving 14 bits

of ENOB.
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Chapter 5

Development of a Skin Patch based on

P(VDF-TrFE) sensors and assessment

of the sensing system

5.1 Introduction

The studies presented in Chapter 3 and 4 focused on the validation and experimental

assessment of the PVDF-based sensing arrays and the interface electronics respectively.

Chapter 3 presented the validation of the newly developed sensor technology. The

sensors were tested in a controlled environment where the stimulus parameters are

controlled (contact area, applied force, waveform, etc.). The response of the sensors

was examined in the frequency domain and within a limited range of frequency (50

Hz -250 Hz). The response of the sensors was further examined in Chapter 4 while

assessing experimentally the behavior of the interface electronics. Results in Chapter

4 demonstrated that the sensing system i.e. sensors and interface electronics are

capable of detecting different levels of forces within the frequency range of 20- 450 Hz.

Furthermore, a linear relationship between the charge response and the force stimulus
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was found. However, the experimental assessment of the interface electronics was done

also in a controlled environment using an electromechanical setup. Both studies were

limited in the frequency range of the stimulus. In addition, in both studies, we didn’t

examine the response of the sensors to a stimulus with low-frequency content < 30

Hz. Moreover, still, the sensing system wasn’t tested in a non-controlled environment

where the contact parameters are not controlled. Finally, all the tests done so far

were implemented on the sensing array with the PDMS layer as a protective layer and

with no shielding. This makes the sensing system still not applicable for usage in a

more realistic scenario where none of the aforementioned parameters (e.g., contact

parameters) are controlled. Characterizing the sensor behavior directly would be a

quite complex, lengthy, risky, and hardly reproducible process. Direct objects contact

leads to sensor damage. To use the sensing array in the different applications requires

integration of the shielding layer to the sensing arrays from all sides and requires the

integration of a protective layer on top of the sensing patch, giving rise to what we call

the skin patch. This chapter focuses on the development and demonstration of a novel

skin patch that has been developed using the sensing arrays presented in Chapter 3.

Moreover, it presents the assessment of the developed skin patch in a controlled and

non-controlled environment for which we developed two experimental setups. The skin

patch was tested using a PCB piezoelectric conditioner and later using the interface

electronics. Moreover, the ability of the skin patch to detect different touch patterns

was evaluated. Finally, this chapter presents the implementation of signal processing

methods for noise cancellation. The methods were implemented in the firmware of the

interface electronics and tested using the skin patch in a non-controlled environment.

The chapter is organized as follows: Section 5.2 describes the developed skin

patch. Section 5.3 presents the validation of the skin patch in a controlled environment

whereas Section 5.4 describes the ability of the sensing system to detect touch patterns

applied in a non-controlled environment. Section 5.5 presented the implementation of
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signal processing methods in the interface electronics. Finally, our conclusive remarks

are given in Section 5.6.

5.2 Skin Patch

The embedded sensing system raises several issues: it must be compliant with the e-skin

structure, that is, flexible, it must be robust against electrical noise and mechanical

damages, and must be resilient [35]. Adding an element of protection from damage

to the sensing arrays is essential when integrating it into the robotic hand that will be

used in daily life activities. All such demanding requirements are challenging especially

when considering integrating the sensing system on the robotic hand. In addition to the

mentioned noises, the sensing system might be exposed to external charge especially

when the arrangement of the sensing system is based on piezoelectric sensor and

charge amplifiers. Such an issue can be resolved by integrating a shielding layer, which

guarantees a minimum sensitivity to noise. In addition to shielding, adding a thin

protective layer on the contact side of the sensing array would protect the sensors from

any damage and increase the lifetime of the integrated sensing system. This section

describes the fabrication of the skin patch that fulfill the aforementioned requirements

of the sensing system. Chapter 3 studied the piezoelectric coefficient of the sensors

and demonstrated the relation between the preload and the piezoelectric coefficient.

It was found that the sensing arrays located in the white spot of the heat map (see

Figure 3.11), have the most reasonable behavior in terms of the piezoelectric coefficient.

Based on that, in this study, we chose to develop a skin patch using the Michelangelo

Palm patch (category 4) which is located on the white spot.

To prepare a skin that could be applied on different surfaces, a novel multi-

layer skin patch was invented. The target is to protect the e-skin electrically and

mechanically while allowing it to conform to different shapes (e.g., fingers). Figure 5.1
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Figure 5.1 Skin patch development process. The sensing array is shielded using conductive
tapes and a thin protective layer is used to protect the sensing areas.

(left) shows the structure of a single sensing array. The sensing arrays are composed

of single or triple sensing arrays and each has its tracks area (see Figure 3.3). The

fabrication process of the skin patch is shown in Figure 5.1 (right). The integration

process was done in three main steps. Since the sensing system might be exposed to

external charge especially when the arrangement is based on piezoelectric sensor and

charge amplifiers, the sensing areas were first sandwiched between two double-sided

electrically conductive tapes (Model tesa 60262, tesa). The conductive tape was used

as a shielding layer, which guarantees a minimum sensitivity to noise. Since the tracks
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must be connected to the interface electronics, the tracks area is not covered with

the UV-curable lacquer layer during the fabrication of the sensing arrays (see section

3.2.1). For that reason, an insulating coating (Model PLASTIK 70, KONTAKT CHEMIE)

was applied to the unprotected part of the tracks area to protect and insulate the

sensor tracks. The tracks area was shielded using single-sided electrically conductive

tape (Model tesa 60234, tesa). Both conductive tapes (single-sided and double-sided)

are conductive from both sides and hence they were electrically connected once they

were coupled to each other. The shielding layers were connected to the ground of the

interface electronics using a self-adhesive copper foil tape and a wire. Finally, a thin

flexible cylindrical shape protective layer (Art. 5500 Dream, Framisitalia) was added on

the top of the sensing area to protect the sensors from damage and increase the lifetime

of the integrated sensing system, forming the skin patch. When used on different

surfaces, the skin patch was coupled from the bottom side with a flexible cylindrical

shape substrate (PVC of 0.25 mm thickness) using a double-sided adhesive tape (Model

3M 9485, 3M) to avoid bending and protect the skin patch from the bottom side.

5.3 Systematic skin patch validation

Chapter 3 and 4 proved that the sensing system has a linear response to the applied

force stimulus. Such a result was found using the sensing arrays coupled to the PDMS

protective layer which is not the structure to be used in the application because of its

thickness and rigidity. It is important to test the response of the sensors after being

integrated into a multi-layer structure i.e., skin patch. Moreover, such testing must be

done using the interface electronics and then compared to the response of commercial

sensors and readout circuits. For that reason, we conducted new experiments to test the

response of the skin patch to different stimulus waveforms, and check if repeatability

and linearity in the response are achieved. To accomplish such a task, we modified
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Figure 5.2 Experimental setup. Top: Pictures of the setup, Bottom: Block Diagram. The
blue dotted line shows the alignment of the testing elements.

the electromechanical setup used in Chapter 3 so that it mimics the touches in a real

scenario (e.g. passive touch).
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5.3.1 Experimental setup

Figure 5.2 shows the electromechanical setup. The skin patch was then coupled to a

rigid plate which was was fixed on the moving head of an electromechanical shaker

(Bruel and Kjaer, Minishaker Type 4810 from HBK company, Germany). A soft spher-

ical indenter (R = 2 mm) and a piezoelectric force transducer (Model 208C01, PCB

Piezotronics, MTS system), were coupled on the lower head of the moving support.

In all the experiments done in this study, the test started by activating the electrome-

chanical shaker with a specific waveform (sine, rectangular, or triangular) and at a

specific force (amplitude of the signal). A preload was then applied to guarantee

indenter-patch contact during the whole mechanical stimulation. The value of the

preload has been controlled by a laser (Waycon LAS TM10), allowing us to fix the

displacement of the rigid plate at a certain value for a certain preload, through displace-

ment–force calibration curves. Three different signals (see next section) were provided

to an electromechanical shaker by a graphical user interface (GUI) developed with NI

LabVIEW on a host PC and NI DAQ data acquisition board. The signal was amplified

using a Power Amplifier (Type 2706). The force transducer (stimulus) was conditioned

by a PCB Sensor Signal Conditioner (482C54) while the charge developed by the sensor

(response) was conditioned either by the conditioner or by the interface electronics as

illustrated in Figure 5.2.

5.3.2 Response to different stimulus waveforms

In Chapter 3, the response of the sensors to a swept sine signal was examined. Forces

in the frequency range of (0.5–1 kHz) have been applied through the spherical rigid

indenter. The force and the charge developed by the sensor (response) were processed

in frequency to give the System Response Function (FRF) at each frequency step. We

recall that FRF corresponds to the ratio between the Fourier transform of the output

charge and that of the input force. However, in the study presented in Chapter 3 we
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Figure 5.3 Response of a single sensor to swept sine stimulus with the PCB conditioner.
The amplitude of the signal was increased or decreased automatically by the host PC.

didn’t examine the response of the sensors in the time domain and the response to

different waveforms, for example, the triangular and rectangular signals. Recalling that

the frequency range selected in the study of Chapter 3 was 50-250 Hz, hereby in this
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Figure 5.4 The Fast Fourier Transformation of the swept sine stimulus and the response of
the sensor using the conditioner.

chapter we examine the response of the developed skin patch to forces in the frequency

range below 30 Hz and especially in the very low frequencies ∼ 0.5 Hz.

Figure 5.3 shows the response of the skin patch to a sweep sine signal of frequency

range 0.2-30 Hz with a step frequency of 1.49 Hz. The amplitude of the swept sine

signal was changed automatically by the host PC during the experiment. This was
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Figure 5.5 Response of a single sensor to swept sine stimulus with the PCB conditioner.
The amplitude of the signal was increased or decreased automatically by the host PC.

done to ensure that the sensors respond to all the frequencies regardless of the signal

amplitude. Moreover, it is important to note the applied force depends first on the

amplitude of the signal and second on the behavior of the electromechanical shaker

which increases the force as the frequency increases. The sensor response was measured

by the PCB conditioner.

The plots shown in Figure 5.3 prove the following, first the sensor responds to

the press and release of the soft indenter, which refers to applying and releasing the

preload respectively. Second, the figure shows that the response of the force transducer

and the sensor are aligned where the sensor responds to the increase/decrease in the

force and the increase in the frequency. This is more illustrated in Figure 5.4 where the

Fast Fourier Transformation (FFT) was applied to the swept sine stimulus measured

by the force transducer and the to the response of the PVDF sensors (skin patch). The

figure shows that the sensor responds to all the frequencies applied within the range.
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Figure 5.6 Response of a single sensor using the conditioner to rectangular (Top) and
triangular (bottom) stimuli.

The same experiment was repeated, however, the PCB conditioner was replaced by

the interface electronics. Figure 5.5 shows the swept sine stimulus and the response of

the sensing system (i.e., skin patch and interface electronics). The figure shows that

the sensing system can easily detect the change in the frequency and the force level.
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However, the systems encounter a high noise level which might affect detecting very

low frequencies. This is discussed and solved in section 5.5.

The response of the sensor to triangular and rectangular stimulus signals was ex-

amined as well. Figure 5.6 (Top) shows the rectangular stimulus and the corresponding

sensor response. In addition, Figure 5.6 (Bottom) shows the triangular stimulus and

the corresponding sensor response. In both tests, a series of forces were randomly

applied. Considering the response of the force transducer as the reference signal, both

figures show that the sensors respond perfectly to the change in the different stimuli

and the change in the force level.

5.3.3 Repeatability and Linearity

The study conducted in Chapter 4 demonstrated that the interface electronics is capable

of reading and processing the sensor signal and has been compared to the conditioner.

Moreover, it demonstrated the linear relation between the force stimulus and the charge

response. However, we never tested how could such relation be affected by the applied

forces and their order. Moreover, this section check if the response of the sensors is

repeatable. To tackle such problems, we used the electromechanical setup presented in

Figure 5.2 to study the response of the skin patch to a sequence of forces. Since the

focus is on the response of the sensors, we used the conditioner to acquire the sensor’s

signal.

A series of forces was applied to extract the sensor behavior to a change in the

order of the force levels, i.e., ultimately their charge response, from indentation tests on

the skin patch surface. A set of force sequences were predefined on the host PC where

the force levels were randomly ordered to exclude the impact of the force order on the

response of the sensor. The force level was modulated by changing the amplitude of

the sine signal fed to the electromechanical shaker. The frequency of the sine signal

(force stimulus) was fixed to 0.5 Hz, which is the minimum frequency that guarantees

94



5.3 Systematic skin patch validation 95

Figure 5.7 An example of a sequence of forces and the corresponding charge response at
preload of 0.6 N (left) and 3 N (right)

a normal behavior from the shaker. Moreover, the force range and levels were selected

based on the specification of the shaker where higher forces might damage the shaker.

Therefore, it is important to note that the force range is limited by the setup, not by

the response of the sensors. Before running each sequence, a preload has been applied

to guarantee indenter-skin contact during the entire mechanical stimulation. Then,

each sequence has been repeated for each of the following preloads 0.6, 1, 2, and 3
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Figure 5.8 Average charge response vs force at four preloads.

N. Figure 5.7 shows an example of a sequence of forces applied on a single sensor.

The figure illustrates the applied stimulus and the corresponding charge response at

two preloads (0.6 N and 3 N). As shown in the figure, in each sequence there is one

force level that was repeated four times to check the repeatability in the response of

the sensor. Therefore, In each sequence, there is a force level repeated four times

and it has a specific force order. This was repeated for all the selected force levels,

therefore, resulting in six sequences of forces, and each sequence was repeated 4 times

(4 preloads).

For each sequence, the charge response at each force level was computed as the

peak-to-peak amplitude and then averaged over time. Therefore, the output of each

sequence is a single charge value for each force level. For example, the sequence

shown in Figure 5.7 results in four charge values for the 0.06 N force and one charge

value for each of the remaining forces. This was repeated for all six sequences. To

plot charge response vs the force level, the charge values (for each force level) from

all the sequences were averaged and then we computed the standard deviation as an
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indication of the repeatability in the sensor response. Figure 5.8 shows a linear behavior

between the charge response and the force applied on the surface of the skin patch.

The obtained results meet the results obtained in Chapter 5 where a linear relationship

between the charge response and the force stimulus was detected. The results presented

in Figure 5.8 show that indeed sensor response to force does significantly depend on

the preload. It turns out that as the preload increases, the average charge response

decreases, and values from different trials exhibit a lower dispersion (lower standard

deviation). Such result is aligned with the findings of the study presented in Chapter

3, where it was found that as the preload increases, the average d33 decreases, and

values for different sensors exhibit a lower dispersion. The results shown in Figure 5.8

illustrate that the response of the sensors is repeatable where the standard deviation at

each force level is very low compared to the charge value.

5.4 Touch pattern detection

The experiments done so far use a quasi-ideal experimental setup where testing pa-

rameters have been pre-defined (i.e. touch alignments, pre-programmed force, and

frequency). Although the results verify and validate the good response of the sensing

system and especially the skin patch, however, the system should be further tested in

a more realistic scenario. The aim is to study the response of the sensing system to

different touch patterns that might be incorporated while the skin patch interacts with

objects. Moreover, we would like to study the correlation between a stimulus applied

at the surface of the skin patch and the charge response. For this purpose, we have

arranged a new experimental setup. Figure 5.9 shows the developed setup, The skin

patch was placed on the top of a strain gauge load cell (Tedea Huntleigh, Model 1042)

and faced upside. The load cell was used to measure the force applied on its surface

where the skin patch is placed. The force stimulus was conditioned by a PXIe-4330
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Figure 5.9 Experimental setup. Top: Pictures of the setup, Bottom: Block Diagram. The
blue dotted line shows the alignment of the testing elements.

(NI, US) conditioning board while the charge developed by the sensor (response) was

conditioned either by the PCB Sensor Signal Conditioner (482C54) or by the interface

electronics as illustrated in Figure 5.9. A LabVIEW software developed on a National

Instruments PXI system was used to collect, visualize, and save the force stimulus and

the charge response.

Three touch patterns were selected, tapping, Press-Hold-Release, and continuous

touch. We believe that these touch patterns are the most used during daily life activity,

for example, tapping might be used for detecting the stiffness of the object. During
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Figure 5.10 Response of the single sensor to tapping (left) and press-hold-release (right)
touch patterns.

the tests, the experimenter applied one of the aforementioned patterns on a single

sensor using his/her finger. Representative results from the sensing system validation

experiments are shown in Figure 5.10 and Figure 5.11. The two figures show the

force stimulus detected by the load cell and the corresponding charge response. In

particular, Figure 5.10 shows the response of a single sensor to the tapping and Press-

hold-release patterns. Similarly, Figure 5.11 shows the continuous touch patterns and

the corresponding sensor response.

The results show that the sensor captures the dynamic features of the mechanical

event by generating two phasic bursts. The contact onset is associated with a decrease

whereas contact release generates a signal increase which is aligned with the result
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Figure 5.11 Response of single sensor to a continuous touch pattern (Top) and the correla-
tion between the applied stimulus and the sensor response (Middle). Bottom: continuous
wavelet transform (CWT) of the applied stimulus and the sensor response.

obtained in the previous section. The signal peaks are arranged in a sequence reflecting

the fact that the touches were applied to the sensors sequentially. The Press-Hold-

Release pattern was presented by the sensor by two bursts corresponding to the press
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Figure 5.12 The Output of inverting the continuous wavelet transform over three frequency
ranges ( < 50 Hz, < 30 Hz, and < 10 Hz) Bottom: Specification of a low-pass IIR filter
that could be used to reduce the noise level and the output signal.

and release events, while in-between the bursts there was some wiggling. The Press-

Hold-Release event was not stable because it was applied using the finger, which makes

it difficult to maintain the force level. Finally, the plot presented in Figure 5.11 (Top)

indicates that the sensor responds to a change in the applied force in which the charge
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response follows the force stimulus. Interestingly, the sensor response pattern, in this

case, is more complex; the press and release peaks are still visible, but they are not as

sharp as in Figure 5.10. The cross-correlation between the continuous touch pattern

and it’s charge response was computed and plotted in Figure 5.11 (Middle). The plot

shows a high correlation between the force stimulus and the sensor response with a

small-time lag.

In all the experiments implemented so far, a high noise level was detected in the

response of the sensors. This was more observed when using the sensing system in

more realistic scenarios i.e., the setup shown in Figure 5.9. Such behavior or issue

was observed more when plotting the time-Frequency analysis (Continuous Wavelet

Transform) of the continuous touch pattern and the corresponding charge response (see

Figure 5.11 (Bottom)). The plot shows a high power for 60 Hz which is the common

noise frequency. Moreover, using the Time-Frequency plot we can indicate that the

frequency range of the sensor response is below 30 Hz.

To better define the frequency range of the sensor output, we used the Inverse

continuous 1-D wavelet transform function on Matlab (MathWorks, US) to invert

the continuous wavelet transform as shown in Figure 5.11 (Bottom) over multiple

frequency ranges. The results are shown in Figure 5.12 (Top). The plots show that the

frequency range < 30 Hz contains the most power of the signal, moreover, it cleans

the signal from noise. Such frequency range could be extracted by applying a simple

low-pass digital filter. As an example, Figure 5.12 (Bottom) shows the output signal

after applying a low pass IIR fitter with the stopband frequency of 32 Hz. The outcome

of the test is important to reduce the noise in the sensing system and implement a

digital filter in the interface electronic firmware to add such preprocessing in the online

feedback loop. This will be more discussed and explained in the next subsections.
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Figure 5.13 The output of the FIR filter after being implemented in the firmware of the
interface electronics. Left: response of the sensor to Press-Hold-Release touch pattern.
Right: continuous wavelet transform (CWT) of the sensor response.

5.5 Implementation of tactile signal processing

As indicated in the previous section, a signal processing strategy is required to improve

the response of the sensors and interface electronics in capturing signals with low-

frequency content and reduce the effect of noise (harmonics). For this purpose, we

developed and implemented in the interface electronics two filtering methods: finite

impulse response filter (FIR) and moving average filter (MAF). The implementation

process is introduced and the results of the two methods are discussed next sections.

5.5.1 Filtering using Finite Impulse Response method

The design of the FIR filter is composed of two main parameters: cutoff frequency and

filter order. Using the findings of previous experiments and especially the results shown

in Figure 5.12, the cutoff frequency should be < 50 Hz. The filter order generally is
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recommended to be high to result in a smooth signal. However, high filter order results

in many multiply-accumulate (MAC) operations that are required to filter out only

one sensor signal. Thus, implementing high-order filters to smoothen signals from 32

channels will introduce a huge delay in the extraction of tactile information and thus

in the feedback loop. Therefore, a trade-off between the accuracy of the filter and the

order should be considered while designing the filter.

After running several tests to find the trade-off among the filter parameters, an

FIR filter with a cutoff frequency of 30 Hz and order 58 has been implemented in the

firmware of the interface electronics. Applying such filter to all the interface electronics

channels is challenging as the controller memory was limited to run 10 filters for 10

channels. To assess the behavior of the IE with the FIR implemented in its firmware, we

used the setup shown in Figure 5.9 to apply one of the touch patterns (see Section 5.4)

on a single sensor. Figure 5.13 shows the response of the sensing system (sensor and

interface electronics) to the Press-Hold-Release touch pattern. The plots show that the

output of the filter is smooth where the noise frequencies components were eliminated.

The time-frequency plot on the right of Figure 5.13 confirms that the implemented filter

eliminated the noise frequencies. Although the implemented FIR filter enhances the

sensor signal and reduces the noise level, it is not possible to use it to filter signals from

all the channels due to memory limitations. Moreover, the low filtering accuracy would

make it difficult to construct light touches. To tackle such problems, in the next section

we present a new filtering method.

5.5.2 Filtering by Moving Average Filter

Moving average filter (MA) is one of the popular digital filtering techniques that can

smoothen all kinds of data and reduce random noise. Exponential moving average filter

(EMA) is a type of MA filter that operates with a low computational burden and can

be implemented easily and efficiently. EMA filter computes a weighted average of the
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Figure 5.14 The output of the moving average filter after being implemented in the
firmware of the interface electronics. Top: response of the sensor to the Tapping, Press-
Hold-Release, and continuous touch patterns. Bottom: continuous wavelet transform
(CWT) of the force stimulus and the sensor response.

time-ordered sequence by applying to the weights of the previous input that decrease

exponentially [170]
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The exponential moving average filter is expressed in a simple equation:

y[n] = αx[n] + (1− α)y[n− 1]. (5.1)

Where x[n] is the current input, y[n] is the current output, and y[n − 1] is the

previous output; α is a factor used to set the cut-off frequency. The EMA behaves as a

low pass filter where low frequencies have a near-unit gain, and high frequencies are

attenuated. The filter has been implemented on the interface electronics, performing

filtering at around 30 Hz cut-off frequency. The filter α value has been computed

and set to 0.09, which corresponds to the cut-off of 30 Hz. This allows the interface

electronics to perform filtering with minimum delay and at a high sampling rate without

losing samples during the run-time.

Figure 5.14 shows the response of the sensing system to the three touch patterns

after implementing the EMA filter in the firmware of the interface electronics. The plots

demonstrate the lower noise level compared to the output of the FIR filter and smoother

signal. This result is confirmed in the spectral plot of the force stimulus and the sensor

response as shown in Figure 5.14. The implementation of the filter on the interface

electronics and applying it for the 32 sensors, results in a significant improvement in

the performance of the interface electronics in terms of noise cancellation and detection

of touch events.

5.6 Conclusion

This chapter presented the development of a novel skin patch that is based on PVDF

sensors. The skin patch is composed of the sensing arrays, shielding layer, and protective

layers. It was developed to be applied on different types of surfaces. In this chapter, two

experimental setups were developed to test the developed skin patch and assess the

response of the sensing system i.e., skin patch and the interface electronics. The system
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was first tested in a controlled environment where we checked the linear relationship

between the sensor response and the applied stimulus. Moreover, we tested the response

of the sensors to different stimulus waveforms. Secondly, the system was tested in a

more realistic scenario where we checked the ability of the sensor to detect three touch

patterns. Based on the output of the latter experiment, we developed signal processing

methods for noise cancellation and touch detection enhancement. The study described

in this chapter presents the first step toward integrating the sensing system in different

applications (e.g., sensorize prosthetic hand). Moreover, the results demonstrated that

the sensing system could detect different touch modalities. Therefore, the system could

be easily integrated into a feedback system where it detects different touch modalities

and extracts tactile information that might be delivered to the user.
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Chapter 6

Embedded Electrotactile Feedback

System for Hand Prostheses using

Matrix Electrode and Electronic Skin

6.1 Introduction

Upper limb loss leads to substantial disability and thus dramatically reduced quality of

life of an amputee. Myoelectrically controlled prosthetic hands have been developed

to substitute the functions of the biological hand (e.g. [171]). Such prostheses are

controlled by recording electromyography (EMG) signals from the residual limb muscles

to estimate user movement intention, which is then converted into commands for the

prosthesis [172]. Despite remarkable progress in improving the control, amputees often

reject their prosthetic hands [27, 173]. One of the drawbacks of the contemporary

prostheses, which might contribute to their rejection, is the lack of somatosensory

feedback from the prosthesis to the user; hence, the amputees do not “feel” their bionic

limbs. Restoring the missing tactile feedback can have a positive impact on the utility

and user experience by improving performance and facilitating the feeling of ownership
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[136]. A system for feedback restoration comprises the following components [174]:

(i) a sensing system for the detection of tactile stimuli; (ii) a readout circuit for

data acquisition and the encoding of tactile data into stimulation profiles; and (iii) a

stimulation system to deliver the stimulation patterns to the prosthesis user. Preferably,

the technical solution should be simple, compact in size, portable, and durable.

To provide artificial tactile feedback, the prosthesis is equipped with sensors mea-

suring the interaction with the environment (e.g., grasping force). Acquired sensor

data are translated into stimulation patterns and delivered to the user invasively by

stimulating peripheral nerves [175], or non-invasively through electrotactile, mechan-

otactile, and vibrotactile interfaces [135, 21]. These methods have been extensively

described and compared in several recent reviews [135, 21, 176, 177]. Despite many

different approaches that are presented in literature, a common characteristic of these

systems is that they typically transmit only one or two global prosthesis variables [178].

Most often [136], the total grasping force is selected as the feedback variable since

this is a critical parameter during grasping where an inappropriate force can lead to

object slipping or breaking. Sometimes, the feedback also includes hand aperture,

which in combination with force allows recognizing object size and stiffness [179, 180].

To provide such artificial exteroceptive and proprioceptive feedback, the prosthesis

needs to be endowed with sensors that measure position and force [14]. Typically,

the measured sensor information is transmitted to the subject by using only a few

stimulation channels, for instance, several electrodes [181], vibration motors [182]

and mechanical pushers [183] that provide stimulation to several discrete points along

the residual limb. These feedback systems enable the user to feel “global” sensations,

e.g. contact, slippage, hand aperture and applied force, and it has been demonstrated

that such feedback can indeed improve performance and user experience. Neverthe-

less, an effective feedback system is still an open challenge as the impact of feedback

depends on multiple interacting factors [136]. The aforementioned approaches are
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limited in the number of sensors and stimulation points, and this substantially limits

the bandwidth of information that can be transmitted through the feedback interface.

This is in a sharp contrast to the human hand, which is covered with a dense network of

tactile mechanoreceptors and hence the natural feedback provides spatially distributed

pressure information.

Importantly, advanced sensing solutions that allow capturing spatially distributed

mechanical interaction are becoming more common. Several of such sensor systems

have been developed for robotic hands and are commercially available. The most

relevant for tactile sensing are BioTac, TekscanTM, and DigiTacts. BioTac [84] is a

sensorized finger equipped with a matrix of pressure sensors across the fingertip, as well

as a vibration and temperature sensor. Electronic skins integrating matrices of sensing

elements embedded into flexible structures have been fabricated (e.g., [61, 184–188]).

Most of these sensors were originally developed in the robotic framework. However,

they can be utilized in prosthetics, and some solutions have been already developed

specifically for this application [39, 53, 30, 189–191].

Since such sensing systems embed a network of sensors, they are attractive so-

lutions for providing an advanced feedback to a prosthesis user. However, a critical

question in this approach is how to transmit the rich tactile information recorded

by an e-skin as the feedback to the user of a prosthesis. Electrotactile stimulation is

particularly attractive technology for this application since it is compact and allows

printing electrodes in different shape, size and configuration of the conductive pads

(stimulation points) [192]. In addition, it is characterized with fast response since

there are no moving mechanical elements, which may be particularly important when

delivering feedback during dynamic interactions. Finally, it also allows independent

modulation of stimulation parameters, namely, intensity and frequency, which enables

flexibility in encoding of the tactile information [193, 194]. In our previous work,

[195, 196], we have investigated the possibility of communicating tactile information
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from 64 piezoelectric sensors (PVDF-based sensor array) using matrix electrodes placed

on the forearm. However, the skin sensor was not designed for a prosthetic hand and

was placed on a table surface. In addition, the electronics and acquisition system was

not integrated but implemented on a dedicated PC.

The development of an embedded real-time feedback interface that is capable of

distributed sensing (i.e. sensors all over the hand) and stimulation is an important

step towards the clinical application of this approach. Most of the embedded solutions

that were presented in the literature are based on a few FSR or strain gauge sensors

with either electrotactile [197–200], mechanotactile [201, 202, 174], or vibrotactile

[203–206] stimulation for delivering feedback information (e.g. touch position and

force level) to the subject. Similarly, [207] developed a multi-modal sensory feedback

system that maps sensory information from five piezoelectric barometric sensors into

stimulations through vibrotactile or mechanotactile feedback. Compared to conven-

tional approaches to sensorization of prosthetic hands, which rely on a few sensors (e.g.,

overall grasping force, contact on the fingertip), the integration of an e-skin with many

sensors distributed over the fingers and/or palm combined with surface stimulation

through matrix electrodes endows a bionic limb and its user with high fidelity sensing

and feedback. Such system can provide prosthesis users with sensations that cannot be

restored using conventional methods. For instance, when a prosthetic hand grasps an

object, the users can feel spatially distributed sensations that reflect contact surface and

texture, as well as movement of an object within and across the hand. Such feedback

can increase performance, enable social and passive touch, and promote the feeling

of embodiment [208]. Furthermore, the distributed contact and pressure information

detected by an e-skin can be used to detect slippage and estimate/control grasp stability

(semi-autonomous control [209]). However, the drawbacks of this technology can be

increased cost and system complexity. To achieve this functionality, several compo-

nents need to be developed and connected into an online pipeline. The components
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have to be compact so that, in the future, they can be integrated into a socket and

economical in power consumption (wearable system). Finally, the sensing (e-skin) and

stimulation (electrode) interfaces need to be conformable to the curved shape of the

hand (prosthesis) and limb (user), respectively. Recently in [210], we demonstrated a

preliminary version of an embedded feedback system that transferred tactile data from

flexible piezoelectric sensing array onto the forearm of three subjects using discrete

electrotactile stimulation. The sensing arrays were placed on the table and tapping

on one of the sensing arrays was delivered to the subject in the form of electrotactile

patterns through three concentric electrodes. The present chapter describes a novel

embedded system for tactile feedback based on distributed sensing and stimulation. The

system comprises a flexible piezoelectric sensing array with 16 sensors integrated on the

index finger of the Michelangelo prosthetic hand mockup, an embedded electronics and

multichannel stimulator connected to a flexible matrix (24 pads) electrode placed on

the forearm. In this first version of the prototype, the online feedback delivered contact

information (binary detections) from the e-skin to the subjects. The system is compact,

portable and thereby suitable for integration into a myoelectric prosthesis. The system

increases the bandwidth of tactile information that can be detected and transmitted

to the user leading thereby to a rich tactile feedback, which can potentially improve

utility and facilitate embodiment. There are many compact solutions for restoring

tactile feedback in upper limb prostheses [135]. However, to the best of our knowledge,

this is the first solution that integrates all the required components to provide online

multichannel feedback from an e-skin. To achieve this, we have developed a new

approach of integrating an e-skin onto the curved surfaces of a prosthetic finger. Next, a

method was developed to process the tactile data and extract contact information from

the e-skin. The data processing method as well as a communication protocol to transmit

the processed data to the stimulation unit were implemented within an embedded

electronic system. Finally, an experimental assessment was conducted to demonstrate
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Figure 6.1 System Architecture. The system comprises an e-skin with 16 sensors, interface
electronics for signal acquisition, and a multichannel stimulator with flexible matrix elec-
trodes integrating 24 electrode pads to deliver the electrotactile stimulation to the subject.
The system therefore translates the tactile data recorded by the e-skin into stimulation
profiles that are delivered online to the skin of the subject.

that the developed components properly work together. The experimental assessment

demonstrated that the developed system indeed delivered the desired functionality – a

timely multipoint electrotactile feedback on the static and dynamic contact patterns,

which was easily perceived and interpreted by the subjects. In this chapter, the system

components, including hardware and signal processing are described and the results of

the online assessment of the system in able-bodied subjects are reported.

The chapter is organized as follows: Section 7.2 presents the materials and methods.

Section 6.3 describes the experimental assessment of the developed feedback system.

The results related to the assessment of the system are reported in Section 7.5. Finally,

our discussion and conclusive remarks are given in Section 6.5. The content of this

chapter is presented in [211].
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6.2 Materials and Methods

6.2.1 System Architecture

The designed embedded system for electrotactile feedback (Figure 6.1) includes 1)

piezoelectric sensing arrays (electronic skin), 2) an interface electronics, 3) a master

Bluetooth module, 4) an electrotactile stimulator, and 5) a flexible matrix electrode.

The e-skin converts mechanical contacts into a set of electrical signals (one signal

per sensor). The sensor signals are sampled by the interface electronics, processed

and mapped into stimulation patterns using a predefined encoding scheme. More

specifically, the signals are filtered and thresholded to detect contact events, and the

contact information is used to set the state (on/off) of the corresponding stimulation

channels. To this aim, the interface electronics generates appropriate stimulation

commands and sends them through the Bluetooth module to the stimulator. The

electrotactile stimulation is delivered to the subject through the matrix electrode placed

on the subject’s forearm. The electrode is placed on the forearm to mimic the envisioned

application in prosthetics, in which the interface would be located on the residual limb

of a transradial amputee. The feedback pipeline runs in real time and therefore, the

tactile interaction (contact information) registered by the electronic skin is translated

online into dynamic tactile sensations elicited across the subject’s forearm. The block

diagram of the overall system is shown in Figure 6.1.

6.2.1.1 Tactile sensors Arrays

Based on the results of the study present in Chapter 3, A new batch (new version) of

sensing array was fabricated by JOANNEUM RESEARCH [154]. The sensing arrays

were fabricated using the same procedure presented in Chapter 3, however taking into

account the problems discovered in the validation of the sensors (see Section 3.3.1).

Figure 6.2.a shows the new structure of a single sensor.

115



116
Chapter 6. Embedded Electrotactile Feedback System for Hand Prostheses using Matrix

Electrode and Electronic Skin

Figure 6.2 (a) Single sensors structure, a P(VDF-TrFE) layer sandwiched between two
electrodes. (b) Layout and dimension of the sensing array dimensioned to cover the index
finger of the Michelangelo hand prosthesis. (c) The sensing array is composed of three
sensing areas and a tracks area. (d) Skin patch development process. The sensing array is
shielded using conductive tapes and a thin protective layer is used to protect the sensing
areas.

The fabrication process presented in Chapter 3 was used to fabricate a new version

of the sensing arrays designed for the Michelangelo prosthetic hand (see Figure 3.3.c).

A complete set of sensing arrays with different geometries and sensor distribution has

been designed to fit the fingers and palm of a Michelangelo prosthetic hand [14]. The

fingers sensing arrays are designed to fit easily on the prostheses phalanges, without

the need for special disassembly or mechanical manipulation of the device. In the

present study, a single array made for the index finger of the prosthesis was integrated

into the feedback system. The index finger is most commonly used during grasping

and manipulation, and it was therefore covered with the sensors most extensively.

Specifically, the sensors were arranged to cover the volar and lateral sides of the

fingertip (5 and 2 sensors), middle (2 and 2 sensors) and proximal phalange (2 and

2 sensors), as shown in Figure 6.3.a. The sensors on the lateral aspect of the index

116



6.2 Materials and Methods 117

Figure 6.3 Sensing system integrated on the Michelangelo hand mockup. (a) The sensing
array with 16 sensors attached to the index finger (b) Sensing array connected to a PCB
placed inside a shielding box and attached to the back of the hand. (c) A shielded flat cable
connects the PCB on the back to the interface electronics, and the interface electronics with
Bluetooth module were placed inside a shielding box.

finger were added to allow contact detection when lateral grasp is used. In this case, an

object is grasped between the thumb and the lateral side of the index finger, as when

grasping a key. Figure 6.2.b shows the geometry, sensor distribution, and dimensions of

the index finger sensing array while Figure 6.2.c depicts the sensing and tracks areas.

The same structure of the skin patch developed in Chapter 5 was used to integrate

the sensing array on the index finger. However, the geometries of the different layer

were modified becouse of the curved surface (finger). In order to apply the sensing

arrays on the prosthetic fingers, an integration process was invented to protect the skin
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electrically and mechanically, while allowing it to conform to the shape of the finger.

In the present study, the sensing arrays for the index finger have been chosen as a

representative example to test the newly developed procedure for the integration of the

skin on the hand mockup as well as to demonstrate the online operation of the complete

feedback pipeline (Fig. 1). Figure 6.2.d shows the integration process of the skin on

the mockup model of the prosthesis. The integration process was done in three main

steps. Since the sensing system might be exposed to external charge especially when

the arrangement is based on piezoelectric sensor and charge amplifiers, the sensing

areas were first sandwiched between two double-sided electrically conductive tapes

(Model tesa 60262, tesa). The conductive tape was used as a shielding layer, which

guarantees a minimum sensitivity to noise. The mockup was 3D printed using P.L.A

(polylactic acid) plastic with the Fused Deposition Modeling (FDM) technique. The

texture of the mockup is semi-rough and not completely soft. For that reason, the skin

patch was coupled from the bottom side with a flexible cylindrical shape substrate

(PVC of 0.25 mm thickness) using a double-sided adhesive tape (Model 3M 9485, 3M).

The resulted structure was then wrapped around the index finger of the mockup. In

the second step, a small PCB compromising two FPC sockets was fixed using hot glue

to the back of the hand to route sensor signals to the interface electronics. The skin

patch was connected to the PCB, and then hot glue was applied to ensure the stability

of the tracks-socket connection. An insulating coating (Model PLASTIK 70, KONTAKT

CHEMIE) was applied to the unprotected part of the tracks area to protect and insulate

the sensor tracks. The tracks area was shielded using single-sided electrically conductive

tape (Model tesa 60234, tesa). Both conductive tapes (single-sided and double-sided)

are conductive from both sides and hence they were electrically connected once they

were coupled to each other. The shielding layers were connected to the ground of the

interface electronics (see Section 6.2.1.2) using a self-adhesive copper foil tape and a

wire (Figure. 6.2.d). Finally, a thin flexible cylindrical shape protective layer (Art. 5500
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Figure 6.4 Interface electronics printed board circuit (left) and its block diagram (right).
The module can sample 32 tactile signals, process and transmit them wirelessly with a
remote host via a Bluetooth connection. The module also implements the encoding scheme
mapping the tactile signals into stimulation profiles and a command protocol to set the
stimulation parameters of an electrotactile stimulator.

Dream, Framisitalia) was added on the top of the sensing area to protect the sensors

from damage and increase the lifetime of the integrated sensing system, forming the

skin patch. Figure. 6.3 shows the sensing system integrated into the mockup. The PCB

on the back of the hand and the interface electronics were placed in small shielded

boxes, respectively (see Figure 6.3.b and Figure 6.3.c, respectively). A shielded FPC

cable was used to connect the PCB to the interface electronics. All the materials used in

the integration process (i.e. substrate and protective layer) were produced by Smartex,

Italy [212] and they are biocompatible.

6.2.1.2 Interface Electronics

Figure 6.4 shows the Printed Circuit Board (PCB) and the block diagram of the interface

electronics design presented and validated in Chapter 4. Based on the results presented
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in Chapter 4, the DDC232 chip of the interface electronics was configured to use 16-bit

resolution and cover the maximum input charge response.

In the present study, the firmware for the interface electronics comprised 1) a

novel signal processing method to detect contact events, 2) the mapping of the contact

information into stimulation parameters, and 3) the communication protocol to transmit

the computed parameters to the electrotactile stimulator, as described in Section 6.2.3.

The interface electronics was configured to sample and process tactile data from 16

sensors at 2K samples/second. The 2 kHz sampling rate was used to capture the full

bandwidth of the sensors (see Section 6.2.1.1), which is beneficial for detecting the

timing of contact events, that are characterized by a steep increase/decrease in the

signal. However, the sampling frequency was not optimized in the present study and it

might be that similar results could be obtained with lower sampling rates. Importantly,

the transmission rate via UART and Bluetooth interface was much lower, since it was

event driven – the command was sent to the stimulator only when a contact event

(press or release) has been detected (see Section 6.2.3).

6.2.1.3 Electrotactile Stimulator

The stimulation block employs a 24-channel programmable battery-powered research

prototype stimulation system based on Tecnalia technology of spatio-temporal distribu-

tion of pulses [192]. The device generates current-controlled, charge-balanced biphasic

pulses with current amplitude in the range of 0-10 mA (0.1 mA step), frequency from 1

to 400 Hz (1 Hz step), and pulse width from 50 to 500 µs (10 µs step). The stimulator is

equipped with a BT interface to receive commands controlling the stimulation parame-

ters and the channel states (on/off). In the present study, the stimulator was controlled

directly by the interface electronics by implementing the communication protocol in

the firmware. The protocol comprised the commands for configuring the role of the

stimulation channels (i.e. anode or cathode), modulating the pulse width of each
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channel and the frequency of all channels, and setting the state (on/off) and amplitude

of each channel. Once the feedback system is launched, the interface electronics sends

the first four commands to initialize the stimulation parameters and then uses only the

channel state and amplitude command to implement the online feedback.

6.2.1.4 Electrodes

In the present study, the stimulator was connected to a biocompatible flexible matrix

electrode produced by Tecnalia Serbia. The electrode was made of a polyester layer,

Ag/AgCl conductive layer, and an insulation coating covering the conductive leads. It

integrated 24 oval units (pads) with a longitudinal radius of 1 cm and a transverse

radius of 0.5 cm arranged into a 6×4 grid. The center-to-center distance between the

adjacent pads is 2 cm in longitudinal and 1.2 cm in the transverse direction, which is

higher than the spatial discrimination threshold on the forearm [213]. The pads on

the matrix were used as active pads to elicit sensations, whereas a single self-adhesive

electrode placed on the dorsal side of the forearm acted as the common reference.

To improve electrode-skin contact, the electrode pads were covered with conductive

biocompatible hydrogel (AG725, Axelgaard, DK).

6.2.2 Signal processing to detect contact events

Figure 6.5 depicts the electrical response of one sensor to a press-hold-release contact

pattern captured by the interface electronics. As shown in the figure, the sensors

capture the dynamic features of the mechanical event by generating two phasic bursts

in charge-mode output signals (Figure 6.5). The bursts correspond to the press and

release events, while in-between the bursts there was almost no response apart from

some wiggling. The contact event was indicated with a decrease whereas the release

generated an increase in the signal. To reduce the signal noise and therefore detect light

touches, the Exponential Moving Average (EMA) digital filter presented in Chapter 5
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Figure 6.5 The online processing pipeline of the embedded feedback system. The left panel
shows an electrical response (sensor signals) due to a contact applied to the e-skin by an
experimenter using a pen tip (press-hold-release). The exponential moving average filter
was applied and then the signal was thresholded to detect press and release (middle panel).
Finally, the interface electronics sent stimulation commands to the stimulator to activate
or deactivate stimulation at the corresponding channel, thereby eliciting tactile sensations
(right panel) over the subject’s forearm.

was implemented in the firmware of the interface electronics. To detect contact events,

the Detection Thresholds (DT) of the 16 sensors were calibrated. To this aim, the

interface electronics recorded signals from the skin for approx. 3 s with no mechanical

interaction. The DTs were set to the lowest (δmin) and the highest amplitude (δmax) of

the filtered signals measured during the 3 s calibration period to detect the press and

release events, respectively.

6.2.3 Online feedback

Figure 6.5 illustrates the online processing pipeline of the feedback system. The

interface electronics digitizes, acquires, and stores the electrical response of the 16

sensors. The EMA filter (described in Chapter 5) is then applied over the electrical
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response of all the sensors, and the resulting signals are compared to the thresholds

(δmin and δmax) to detect the press and release events. Once the interface electronics

detected an event, it created and then wirelessly transmitted appropriate commands to

the stimulator. As explained in the next section, the mapping was defined between the

e-skin sensors and stimulation channels, so that a contact event activated corresponding

stimulation channels while the release event turned off the stimulation on those channel.

Hence, the subject felt a localized sensation each time a sensor on the e-skin changed

the state (on/off). As an example, Figure 6.5 shows the electrical response of sensor 2

to a press-hold-release pattern and the corresponding feedback delivered through the

electrode matrix. In response to the press, the command was sent to the stimulator to

start the delivery of the electrical pulses through the pad 2 while the release deactivated

the pad. The commands were transmitted as text messages, where ‘>’ and ‘<’ indicates

the beginning and end of the message, and ‘SC’ is the message code for changing the

channel state (0 and 1 – stop and start stimulation). The stimulation parameters (pulse

intensity and frequency) were adjusted beforehand to elicit sensations that were clear

and comfortable, as explained in the next section. The total delay from the applied

contact to the stimulation is the summation of the delays throughout the different

components of the pipeline. The overall delay was measured to be around 32 ms, which

means that the response of the system is fast enough to transmit the desired signal

without a perceptible delay.

6.3 Experimental Assessment

6.3.1 Experiments

Three experiments (Table 7.2) were designed to assess if the feedback system can

convey static patterns (contact location) with two different spatial resolutions and

dynamic patterns in which the contact changes over time (i.e., sliding along and/or
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across the finger). In the tests, the experimenter touched the e-skin, the system detected

the contact, and then transmitted tactile information to the subjects, who were asked

to focus on the elicited sensations and interpret the feedback.

• Group-to-Group experiment (G2G): The aim of this assessment was to evaluate

if the feedback system can successfully detect and convey to the subject the

information on static contacts with low spatial resolution. The sensing areas of

the e-skin patch were divided into 6 groups as shown in Figure 6.6.a. The 6

groups covered the three phalanges of the index finger from the volar and lateral

sides. Similarly, 16 pads in the electrode matrix were selected and organized into

6 groups as shown in Figure 6.6.b. The pad groups were chosen to mimic the

sensors groups in the number of pads and spatial arrangement. Touch information

was transmitted to the subject using spatial coding. Touch applied to one of the

sensing groups on the e-skin was mapped into the activation of the corresponding

group of pads in the matrix electrode. The sensor group was deemed activated if

any of the sensors belonging to the group registered a contact event, and in this

case, all pads in the corresponding pad group started stimulating.

• Sensor-to-Pad experiment (S2P): The goal of this experiment was to test the

effectiveness of the feedback system in detecting and delivering touch information

with higher resolution compared to that used in G2G experiment. In this case, the

contact applied to an individual sensor was conveyed to the subject by activating

stimulation at the corresponding individual pad as shown in Figure 6.6. Hence,

the subject was asked to discriminate between 16 different pads that could be

activated/deactivated individually in response to contact/release events detected

by the e-skin.

• Sliding patterns experiment (SLP): The aim of the test was to evaluate if the

system can successfully detect and deliver the information about moving contacts
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to the subject. The sensor to pad mapping was the same as in S2P experiment.

The sliding movement applied on a sequence of sensors was conveyed to the

subject by activating the corresponding sequence of pads in real-time (see Figure.

6.6.b). The movement patterns included sliding along the volar and lateral aspects

of the index finger, and transversally, across each phalange.

6.3.2 Setup and Protocol

Six healthy subjects (male, age 28 ± 4 years) participated in the three experiments

described in Section 6.3.1. All experiments were approved by the local Ethical commit-

tee of the Specialized Hospital for Rehabilitation and Orthopedic Prosthetics (approval

number 1172). Before starting, the subjects signed an informed consent form.

Figure 6.7 shows the experimental setup used in all the experiments. The subjects

were seated comfortably on a chair in front of a monitor used for visualization. The

forearm of the dominant arm was placed on the table surface and the matrix electrode

was then positioned on the volar side of the subject’s forearm. The electrode was

covered with a medical bandage to prevent movement and improve contact. Figure

6.7.b shows the view from the subject’s perspective. The sensorized Michelangelo hand

mockup was mounted on a support and placed so that the subject could not see the

hand nor the experimenter interacting with the hand (see Figure 6.7.a ). The interface

electronics was connected to a host PC through a USB and paired with the stimulator

Table 6.1 Summary of Performed Experiments

Name Description Touch patterns

G2G Spatial coding with six classes
(static pads)

G1, G2, G3, G4, G5, G6

S2P Spatial coding with sixteen classes
(static pads)

Sensor 1 (S1), Sensor 2 (S2),
. . . ., Sensor 16 (S16)

SLP Spatial coding with five classes
(dynamic patterns)

Distal, Middle, Proximal, Lateral,
Medial sliding movement
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Figure 6.6 (a) Sensor distribution within the electronic skin placed on the index finger
of the Michelangelo mockup. The sensors are numbered and each sensor is associated to
a stimulation pad on a matrix electrode placed on the subject’s forearm as shown in (c).
The sensor and pads were also grouped into six corresponding groups (G1-6, boxes in (b)
and (c)) where G1 corresponds to Group 1 and G6 corresponds to Group 6. (b) Three
experiments were conducted to assess the subject’s ability to perceive and interpret the
feedback: 1- touch on a group of sensors (low spatial resolution), 2- touch on individual
sensors (full spatial resolution), and 3- dynamic touch (i.e. sliding across medial, lateral,
distal, middle, and proximal lines in two directions).

through the Bluetooth. Two screen monitors were used during the experiments, one

positioned just behind the prosthesis and oriented towards the subject and the second

oriented towards the experimenter. A LabVIEW software was developed on the host

PC to visualize the activity of the sensors and the electrode pads. The software was

used by the experimenter to monitor the tests and as the visual feedback to the subject

during training, as explained below. Prior to the experiments, the Sensation Thresholds

(ST) was determined for each of the 16 pads using the methods of limits by varying

the pulse amplitude [214]. During the rest of the experiment, the pulse amplitude was
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set to 1.5×ST, which ensured that the sensations elicited by the feedback were clear

and comfortable. The amplitudes were additionally fine-tuned by the experimenter

until the subject reported that the perceived intensity was similar for all the pads. The

pulse rate and pulse width were common to all the pads and set to 50 Hz and 140 µs,

respectively.

As explained before, the aim of the experiments was to assess the subject’s ability

to identify the contact patterns applied to the e-skin, captured by the integrated sensing

system and delivered to the subject through electrotactile stimulation via electrode

matrix. Each test started with an introductory phase, in which the subject was presented

with an explanation of the working principles of the sensory feedback system and the

feedback mapping. The same experimental protocol was followed in the three tests

(G2G, S2P and SLP) comprised of familiarization, reinforced learning, and validation

phase. In all phases, each touch pattern (i.e. activation of a group of sensors, individual

sensor activation, or sliding movement) was presented 5 times to the subject.

• Phase 1: Familiarization

In the familiarization phase, the subjects received online visual feedback on

the screen monitor showing the applied touch pattern (sensor activity) and the

corresponding stimulation pattern (pad activity). The subject was asked to use

the visual feedback to build a mental mapping between the experienced sensation

and the visual description (i.e. touched sensors, group of sensors, or sequence of

sensors).

• Phase 2: Reinforced learning

In the reinforced learning phase, online visual feedback was removed, the contact

patterns were randomly applied, and the subjects were asked to guess the applied

patterns. The experimenter then provided visual and verbal feedback on the cor-

rect answer. Specifically, the experimenter said “correct” if the subject successfully
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guessed the active pattern or “incorrect” otherwise. In the latter case, the correct

answer was shown to the subject on the computer screen.

• Phase 3: Validation

During this phase, the protocol was the same as during the reinforced learning,

however, no feedback on the correct answer was given to the subject. The

validation phase was the main part of the experiment and the results from this

phase were used to assess the performance, while the previous two phases were

used as the training.

An additional experiment (Delay-Exp) has been implemented to measure the no-

ticeable delay in the feedback system. The aim was to demonstrate that the feedback

pipeline operates significantly below the delay that can be registered by the subject, en-

suring thereby that visual and tactile feedback are perceived as essentially synchronous.

Table 7.2 summarizes the description of the experiment and Figure 6.7.c shows the

experimental setup used to measure the delay detectable by the subject. The subject

wearing the electrode connected to the stimulator was seated on a chair in front of the

sensorized Michelangelo hand mockup. During the experiment, the delay between the

contact time and the activation of the stimulation was gradually increased in steps of 10

ms by the experimenter. This was done by introducing a delay in the command trans-

mission in the firmware of the interface electronics. The subject was asked to report

if he could perceive the delay between the moment when the experimenter touched

one of the sensors and the start of the electrotactile stimulation. The subjects therefore

compared the correspondence between the timing of the visual and tactile feedback.

The experiment terminated once the subject reported that he perceived the added delay.

Each of the three spatial discrimination experiments lasted approximately half an hour,

whereas the delay test took approximately 10 min. A complete experimental session

(setup and tests) lasted around 1 hour.

128



6.3 Experimental Assessment 129

Figure 6.7 Experimental setup. (a) Experimenter interacting with the sensing system,
(b) Subject received electrotactile feedback through a matrix electrode placed on the
right forearm and covered with a medical bandage. The subject received visual feedback
shown on the computer screen only during the familiarization phase. (c) In an additional
experiment, the setup was used to measure the acceptable touch-stimulation delay. In this
test, the subjects received the tactile feedback while looking at the experimenter touching
the hand, and they were asked to report when the delay (intentionally added in the system)
between tactile and visual feedback became noticeable.

6.3.3 Data Analysis

The main outcome measure in all experiments was the success rate (SR) defined as

the percent of correctly recognized stimuli, namely, groups in G2G, individual sensors

in S2P and sliding movements in SLP, where the latter included both movement type

(distal, middle, proximal, lateral and medial sliding) and direction (from top to bottom,

left to right and vice versa). In the S2P test, the group level SR was also computed and

compared to that achieved in G2G. In this case, the recognition was deemed correct if

the subject guessed the sensor that was possibly wrong but still belonged to the same
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group as the actually activated sensor. This assessment was performed to test if the

group level recognition was impacted by the higher spatial resolution of the feedback.

The following marginal SRs were computed in the SLP experiment (in addition to the

overall SR): 1) the marginal SR for sliding line recognition regardless of the direction,

and 2) the marginal SR for the sliding direction regardless of the line type. The SRs

were computed per subject for each touch modality (i.e. contacted sensors, group of

sensors, or sequence of sensors) and they were then averaged to obtain the overall

mean and standard deviation. The results were reported as mean ± standard deviation

in the text and figures. The performance was also presented in the form of confusion

matrices to identify prevalent mistakes.

The Friedman test was applied to assess statistically significant differences at the

level of the group followed by Tukey’s honestly significant difference test for post hoc

pairwise comparison. The threshold for the statistical significance was adopted at p <

0.05, and the statistical analysis was conducted in OriginPro 2018 (OriginLab, US).

6.4 Results

The average SRs from all the experiments are summarized in Table 6.2 and the confusion

matrices are provided in Figure 6.8. The subjects were able to correctly recognize the

touched group of pads (test G2G) with a high success rate (SR of 91.25 ± 3.97%). The

Table 6.2 Summary Results (Mean ± Stand Dev) of Experiments

Test SR ± standard deviation [%]

G2G 91.25 ± 3.97
S2P Pads 57 ± 10.1

group 80.11 ± 9.03
SLP Line 94 ± 3.57

Direction 97.95 ± 3
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Figure 6.8 Confusion matrices for the G2G (Top left) and S2P (Bottom) and SLP ex-
periments (Top right). The results demonstrate a good recognition of 6 classes in G2G
experiment, 16 classes in S2P experiment, and 5 classes in SLP experiment (well-focused
diagonal line. The confusion matrix of S2P experiment demonstrates the superior perfor-
mance in recognizing pads on the borders.

confusion matrix demonstrates a dominant diagonal line standing for a correct group

recognition. From the pattern of misrecognitions in the matrix, it seems that it was
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Figure 6.9 The overall success rate of recognizing tactile patterns: (a) sensor group in
experiment S2P, (b) sliding movements in experiment SLP.

easier for the subjects to discriminate between the groups along the transversal axis

compared to those along the longitudinal axis. When the subjects made an error, they

pointed to a directly neighboring group placed distally or proximally with respect to the

correct group (G2 to G4, G4 to G6 etc.), see the second parallel diagonals above and

below the main diagonal. Contrary to recognizing the groups, the recognition of the

individual pads was not an easy task for the subjects. The overall SR from experiment

S2P was 57.9 ± 10.1%. Nevertheless, this SR is still approximately 9 times higher than

the chance level (i.e., 1 out of 16 or 6%). The confusion matrix characterizing the

transmission of touch on a single sensor (i.e. S2P experiment) exhibited high diagonal

values for sensors mapped to pads on the border of the electrode (e.g., pads 13, 15)

compared to lower diagonal values for the middle pads (e.g., pads 9, 10). Importantly,
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the mistakes were typically confined to adjacent pads, and within the same groups of

pads. Indeed, when the group level SR was computed from the single pad results, the

performance was high (∼ 80%, Table 6.2) although still significantly lower than in a

dedicated G2G test (∼ 91%, Table 6.2) and the difference was statistically significant

(p < 0.05). The mean SR for each group in the S2P experiment is presented in Figure

6.9.b. There is tendency for a drop in performance for groups 3 and 4, which are located

on the middle phalange; however, the difference was not statistically significant.

The confusion matrix reported in Figure 6.8 (Top right) describes the overall SR

obtained in experiment SLP. The features of the dynamic patterns (SLP experiment)

were recognized with a high success rate. The SR for recognizing the sliding movement

(distal, middle, proximal, medial, and lateral) was 94 ± 3.57%. The subjects made

most errors when discriminating the transversal lines (Distal, Middle, and Proximal),

in particular middle, while Lateral and Medial lines were recognized almost perfectly.

The sliding direction was easy to discriminate (97.95 ± 3%). Figure 6.9.b shows mean

SR for each sliding movement in SLP. The bars reflect the trends from the confusion

matrix (e.g., lower mean SR for the middle line) but the difference was not statistically

significant.

The sensory feedback system operates with a nominal delay between contact time

and activation of stimulation of around 32 ms. This delay was not perceived by any

of the 6 subjects. The results of the Delay-Exp established that the average detectable

delay was 258 ± 49 ms.

6.5 Discussion and Conclusion

A novel tactile feedback system was developed to transmit mechanical information

from a multipoint tactile sensor (e-skin) to the human subject using multichannel

electrotactile stimulation delivered through the matrix electrodes placed on the subject’s
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forearm. The system was evaluated by using it to detect mechanical interaction with

the e-skin, capture contact events and translate them into spatial profiles of stimulation,

which conveyed online tactile feedback to the subjects. We have tested the ability of the

subjects to perceive such feedback and estimate the properties characterizing dynamic

(sliding line) and static (touch position) patterns of interaction with the e-skin. To the

best of our knowledge, this is the first development integrating an advanced tactile

sensor with distributed sensing elements and an electrotactile stimulation unit with a

flexible matrix of electrodes into an embedded system for online transmission of tactile

data from artificial to the human skin (forearm). As shown in the experiments, such a

system allows providing spatially distributed tactile feedback that thereby mimics the

natural feedback provided by the limbs (distributed touch).

The power consumption of the interface electronics is 300 mW. When supplied

with a single 2 Ah Lithium polymer battery with a voltage of 3.7 V, the battery life-

time expectancy is 22 h of working time, and this includes continuous sampling and

processing of tactile signals and sending of commands to the stimulator when contact

events are detected. Similarly, the rechargeable battery of the stimulator has a lifetime

of 4 h when stimulating constantly. However, considering that the stimulation will

be delivered only occasionally, when there is an interaction between the hand and an

object, the expected lifetime is substantially longer. The system is therefore economical

in terms of power consumption and can provide a long-term usage (> 8 h, the duration

of a working day). Importantly, the developed feedback system is modular and other

Bluetooth-enabled stimulators could replace the device used in the present study. This

would require a change in the firmware of the interface electronics to implement the

appropriate communication protocol and possibly remapping/grouping of the pads in

case of different number of stimulation channels. In particular, a recently presented

system [215] would be an interesting option as it allows simultaneous stimulation and

EMG recording, hence a single compact unit that provides both feedback and prosthesis
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control, respectively. The current interface electronics includes 32 channels, of which

16 have been used in the present experiment. Therefore, 16 additional channels can be

exploited to add more sensing arrays placed on other fingers.

The conducted tests have demonstrated that the system indeed provided timely

feedback that could be successfully perceived and interpreted by the subjects. The

implemented feedback pipeline relies on simple processing, namely, filtering and

thresholding, to detect contact and release events, and control the stimulation of the

associated pads of the matrix electrode. In all the tests, the feedback was generated

by an experimenter interacting with the skin. Such setup activated all components

of the feedback pipeline (Figure 6.1): sensing, tactile signal processing, wireless

transmission, and stimulation. Therefore, the experiments demonstrated that the

e-skin was successfully integrated on the mockup and that the pipeline operated

properly. In addition, the results were obtained with interaction patterns that included

natural variability due to slight variations in the way experimenter touched the skin

(e.g., inconsistent timing, different pad activations). The subjects recognized the

activation of the six groups of sensors easily and reliably. Importantly, even such low-

resolution feedback is functionally relevant since it demonstrates that the subjects can

perceive the contact with all relevant finger areas, i.e., volar and lateral aspect of each

phalange of the index finger. Such sensorization can facilitate both palmar (pinch) and

lateral grasping. In addition, the system detected mechanical interaction, computed

and transmitted the online feedback fast enough to allow the subjects to perceive

contact information that was dynamically moving across the finger. Consequently, they

recognized both location and direction of the dynamic movements with no difficulties.

Recognizing the dynamic stimuli might assist in slip detection and prevention [216],

as well as in promoting the feeling of embodiment (e.g., the perception of passive

touch [208]). The success rate when recognizing individual pads was significantly

lower despite the distance between the pads was higher than the spatial discrimination
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threshold. Nevertheless, this is not surprising considering that the subjects needed to

discriminate between 16 randomly stimulated locations spread across a relatively small

area of the forearm, while receiving only a brief training. Nevertheless, the mistakes

were still confined to the neighboring pads and within the same pad group (finger

aspect). The present experiment demonstrated the feasibility of such high-resolution

feedback, and it is to be expected that the success rates in this case will increase with

prolonged training [192].

The ability of human subjects to identify the position of electrotactile stimuli

delivered through the matrix electrode has been investigated in earlier studies [217,

218]. It was found that subjects had more difficulties to discriminate between the

groups along transversal compared to the longitudinal axis (Figure 6.8 (Top left)), which

is in accordance with the results of the present experiment. For the high-resolution

feedback, the success rate was variable across pads. The subjects could still recognize

some specific sensors quite reliably (Figure 6.8 (Bottom)), for instance those located

on the border of the electrode, and especially in the corners of the electrode matrix.

The test employed in the dynamic experiment (SLP) are similar to those used to

assess the ability of the human subjects to identify the line and direction of motion

over the skin to obtain insights into normal human sensory processing [219]. In the

present study, while applying a sliding stimulus to the e-skin, the experimenter would

occasionally activate sensors and electrodes that did not belong to the target line. This

is a likely reason for the worse performance in recognizing the transversal lines with

respect to the longitudinal lines since the latter contain higher number of sensors

that are also more closely spaced. Hence, the perception of feedback was in this case

less affected by an occasional deviation. Moving tactile stimuli can be a particularly

effective method for information transmission to the user, because mechanoreceptors

respond stronger to this type of stimuli compared to simple static patterns [220]. For

example, such perception can be the basis for the haptic exploration of the environment
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[59], as when the subject tries to assess the texture of an object by relying on artificial

tactile stimulation [221]. In this case, the tactile feedback would arise as an interaction

between the movements of the user and the objects with which the user interacts.

The response time in communicating sensations has not been widely reported when

examining the performance of a sensory feedback system. A healthy nervous system can

take approximately 14-25 ms to deliver tactile information to the brain [222]. Some

sensory feedback systems were developed with a latency compared to the one of the

healthy nervous system. Two sensory feedback systems that are based on FSR sensors

and electrotactile [200] or vibrotactile [223] stimulation are capable of delivering

tactile information within 15 ms. Authors in [224] used tension sensors integrated on

the finger of a robotic hand to measure the applied force. The system can deliver tactile

information with a delay of 0.03-0.4 sec. The majority of the aforementioned systems

operate with a delay comparable to that of the natural feedback, but they considered

simple position and force sensors combined with discrete stimulation channels. The

system presented in this study delivers tactile information coming from a distributed

sensing array, which is then wirelessly transmitted to a distributed stimulation array

within a delay of 32 ms. The delay experiment (Delay-Exp) estimated that an extra

delay of 250 ms could be added on top of the existing system latency before the

subjects noticed the discrepancy between visual and tactile feedback. Therefore, the

developed system has a sufficient latency margin to implement more advanced data

processing and encoding. The noticeable delay obtained in the present study is larger

than what is reported in the recent work [225], however, that study used invasive

stimulation and the subjects self-administrated the touch (instead of the experimenter).

In this first study with the developed embedded system, the processing was simple

and the information transmitted by the feedback was limited to contact events. As

demonstrated in the present experiment, this information can nevertheless lead to

diverse patterns of tactile sensations that can be functionally relevant. The next step in
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this research is to extract further information from the tactile data, e.g., the contact

pressure. The sensing array is based on piezoelectric sensors that register only the

transient events, but the steady state information could still be extracted by a suitable

processing, for instance, from the amplitude of the contact peak. The magnitude of

the estimated pressure could be then transmitted to the subject by modulating the

intensity of stimulation (in addition to the active pad, as in the present study). In

addition, the present assessment considered only a single active pad at a time (static or

dynamic), while it would be interesting to investigate if the subjects would be able to

detect multiple points of contact. The latter tactile pattern arises during normal human

grasping where multiple areas of the finger form contact with an object.

The present study has described the system and demonstrated the feasibility by

testing it in able-bodied subjects, while the next step is to assess the utility of the

proposed system in a functionally relevant application. To this aim, the sensing arrays

will be used to cover a myoelectric prosthetic hand in order to test the closed-loop

system during functional tasks. In this scenario, the feedback will be delivered to

the residual limb of a prosthesis user, including amputee subjects, in whom the skin

sensitivity might depend on the condition of the residual limb (e.g., scar tissue).

Nevertheless, this can be addressed by a custom design of the stimulation matrix that

can be printed in arbitrary shapes, sizes and pad configurations. Importantly, the

developed feedback system is compact and hence suitable for integration in a prosthetic

socket. In addition, in the present study, the sensors were produced to fit the layout

of the Michelangelo hand but the technology is flexible enough to cover an arbitrary

prosthesis. Endowing a prosthetic hand with such sensing and stimulation interface

would enable high-bandwidth connection between the user and his/her bionic limb,

especially if the system would include a full set of sensing arrays that covers both fingers

and palm of the prosthetic hand (as proposed in [32]). The provided high-density
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feedback could increase the utility of the device as well as facilitate the feeling of

embodiment.
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Chapter 7

Full-hand electrotactile feedback using

electronic skin and matrix electrodes

for high-bandwidth human-machine

interfacing

7.1 Introduction

Human-machine interface that connects a human operator and an artificial system

(e.g., robot, or virtual avatar) is the key element for achieving seamless interaction.

Ideally, such an interface should transmit commands from the human brain to the

artificial system as well as sensor information from the system back to the operator to

provide feedback and close the control loop. For instance, haptic feedback can enrich

interaction fidelity and facilitate the feeling of immersion when interacting with a

virtual world or controlling a remote robotic system [19, 133].

In teleoperation, haptic interfaces in the form of desktop devices, hand exoskele-

tons, data gloves and tactile displays have been proposed [134]. Interaction forces
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detected by the robot can be transmitted to the operator (kinaesthetic feedback) us-

ing exoskeletons that can be mounted on the hand [226–231], or over the full arm

[232], and some solutions are already commercially available (e.g., CyberGrasp from

CyberGlove Systems, CA). Although such kinaesthetic systems provide most realistic

feedback, they are also cumbersome, complex and expensive. An alternative approach,

which can substantially simplify the design of the interface is to transmit feedback

information using tactile stimulation delivered through miniature vibration motors

[233, 234] or tactors [20, 234, 235]. These techniques have been extensively described

and compared in several recent reviews [20]. For example, in [121], a vibrotactile

display system stimulating the fingertip through a 4 × 4 array of tactors was developed

and integrated on an Omega7 force feedback device for the teleoperation of an LWR

KUKA manipulator. Authors in [236] equipped a soft robotic hand with 6-axis force

sensor and used two wearable vibrotactile armbands to convey information about

collisions. Electrotactile stimulation, which relies on delivering low-intensity current

pulses to activate skin afferents and elicit tactile sensations, was also used to provide

feedback in teleoperation [237–245]. For instance, in [246] a feel-through interface

“Tacttoo” consisting of an array of 8 equispaced circular electrodes was developed to

stimulate the finger. A data glove enhanced with six stimulation electrodes placed on

the dorsal side of the hand was used to deliver contact information from a mobile robot

[244] and force from the end effector of a robotic arm [237]. Apart from teleoperation,

tactile stimulation has been used to provide feedback to the user of a prosthetic hand

[21, 27, 135, 136, 176, 177], to improve utility [178] and promote feeling of embodi-

ment [7], as well as, in virtual reality to establish an immersed experience by enabling

users to sense virtual objects. Recently, in [247] the authors examined the impact of

electrotactile stimulators and several types of vibrotactile actuators on mimicking touch

interactions in virtual and augmented reality. Despite important developments, the

conventional tactile feedback interfaces are characterized with a limited communica-
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tion bandwidth. They rely on a few stimulation points, which limits the amount of

information that can be transmitted to the user. Indeed, this is very different from the

natural feedback provided by, e.g., human hand, which is covered with a dense network

of tactile mechanoreceptors measuring spatially distributed contact information with

high resolution.

To provide high resolution tactile information mimicking the human sense of touch,

this information first needs to be measured by artificial systems integrating high-density

network of sensing units. To this aim, electronic skin (e-skin) has been developed

[46, 248–252, 184, 186] and successfully applied in robotics [36, 32, 253, 61, 188],

prosthetics [30, 39, 53, 189–191, 254], and health-monitoring technologies [131, 255].

However, a critical question still remains: how to convey the rich tactile information

recorded by an e-skin as the feedback to the user. This challenge can be tackled by

using electrotactile stimulation, as this technology leads to compact design and allows

printing electrodes in different shapes, sizes and configurations of the conductive pads

(stimulation points) for the stimulation of different parts of the user body [192]. For

instance, in tactile feedback for a prosthesis, the electrode is shaped to cover the

residual limb [192], while for the applications in teleoperation and virtual reality the

electrode needs to be placed on the user’s hand [256].

Endowing an end effector with a distributed sensing system combined with dis-

tributed feedback system would enable high-bandwidth bilateral communication be-

tween the user and the machine/computer. Our recent research efforts are directed

towards developing such a high-bandwidth feedback system [210, 211]. The system

described in [211] comprised a sensing array (with 16 sensors) integrated on the index

finger of the mockup of the Michelangelo prosthetic hand, a 32 channel embedded

electronics for signal acquisition and conditioning, a multichannel electrotactile stimu-

lator, and matrix electrode (with 24 pad) placed on the subject’s forearm. This chapter

describes further development of this initial solution into a feedback interface that con-
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veys comprehensive full-hand tactile information (all fingers and palm) from a robotic

system to the human subject. In particular, the system captures contact information

(binary detections) using 57 sensors integrated on the fingers and palm of the mockup

of a robotic hand and delivers the tactile information to the user using a multichannel

stimulator (32 channels) and 64 stimulation pads distributed over the fingers and palm

of the subject’s hand. Furthermore, the current study investigated the best placement of

the anodes, which can be distributed within the electrode or placed outside of the hand

as a dedicated common pad. The chapter also reports on the validation of the sensing

system as well as on the psychometric assessment of the whole-hand feedback. The

tests were conducted to assess the ability of the developed system to capture distributed

tactile information on localized (static) and sliding (dynamic) contacts and to deliver

such information as the feedback to the subject.

The chapter is organized as follows: Section 7.2 illustrates materials and methods.

Section 7.3 presents the validation of the sensing system. Section 7.4 describes the

experimental protocol for psychometric assessment of the developed feedback system.

The results of the psychometric assessment are reported in Section 7.5. Finally, our

discussion and conclusive remarks are given in Section 7.6.

7.2 Materials and Methods

7.2.1 System Description

The proposed system (Figure 7.1) includes: 1) piezoelectric sensing arrays (electronic

skin), 2) embedded electronics for signal acquisition and conditioning, 3) electrotactile

stimulator, 4) flexible surface electrodes, and 5) host laptop PC (1.9 GHz, 16 GB).

The e-skin converts mechanical contact into a set of electrical signals (one signal per

sensor). Sensor signals are sampled by the embedded electronics, processed, and

sent to the host PC. The signals are then filtered and when sensor output exceeds a
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Figure 7.1 Top: System structure. The system comprises an e-skin including 57 sen-
sors, embedded electronics for signal acquisition, processing and communication, and a
multichannel electrotactile stimulator with flexible matrix electrodes (32 electrode pads).
Bottom: The online operation of the feedback system. The black signal (left) corresponds to
a sensor output due to a specific type of contact (“long press”). The embedded electronics
uses two thresholds to detect press and release, and based on that generate the event signal
(red signal) and send it to the host PC. The PC sends commands to the stimulator and the
train of stimulation pulses (blue signal) is delivered through the corresponding electrode
pad as tactile feedback to the subject’s hand.

given threshold contact events are detected, and the activated sensors are highlighted

on the graphical user interface on the PC (visual feedback). This information is

used to set the state (on/off) of the corresponding stimulation channels (mapping

between sensors and stimulation pads is presented in Section 7.2.2). The PC generates

appropriate stimulation commands and sends them to the stimulator via Bluetooth. The

electrotactile stimulation is delivered to the subject through matrix electrodes placed

on the volar side of the hand. As the feedback pipeline runs in real-time, the tactile

interaction recorded by the electronic skin is translated online into dynamic tactile

sensations elicited across the subject’s hand. Figure 7.1 (Bottom) illustrates the online
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Figure 7.2 (a) Layout of the sensing arrays for the fingers and palm of the Michelangelo
robotic hand. (b) Sensor distribution over the hand. (c) Skin patch. (d) Sensing system
integrated on the mockup of the Michelangelo hand (front and back views).

pipeline of the system, which was implemented following the approach presented in

chapter 6.

7.2.1.1 Sensorized mockup of the Michelangelo hand

• Tactile sensor arrays:

The complete set of sensing arrays with different geometries and sensor distribu-

tions was deployed to sensorize the fingers and palm of a Michelangelo prosthetic

hand [14]. Figure 7.2.a shows the geometry, sensor distribution, and size of the

sensing arrays while Figure 7.2.b highlights sensor distribution over the fingers

and palm of a mockup of the Michelangelo hand. The finger sensing arrays were
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designed to easily fit on the phalanges. Due to its prominent role in grasping and

manipulation, the index finger was covered most extensively with the sensors.

Specifically, sensors were distributed on the volar and lateral sides of the fingertip

(4 and 2 sensors, respectively), and the middle (2 and 4 sensors), and proximal (2

and 2 sensors) phalanges. The sensors on the lateral aspect were added to allow

for contact detection when lateral grasp is used, in which an object is grasped

between the volar aspect of the thumb and the lateral side of the index. Similarly,

the middle finger was provided with 13 sensors covering the fingertip (7 sensors),

and the middle (3 sensors), and proximal (3 sensors) phalanges. The fingertips

of the thumb, ring, and little fingers were equipped with 8, 4, and 4 sensors,

respectively. Finally, 12 sensors were distributed over the palm.

• Sensor Integration:

Sensing arrays reported in Figure 7.2.a were integrated on the mockup following

the same approach described in chapter 6 and 5. All six sensing arrays were

integrated on the mockup following the procedure. Figure 7.2.c shows the

structure of the skin patch for the palm whereas Figure 7.2.d shows the complete

sensing system integrated on the mockup. Four shielded FPC cables were used to

connect the PCB to the embedded electronics.

7.2.1.2 Embedded Electronics

Figure 7.3.a shows the Printed Circuit Board (PCB) whereas Figure 7.3.b shows the

block diagram of the embedded electronics. The embedded electronics shown in Figure

7.3.a is an extended version of the systems presented in chapter 4. Compared to the

previous design that can accommodate up to 32 sensors, the current design can handle

up to 64 sensors through two daisy-chained DDC232 [257] mounted on the top and

bottom side of the PCB. The two DDC232 were daisy chained in order to avoid data
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Figure 7.3 (a) Top and Bottom view of the printed circuit board of the embedded electronics.
(b) Block diagram. (c) Sensing system integrated on the mockup of the Michelangelo hand.
Individual sensors are marked as red dots.

loss during the acquisition process. Four sockets (2 on the top side and 2 on the bottom

side) acquire signals from 64 sensors where each block accommodates 16 sensors.

BL600 module is used to read, process, and transmit sensor data.

In the present study, the embedded electronics was configured to collect and

process tactile data from 57 sensors at 2 ksamples/s. The 2 kHz sampling rate was used

to capture the full bandwidth of the sensor (see Section 7.2.1.1), which is beneficial

for detecting the onset of contact events characterized by a steep increase/decrease in

the signal. An Exponential Moving Average (EMA) digital filter was implemented in

the firmware of the embedded electronics to filter signals from the sensors. To enable

the system to detect contact events, the Detection Thresholds (DT) of the 57 sensors

were first determined. To this aim, the interface electronics recorded signals from the

skin for approx. 3-s with no contact. The DTs were set to the lowest (δmin) and the

highest amplitude (δmax) of the filtered signals measured during the 3-s calibration
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period. Exceeding those thresholds was used as an indication that contact and release

occurred, respectively. As an example, Figure 7.1 (bottom) shows the filtered voltage

signal of a single sensor generated in response to a press-hold-release contact as well

as the corresponding event signal that controls the start and stop of the stimulation

delivered to the subject’s hand. The embedded electronics was placed inside a shielded

box as shown in Figure 7.3.c.

7.2.1.3 Feedback System

• Electrotactile Stimulator

The feedback interface employs a 32-channel programmable battery-powered

stimulator (‘Tactility’, Tecnalia Research and Innovation, Spain [258]). The

stimulator generates biphasic symmetric current- pulses that are distributed in

time and space over 32 channels. The stimulator is fully programmable, and

the stimulation parameters can be adjusted online by sending text commands

from the host PC via a Bluetooth connection. The amplitude of the current pulses

can be modulated in the range of 0-10 mA with increments of 0.1 mA, the pulse

width, from 50 to 5000 µs in steps of 10 µs; the frequency resolution is 1 Hz with

the maximum rate of 400 Hz. Each stimulation channel could be set to act as

anode or cathode.

In the present study, the PC sends stimulation commands to the stimulator

to activate/deactivate the stimulation through the respective electrode pads.

Specifically, the stimulation is activated by a press and deactivated by a release

event (see Figure 7.1). The output channels of the stimulator were connected to

a small PCB that routes 32 stimulation channels to 64 pads of the electrode, as

described in the next section.
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Figure 7.4 Flexible electrodes for the electrotactile stimulation of the hand. (a) Layout of
the pad arrays to cover the fingers and palm. (b) Volar and dorsal view of a human hand
covered with the electrode arrays. Stimulation pads are indicated as black dots (volar) and
rectangles (later index).

• Electrodes

In the present study, the stimulator was connected to six flexible matrix electrodes

developed by Tecnalia Research and Innovation. The electrodes are made of a

polyester layer, an Ag/AgCl conductive layer, and an insulation coating covering

the conductive leads. Pad distributions on the six electrodes are shown in Figure

7.4.a. The electrodes were designed to be placed on the human hand and the pad

distribution mirrors the design of the sensing arrays (see Section 7.2.1.1). Sixty

four circular pads were distributed over 6 electrodes in total (5 electrodes for the

fingers and one electrode for the palm, Figure 7.4.b).

7.2.2 Mapping Sensors to Pads

The electrotactile stimulator used in the current study has 32 stimulation channels

while the electrode arrays integrate 64 pads. Therefore, some electrode pads were

grouped together and driven by a same stimulation channel. In addition, a reference

electrode (anode) needed to be defined to close the stimulation circuit. To this aim,
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Figure 7.5 E-skin (left) and Electrode Arrays (right): Cathode and anode distributions
within the electrode arrays (subject hand). The numbers on the e-skin and electrode array
indicate the mapping of sensor sets to corresponding groups of pads connected to a single
stimulation channel. Two anode configurations were considered: a) a distributed anode
comprised of a subset of pads (DAC), and b) a single dedicated electrode placed on the
dorsal side of the hand (SAC).

a small PCB was developed to route the pads to the channels and to implement two

anode configurations (Figure 7.5). The first configuration features an anode that was

embedded within the electrode: in this case, 15 pads distributed over the volar side of

the phalanges and the palm (distributed anode configuration, DAC) were connected to

one of the stimulation channels configured as the anode, while the rest of the pads were

connected to the remaining 31 channels configured as cathodes. This configuration

was selected in order to localize the current flow, from a cathode to its closest anode

segment, eliciting thereby a localized tactile sensation. A second configuration consists

of a single large anode electrode placed on the dorsal side of the hand (single anode

configuration, SAC). It is important to note that the number of cathodes was identical

in both configurations, as the distributed anodes were deactivated (unused) in the
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Table 7.1 System features

Component Feature Specifications

Sensorizied
mockup

Number of Sensors 57 (distributed on the fingers
and palm of the mockup)

Sensor frequency band-
width

1-1kHz

Size 4.8 cm × 3 cm

Number of channels 64

Sampling Rate Up to 6 ksamples/second

Embedded Electron-
ics

Connectivity USB-C port communication
interface and Bluetooth

Power consumption 200 mW

Overall Latency 100 ms

Feedback System Connectivity USB and Bluetooth

Number of stimulation
pads

64 (distributed on the fingers
and palm of the hand of the
participant)

SAC configuration. In the present study, we compared the effectiveness of the two

configurations (see Section 7.4.1.1).

To map 57 tactile sensor outputs to the 31 channels of the stimulator, some

neighboring sensors were grouped together and connected to a same stimulation

channel. The mapping between sensor sets and groups of electrode pads is shown in

Figure 7.5 (left). The stimulation channel connected to a group of pads was activated if

any of the sensors belonging to the corresponding sensor set detected a contact event.
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7.3 Sensing System Validation

To assess that the sensors properly responded, validation experiments were conducted.

In the first test, the experimenter holding a pen performed indentation tests by applying

press-hold-release patterns on all 57 sensors, one at a time. In the second test, the

experimenter used two pens to apply the press-hold-release pattern on two sensors

simultaneously. Finally, the experimenter performed shear tests by applying a sliding

pattern along the e-skin following specific sliding directions. In order to visualize the

response of the sensing system, the embedded electronics was configured to acquire,

filter, and send signals generated by the sensors to a host PC through USB. A LabVIEW

software was developed to receive, visualize and save the tactile signals.

Table 7.1 summarizes the specifications of the different components of the system.

In particular, the embedded electronics consumes 200 mW while continuously sampling

and processing tactile signals and sending commands to the host. When supplied with

a single 2 Ah Lithium polymer battery with a voltage of 3.7 V, the battery lifetime

expectancy is 24 h.

Representative results from the sensing system validation experiments are shown in

Figure 7.6. The figure depicts the electrical response of six sensors to indentation tests

(Figures 7.6.a-c ) and to shear tests (Figure 7.6.d), as defined above. Figure 7.6a and

Figure 7.6b show the six sensors capturing the dynamic features of the mechanical event

by generating two phasic bursts in charge-mode output signals. The bursts correspond

to the press and release events, while there was almost no response in-between. The

contact onset is associated to a decrease whereas contact release generates a signal

increase. The signal peaks are arranged in sequence reflecting the fact that the touches

were applied to the sensors sequentially. Figure 7.6.c shows that the sensing system

can capture multiple touches when they were applied simultaneously. Finally, Figure

7.6.d shows a sliding pattern that started on the palm, crossed the volar side of the

index finger and ended on the fingertip of the index finger. The plot indicates that the
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Figure 7.6 Illustrative data showing sensor outputs. Signals from six sensors are shown
during touch interactions. The legend attributes colours to each specific sensor output.
Indentation tests: (a) long press on two sensors located on the palm; (b) long press on the
three phalanges of the index finger starting from the proximal phalange; (c) long press on
two sensors (on the palm) at the same time. Shear tests: (d) sliding movement starting
from the palm and moving toward the tip of the index finger.

six sensors respond to shear tests and that the sliding direction could be easily inferred

from the sequence of sensor activations. Interestingly, the sensor response pattern is in

this case more complex; the press and release peaks are still visible, but they are not

as sharp as in Figure 7.6.a and Figure 7.6.b. This reflects a different sensor response

to the different type of mechanical interaction (shear forces). The sliding movement
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provoked more gradual activation and deactivation of the sensors compared to previous

indentation tests.

7.4 Psychometric assessment

7.4.1 Experiments

Two experiments (Table 7.2) were conducted to assess if the system could convey

information on contact location (indentation tests) and on the sliding movement along

and/or across fingers (shear tests). In both experiments, the stimulation was delivered

to the subject according to the mapping described in Section 7.2.2 and shown in Figure

7.5.

7.4.1.1 (Static pattern experiment (SPE)

This experiment evaluated if the feedback system could successfully convey the infor-

mation about static contacts to the subject. The sensor sets shown in Figure 7.5 were

divided into 14 groups and labelled as shown in Figure 7.7 (left). The groups were

Table 7.2 Summary of experiments

Name Anode con-
figuration

Description Touch patterns

Static
pat-
terns

SAC

DAC

Spatial coding
with 21 classes
(static patterns)

Single touch: G1, G2, ..., G14
Two simultaneous touches:
G4-G1, G4-G3, G5-G4, G5-G6,
G5-G1, G3-G1, G5-G10

Dynamic
pat-
terns

DAC Spatial coding
with twelve
classes (dynamic
patterns)

Single sliding line: IV, IL, M,
PF, PTh, FT, PM, PIV
Two simultaneous sliding lines:
IV-M, PIV-PM, PIV-PTh, PM-PTh
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Figure 7.7 Left: Sensor distribution within the electronic skin placed on the fingers and
palm of the mockup of the Michelangelo hand. The sensors were grouped into fourteen
groups (G1-14, boxes). Right: Two psychometric experiments were conducted: 1- SPE
– skin indentation aligned on specific sensors (Static pattern) and 2- DPE - shear tests
(Dynamic pattern), i.e. sliding across M, IV, PTh, IL, PF and FT lines in two directions).

defined to assess if the subject could recognize touch delivered to each of the important

functional areas (fingertips and phalanges). Moreover, the test comprised single and

double touch (see Table 7.2), where the experimenter pressed the skin to activate a

single group or two groups, respectively. In the latter case, the tested combinations of

two groups were defined so that they are functionally relevant, i.e., they were expected

to be activated when closing the hand using different grasp types (e.g., pinch, lateral

grasp). The experiment was conducted twice, one with distributed anode (DAC) and

once with single dedicated anode (SAC).

7.4.1.2 (Dynamic pattern experiment (DPE)

The experiment evaluated if the system could successfully deliver information about

moving contacts to the subject. The experimenter interacted with the e-skin to activate
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Figure 7.8 Experimental setup. (a) The subject received electrotactile feedback through
electrode arrays placed on the right hand and covered with a medical bandage. The
electrodes were connected to a small PCB routing 64 pads to 32 stimulation channels. The
PCB includes a small jumper that was used to switch between the anode configurations, i.e.,
SAC and DAC. (b) Example of the experimenter interacting with the sensors: (bottom) the
experimenter applies single touch on a set of sensors on the palm and (top) the experimenter
touches the index and middle fingers simultaneously.

a sequence of pads. The movement patterns included sliding along the volar and lateral

aspects of the index finger, and the volar aspect of all fingers and palm. Moreover, the

test comprised applying single and double sliding lines (see Table 7.2 and Figure 7.7

(right)) shows the sliding patterns. In this experiment, the sliding lines were delivered

to the subject using the SAC anode configuration only.

7.4.2 Setup and Protocol

Seven healthy subjects (male, age 28 ± 4 years) participated in the two experiments

described in Section 7.4.1. Before starting, the subjects signed an informed consent

form. Figure 7.8 shows the experimental setup. The subjects were seated comfortably

on a chair in front of a monitor used for visualization. The forearm of the right arm

was placed on a table surface and, the electrodes were placed on the fingers and palm

of the subject’s hand and secured with a self-adhesive bandage as shown in Figure
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7.4.b. Each phalange was secured separately in order not to block the movements of

the subject’s fingers. Figure 7.8.a shows the view from the subject perspective. The

sensorized mockup of the Michelangelo hand was mounted on a support and placed

so that the subject could not see the hand nor the experimenter interacting with the

hand (see Figure 7.8.b). Before the experiments, the Sensation Thresholds (ST) were

determined for each of the 31 pad groups (Figure 7.5), using the methods of limits

by varying the pulse amplitude value [214]. During the rest of the experiment, the

pulse amplitude was set to 1.1×ST, which ensured that the sensations elicited by the

feedback were clear and comfortable. The amplitude was additionally fine-tuned by

the experimenter until the subject reported that the perceived intensity was similar

across the pad groups. The pulse rate and pulse width were common to all the pads

and set to 50 Hz and 100 µs, respectively. Each experiment started by introducing the

subject to the sensory feedback system and feedback mapping. Both experiments (SPE

and DPE) comprised three phases: learning, reinforced learning, and validation. In

the learning phase, the patterns described in Table 7.2 were delivered and the subjects

were informed beforehand which pattern will be presented.

During reinforced learning, the contact patterns were randomly applied, while the

subjects were asked to guess the applied patterns. The experimenter then provided

verbal feedback on the correct answer by saying “correct” or “incorrect” and, in the

latter case, disclosing the correct pattern. During the final validation phase, the patterns

were again presented randomly, the subject verbally indicated the pattern, but no verbal

feedback was given. Each stimulus was presented to the subject 3 times during the first

two sessions and 5 times during the validation phase.

7.4.3 Data Analysis

The outcome measure was the success rate (SR) defined as the percent of correctly

recognized contact patterns, namely, activated groups in SPE and sliding movements
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Figure 7.9 The overall success rate (SR) of recognizing sliding lines in experiment DPE
for DAC (left) and groups of sensors in SPE experiment for SAC and DAC (right). Aster-
isks indicates the statistically significant difference in mean SR for the different anode
configurations. (*, p < 0.05).

in DPE. The SRs were computed per subject for each contact pattern. In SPE, the SR

obtained with DAC was compared to that achieved with SAC to test if the recognition

was impacted by the anode configuration. The results of the tests are reported as

median{interquartile range (IQR)}. The overall performance is also presented in the

form of confusion matrices to identify prevalent mistakes.

The paired sample Wilcoxon signed rank test was applied to assess statistically

significant differences between SAC and DAC. Non-parametric tests were used due to

the small number of subjects. The threshold for the statistical significance was set at p

< 0.05, and the statistical analysis was conducted in OriginPro 2018 (OriginLab, US).
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Figure 7.10 Confusion matrix for SPE experiment.

7.5 Results

The box plot of the success rates (median{IQR}) from all the experiments are presented

in Figure 7.9. The subjects achieved a high overall success rate (both single and double

touches) when recognizing the touched group of sensors (SPE test) using DAC with

median{interquartile range} of 88.57{11} %). The SAC resulted in a significant drop

(p < 0.05) in performance (48.57{25} %).

With DAC, the subjects were more successful (p < 0.05) when recognizing single

touches (90{7.14} %) compared to recognizing double touches (85{20} %). Impor-

tantly, the subjects could easily differentiate if the touch was single versus double (SR

of 95.23{3.81} %). The dynamic patterns (DPE experiment) were recognized with a

high success rate (93.3{5} %).
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Figure 7.11 Confusion matrix for DPE experiment.

The confusion matrix for SPE test with DAC is shown in Figure 7.10. The ‘un-

known’ class was introduced to indicate that in few trials the subjects reported a group

combination (multiple touches) that did not exist in the experiment (e.g., G2-G3). The

confusion matrix exhibits a dominant diagonal line demonstrating that subjects could

reliably recognize the applied single and double touches in most cases, where the latter

were slightly more difficult to estimate correctly. When the subjects were wrong for

the single touch (G1, .., G14), they mostly pointed to a directly neighbouring group

placed distally or proximally with respect to the correct group (G3 to G4, G5 to G6 etc.),

see the second parallel diagonals above and below the main diagonal. Excluding the

misrecognition registered for G3 (predicted as G2-G3, 1 out of 35 trials, i.e. 3%), most

of the “unknown” predictions were registered for double touches where the subjects

predicted one group correctly while misrecognizing the second group. The confusion

matrix exhibited higher diagonal values for double touches that involve groups from
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different fingers (e.g., G1-G5, G5-G10) compared to groups residing on the same finger

(e.g., G3-G4, G4-G5). Importantly, the mistakes were typically confined to groups

within the same finger (see bottom left of Figure 7.10). Interestingly, in a few cases,

double touches were mistakenly interpreted by the subjects as a single touch. For

example, applying touch at G3 and G4 simultaneously (G1-G4) was mostly mistaken

for G3 only.

The confusion matrix for DPE test with DAC is shown in Figure 7.11. In some

trials, the subjects confused “IL” line with “IV” line and “PM-PIV” line with “PF”, and

this was likely because the experimenter would occasionally activate sensors that did

not belong to the target line due to the natural variability when executing the sliding

patterns. The subjects made most errors when discriminating two simultaneous sliding

patterns (IV-M, PIV-PM, PIV-PTh, PM-PTh).

7.6 Discussion and Conclusion

In this study, we presented and evaluated a high-density tactile feedback system for

human-machine interfacing. The system comprises 57 distributed tactile sensors (e-

skin) integrated on the fingers and palm of the robotic hand mockup, multichannel

embedded electronics and a distributed electrotactile stimulation interface placed on

the volar side of the subject hand. It is worth noting that sensors have been distributed

on such areas that are expected to be more relevant functionally, e.g. the fingertips or

areas activated when closing the hand using different grasp types (e.g., pinch, lateral

grasp, palmar grasp). The contact information captured by the electronic skin was

delivered to the subject through a matrix electrode comprising 64 stimulation pads

distributed over the fingers and the palm of the subject’s hand. The experiments have

been conducted to validate the operation of the sensing component (electronic skin

and embedded electronics) as well as to test the ability of the full feedback interface to
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acquire and transmit the mechanical interaction (applied on the electronic skin) to the

subjects’ hand.

The validation of the sensing component demonstrated that the e-skin and the

embedded electronics can indeed detect mechanical indentation on the e-skin surface,

centred on different sensors and applied sequentially and simultaneously (static pat-

terns), as well as contacts sliding across the e-skin (dynamic patterns). Such mechanical

stimuli are the basic building blocks for more complex tactile interactions that arise

during functional activities.

The design and placement of the anode is an important issue for the practical

application, especially when the feedback is delivered to a confined area (subject hand),

and both approaches (distributed vs single anode) tested in the present study were

used before in the literature [245, 259]. In general, the anode should be substantially

larger in size compared to a cathode, as it should serve only as a return path for the

current without eliciting sensations. The “distributed” anode is a compact solution,

as the anode is “within” the stimulating electrode, but the drawback is that each

anode requires a single pad, strongly reducing the number of available pads to elicit

sensations. Nevertheless, the conducted experiments demonstrated that this approach

(DAC) resulted in significantly higher performance compared to a single anode placed

on the hand dorsum (SAC). More specifically, the SAC negatively impacted on the ability

of the subjects to predict static and especially double contacts. They had difficulties to

distinguish between neighboring groups, particularly when stimulating the index finger.

A strong spreading of sensations was reported by most subjects. Contrarily, when using

DAC, the subjects predicted single and double contacts with high success rates, and

they reported a well localized sensation. DAC has been therefore selected to complete

the experimental campaign.

The psychometric experiments with DAC demonstrated that the subjects could

identify contact patterns delivered to the most important functional areas of the hand,
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for high-bandwidth human-machine interfacing

including the lateral and volar side of the index finger, fingertips of all fingers and

thumb, and the palm. This included simple patterns, such as contact on a single area,

as well as more complex sensations arising from simultaneous touches on two areas,

single and double sliding contacts, and comprehensive patterns activating many pads

simultaneously. While we have previously demonstrated that such patterns can be

perceived from a single finger [211], in the present work we show that the electrotactile

stimulus can be delivered to a larger area, following mechanical interactions across

the whole hand. An important point is that the current system provided somatotopic

feedback, which is expected to facilitate perception and interpretation of the stimulus

[260]. In combination with the validation of the sensing system, the psychometric

assessment demonstrates that the developed system not only detects a variety of tactile

interactions but can also create tactile sensations that allow the subjects to correctly

perceive and interpret such interactions, after only a brief familiarization with the

system. This is an encouraging outcome implying that the novel system might be able

to provide a functionally relevant feedback that can assist the subject while using a

robotic hand, e.g., in slip detection and prevention [216] or for estimation of objects

properties such as compliance, hardness, texture by using exploratory motions [261–

263]. Importantly, the proposed technology is versatile as it is not constrained to

a specific robotic hand. While the sensing system was developed to sensorize the

Michelangelo hand, the modular approach that we propose can be adapted to fit other

prosthetic or robotic hands. Likewise, the electrodes can be easily printed in different

geometries so that they can be applied to different parts of the body (e.g., a rectangular

and/or circular matrix electrode to be placed on the residual limb of an amputee

subject).

The proposed system transmits tactile information to the user with a delay of 100

ms. This delay strongly depends on the communication channel between the sensing

and feedback systems. In the present solution, a host PC acts as a “bridge” between
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the embedded electronics and the stimulator. Nevertheless, since both the embedded

electronics and the stimulator integrate a Bluetooth interface, the system latency can

be reduced by establishing a direct connection through Bluetooth.

To summarize and conclude, in the present study we proposed a system that

provides spatially distributed feedback to the whole hand using a dense matrix of

sensing and stimulation pads and we demonstrated its applicability by conducting

experiments in able-bodied subjects. To the best of our knowledge, this is the first

feedback system that can convey high-density tactile information to the whole hand

using electrotactile stimulation. The provided feedback could improve utility and

performance, as well as facilitate the feeling of embodiment and immersion in human-

machine interfacing across fields, from teleoperation and prosthetics to virtual reality

and gaming. All in all, this is an important step towards implementing a full high-

bandwidth human machine interface that will allow a bidirectional connection between

the subject and a machine (robotic system) for dexterous control and comprehensive

feedback [177]. To this aim, the system described here could be supplemented with an

interface that provides high density recording of electrical muscle activity. The latter can

be used to decode the subject motion intention and translate those into commands for

the robot [264]. Importantly, the recording of EMG could be realized through the same

electrode technology as the one used in the present study to implement stimulation

[215].
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Chapter 8

Touch Modality Classification Using

Recursive Neural Networks

8.1 Introduction

Tactile sensing systems attract the research interest in many application domains

such as robotics, prosthetic devices, and industrial automation[132, 265]. The main

focus is in the areas of sensors and transducers, front end electronics, and smart

data processing algorithms. A tactile sensing system is composed of: 1) an array of

tactile sensors to sense the applied mechanical stimuli, 2) an interface electronics

for signal conditioning and data acquisition, and 3) an embedded digital processing

unit for tactile data decoding. The goal is either to mimic the human capabilities in

capturing and interpreting tactile data or to respond to the application demands. To

be effective, tactile sensors have to sense and extract meaningful information from

the contact surface such as force direction and intensity, position, vibrations, objects

and texture, or touch modality classification. Such information can be extracted by

employing algorithms rooted in machine learning, which have proven their effectiveness

in processing tactile data [35].
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The adoption of tactile sensing systems in real world application is still limited

and challenging [195], [123]. One key aspect is the complexity of the processing

algorithms (basically the number of Floating Point Operations - FLOPs) when the

hardware implementation is targeted. This affects mainly the energy consumption and

time latency.

In this chapter, a novel touch modality classification framework using Recurrent

Neural Networks (RNNs) is presented. RNNs are mainly designed to deal with sequence

prediction problems. They have been very successful in processing natural language,

i.e., working on sequences of texts and spoken language that are represented as time

series [266, 267]. Data acquired from tactile sensors have 3-dimension tensor structure

(similar to a video) where the first two dimensions are defined by the geometry of the

sensor array while time defines the third dimension. Hence, given this representation

of tactile data, in this study we adopt RNNs as they are effective in processing data

time series. The main contributions of this study are summarized as follows:

- It explores the potential of RNN models for touch modality classification. For

this purpose, we specifically propose two methods that are based on two separate RNN

architectures, namely Long Short Term Memory (LSTM) [268] and Gated Recurrent

Unit (GRU) [269] networks to capture long-term dependence from tactile data.

- It proposes a case-specific approach to dataset organization to address the pecu-

liarities of tactile data within the aforementioned architectures. For both LSTM and

GRU models, averaging with overlap is applied to the input tensor aiming to maintain

data about previous time-step in the current time-step.

- The proposed RNN framework for tactile data classification has been experimen-

tally validated with a real dataset and compared to the state of the art achievements.

The experimental results demonstrate that the proposed approach achieves a reduction

in the number of FLOPs by 99.98% and by 98.34% in memory storage compared to the

same problem in the state of the art [270]. Moreover, The computing architecture is
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scalable, i.e. the complexity is still acceptable when the system is scaled up in terms of

input matrix size and number of classes to be recognized. Nonetheless, the classification

has reached an accuracy of 84.23% on a 3-class touch modality data set (explained in

Section 8.4), which is higher than state of art solutions on the same dataset [271, 272].

The proposed solutions reduce the number of FLOPs by 99.989% compared to the same

problem in the state of the art [270]. The computing architecture is scalable, i.e. the

complexity is still acceptable when the system is scaled up in terms of input matrix size

and number of classes to be recognized.

The rest of the chapter is organized as follows. Section 8.2 reviews the related

works in tactile data processing. Section 8.3 gives a brief discussion on the methodology

followed in the proposed approach. Section 8.4 introduces the experimental setup with

the details of the different proposed models. In Section 8.5, we report and analyze the

experimental results with a discussion. Finally, we conclude the study in Section 8.6.

The content of this chapter is presented in [273].

8.2 Background

Different works in the literature have addressed tactile data processing using machine

learning and deep learning, including the use of LSTM networks. In general, these

works address both static and dynamic tactile data perception. In static perception,

a single reading is captured for a sensor array, while the dynamic aspect deals with

tensorial data collected as frames; each frame corresponds to readings at a single time,

and the whole tensor is considered as a sample to be processed. In [274] and [275],

nine static touch modalities (tap, pat, push, stroke, scratch, slap, pull, squeeze, and

no-touch) are classified using LogitBoost[276] and SVM respectively. LogitBoost in

[274] degrades in performance when trained on data collected by 40 participants

(71%), while SVM achieves an accuracy range of 80.10% - 81.85% in [275].
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In [277] two approaches are used to classify eight objects, i.e., finger, hand, arm,

pen, scissors, pliers, sticky tape, and Allen-key, using a 28×50 tactile sensory array

attached to a robotic arm to collect static pressure maps. For feature extraction, the

first approach uses Speeded-Up Robust Features (SURF) descriptor[278], while the

second uses a pre-trained AlexNet CNN[279]. Finally, a Support Vector Machine

(SVM)[280] classifier is employed for both approaches.In [281], authors use a shallow

CNN (only three convolutional layers inside) based on AlexNet to identify 22 objects

using static pressure maps, collected from a 28×50 tactile sensory array. While in

[272], an optimised embedded implementation of the latter solution is achieved on

various hardware platforms.

Rouhafzay et al. [282] employ a combination of virtual tactile sensors (32×32) and

visual guidance to distinguish eight classes of simulated objects. Two neural networks

are used: a 3D ConvNet for the series of object images coming from tactile sensors and

a 1D ConvNet for the series of the normal vectors to the object surface. Abderrahmane

et al. [283] introduce a zero-shot object recognition framework, to identify previously

unknown objects based on haptic feedback using BioTac sensors [284]. Two CNNs are

employed: one for visual data and another for tactile data where the time dimension

in the data is transformed into spatial dimension. In [281], authors use a shallow

CNN (only three convolutional layers inside) based on AlexNet to identify 22 objects

using pressure maps, collected from a 28×50 tactile sensory array. While in [272],

an optimised embedded implementation of the latter solution is achieved on various

hardware platforms. Gastaldo et al. [271] propose tensor-SVM and tensor-RLS to

classify three touch modalities collected as tensorial data from a sensory array. In [285]

the same problem is solved using Deep Convolutional Neural Network (DCNN) and

transfer learning. In the latter, tensorial sensory data is transformed into synthetic

RGB images, and then pre-trained CNN models on ImageNet [286] is used for feature

extraction.
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In [287], authors collect frames of pressure maps from squeezing an object in

contact with a TekScan sensor. 3D CNN are compared to 2D CNN in order to classify

three different datasets achieving a higher accuracy when 3D CNN have been employed.

Various other works on tactile data processing can be found in [288], [289], and [290]

as well.

LSTM networks have recently attracted attention in tactile data processing, espe-

cially for the case of data presented in time-series, i.e., each sensor acquires time series

of readings, defined by the data readout frequency.

In [291], an LSTM is used to predict shape independent hardness of objects from

data generated as video from a GelSight sensor with a grid of 960× 720 pixels. Features

from five video frames are extracted using a CNN and then used as an input for an

LSTM network.

In [292], a CNN is used for active tactile clothing perception. Color RGB pressure

maps generated from a large tactile sensor attached to a robotic arm grasping clothes,

are used to classify different textile properties: thickness, smoothness, textile type,

washing method, softness, stretchiness, durability, woolen, and wind-proof. Static and

dynamic perception are explored, different CNN models are experimented for single

image classification, the best performing being the VGG-19 pretrained on ImageNet

[286], while a CNN+LSTM model is used for dynamic data, the LSTM is composed has

hidden state of dimension 2048.

In [293], authors use an LSTM for slipping prediction over six different material

surfaces, using three different tactile sensors, attached to three fingers of a robotic arm.

A 20-neuron single-layer LSTM is used in this study. In [294], authors use a CNN and a

Graph Convolutional Network [295] for binary grasp stability detection, and an LSTM

and a ConvLSTM for detecting slipping direction (translational and rotational). The

number of LSTM units is not mentioned for LSTM, instead for ConvLSTM, 5 ConvLSTM

layers were used, then pooling, and two fully connected layers, the input for ConvLSTM
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is 11×12 RGB image. In [296], Dong et al. use high resolution tactile sensor (GelSlim)

to control the insertion of objects in a box-packing scenario, they employ two distinct

models based on CNN+LSTM, the first network for detecting the direction of the error,

and the other for detecting the magnitude of the error, the CNN model used to extract

features is a pretrained AlexNet model. The LSTM contains 170 units.

The aforementioned works generally have a high complexity in the learning and

inference phases, especially when deep learning is used, which raises challenges for

hardware implementation requirements[297]. Here arises the need of low-complexity

but high-accuracy touch modality classification solutions suitable for the embedded

hardware implementation, where resources are usually limited (e.g., power, memory).

In this respect, LSTM is a promising candidate, especially when shared weights are

used.

To the best of our knowledge, no works were done, yet, to explore the potential of

LSTM for solving the touch modality classification problem. According to the state-of-

art, different methods were used to address tactile data processing and touch modality

classification. In this framework, the capability of deep learning architectures to extract

meaningful data representations from high-dimensional spatio-temporal data, without

the need for handcrafting features, conveys an especially promising potential. Here, we

leverage on this potential to propose two novel methods for tactile data classification,

based on recurrent architectures. On one hand, the planar topology of a tactile array

may generally prompt the use of CNN architectures. This strategy is expected to be

promising especially if large-area arrays, made of many individual sensors and acquiring

tactile imagery with relatively high resolution, are used. On the other hand, highly

effective CNN architectures may include a large set of parameters, which creates a

challenge for real-time processing, power consumption, and training set size. Touch

modality data have relevant spatio-temporal characteristics: touch occurs in time

(temporal aspect) and takes place on the surface of the tactile sensory array (spatial
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Figure 8.1 (a) LSTM unit (b) GRU unit (c) LSTM\GRU Execution pipeline

aspect). Using CNN in [285], necessitates to transform temporal characteristics into

spatial characteristics, by generating a single synthetic image for each tensorial sample.

Instead, RNN intrinsic capabilities to capture time-dependent behaviors makes them

a promising approach for the analysis of such data. This is achieved by making a

recursive input into the network, which comes from the output at previous time-step.

Another important consequence of using RNNs is that the weights are shared across

time, i.e., weights are defined for a single RNN block, and these weights will be shared

upon execution over all time-steps. This means a reduction in number of stored trained

parameters and of complexity as well.

Here, the RNN approach to the classification of touch modalities is explored and two

RNN models (LSTM and GRU) are proposed.
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8.3 Methodology

8.3.1 LSTM network

LSTM networks are RNNs capable of modeling long-range temporal dependencies

[298]. RNNs are composed of a chain of units whose output is connected not only

to the next layer but also fed back to the unit itself as an input, thus allowing the

information to persist. LSTM behaves in a temporal manner that is appropriate for

learning sequential models [299]. A clear example of LSTM usage is the prediction

of the next word in a sentence, having observed the previous words [300]. Moreover,

LSTM can act as a classifier for time series of data [301, 302]. A key characteristic of

LSTM is its memory cell, which acts as an accumulator of the state information. Several

self-parameterized controlling gates are used to access, write, and clear the cell (output,

input, and forget gates).

Figure 8.1.a illustrates the architecture of the LSTM unit. It is composed of a cell,

which is characterized by a state vector ct and a hidden state vector ht (t ∈ {1, 2, . . . , T})

indicates the time index and T is the number of time-steps. Each LSTM unit uses a forget

gate, associated with a sigmoid activation function (σ1), to decide which information

it should forget from the previous state ct−1. A new input xt (t ∈ {1, 2, . . . , T}) is

accumulated to the state of the memory cell ct using a hyperbolic tangent activation

function (tanh) and an input gate with sigmoidal activation function σ2. At the end of

the LSTM unit, an output gate using sigmoidal (σ3) and tangential (tanh) activation

functions are used to decide the outputs of the LSTM unit (ct and ht). Note that xt is a

vector with dimensionality equal to the number N of features, which represents the

number of individual sensors in the array.

In order to get the number of parameters in an LSTM unit, the formula is the following:

p = 4× (H × (D + H) + H) (8.1)
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where H is the number of hidden layers(neurons), D the dimension of the input vector

(in our case 16). For each sigmoid function, the input is the concatenation of xt and ht,

hence the total dimension of the input is D + H, this number is multiplied by number

of neurons H, in addition we have H biases for each sigmoid function. so that the total

number of weights of each sigmoid function is (H × (D + H) + H). Since an LSTM unit

is composed of 4 sigmoid functions according to Figure 8.1, this number is multiplied

by 4 as shown in equation 8.1. More details about LSTM networks can be found in

[300].

8.3.2 GRU network

Similar to the LSTM unit, the GRU unit has gates that modulate the flow of information

inside the unit. However, it does not use the memory cell state and uses the hidden

state ht to transfer information [269]. A typical GRU cell is composed of only two

gates, the reset gate (whose role is similar to the forget gate of the LSTM) and the

update gate (whose role loosely matches the input gate of the LSTM). Thus, a single

GRU unit involves fewer operations and trainable parameters compared to a single

LSTM unit. Figure 8.1.b shows the architecture of the GRU unit. In order to get the

number of parameters in a GRU unit, the formula is the following :

p = 3× (H × (D + H) + H) (8.2)

The only different compared to equation 8.1,is the number 3 instead of 4, because

the GRU block is composed of Three sigmoid functions instead of Four in the case of

LSTM, as illustrated in Figure 8.1.
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8.3.3 CNN-LSTM network

CNN-LSTM is a the series of a CNN and LSTM. The CNN-LSTM model is based on using

pre-trained CNN layers, to produce a fixed-length vector representation of an input

image to be used as a feature vector. This consists of cutting out the classification layer

of the CNN, and just keeping all the layers before, whose final output is the feature

vector. The feature vectors are then passed into an LSTM network, to implement the

classification of a sequence of images. Figure 8.4 depicts the structure of the CNN-LSTM

model.

8.3.4 ConvLSTM network

ConvLSTM networks [298] are used for capturing Spatio-temporal information in

an image data sequence. These networks use convolutional layers inside their cells

instead of fully connected layers used in standard LSTM networks. The main difference

between LSTM and ConvLSTM is the type of operations performed in their units, but

the logic keeps the same. That is, ConvLSTM networks still have a memory cell ct that

keeps a state at time t, and uses the same gates used in the LSTM unit to access, clear,

and write the memory cell. However, a ConvLSTM operates with 3D tensors (e.g., RGB

images) instead of 1D vectors (feature vectors) so it performs spatial convolutions with

the data that go through it. Therefore,tensorial tactile images that presents a touch

modality, can be used to train the ConvLSTM model and predict the type of such touch.

Based on the general architecture of the LSTM unit, three parameters are required

to build an LSTM network: feature vector length, time-steps, and the number of

neurons; the same applies to GRU as well. For these two RNN models, each input

pattern is a feature vector representing a sampled time signal. In this perspective,

raw data should be pre-processed in order to be suitable for RNN models. The pre-

processing has three main objectives: 1) reduce the input data size to simplify the

training, 2) normalise the data as a general consideration in training neural networks,
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Figure 8.2 Scheme of touch modalities, tactile acquisition system and dataset properties.

and 3) make the dataset format compatible with the network’s input format. The

feature vector length for both LSTM and GRU was chosen equal to the size of the tactile

array, therefore each sensor in the tactile array is considered as a feature. The number

of neurons was selected on trial basis, in order to have the fewest trainable parameters

possible, while achieving an acceptable accuracy with respect to the state of the art.

Detailed description of each model is presented in Section 8.4.B.

8.4 Experimental Setup

The dataset collected in [271] has been considered in this study. Figure 8.2 illustrates

the dataset used in this work. A tactile acquisition system (Figure 8.2) that is based on

a charge amplifier and a Data Acquisition board (DAQ) was used to collect the data

from the sensory array. Seventy subjects were asked to perform predetermined touch
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modalities i.e. sliding the finger, brushing a paintbrush, and rolling a washer. Each

participant touches the top surface of a 4×4 piezoelectric tactile sensory array in two

moving directions twice. For every single touch, 10 seconds acquisition was done at 3

kSamples/second, the collected data were arranged into a 3-dimensional tensor: tactile

sensory array size × number of acquired samples = 4×4×30000. 280 patterns per

touch modality in a total of 840 patterns are available. This dataset can be downloaded

from: https://data.mendeley.com/datasets/dmcdp33ctt/2

8.4.1 Dataset Organisation

In order to use RNNs for this dataset, pre-processing was applied to the dataset. The

first step is to generate a 3D tensor that contains only the useful touch information

from the original raw data. In other words, in the first step, we selected the time period

where touch is applied as shown in Figure 8.3.A. This was done by checking at which

time instant T any of the sensor output value exceeds a predefined threshold. The

resulting time T indicates the starting point of the useful touch data. To have a constant

number of frames over all the patterns, we fixed the size of the data to 6144 samples

per sensor, i.e., in the [T, T + 6143] range. The average activity time duration for all

users is around 2 seconds i.e., 6000 samples. We selected 6144 samples per sensor i.e.,

6144 × 16 to make the tensor size a multiple of 64×64, which make it suitable for

comparison with CNN based networks, mentioned in section 8.4.B.

The result from the first step is a 3D tensor of size 4×4×6144 each, having the

same original frequency of 3 kSamples/second, and starting at time instant T until

reaching 6144 frames. Sixty patterns out of 840 were excluded since no sensor readings

exceeded the activity threshold in these patterns. The refined dataset referred later

on as Dataset (A), is composed of D×(4×4×6144) tensors per touch modality(three

touch modalities), where D is the number of patterns (D = 260). From Dataset (A) are

then derived two different datasets that fit the used models.
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Figure 8.3 Dataset Organisation

CNNs use convolutional layers to transform images into feature vectors, following

that requirement, each pattern in Dataset (A) of size 4×4×6144 has been transformed

into a time series of larger images. Each pattern is presented by 64×64×24 samples

(image size × time-steps). The resulted dataset is called Dataset (B). It is important

to note that the time sequence order was also maintained within each 64×64 image

(im64), i.e., each im64 consists of 256 images of 4×4 pixels as shown in Figure 8.3.B.

The third dataset called Dataset (C) is composed of five different sub-sampling

of Dataset (A), as shown in Figure 8.3.C. An averaging with 50% overlap was used
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Algorithm 1: Generate Dataset (C)
Input: Dataset (A), Output: Dataset (C)
a = single pattern from Dataset (A);
K = number of frames in a;
C = output pattern;
F = number of sensors;
N = number of output frames;
slot← K/N ;
for i← 1 to F do

sen← a(1 : end, i); // sen: single sensor output
u← 1;
for j ← 1 to N do

if u < N then
C(j, i)← Average(sen(u : slot + u));

if u = N then
C(j, i)← Average(sen(u : end));

u← u + slot/2;

to down-sample the tensor from 4 × 4 × 6144 to 4 × 4 × N , where N represents the

number of the input time-steps for the LSTM and GRU networks. N varies in the

following set of values 20, 50, 100, 200, and 256. The overlapping helps maintaining

data about previous time-step in the current time-step, the increment of (slot/2) in

the sub-sampling algorithm clarify this overlapping. The whole process is described in

Algorithm 1.

The three datasets are shown in Figure 8.3, where one pattern was used as an

example to illustrate the difference in the presentation of the original dataset.

8.4.2 Implementation

As mentioned in Section 8.3, two models have been implemented. For each model a

dense layer is added at the end for the classification. For a further comparison, two

CNN-based models are tested.
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8.4.2.1 LSTM network

the LSTM network composed of one LSTM layer (10 neurons) and a flat input layer of

length 16, was trained on Dataset (C). As for the time-steps, the LSTM network was

trained for each of the time-step configurations i.e., N ∈ {20, 50, 100, 200, 256}.

8.4.2.2 GRU network

The GRU network is composed of a single GRU layer, applied within two alternatives:

10 neurons and 12 neurons per GRU layer. This GRU network has as well a flat input

layer of length 16. As for the time-steps, the training process was done only on (N = 20)

configuration of Dataset (C), based on the best achieved results with LSTM.

8.4.2.3 CNN-LSTM network

Four different pre-trained CNN models (ResNet50 [303], ResNet150V2 [303], Mo-

bileNetV2 [304] and VGG16 [302]) were considered for comparison purposes to play

the role of the CNN model shown in Figure 8.4. The four CNN models were trained

using the ImageNet dataset [286]. These models were selected based on the results

of our previous work [285], which showed that the four models were effective in

extracting features from the considered dataset. The models were used to transform

each image in Dataset (B) into a fixed-length feature vector. Therefore, each CNN

model transform Dataset (B) into a 4-Dimension tensor of shape D× 24× 1×K, where

D is the number of patterns, K is the size of the output feature vector in each model,

Figure 8.4 CNN-LSTM Structure.
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and 24 is the time-steps in each pattern. Thus, the input of the LSTM block has K

features, and 24 time-steps.

8.4.2.4 ConvLSTM network

The second CNN-based model used for comparison is composed of single ConvLSTM

layer (32 filters of 3 × 3) followed by one fully-connected layer with 100 units and

ReLU activation. Dataset (B) is used, the input of the network is a im64, and the

time-steps are 24.

8.4.3 Training

The training and application of the proposed networks were done using Keras with

Tensorflow back-end on an NVIDIA GPU. Dataset (C) was normalized before being used

to train and test the LSTM and GRU models.

For training / testing split, an 80 / 20 percentage was chosen. Five folds were

generated, in a way that the intersection of testing samples is empty across all folds.

The Adam optimiser [305] was used to train the networks, with categorical cross

entropy as a loss function and Softmax activation for the output layer. Different runs

were made also for each fold, including different batch sizes and epochs, in order to

find the hyper-parameters that lead to better accuracy. Finally the choice was limited

to batch_size = [48, 69] and epochs = [48, 96], such that we have 4 combinations in

total. For each combination, ten training runs with random initialization and random

batch selection have been made i.e., the batch size is fixed, but choosing the sam-

ples for a batch is random. Therefore, for each model mentioned in 8.4.B, 4×10×5

(combinations×runs×folds) training runs have been made. Finally the accuracy is ob-

tained by averaging all runs across a fold for all the combinations of (batch_size, epochs).

Results in the next section corresponds to the best (batch_size, epochs) combination,

i.e., the combination that gave the highest accuracy, in our case it is batch_size = 48
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Figure 8.5 (a) Average Accuracy achieved varying the input to the CNN-LSTM network
for five different folds of Dataset B; (b) Average Accuracy of ConvLSTM network for five
different folds of Dataset B; (c) Average Accuracy achieved varying the input to the LSTM
network for five different folds of Dataset C; (d) Average Accuracy achieved varying the
number of neurons in the GRU network for five different folds of N = 20 Dataset C.
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Table 8.1 Comparison of accuracy, number of parameters, and FLOPs

Model Accuracy Average Accuracy
± Stdev (%)

Model parameters FLOPs

ResNet50-LSTM 67.56 60.82 ± 6.74 26M 107M
ResNet150V2-LSTM 37.58 34.48 ± 3.10 61M 246M
VGG16-LSTM 69.67 62.39 ± 7.28 15M 62M
MobileNetV2-LSTM 60.76 57.5 ± 3.26 4M 17M

ConvLSTM 65.56 59.3 ± 6.26 314M 1G

LSTM20 (10 neurons) 84.23 74.02 ± 6.56 1113 2950×20
LSTM50 (10 neurons) 79.84 70.72 ± 6.24 1113 2950×50
LSTM100 (10 neurons) 73.26 65.98 ± 5.01 1113 2950×100
LSTM200 (10 neurons) 74.67 61.92 ± 7.29 1113 2950×200
LSTM256 (10 neurons) 68.07 59.47 ± 5.03 1113 2950×256

GRU20 (10 neurons) 81.92 72.06 ± 6.60 843 2228×20
GRU20 (12 neurons) 83.78 73.07 ± 6.53 1083 2960×20

Tensor-SVM [271] [270] 76.6 71±5.6 67200 545M
Tensor-RLS [271] 77.3 73.7 ± 3.6 - -

DCNN (InceptionResNetV2)
[285]

76.9 54M 109M

and epochs = 96. Figure. 8.5 shows the accuracy obtained on each fold, for the selected

(batch_size, epochs) combination, using the four different models.

8.5 Results and Discussion

According to Figure 8.5.c, the use of LSTM with N = 20 time-steps referred later as

LSTM20, i.e. using the Dataset (C) with sub-sampling into 20 samples for each pattern,

shows a higher accuracy according to other sub-sampling alternatives, and with respect

to other tested models. LSTM20 has achieved the highest accuracy: 84.23%, the

smallest number of trainable parameters: 1113, and the smallest number of FLOPs:

2950 per LSTM block as shown in Table 8.1.

Regarding the GRU, GRU20 also proved a high accuracy with a smaller number of

parameters and a comparable number of FLOPs with respect to LSTM20 as shown in

Figure 8.5.d. The 10-neuron GRU achieved an accuracy of 81.92% with 843 trainable
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Figure 8.6 Accuracy of the best performing networks. LSTM20(10) stands for LSTM
network with 10 neurons and N = 20. GRU20(12) stands fors GRU network with 12
neurons and N = 20.

parameters and 2228 FLOPs. While a 12-neuron GRU, with 1083 trainable parameters,

and 2960 FLOPs per single GRU block achieved 83.78% as shown in Figure 8.6 and

Table 8.1. Both the GRU and LSTM models have achieved an accuracy higher than

the best accuracy achieved by state-of-the-art approaches applied to the same dataset,

whether in tensor-SVM (76.6%) and tensor-RLS (77.3%) [271], or using DCNN (76.9%)

[285]. If we take the average accuracy, we can see that LSTM20 has achieved the

higher average accuracy across all of them.
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Figure 8.7 (a) Number of sensors and classes versus number of FLOPS. (b) Number of
sensors and classes versus Model parameters.

As per ConvLSTM and CNN-LSTM, these models did not converge well, and the

obtained accuracies did not exceed the 70% as shown in Figure 8.5.a and Figure 8.5.c.

One reason behind it, is the large number of features and therefore trainable parameters,

compared to the small dataset size. Notwithstanding that, the previous results in DCNN

[285] were higher, but that was done using transfer learning, i.e. all the used networks

(except the classifier), were pre-trained on millions of images from ImageNet [286]

and thousands of classes, then a classifier was trained on the subject dataset. Instead in

CNN-LSTM we are using pre-trained CNNs to extract features from Dataset (B), the
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resulting feature vector may range from 2K (VGG16) to 8K (Resnet150v2) features.

These features are fed into an LSTM network to train it from scratch, compared to 16

features in LSTM or GRU with Dataset (C), which induces higher number of trainable

parameters for both CNN-LSTM and ConvLSTM compared to GRU and LSTM, as shown

in Table 8.1. Raising the number of LSTM layers and number of neurons for ConvLSTM

and CNN-LSTM lead to better results, but still not reaching a comparable accuracy.

LSTM achieved the following benefits:

• FLOPs and memory occupation i.e., number of trainable parameters are less,

compared to the SOA.

• As for the computation, data can be fed into an LSTM network, as soon as all

features are ready for a single time-step, i.e., when data are ready at time t, they

can be forwarded into an LSTM block, without waiting for the data from all time

frames. Also, data occuring at time t + 1 can be collected in parallel with respect

to the execution of LSTM block of data at time t, as illustrated in Figure 8.1.c.

Unlike other solutions like CNN or tensor-SVM, all data should be assembled

before bein processed.

• Higher accuracy is obtained.

• The model is highly scalable and independent on the size of the dataset, in terms

of both FLOPs and number of trainable parameters, as illustrated in Figure 8.7.

Unlike SVM, where the model size depends on the number of training samples

and does not support multi-class labeling directly [306]. In addition, since LSTM

used shared weights, e.g., when training an LSTM of N = 20 time-steps, weights

are shared across all time-steps, which makes a model trained on N time-steps

data still usable for M time-steps data.
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8.6 Conclusion

In this chapter, we have investigated the potential of RNNs for touch modality classi-

fication. Two different approaches based on LSTM and GRU architectures have been

proposed to extract long-term dependence from tactile data. Proposed approaches

have been validated on real tactile data acquired from 4×4 piezoelectric tactile arrays.

Experimental results have shown that the achieved accuracy is of 84.23% and 83.78%

for LSTM and GRU respectively compared with a value of 76.9% for the best achieved

accuracy in literature [271, 285]. On the other hand, the proposed architectures reduce

drastically the number of FLOPs considered as the main factor affecting the hardware

complexity of the system. The number of FLOPs has been reduced of 99.989% com-

pared to the same problem in the state of the art [270] which will have the impact

on time latency, hardware resources, memory storage and energy consumption when

the hardware implementation will be targeted. Another important aspect offered by

the proposed approach is the scalability in the computing architecture. This means

that the complexity of the system remains acceptable when the system is scaled up in

terms of input matrix size and number of classes to be recognized which was a main

drawback limiting similar state of art solutions [306]. To mention that the proposed

solution achieved less than 5ms latency time on NVIDIA GPU, compared to 75ms for

the same problem using DCNN in [285]. As a conclusion, the proposed work represents

a good candidate to be embedded together with tactile sensing system for robotic or

prosthetic applications [132, 265]. Such applications require near-sensor processing

with critical constraints such as small hardware area, low energy budget due to the

limited battery size, and the low latency needed to perform real time functions. In

future work, we are going to implement the proposed systems on embedded platforms

integrated with the tactile sensors and their front-end electronics. Furthermore, after

validating its functionality, the system is intended to be implemented on an Application
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Specific Integrated Circuit (ASIC) to form a smart electronic skin system module for

the target applications.
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Chapter 9

Conclusion and Future work

With the significant breakthroughs in advanced robotics in recent decades, more

sophisticated models of robotic hands (e.g., body-powered myoelectric prostheses)

have made it through. However, most of the available robotic hands still show limited

sensory. Closing the loop control through providing sensory feedback has been reported

by users as a future goal, as it lessens the cognitive load needed to perform a task which

improves the utility and easiness of use of the machine. The implementation of sensory

feedback for both proprioception, grasping, and manipulating with the robotic hand is

a critical challenge.

Peerdeman et al. [307] examined the requirements for feedback and arranged the

feedback restoration priorities for the users in a hierarchical order of importance as

follows:

• Continuous and proportional feedback on grasping force should be provided

• Position feedback should be provided to the user

• Interpretation of stimulation used for feedback should be easy and intuitive

• Feedback should be unobtrusive to user and others

• Feedback should be adjustable
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Most of the conventional systems developed for tactile feedback provide feedback

through a few sensing and stimulation units. This limits the amount of information

that could be extracted during interaction with the environment. Moreover, using

a few stimulations units to communicate more than one sensation may be difficult

for the user to understand or result in a high cognitive load for the user. Distributed

sensing systems and multichannel stimulation interfaces are promising as they could

accommodate the robotic hand flexibility and translate multiple information to the user

(e.g., wrist rotation, grasping force, aperture) at the same time, thus emulating the

naturalness of touch. In this scope, the presented thesis proposed a distributed sensing

and stimulation system for tactile feedback in robotic hands. To this aim, the robotic

hand will integrate distributed sensing system (e-skin) to acquire tactile sensation, an

embedded electronic system for sensor acquisition and processing, and a multichannel

stimulation interface to provide high-bandwidth tactile feedback to the user.

As previously discussed, providing high-resolution tactile information that imitates

the human sense of touch requires an articulated artificial sensing system that integrates

high-density sensing arrays (e-skin) to measure the variable touch attribute. E-skin

in the form of tactile sensing arrays (skin patches) can be integrated onto the robotic

hand to record information about touch, given back to the user as sensory feedback.

This thesis realized a novel, flexible, screen-printed e-skin based on P(VDF-TrFE)

piezoelectric polymers, that would cover the fingertips and the palm of the prosthetic

hand (particularly the Michelangelo hand by Ottobock) and assistive sensorized glove

for stroke patients. Moreover, it developed a new validation methodology to examine

the behavior of the sensor while being solicited. In addition, the thesis presented

the validation of the interface electronics (data acquisition) for the characterized

sensing arrays. The validation results motivate the integration of the proposed interface

electronics design in a robotic system where the sensor array will be connected to

the interface electronics mounted on the hand. Moreover, this thesis presented the
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realization of a skin patch. The two components (skin patches and interface electronics)

were integrated on the mockup of the Michelangelo prosthetic hand and used to develop

two high-bandwidth tactile feedback systems for prosthetic hand and teleoperation.

Both systems use electrotactile stimulation to deliver tactile information extracted

by the sensing system. They showed the high capability to detect and deliver tactile

information to the user, where users were able to receive and interpret different touch

modalities applied on the e-skin.

Wider scenarios could be explored and investigated on how to give back sensor

data captured by the e-skin to the user and how to help the human brain to successfully

interpret the elicited artificial tactile information. One of the dilemmas is which kind

of information whether raw or processed data about a touched object should be sent

back to the user. On one hand, the sensor signals could be directly communicated to

the user, who needs to meaningfully interpret this information. On the other hand,

sensor data can be locally processed at the body periphery (embedded electronics) and

high-level tactile information (e.g., texture properties, grasp stability) can be extracted

and delivered to the user. In this thesis, deep learning algorithms (RNN) have been

exploited to classify and interpret input touch modalities as they represent a powerful

technology for tackling clustering, classification, and regression problems in complex

domains. In addition, we believe that these algorithms would be an assist in optimizing

the information transfer to the user, and it may decrease the cognitive load to adapt to

different sensations.

A demanding focus, for the immediate future, should therefore be placed on

integrating the high-bandwidth tactile feedback system into the robotic hand (e.g.,

prosthetic hand). The system would provide high-fidelity feedback. To do this, signal

processing and machine learning methods must be used to extract meaningful informa-

tion from the e-skin. Further testing on tactile feedback interfaces that combine several

stimulation methods are required to deliver such high-fidelity information to the user.
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Such tactile feedback systems could be practically used at home every day so that users

can begin to take advantage of the benefits that such high-bandwidth human-machine

interfacing could provide them.
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