12 research outputs found

    Event-based control for sit-to-stand transition using a wearable exoskeleton

    Get PDF
    Sit-to-stand transition is an essential step in a lower limb rehabilitation therapy, mainly for assisting the patient to transit from wheel chair to the next level of therapy. A mixed stiffness-damping control adaptation is proposed for this task which will help in reaching the final position with a constant velocity. A combination of control model is proposed to ensure the initiation and the final stage of the transition, such as to ensure stability and to maintain the equilibrium. The combined control model helps in reaching the goal position with equal participation from the user. For patient studies, such as with paraplegic patients, a combinational control model with muscle stimulation can be included to provide a complete assistance. The role of muscle stimulation and joint movement assistance is also considered in this control model. Further, final stage of this transition must ensure keeping or helping the user to maintain the upright position.Peer ReviewedPostprint (author's final draft

    Tactile Proprioceptive Input in Robotic Rehabilitation after Stroke

    Get PDF
    Stroke can lead to loss or impairment of somatosensory sensation (i.e. proprioception), that reduces functional control of limb movements. Here we examine the possibility of providing artificial feedback to make up for lost sensory information following stroke. However, it is not clear whether this kind of sensory substitution is even possible due to stroke-related loss of central processing pathways that subserve somatosensation. In this paper we address this issue in a small cohort of stroke survivors using a tracking task that emulates many activities of daily living. Artificial proprioceptive information was provided to the subjects in the form of vibrotactile cues. The goal was to assist participants in guiding their arm towards a moving target on the screen. Our experiment indicates reliable tracking accuracy under the effect of vibrotactile proprioceptive feedback, even in subjects with impaired natural proprioception. This result is promising and can create new directions in rehabilitation robotics with augmented somatosensory feedback

    Adaptive walking assistance based on human-orthosis interaction

    Get PDF
    An assistive rehabilitation strategy for a lower-limb wearable robot is proposed and evaluated. The control strategy monitors the human-orthosis interaction torques and modifies the orthosis operation mode depending on its evolution with respect to a normal gait pattern. The control algorithm relies on the adaptation of the joints stiffness in function of these interaction torques and to the deviation from the desired trajectory. A walking pattern, an average of recorded gaits, is used as reference input. The human-orthosis interaction torques are used to define the time instant when robot assistance is needed and its degree. The objective of this work is to demonstrate the feasibility of ensuring a dynamic stability by means of an efficient real-time stiffness adaptation for multiple joints and simultaneously maintaining their synchronization. The algorithm has been tested with five healthy subjects showing its efficient behavior in maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from Spinal cord injury and Stroke.Peer ReviewedPostprint (author's final draft

    An Active Exoskeleton Called P.I.G.R.O. Designed for Unloaded Robotic Neurorehabilitation Training

    Get PDF
    The development of innovative robotic devices allows the design of exoskeletons for robotic neurorehabilitation training. This paper presents the active exoskeleton called pneumatic interactive gait rehabilitation orthosis (P.I.G.R.O.), developed by the authors. The main innovative characteristic of this prototype is its design for fully unloaded robotic neurorehabilitation training, specific for brain-injured patients. It has six degrees of freedom (DOF) in the sagittal plane, an active ankle joint (removable if it is required); a wide range of anthropometric regulations, both for men and for women; a useful human machine interface (HMI); and an innovative harness system for the patient for the unloaded training. It is realized using light and strong materials, and it is electropneumatically controlled. In particular the authors also studied and defined some innovative input control curves useful for the unloaded training. In this paper, the main characteristics and innovations of P.I.G.R.O. are presented

    Development of an exoskeleton model in a neurorehabilittion perspective

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica) Universidade de Lisboa, Faculdade de Ciências, 2017A locomoção é uma tarefa de grande importância na vida das pessoas. Ainda que pareça uma tarefa simples, andar é um exercício complexo que envolve controlo nervoso a fim de ativar os músculos e criar um movimento coordenado. Embora exista variabilidade natural nos padrões de marcha de indivíduos saudáveis, é possível definir um padrão “normal”. O mínimo distúrbio a nível neuromuscular que afete a marcha de um individuo resulta na perturbação da qualidade de vida do mesmo, podendo mesmo condicionar a sua independência. Paralisia Cerebral, Esclerose Lateral Amiotrófica e Parkinson são algumas das doenças que podem afetar o padrão normal da marcha. Outra condição que pode desencadear alterações é o Acidente Vascular Cerebral (AVC), de acordo com a com a Organização Mundial de Saúde, cerca de 15 milhões de pessoas em cada ano sofrem um AVC, das quais 50% sofrem alterações da marcha não permanentes. Cada uma das condições mencionadas provoca alterações diferentes à marcha normal permitindo a definição de padrões de marcha de acordo com a condição que os afeta. Por norma, o tratamento mais utilizado para distúrbios da marcha é reabilitação motora que consiste na realização repetida de exercícios que permitem a estimulação dos músculos de forma a que voltem a estar ativos. Ao longo do tempo as técnicas de reabilitação motora foram evoluindo e recentemente a engenharia uniu-se à medicina para originar uma nova área: a Reabilitação Robótica. Esta área faz uso de tecnologias robóticas com o objetivo de proporcionar um tratamento mais personalizado e adequado a cada paciente, beneficiando assim quer o paciente, quer os terapeutas. Embora ainda esteja em crescimento, esta área tem já demonstrado um grande potencial. O Exoesqueleto é um dispositivo robótico que começou por ser usado em fins militares de forma a aumentar a capacidade que cada soldado carrega, é agora bastante utilizado na Reabilitação Robótica. Este dispositivo estimula o paciente a andar e vai apoiando conforme necessário, respondendo ao paradigma ajudar tanto quanto necessário, ou seja, o dispositivo ajuda o paciente a caminhar, dando-lhe apenas o impulso necessário para que este consiga prosseguir, tendo como objetivo final deixar de ser necessário enviar este impulso. Este procedimento é determinado pela estrutura de controlo do exosqueleto que consiste na estratégia que rege e define o comportamento do dispositivo robótico de acordo com a informação que os sensores do mesmo lhe fornecem. Por exemplo, existem controlos de posição, em que o exosqueleto conhece uma trajetória de padrão normal e ajusta a posição do paciente mediante a diferença que deteta entre a posição dita atual e a posição de referência. A estratégia de controlo desempenha também um papel muito importante no âmbito da Reabilitação Robótica, é claro que os pacientes beneficiam de terapias o mais personalizadas possível, no entanto, o desenvolvimento de uma estratégia de controlo é um processo moroso e que envolve recursos. Uma possível solução para esta limitação é a simulação, que consiste na imitação de um processo ou sistema do mundo real em função do tempo, sendo usado para processos de otimização, testes, treinos e engenharia de segurança. Tendo isto em conta, simulação seria uma forma rápida e económica de estudar novas estratégias de controlo ou até otimizar já existentes. O objetivo deste trabalho consistiu em desenvolver um modelo capaz de realizar simulações de um exosqueleto, mais especificamente do exosqueleto H1, desenvolvido ao abrigo do projeto HYPER. Este modelo foi desenvolvido em OpenSim, um simulador de uso livre desenvolvido pelo National Center for Simulation in Rehabilitation Research (NCSRR), Stanford University, USA. Este simulador é usado maioritariamente para projetos na área da biomecânica com especial enfoque para o estudo do comportamento de sistemas músculo-esqueléticos. Primeiramente, foi efetuado um estudo intensivo sobre padrões de marcha, de forma a perceber quais as condições que podem afetar a marcha de um individuo. Este estudo apresenta a definição de alguns padrões de marcha como: (1) Padrão Normal, (2) Padrão Hemiplégico, causado por AVC, (3) Padrão Diplégico, causado por Paralisia Cerebral, (4)Padrão Neuropático, causado por Esclerose Lateral Amiotrófica, (5) Padrão Miotrófico, causado por Distrofia Muscular, (6)Padrão Parkinsoniano, causado pela doença de Parkinson. Além disto, foi realizada uma pesquisa bibliográfica de forma a conhecer o estado da arte das estratégias de controlo usadas na área de Reabilitation Robótica. Conhecer as características de um padrão de marcha, bem como dos controladores existentes é importante na medida em pode ser interessante desenvolver estratégias de controlo de acordo com o padrão de marcha ou pelo menos conhecer que padrões se devem ajustar para uma terapia mais eficaz de acordo com a condição que afeta o paciente. A construção deste modelo iniciou-se no SolidWorks, um software de desenho assistido por computador, onde o sistema foi modelado de acordo com as propriedades físicas do H1, seguindo-se modelação por código em XML. Após a construção, o modelo foi validado. Para efetuar esta validação foram efetuadas provas estáticas e em movimento com o exosqueleto, tendo sido recolhidos os seguintes dados: ângulos e momento de cada articulação. Os momentos recolhidos nestas provas foram depois comparados com os momentos calculados com a ferramenta Inverse Dynamics do OpenSim, que usou como dados de entrada os ângulos de cada articulação. O modelo construído, denominado Exoskeleton, foi depois integrado num novo modelo em conjunto com um modelo já disponível na base de dados OpenSim, o 3DGait2392. A junção destes modelos deu origem ao ExoBody, um modelo que permite estudar a interação entre o dispositivo robótico e o paciente. Apesar de este modelo não ter passado por um processo de validação análogo ao do Exoskeleton, foi usado para um pequeno estudo de marcha onde se comparou a marcha de um individuo saudável com um paciente de AVC com e sem o uso do exosqueleto. Para a realização deste estudo foram utilizados data sets disponíveis online na base de dados OpenSim, estando já preparados para ser usados como dados de entrada das ferramentas Inverse Kinemaitcs e Inverse Dynamics. A Inverse Kynematics é uma ferramente que calcula para cada instante de tempo a posição do modelo que melhor corresponde à posição experimental, sendo esta determinada por marcadores por norma colocados na pele do individuo em estudo. A Inverse Dynamics, por sua vez, determina as forças generalizadas responsáveis por um determinado movimento em cada articulação. Ambos os modelos construídos são capazes de realizar simulações no OpenSim sem gerar erros de sistema e dentro de tempos computacionais considerados normais. Tal como esperado, a comparação entre os dados experimentais e os dados simulados referentes ao modelo Exoskeleton foram concordantes e por isso o modelo foi validado com sucesso. Considerando o ExoBody model, os resultados apresentados evidenciam diferenças entre os padrões de marcha e também é possível verificar diferenças aquando do uso do exosqueleto ou sem o mesmo. Posto isto, é possível concluir que os objetivos deste trabalho foram alcançados com sucesso uma vez que se desenvolveu o modelo que permite a simulação do exosqueleto bem como a sua personalização, adição de componentes como atuadores ou controladores. É importante referir que o modelo Exoskeleton tem algumas limitações, nomeadamente referentes ao design do mesmo que poderá ser melhorado. Partindo deste trabalho, novos desafios podem ser enfrentados na perspetiva de continuar a melhorar e abrir horizontes na Reabilitação Robótica, nomeadamente, seria importante fazer uma validação do ExoBody incluindo um estudo de forças de reação.Locomotion plays a very important role in a person’s life. Although healthy individuals show natural variability in gait patterns, it is possible to define an acceptable pattern for “normal gait”. However, some pathologies as Amyotrophic Lateral Sclerosis (ALS), Spinal Cord Injury (SCI), Stroke or others can induce abnormal gait patterns that can limit the life of a person, making him/her dependent of others and consequently reducing his/hers quality of life. Robotics rehabilitation therapies are a growing solution that intends to revert or diminish the impairments in gait. The use of robotic devices, such as exoskeletons, cover some limitations of the traditional therapeutic methods, which is a great benefit for both patients and therapists. Furthermore, the application of an adequate treatment in these patients can be improved with the understanding of how the pathology affects the individual and through the development of specific solutions for each patient. Nowadays, computational dynamic simulations have great potential and help researchers to find optimal and personalized solutions for each patient. Thus, the present work describes the development of an exoskeleton model in a neurorehabilitation perspective. First of all, a detailed description of gait patterns is presented, followed by the state of the art in robotics rehabilitation, considering that this field contains very powerful solutions for gait disorders. The model was developed in OpenSim, an open source software dedicated to model musculoskeletal systems and dynamic simulations of movement. In order to verify the accuracy of the model, experimental data were collected in static and motion trials performed with the wearable robot and afterwards compared with the simulated data resultant from Inverse Dynamics, a tool from OpenSim. The Exoskeleton model was successfully validated and then integrated in a new model, named ExoBody, within a musculoskeletal model. The ExoBody model was used to perform gait analysis comparing simulations with and without the exoskeleton, revealing some differences. Even though the built models present limitations, this work represents a step-forward in human-centered rehabilitation

    Estratègies de control d'un exosquelet en el procés d'aixecar-se

    Get PDF
    L’ús d’exosquelets per a la rehabilitació de persones amb trastorns motrius greus ha demostrat que pot contribuir en la millora de la seva mobilitat o la seva autonomia en el desenvolupament de les tasques bàsiques de la vida diària. L’acció d’aixecar-se des d’una posició asseguda és una activitat bàsica del dia a dia que sol fer-se sense pensar, però comporta certa dificultat a persones amb parèsia o paràlisi de les extremitats inferiors. Una anàlisi més detallada dels factors que intervenen en el moviment mostra que no es pot tractar com un simple procediment de variació de posició, sinó que hi ha més variables a tenir en compte, com forces, parells i/o velocitats. En aquest projecte es desenvolupa una aplicació d’assistència al moviment d’aixecar-se d’una cadira utilitzant un exosquelet robòtic i proposant un nou sistema de control basat en la definició de diverses fases durant la transició del moviment, en funció de les característiques cinemàtiques de cada instant. La combinació de diverses estratègies de control i un algoritme que gestiona en temps real les transicions entre les fases permeten realitzar aquesta acció de manera més natural i cooperant amb l’usuari. El sistema de control proposat s’ha provat amb un exosquelet robòtic real i els resultats experimentals validen la teoria proposada i serviran de base per futurs treballs d’ampliació

    Diseño del control de par adaptativo de un exoesqueleto robotizado para rehabilitación motora

    Get PDF
    El presente Trabajo Fin de Máster, se enmarca en el proyecto HYPER-Consolider, en el Grupo de Robótica de la Universidad de Zaragoza. La finalidad de este proyecto es diseñar un control de par adaptativo a pares externos y su posterior implementación en el sistema físico de un exoesqueleto para ayudar en la rehabilitación de miembros inferiores de pacientes que han sufrido un accidente cerebrovascular. El clásico control de posición de los exoesqueletos, un control rígido, es sustituido por un control de par adaptativo flexible, que permite adaptar el movimiento del exoesqueleto a fuerzas o pares externos. Estos pares externos pueden ser proporcionados por la persona que usa el exoesqueleto y al que debe adaptarse o pueden provenir del par ejercido por un rehabilitador si se utiliza para ejercicios de rehabilitación motora. Se diseñan y evalúan diversas situaciones de asistencia del robot y de contribuciones de un sujeto de 60 Kg. de acuerdo a su capacidad residual estimada, desde una contribución parcial del paciente a una contribución casi total

    Simulación de la interacción entre un mecanismo y un modelo musculoesquelético

    Get PDF
    A día de hoy se han desarrollado numerosos sistemas robóticos para asistir y rehabilitar a personas con movilidad reducida, como por ejemplo los exoesqueletos. A lo largo del planteamiento de nuevas soluciones los investigadores e ingenieros emplean herramientas de simulación como el software OpenSim, que ofrece la posibilidad de recrear el movimiento humano, ahorrando así tiempo y esfuerzo a la hora de idear nuevos sistemas de control o de comprobar la bondad de los existentes. El objeto de este proyecto es el de desarrollar un modelo en OpenSim de la unión entre un exoesqueleto y un modelo musculoesquelético a fin de simular diferentes movimientos, obteniendo así información dinámica y cinemática de las articulaciones del modelo, tanto del exoesqueleto como del sistema musculoesquelético. El desarrollo del modelo se ha realizado utilizando el software SolidWorks para la construcción de la geometría del exoesqueleto y el software OpenSim para la elaboración del modelo completo y la realización de la validación y simulación de la marcha humana sana. Los resultados obtenidos se presentan de forma gráfica a fin de realizar una comparación más visual. Los resultados referentes a la validación del modelo son positivos, ya que los valores obtenidos de la simulación son similares a los extraídos de forma experimental, aunque mejorables. En cuanto a los datos extraídos de la simulación de la marcha humana se asemejan a los valores estándar, por lo que se concluye que lo objetivos planteados para este proyecto se cumplen.Nowadays, numerous robotic systems have been created to assist and rehabilitate people with mobility diseases, such as exoskeletons. Throughout the development of new solutions, researchers and engineers use simulation tools such as OpenSim software, which offers the possibility to recreate human movement, thus saving time and effort when planning new control systems or check the existing ones. The purpose of this project is to create a model in OpenSim of the union between an exoskeleton and a musculoskeletal model in order to simulate different movements, obtaining dynamic and kinematic information of the articulations of the model, both exoskeleton and of the musculoskeletal system. The development of the model was done using SolidWorks software for the geometry files of the exoskeleton and OpenSim software for the development of the complete model, the validation and the simulation of healthy human gait. The results obtained are presented in a graphic way in order to make an easier comparison. The results of the validation are positive, since the values obtained from the simulation are similar to the experimental ones, although they can be improved. Regarding data from the simulation of the healthy human gait, they are similar to the standard values, so it is concluded that the objectives set for this project are achieved.A dia d'avui s'han desenvolupat nombrosos sistemes robòtics per l'assistència i rehabilitació de persones amb mobilitat reduïda, com per exemple els exoesquelets. Al llarg del plantejament de noves solucions els investigadors i enginyers empren eines de simulació com el software OpenSim, que ofereix la possibilitat de recrear el moviment hum`a, estalviant així temps i esforç a l'hora d'idear nous sistemes de control o de comprovar la bondat dels existents. L'objectiu d'aquest projecte ´es el desenvolupar un model en OpenSim de la unió entre un exoesquelet i un model musculoesquelètic amb la finalitat de simular diferents moviments, obtenint així informació dinàmica i cinemàtica de les articulacions del model, tant de l'exoesquelet com del sistema musculoesquelètic. El desenvolupament del model s'ha realitzat mitjan¸cant el software SolidWorks per la construcció de la geometria de l'exoesquelet i el software OpenSim per l'elaboració del model complert i la realització de la validació i simulació de la marxa humana sana. Els resultats obtinguts es presenten de forma gràfica per tal de realitzar una comparació més visual. Els resultats referents a la validació del model són positius, ja que els valors obtinguts de la simulació son similars als extrets de forma experimental, tot i que millorables. En quant a les dades extretes de la simulació de la marxa humana s'assemblen als valors estàndard, pel que es conclou que els objectius plantejats per a aquest projecte es compleixen

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    Robotic exoskeleton with an assist-as-needed control strategy for gait rehabilitation after stroke

    Get PDF
    Stroke is a loss of brain function caused by a disturbance on the blood supply to the brain. The main consequence of a stroke is a serious long-term disability, and it affects millions of people around the world every year. Motor recovery after stroke is primarily based on physical therapy and the most common rehabilitation method focuses on the task specific approach. Gait is one of the most important daily life activity affected in stroke victims, leading to poor ambulatory activity. Therefore, much effort has been devoted to improve gait rehabilitation. Traditional gait therapy is mostly based on treadmill training, with patient’s body weight partially supported by a harness system. Physical therapists need to manually assist patients in the correct way to move their legs. However, this technique is usually very exhausting for therapists and, as a result, the training duration is limited by the physical conditions of the therapists themselves. Moreover, multiple therapists are required to assist a single patient on both legs, and it is very difficult to coordinate and properly control the body segments of interest. In order to help physical therapists to improve the rehabilitation process, robotic exoskeletons can come into play. Robotics exoskeletons consist of mechatronic structures attached to subject’s limbs in order to assist or enhance movements. These robotic devices have emerged as a promising approach to restore gait and improve motor function of impaired stroke victims, by applying intensive and repetitive training. However, active subject participation during the therapy is paramount to many of the potential recovery pathways and, therefore, it is an important feature of the gait training. To this end, robotics devices should not impose fixed limb trajectories while patient remains passive. These have been the main motivations for the research of this dissertation. The overall aim was to generate the necessary knowledge to design, develop and validate a novel lower limb robotic exoskeleton and an assist-as-needed therapy for gait rehabilitation in post-stroke patients. Research activities were conducted towards the development of the hardware and the control methods required to prove the concept with a clinical evaluation. The first part of the research was dedicated to design and implement a lightweight robotic exoskeleton with a comfortable embodiment to the user. It was envisioned as a completely actuated device in the sagittal plane, capable of providing the necessary torque to move the hip, knee and ankle joints through the walking process. The device, that does not extend above mid-abdomen and requires nothing to be worn over the shoulders or above the lower back, presumably renders more comfort to the user. Furthermore, the robotic exoskeleton is an autonomous device capable of overground walking, aiming to motivate and engage patients by performing gait rehabilitation in a real environment. The second research part was devoted to implement a control approach that assist the patient only when needed. This method creates a force field that guides patient’s limb in a correct trajectory. In this way, the robotic exoskeleton only applies forces when the patient deviates from the trajectory. The force field provides haptic feedback that is processed by the patient, thus leading to a continuous improvement of the motor functions. Finally, research was conducted to evaluate the robotic exoskeleton and its control approach in a clinical study with post-stroke patients. This study aimed to be a proof-of-concept of all design and implementation applied to a real clinical rehabilitation scenario. Several aspects were evaluated: the robotic exoskeleton control performance, patients’ attitudes and motivation towards the use of the device, patients’ safety and tolerance to the intensive robotic training and the impact of the robotic training on the walking function of the patients. Results have shown that the device is safe, easy to use and have positive impact on walking functions. The patients tolerated the walking therapy very well and were motivated by training with the device. These results motivate further research on overground walking therapy for stroke rehabilitation with the robotic exoskeleton. The work presented in this dissertation comprises all the way from the research to implementation and evaluation of a final device. The technology resulting from the work presented here has been transferred to a spin-o↵ company, which is now commercializing the device in different countries as a research tool to be used in clinical studies.Un accidente cerebrovascular es una pérdida de la función cerebral causada por una perturbación en el suministro sanguíneo al cerebro. La principal consecuencia de esta enfermedad es una grave discapacidad a largo plazo, que afecta a millones de personas en todo el mundo a cada año. La recuperación motora después de un accidente cerebrovascular se basa principalmente en la terapia física, y el método de rehabilitación más frecuente se centra en un entrenamiento específico. La marcha es una de las más importantes actividades de la vida diaria afectada por un accidente cerebrovascular, conduciendo a una capacidad ambulatoria deficiente. Debido a eso, mucho esfuerzo se ha dedicado a la rehabilitación de la marcha. La terapia tradicional de la marcha se basa principalmente en el entrenamiento en cinta rodante, con descarga de peso parcial usando un sistema de arnés. Los fisioterapeutas ayudan manualmente a los pacientes a mover sus piernas en la forma correcta. Sin embargo, esta técnica suele ser muy extenuante para los terapeutas, limitando la duración de la terapia por las condiciones físicas de estos. Además, se requieren múltiples terapeutas para asistir a un solo paciente en ambas piernas, siendo muy difícil de coordinar y controlar adecuadamente los segmentos corporales de interés. Con el fin de ayudar a los terapeutas físicos a mejorar el proceso de rehabilitación, los exosqueletos robóticos pueden ser muy útiles. Los exoesqueletos robóticos consisten en estructuras mecatrónicas conectadas a las extremidades del usuario, con el fin de asistir sus movimientos. Estos dispositivos robóticos han surgido como una forma prometedora de restaurar la marcha y mejorar la función motora en víctimas de accidentes cerebrovasculares, aplicando un entrenamiento intensivo y repetitivo. Sin embargo, la participación activa del paciente en la terapia es primordial para muchas de las posibles vías de recuperación y, por lo tanto, es una característica importante del entrenamiento de la marcha. Para este fin, los dispositivos robóticos no deben imponer trayectorias fijas en las extremidades del paciente mientras este permanece pasivo. Estos desafíos en los procesos de rehabilitación han sido la principal motivación para la investigación en esta tesis doctoral. El objetivo principal es generar los conocimientos necesarios para diseñar, desarrollar y validar un exoesqueleto robótico y una terapia de asistencia bajo demanda para la rehabilitación de la marcha en pacientes tras un accidente cerebrovascular. Actividades de investigación fueron llevadas a cabo para el desarrollo del hardware y de los métodos de control necesarios para una prueba de concepto mediante una evaluación clínica. La primera parte de la investigación fue dedicada a diseñar e implementar un exoesqueleto robótico ligero y cómodo para el usuario. Fue concebido un dispositivo completamente actuado en el plano sagital, capaz de proporcionar el par necesario para mover las articulaciones de la cadera, rodilla y tobillo durante la marcha. El dispositivo no se extiende por encima de mitad del abdomen y no requiere llevar nada sobre los hombros o en el tronco, proporcionando más comodidad al usuario. Además, el exoesqueleto robótico es un dispositivo autónomo capaz de asistir marcha ambulatoria, con el objetivo de motivar a los pacientes por medio de rehabilitación en un entorno real. La segunda parte de la investigación fue dedicada a implementar una estrategia de control para ayudar al paciente bajo demanda. El método crea un campo de fuerzas que guía la extremidad del paciente en la trayectoria correcta. De esta manera, el exoesqueleto robótico sólo aplica fuerzas cuando el paciente se desvía de la trayectoria. El campo de fuerza proporciona retroalimentación háptica que es procesada por el paciente, lo que conduce a una mejora continua de las funciones motoras. Por último, fue llevada a cabo una investigación para evaluar el exoesqueleto robótico y su estrategia de control en un estudio clínico con pacientes que han sufrido un accidente cerebrovascular. Este estudio fue una prueba de concepto del diseño y de la implementación del dispositivo aplicada a un escenario de rehabilitación clínica real. Se evaluaron varios aspectos: el desempeño de la estrategia de control, las actitudes y motivación de los pacientes hacia el uso del dispositivo, la seguridad del paciente y su tolerancia a la terapia robótica intensiva y el impacto de la rehabilitación en la marcha de los pacientes. Los resultados han demostrado que el dispositivo es seguro, fácil de usar y tiene un impacto positivo en la marcha. Los pacientes toleraron la terapia robótica muy bien y estuvieron motivados por el entrenamiento con el dispositivo. Estos resultados motivan a seguir la investigación con el exoesqueleto robótico aplicado a la rehabilitación de marcha en pacientes que han sufrido un accidente cerebrovascular. El trabajo presentado en esta tesis doctoral comprende todo el camino desde la investigación hasta la ejecución y evaluación de un dispositivo terminado. La tecnología resultante del trabajo que aquí se presenta ha sido transferida a una empresa spin-off, que ahora está comercializando el dispositivo en diferentes países como una herramienta de investigación para ser utilizada en estudios clínicos.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Luís Enrique Moreno Lorente.-Secretario: Juan Aranda López.-Vocal: Jose María Azorín Poved
    corecore