1,023 research outputs found

    A Relaxed Characterization of ISS for Periodic Systems with Multiple Invariant Sets

    Get PDF
    A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant solutions (equilibria, limit cycles, etc.), is provided. Unlike standard Lyapunov approaches, the condition is relaxed and formulated via a sign-indefinite function with sign-definite derivative, and by taking the system’s periodicity explicitly into account. The new result is established by using the framework of cell structure and it complements the ISS theory of multistable dynamics for periodic systems. The efficiency of the proposed approach is illustrated via the global analysis of a nonlinear pendulum with constant persistent input

    Relaxing the conditions of ISS for multistable periodic systems

    Get PDF
    The input-to-state stability property of nonlinear dynamical systems with multiple invariant solutions is analyzed under the assumption that the system equations are periodic with respect to certain state variables. It is shown that stability can be concluded via a sign-indefinite function, which explicitly takes the systems’ periodicity into account. The presented approach leverages some of the difficulties encountered in the analysis of periodic systems via positive definite Lyapunov functions proposed in Angeli and Efimov (2013, 2015). The new result is established based on the framework of cell structure introduced in Leonov (1974) and illustrated via the global analysis of a nonlinear pendulum with a constant persistent input

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function

    On Relaxed Conditions of Integral ISS for Multistable Periodic Systems

    Get PDF
    International audienceA novel characterization of the integral Inputto-State Stability (iISS) property is introduced for multistable systems whose dynamics are periodic with respect to a part of the state. First, the concepts of iISS-Leonov functions and output smooth dissipativity are introduced, then their equivalence to the properties of bounded-energy-bounded-state and global attractiveness of solutions in the absence of disturbances are proven. The proposed approach permits to relax the usual requirements of positive definiteness and periodicity of the iISS-Lyapunov functions. Moreover, the usefulness of the theoretical results is illustrated by a robustness analysis of a nonlinear pendulum with a constant bias input and an unbounded statedependent input coefficient

    Input-to-state stability for cascade systems with multiple invariant sets

    Get PDF
    In a recent paper Angeli and Efimov (2015), the notion of Input-to-State Stability (ISS) has been generalized for systems with decomposable invariant sets and evolving on Riemannian manifolds. In this work, we analyze the cascade interconnection of such ISS systems and we characterize the finest possible decomposition of its invariant set for three different scenarios: 1. the driving system exhibits multistability (convergence to fixed points only); 2. the driving system exhibits multi-almost periodicity (convergence to fixed points as well as periodic and almost-periodic orbits) and the driven system is assumed to be incremental ISS; 3. the driving system exhibits multiperiodicity (convergence to fixed points and periodic orbits) whereas the driven system is ISS in the sense of Angeli and Efimov (2015). Furthermore, we provide marginal results on the backward/forward asymptotic behavior of incremental ISS systems and on the response of a contractive system under asymptotically almost-periodic forcing. Three examples illustrate the potentiality of the proposed framework

    Asymptotic amplitudes and cauchy gains: A small-gain principle and an application to inhibitory biological feedback

    Full text link
    The notions of asymptotic amplitude for signals, and Cauchy gain for input/output systems, and an associated small-gain principle, are introduced. These concepts allow the consideration of systems with multiple, and possibly feedback-dependent, steady states. A Lyapunov-like characterization allows the computation of gains for state-space systems, and the formulation of sufficient conditions insuring the lack of oscillations and chaotic behaviors in a wide variety of cascades and feedback loops. An application in biology (MAPK signaling) is worked out in detail.Comment: Updates and replaces math.OC/0112021 See http://www.math.rutgers.edu/~sontag/ for related wor

    On boundedness of solutions of periodic systems: a multivariable cell structure approach

    Get PDF
    A wide range of practical systems exhibits dynamics, which are periodic with respect to several state variables and which possess multiple invariant solutions. Yet, when analyzing stability of such systems, many classical techniques often fall short in that they only permit to establish local stability properties. Motivated by this, we present a new sufficient criterion for global stability of such a class of nonlinear systems. The proposed approach is characterized by two main properties. First, it develops the conventional cell structure framework to the case of multiple periodic states. Second, it extends the standard Lyapunov theory by relaxing the usual definiteness requirements of the employed Lyapunov functions to sign-indefinite functions. The stability robustness with respect to exogenous perturbations is analyzed. The efficacy of the proposed approach is illustrated via the global stability analysis of a nonlinear system

    On boundedness of solutions of state periodic systems: a multivariable cell structure approach

    Get PDF
    International audienceMany dynamical systems are periodic with respect to several state variables. This periodicity typically leads to the coexistence of multiple invariant solutions (equilibria or limit cycles). As a consequence, while there are many classical techniques for analysis of boundedness and stability of such systems, most of these only permit to establish local properties. Motivated by this, a new sufficient criterion for global boundedness of solutions of such a class of nonlinear systems is presented. The proposed method is inspired by the cell structure approach developed by Leonov and Noldus and characterized by two main advances. First, the conventional cell structure framework is extended to the case of dynamics, which are periodic with respect to multiple states. Second, by introducing the notion of a Leonov function the usual definiteness requirements of standard Lyapunov functions are relaxed to sign-indefinite functions. Furthermore, it is shown that under (mild) additional conditions the existence of a Leonov function also ensures input-to-state stability (ISS), i.e., robustness with respect to exogenous perturbations. The performance of the proposed approach is demonstrated via the global analysis of boundedness of trajectories for a nonlinear system
    corecore