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Abstract— A novel characterization of the integral Input-
to-State Stability (iISS) property is introduced for multistable
systems whose dynamics are periodic with respect to a part of
the state. First, the concepts of iISS-Leonov functions and output
smooth dissipativity are introduced, then their equivalence
to the properties of bounded-energy-bounded-state and global
attractiveness of solutions in the absence of disturbances are
proven. The proposed approach permits to relax the usual
requirements of positive definiteness and periodicity of the iISS-
Lyapunov functions. Moreover, the usefulness of the theoretical
results is illustrated by a robustness analysis of a nonlinear
pendulum with a constant bias input and an unbounded state-
dependent input coefficient.

I. INTRODUCTION

The study of stability properties of dynamical systems
under uncertainty conditions is one of the main topics in
control theory, and related subjects like mechanics, power
systems, biological systems, etc. Among others, the Lya-
punov function method has gained popularity in the analysis
of stability of unperturbed dynamical systems [1]–[4]. This
approach offers an innovative characterization of bounded-
ness and convergence properties of the system trajectories
with respect to an equilibrium (or an invariant set) by means
of the existence of a continuously differentiable (or at least
Lipschitz continuous) Lyapunov function, which is positive
definite with respect to such an equilibrium (or invariant
set) and its time-derivative is negative definite along the
trajectories of the system under study. Similarly, instability of
an equilibrium can be studied by using the Chetaev function
approach [3], [5]. But in this case, a Chetaev function may be
sign-indefinite with a negative or positive definite derivative.

By extending the classical notion of stability, the con-
cept of Input-to-State Stability (ISS) allows the analysis
of stability and robustness of nonlinear systems affected
by bounded external inputs, e.g., exogenous disturbances
or measurement noises [6], [7]. A weaker notion of ISS
has been introduced with the concept of integral ISS (iISS)
[8], which is suitable for investigation of robustness against
disturbances with bounded energy. iISS is a weaker property
than ISS since the latter implies the former. Despite that, the
results of [8] have shown that it is the most natural property
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of well-behaved systems, so that, it is indeed a very useful
notion.

The classical theory of Lyapunov stability is mainly appli-
cable to systems with a single isolated equilibrium or invari-
ant set [9]. However, many engineering applications concern
systems with multiple equilibria or invariant sets (multistable
systems), such as power or biological systems, etc. Hence,
extensions of the Lyapunov stability approach and related
notions have been developed for systems with several dis-
joint invariant solutions [4], [10]–[14]. These extensions are
far from being trivial and require significant modifications
and relaxations of the employed stability concepts, see for
example the results of [12], [15]–[19]. Particularly, the works
in [15] and [16] introduce extensions of the ISS and iISS
properties, respectively, providing necessary and sufficient
conditions for global analysis of robustness for systems with
multiple invariant solutions constituting a decomposable set.1

Furthermore, in both of them, the ISS and iISS properties are
characterized by the existence of a nonnegative (taking zero
values only at some elements of the decomposable invariant
a set) and continuously differentiable (in the manifold where
the system evolves) Lyapunov function with a negative
definite (with respect to such set) time-derivative along the
solutions of the system under investigation.

A particular class of systems with multiple invariant
solutions is formed by those with periodic dynamics with
respect to a part of the state. Some examples of such a
class of systems include the forced nonlinear pendulum [20],
[21], power systems [22], [23], microgrids [24], [25], and
phase-locked loops [26]. Unfortunately, the study of stability
and robustness of this class of systems requires a more
sophisticated solution and the aforementioned Lyapunov-
based approaches cannot be applied in a straightforward
manner. For instance, the implementation of the results in
[15] or [16] leads to the construction of periodic ISS- (iISS-
respectively) Lyapunov functions with respect to the part of
the state in which the system is also periodic. This fact
represents a strong limitation, and just local results can
be obtained in the most cases, see for example [24], [25],
[27]. To overcome these difficulties, in [28] the results of
[15] have been extended for periodic systems with respect
to a part of the state by defining the concept of an ISS-
Leonov function, which significantly relaxes the conditions of
periodicity, differentiability and positive definiteness of ISS-
Lyapunov functions in the multistable sense. These results
are based on the ideas of [29] (see also [4], [30], [31]),
who have proposed the so-called cell structure approach,

1In the sense of [14].



which allows to conclude global boundedness of solutions for
systems whose dynamics are periodic with respect to a scalar
state variable. Furthermore, an extension of the cell structure
approach for systems which are periodic with respect to
multiple state variables is presented in [13] by introducing
the concept of a Leonov function, a sign-indefinite function
with respect to the periodic states and radially unbounded
with respect to the non-periodic ones whose derivative is
sign-definite.

Motivated by [13], [16] and [28], this paper introduces a
novel characterization of the iISS property for multistable
systems whose dynamics are periodic with respect to a part
of the state. For this purpose, we introduce the concepts of
iISS-Leonov function and output smooth dissipativity, and we
prove that they are equivalent to the properties of bounded-
energy-bounded-state and global attractiveness of solutions
in the absence of disturbances. The last two notions were
introduced by [16] as a weaker definition of iISS (comparing
with the original one given in [8]), but more appropriate for
systems with multiple equilibria (including periodic dynam-
ics). Moreover, the usefulness of our results is illustrated by
studying the robustness of a nonlinear pendulum with bias
force and unbounded state-dependent input coefficient.

The remainder of the paper is structured as follows.
Section II presents the problem statement and some useful
definitions. Section III contains the main results of this
work and the corresponding proofs. Section IV provides an
example to illustrate the advantage of our proposal. Finally,
the conclusions are given in Section V.

II. PRELIMINARIES

A. Notation

N and R stand for the sets of natural and real numbers,
respectively. Moreover, R+ represents the set of non-negative
real numbers, i.e., R+ = {x ∈ R : x ≥ 0}.

A function α : R+ → R+ belongs to the class K if it is
continuous, strictly increasing and α(0) = 0. The function
α : R+ → R+ belongs to the class K∞ if α ∈ K and it
is unbounded. A continuous function β : R+ × R+ → R+

belongs to the class KL if, for each fixed t ∈ R+, β(·, t) ∈
K∞ and, for each fixed s ∈ R+, β(s, ·) is non-increasing
and it tends to zero for t→ ∞.

The notation DV (x̃)v stands for the directional (or Dini)
derivative of a continuously differentiable (or locally Lips-
chitz continuous) function V : Rn → R+ in the direction of
the vector v ∈ Rn evaluated at the point x̃.

The distance from a point x̃ ∈ Rn to the set S ⊂ Rn is de-
fined as |x̃|S = infa∈S |x̃−a|, where |x̃| = |x̃|{0} for x̃ ∈ Rn

is a usual Euclidean norm for a vector x̃ ∈ Rn. Furthermore,
we introduce the vector norm |x̃|∞ = max1≤i≤n |x̃i| then
|x̃|∞ ≤ |x̃| ≤

√
n|x̃|∞. Besides, for a locally essentially

bounded and measurable signal d : R+ → Rm the essential
supremum norm is defined as ∥d∥∞ = ess supt≥0 |d(t)|, and
the set of such inputs with a finite norm is further denoted
by Lm

∞.

B. Multistable periodic system

Let a map f(x̃, d) : Rn × Rm → Rn be continuously
differentiable with respect to its arguments, and consider the
system

˙̃x(t) = f(x̃(t), d(t)), (1)

where x̃(t) ∈ Rn is the state and d(t) ∈ Lm
∞ is an input

signal. Moreover, for any x̃ ∈ Rn and d ∈ Lm
∞ we denote

by X̃(t, x̃; d) the uniquely defined solution of (1) at time
t fulfilling X̃(0, x̃; d) = x̃. Together with (1), consider its
unperturbed version

˙̃x(t) = f(x̃(t), 0). (2)

Hence, a set S ⊂ Rn is invariant for the unperturbed system
(2) if X̃(t, x̃; 0) ∈ S for all t ∈ R and for all x̃ ∈ S. For
x̃ ∈ Rn, the point y ∈ Rn belongs to the ω-limit (α-limit)
set of (2) if there is a sequence ti, limi→+∞ ti = +∞, such
that limi→+∞ X̃(ti, x̃; 0) = y (limi→+∞ X̃(−ti, x̃; 0) = y).
For any x̃ ∈ Rn, the α− and ω−limit sets of the unperturbed
system (2) are invariant [32].

Now, let us consider a special class of systems which are
periodic with respect to a part of the state [4], [31].

Assumption 1: Let x̃ = (z̃, θ̃) ∈ Rn, where z̃ ∈ Rk and
θ̃ ∈ Rq are two subsets of the state vector, n = k+ q, k > 0
and q > 0. The vector field f in (2) is 2π−periodic with
respect to θ̃.

In other words, we suppose that the system (2) can be
embedded in a manifold M = Rk × Sq , where S is the
unit sphere, by a simple projection of the variables θ̃ on the
sphere Sq . Denote x = (z, θ) ∈M with z ∈ Rk and θ ∈ Sq .

So, by Assumption 1 for all x̃ = (z̃, θ̃) ∈ Rn

f(x̃, 0) = f(x̃+ ξj , 0), (3)

where ξj = [0k, 2πj] ∈ Rn, where 0k is a zero vector of
dimension k and j ∈ Zq . Denote the projection from Rn to
M by P : Rn → M, which is just a modulus of the last q
coordinates over 2π. Hence, for any x̃0 ∈ Rn the solution
X̃(t, x̃0; d) ∈ Rn of the system (1) can be projected to the
solution X(t, x0; d) ∈ M with x0 = P(x̃0) ∈ M , then
both solutions are defined on the same time interval and
X(t, x0; d) = P(X̃(t, x̃0; d)) for all such instants of time.
Similarly, the set W̃ ⊂ Rn, containing all α− and ω−limit
sets of the system (2), can be projected to M by using the
periodicity of the last q variables, which will be denoted by
W , and |x|W = infy∈W |x − y| is a distance to the set W
for x ∈ M (then | · | represents the distance on M ). Note
that due to the periodicity of (2), even if W is compact, the
set W̃ becomes unbounded in Rn, in a common case.

C. Decomposable sets

Let Λ ⊂M be a compact invariant set for the system (2).
Definition 1 ( [14]): A decomposition of Λ is a finite and

disjoint family of compact invariant sets Λ1, . . . ,Λk such that

Λ = ∪k
i=1Λi.

Each Λi will be called an atom of the decomposition.



For an invariant set Λ, its attracting and repulsing subsets
are defined as follows:

A(Λ) = {x ∈M : |X(t, x; 0)|Λ → 0 as t→ +∞},
R(Λ) = {x ∈M : |X(t, x; 0)|Λ → 0 as t→ −∞}.

Define a relation on B ⊂ M and D ⊂ M by B ≺ D if
A(B) ∩R(D) ̸= ∅.

Definition 2 ( [14]): Let Λ1, . . . ,Λk be a decomposition
of Λ, then

1) An r-cycle (r ≥ 2) is an ordered r-tuple of distinct
indices i1, . . . , ir such that Λi1 ≺ . . . ≺ Λir ≺ Λi1 .

2) A 1-cycle is an index i such that A(Λi)∩R(Λi)\Λi ̸=
∅.

3) A filtration ordering is a numbering of the Λi so that
Λi ≺ Λj =⇒ i ≤ j.

So, the existence of an r-cycle with r ≥ 2 is equivalent
to the existence of a heteroclinic orbit for the system (2),
while the existence of a 1-cycle implies the existence of a
homoclinic orbit for the system (2) [32].

Definition 3: The set Λ is called decomposable if it admits
a finite decomposition without cycles, Λ = ∪k

i=1Λi, for some
non-empty disjoint compact sets Λi, which form a filtration
ordering of Λ, as detailed in Definitions 1 and 2.

Assumption 2: Let a set W̃ ⊂ Rn contain all α− and
ω−limit sets of (2) and W , its projection on M = Rk × Sq ,
be compact and decomposable (in the sense of Definition 3).

D. Integral ISS properties of multistable systems

The following notions of robustness for systems modeled
by (1), with W as in Assumption 2, has been introduced by
[16].

Definition 4 ( [16]): The system (1) is said to have the
uniform bounded-energy bounded-state (UBEBS) property
if, for some class K∞ functions χ, ς and η, and some positive
constant c, the following estimate holds for all t ≥ 0, all
x ∈ M and all locally essentially bounded and measurable
input signals d(·):

χ(|X(t, x; d)|W) ≤ ς(|x|W) +

∫ t

0

η(|d(s)|)ds+ c. (4)

Definition 5 ( [16]): The system (1) is said to have the
zero-global attraction (0-GATT) property with respect to a
compact invariant set W , if every trajectory X(t, x; 0) of the
unperturbed system (2) satisfies

lim
t→+∞

|X(t, x; 0)|W = 0. (5)

Definition 6: ( [16]) A C1 function V : M → R+ is
said to be an iISS-Lyapunov function for the system (1) if
there exist functions α1, α2, γ ∈ K∞, a continuous positive
definite function α3 : R+ → R+, and a scalar g ≥ 0, such
that, for all x ∈M :

α1(|x|W) ≤ V (x) ≤ α2(|x|W + g) (6)

and the following dissipation inequality is satisfied for all
(x, d) ∈M × Rm:

DV (x)f(x, d) ≤ −α3(|x|W) + γ(|d|). (7)

In [16] the iISS properties of systems with multiple
invariant sets are characterized by the equivalence between
several robustness notions and the existences of an iISS-
Lyapunov function as in Definition 6. The following theorem
presents an extract of the main result of [16].

Theorem 1 ( [16]): Consider a nonlinear system as in (1)
and let W be as in Assumption 2. Then the following
properties are equivalent:

1) 0-GATT and UBEBS;
2) existence of a smooth iISS-Lyapunov function V such

that DV (x) = 0 for all x ∈ W;
3) existence of a C1 iISS-Lyapunov function V ;
Definition 7 ( [16]): The system (1) is said to be iISS in

the multistable sense with respect to the set W and the input
d(·) if and only if it satisfies Assumption 2, and the UBEBS
and 0-GATT properties.

Due to the typical lack of global Lyapunov stability in
multistable systems, the definition of iISS given above is
weaker than the classical one introduced by [8]. Clearly,
classical iISS implies iISS in the multistable sense but the
contrary is not true in the general case when W admits a
decomposition with multiple atoms. However, [16, Lemma
5] shows that if W consists of one single atom, then iISS in
the multistable case is equivalent to classical iISS.

E. Boundedness of solution of periodic systems

A sufficient criterion to establish boundedness of solutions
for periodic systems, which satisfy Assumption 1 for q = 1,
has been introduced in [4], [29], [31]. This criterion can be
seen as a fine handling of instability and periodicity, which
leads to boundedness of trajectories. That is, the existence
of periodically repeated invariant solutions separating the
domain of the periodic variables allows to establish certain
cell structure, which bounds the admissible behavior of the
trajectories.

In [13], a generalization of this cell structure approach
is developed for systems whose dynamics are periodic with
respect to multiple state variables, i.e., for the case when the
system (2) satisfies Assumption 1 for q > 1. To this end, the
concept of Leonov functions was introduced.

Following [13], consider the sets: V = (Rk×S), where S
is a qth sphere (a set topologically equivalent to Sq), such that
π ≤ |θ|∞ < 2π for all x̃ = (z̃, θ̃) ∈ V, and U = ∪r∈Z+

Ur,
where

Ur = {x̃ = (z̃, θ̃) ∈ Rn : z̃ = 0, |θ̃|∞ = 2rπ, f(x̃) = 0}.
(8)

Accordingly, the U includes all equilibria obtained by shift-
ing the one at the origin using the property that, by assump-
tion, f is 2π−periodic in θ̃. However, in general, the system
(2) may possess other equilibria that do not belong to U .

Definition 8 ( [13]): A C1 function V : Rn → R is a
Leonov function for (2) if there exist a constant g ≥ 0,
functions α ∈ K∞, ψ ∈ K and a continuous function λ :
R → R satisfying λ(0) = 0, and λ(s)s > 0 for all s ̸= 0,



such that

α(|z̃|)− ψ(|θ̃|)− g ≤ V (x̃) ∀x̃ = (z̃, θ̃) ∈ Rn,

inf
x̃∈V

V (x̃) > 0, sup
x̃∈U

V (x̃) ≤ 0, (9)

and the following dissipation inequality holds:

∂V (x̃)

∂x̃
f(x̃, 0) ≤ −λ(V (x̃)) ∀x̃ ∈ Rn. (10)

Loosely speaking, a Leonov function V is sign-indefinite
with respect to the periodic variables θ̃ and radially un-
bounded with respect to the non-periodic ones z. Further-
more, a Leonov function V is negative definite with respect
to the distance to the boundary of the cell containing an
equilibrium of (2). In other words, it takes positive values
on the set V and negative values in a vicinity of the set U .

Theorem 2 ( [13]): Let Assumption 1 be satisfy. If there
exists a Leonov function for the system (2), then for all x̃0 ∈
Rn the trajectories X̃(t, x̃0; 0) are bounded for all t ≥ 0.

By exploiting the periodicity of the system (2), the proof
of Theorem 2 in [13] consists of two steps: first, it is shown
that the sets Ωj = {x̃ ∈ Rn : Vj(x̃) ≤ 0}, where j =
[j1, . . . , jq] ∈ Zq and Vj(x̃) = V (x̃ −

[
0k
2πj

]
), are globally

attractive and forward invariant for (2). Note that U ∈ Ωj

for any j. Then, it is proven that the intersection of the sets
Ωj is composed by compact and isolated ”cells”. Take any
x̃0 ∈ Rn, then the solution X̃(t, x̃0; 0) asymptotically enters
and remains in such a cell. Therefore, for any x̃0 ∈ Rn, the
corresponding solution X̃(t, x̃0; 0) is bounded for all t ≥ 0.

III. MAIN RESULTS

Now, inspired by [13], [28] and [16], we introduce a new
characterization of the iISS property with respect to the set
W̃ for periodic systems evolving in Rn.

Recall that by assumption, the solutions X̃(t, x̃0; 0) of (2)
are defined in Rn for all x̃0 ∈ Rn at least locally in time for
t ∈ [0, T ) for some T > 0.

Definition 9: A C1 function V1 : Rn → R is said to be
an iISS-Leonov function for the system (1) if there exist
functions ϑ1, ϑ2, σ1, γ1 ∈ K∞, a continuous non-negative
function λ1 : R+ → R+, and scalars g1, ℓ1 ≥ 0, such that
for all x̃ = (z̃, θ̃) ∈ Rn:

ϑ1(|x̃|W̃)− σ1(|θ̃|)− g1 ≤ V1(x̃) ≤ ϑ2(|x̃|W̃ + ℓ1), (11)

and the following dissipation inequality

DV1(x̃)f(x̃, d) ≤ −λ1(V (x̃)) + γ1(|d|). (12)

holds for all x̃ ∈ {x̃ ∈ Rn : V1(x̃) ≥ 0} and d ∈ Rm.
Definition 10: The system (1) is said to be output

smoothly dissipative (OSD) if there exists a C1 function
V2 : Rn → R, functions ϑ3, ϑ4, σ2, γ2 ∈ K∞, a continuous
non-negative function λ2 : R+ → R+, constants g2, ℓ2 ≥ 0,
and a continuous output map h : Rn → Rp, such that for all
(x̃, d) ∈ Rn × Rm:

ϑ3(|x̃|W̃)− σ2(|θ̃|)− g2 ≤ V2(x̃) ≤ ϑ4(|x̃|W̃ + ℓ2), (13)

and the following dissipation inequality

DV2(x̃)f(x̃, d) ≤ −λ2(|h(x̃)|) + γ2(|d|). (14)

holds for all x̃ ∈ {x̃ ∈ Rn : V2(x̃) ≥ 0} and d ∈ Rm.
The following lemma is the key-point of this work because
it establishes the relation of iISS-Leonov functions with the
0-GATT and UBEBS properties.

Lemma 1: Let Assumptions 1 and 2 be satisfied. Then the
existence of an iISS-Leonov function for (1) implies 0-GATT
and UBEBS properties with respect to W̃ .

Based on Lemma 1, the main result of this paper shows
that the existence of an iISS-Leonov function or the OSD
property implies the iISS property for systems, whose dy-
namics is periodic with respect to a part of the state.

Theorem 3: Let Assumptions 1 and 2 be satisfied. Then,
for the system (1) the following properties are equivalent:

(a) iISS property with respect to the set W̃;
(b) existence of an iISS-Leonov function;
(c) existence of an output function that makes the system

OSD.
Note that an iISS-Lyapunov function V : M → R+ is

only useful to investigate the iISS property of the system (1)
in the manifold M = Rk×Sq . In order to perform analysis in
Rn, we need to extend such an iISS-Lyapunov function V to
Rn, where it will be continuously differentiable, and positive
definite with respect to the set W̃ (whose elements form a
periodic arrangement in Rn). However, all this properties are
only preserved if such a function V is periodic with respect
to θ̃, which is quite restrictive.

Clearly, an iISS-Lyapunov function V : Rn → R+

satisfies the restrictions (13) and (14), hence it can be
considered as an iISS-Leonov function for (1). On the other
hand, iISS-Leonov functions are not required to be positive
definite nor periodic, which ease the study of robustness in
periodic systems. Thus, we can say that the existence of an
iISS-Leonov function is a relaxed characterization of the iISS
property for periodic systems.

The proofs of Lemma 1 and Theorem 3 are omitted due to
space limitation. The usefulness of our proposal is illustrated
in the next section with an academical example.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the following mathematical model:

ẋ1 = x2 + d1,
ẋ2 = −ω2 sin(x1)− kx2 + c+ x2

1+|x1|2 d2,
(15)

where x = [x1, x2]
⊤ ∈ R2 is the state, ω, k > 0 are

parameters, c ∈ R is a constant bias, and d1, d2 ∈ L∞ are
perturbations.

For |c| < ω2 and d1 = d2 = 0, the system (15) has
equilibria at x0 = [x10, x20]

⊤ ∈ {[asin(cω−2) + 2jπ, 0]⊤ ∪
[(1 + 2j)π − asin(cω−2), 0]⊤} = W̃, where j ∈ Z (note
that this set W̃ contain all α- and ω-limit sets of (15)). By
linearizing the system (15) around the point [asin(cω−2), 0],
we can check that it is a locally asymptotically stable
equilibrium point, and the same is true for every point
[asin(cω−2) + 2jπ, 0] for all j ∈ Z. Therefore, we can say
that the set W̃ is decomposable. Additionally, consider the
coordinates ζ = [ζ1, ζ2]

⊤ ∈ R2, where ζ1 = x1 − x10 and



ζ2 = x2, that is, a translation of the point [x10, 0] to the
origin.

Note that for d1 = d2 = 0, the system (15) describes a
simple pendulum, where the parameter ω is a function of
the gravity and the pendulum’s length, k is a function of the
viscous fiction and pendulum’s mass, and c can be seen as
a constant input. So, the system (15) is a good academical
example to illustrate the theoretical results given in previous
sections.

A. iISS-Lyapunov function approach

First, let us show that the iISS-Lyapunov function ap-
proach fails to prove the iISS property for the system (15).
For this purpose, consider the following function

W1(ζ) = ln(1 + E(ζ)), (16)

where V1(ζ) = 1
2ζ

2
2 +ω

2(cos(x10)−cos(ζ1+x10)). Clearly,
the function (16) is positive definite with respect to the set
W̃ , and radially unbounded with respect to ζ2. Furthermore,
it is periodic in ζ1 keeping its continuous differentiability
in the whole R2. So, the function (16) qualifies as an iISS-
Lyapunov function candidate according to Definition 9.

Now, it remains to check the derivative of (16) along the
trajectories of the system (15). For this, consider the simplest
case d1 = d2 = 0, such that Ẇ1(ζ) =

V̇1(ζ)
1+V1(ζ)

, where

V̇1(ζ) = −kζ22 + cζ2. (17)

Note that for c = 0, we can recall existing results to conclude
the iISS property for the system (15). However, any c ̸= 0
makes impossible to continue with the analysis. Note also
that polynomial-like functions of ζ2, periodic functions of
ζ1, or a combination are useless to deal with the undesired
term in (17). So, there is not an evident way to add extra
terms to the function V1 to deal with the undesired one in
(17), and at the same time, preserve the positive definiteness,
radially unboundedness, and periodicity of the function (16).

B. iISS-Leonov function approach

Recall that positive definiteness and periodicity are not
essential properties of iISS-Leonov function, hence a suitable
candidate is given by

V2(ζ) =
1
2ζ

2
2 − 1

2aζ
2
1 + ω2(cos(x10)− cos(ζ1 + x10))− cζ1,

where a is a constant parameter to be determined. Let us
define

ϱ(ζ1) = ω2(cos(x10)− cos(ζ1 + x10))− cζ1 − 1
2υω

2ζ21 ,

such that,

ϱ′(ζ1) = ω2 sin(ζ1 + x10)− c− υω2ζ1,

ϱ′′(ζ1) = ω2 cos(ζ1 + x10)− υω2.

Then, for any υ > 1 the equation ϱ′(ζ1) = 0 has a unique
solution at ζ1 = 0 and the inequality ϱ′′(0) < 0 holds.
Moreover, the equation ϱ′′(x1) = 0 has no solution for
υ > 1. Hence ϱ′(ζ1) is strictly decreasing in such a case.
Thus, for υ > 1 we have that ϱ(ζ1) is negative definite, which

implies that ω2(cos(x10)− cos(ζ1 + x10))− cζ1 ≤ 1
2υω

2ζ21
under such a condition. By using similar arguments, we can
deduce that ω2(cos(x10)−cos(ζ1+x10))−cζ1 ≥ − 1

2υω
2ζ21

for υ > 1 as well. Therefore, for all ζ ∈ R2:
1
2ζ

2
2 − 1

2 (a+υω
2)ζ21 ≤ V2(ζ) ≤ 1

2ζ
2
2 +

1
2 (υω

2−a)ζ21 , (18)

where υ > 1. Now, the derivative of the function V2 along
the trajectories of the system (15), under the change of
coordinates x 7→ ζ, is given by

V̇2(ζ) = −kζ22 − aζ1ζ2 + (ω2 sin(ζ1 + x10)

− c− aζ1)d1 +
ζ2
2

1+|ζ1+x10|2 d2.

Then,

V̇2(ζ) + λV2(ζ) ≤ −1

2
Φ⊤ΞΦ +ϖ1d

2
1

+ |ω2 − c||d1|+ ζ2
2

1+|ζ1+x10|2 d2,

where λ,ϖ1 > 0 are parameters, Φ = [ζ1, ζ2, d1]
⊤, and

Ξ =

λ(a− υω2) a a
a 2k − λ 0
a 0 2ϖ1

 .
By applying Sylvester’s criterion we obtain that Ξ ≥ 0 hold
true for any λ > 0, a > υω2 > 0, ϖ1 >

a2

2λ(a−υω2) , and

k > 1
2λ+

ϖ1a
2

2ϖ1λ(a− υω2)− a2
. (19)

Now, consider the set Γ = {ζ ∈ R2 : V2(ζ) > 0} and the
auxiliary function

W2(ζ) =

{
ln(1 + V2(ζ)) for ζ ∈ Γ,
V2(ζ) for ζ ∈ R2 \ Γ,

which is continuous since W2(ζ) = V2(ζ) = ln(1+V2(ζ)) =
0 for all ζ ∈ ∂Γ, where ∂Γ denotes the boundary of Γ. Note
that the term ln(1 + V2(ζ)) is well-defined for all ζ ∈ Γ,
besides, by properties of the natural logarithm, we have 0 ≤
ln(1 + V2(ζ)) ≤ V2(ζ) for all ζ ∈ Γ. Then, from (18) it is
clear that for all ζ ∈ R2:

ln(1+ 1
2ζ

2
2 )− 1

2 (a+υω
2)ζ21 ≤W2(ζ) ≤ 1

2ζ
2
2− 1

2 (a−υω
2)ζ21 ,

where υ > 1. Moreover, due to periodicity of the system
(15) with respect to ζ1 we have that 1

2ζ
2
2 ≤ ϑ(|ζ|W̃) ≤

1
2ζ

2
2 + g̃ for some function ϑ of class K∞ and some g̃ ≥ 0

sufficiently large. So, we can readily see that W satisfies
inequality (11). Hence, we can consider it as an iISS-Leonov
function candidate.

Now, let us check the derivative of W2 along the trajec-
tories of the system (15) for all ζ ∈ Γ, which is given by

Ẇ2(ζ) +
λV2(ζ)
1+V2(ζ)

= V̇2(ζ)+λV2(ζ)
1+V2(ζ)

≤ 1
1+V2(ζ)

(
ϖ1d

2
1 +ϖ2|d1|+ ζ22

1+|ζ1+x10|2
|d2|

)
,

where ϖ2 ≥ ω2 + |c|. Note that for all ζ ∈ Γ the
term λV2(ζ)

1+V2(ζ)
is positive definite, and the terms 1

1+V2(ζ)
and

ζ2
2

(1+V2(ζ))(1+|ζ1+x10|2) are bounded. Hence, we obtain

Ẇ2(ζ) ≤ δ1(|d1|) + δ2(|d2|)



for all ζ ∈ Γ, where δ1 and δ2 are class K∞ functions
majorizing those terms of d1 and d2, respectively.

Thus, W2 satisfies all conditions of Definition 9. Hence,
we can say that it is an iISS-Leonov function for the system
(15). Moreover, we have shown above that the set W̃ is
decomposable in the sense of Definition 3, then Assumptions
1 and 2 are satisfied by the system (15). Therefore, by
Theorem 3 we can say that the system (15) has the iISS
property with respect to the set W̃ .

V. CONCLUSIONS

A novel characterization of the iISS property has been
developed for multistable systems whose dynamics is pe-
riodic with respect to a part of the state. The introduced
theory consists in an analysis of boundedness of the system’s
trajectories in presence of bounded-energy perturbations by
means of sign-indefinite functions with a sign-definite deriva-
tive called iISS-Leonov functions. The proposed approach
permits to relax the usual requirements of positive definite-
ness and periodicity of the iISS-Lyapunov function approach.
The theoretical result is illustrated by analyzing the iISS
properties of a nonlinear pendulum with a constant bias input
and unbounded state-dependent input coefficient.
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