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Abstract

In a recent paper [2], the notion of Input-to-State Stability (ISS) has been generalized for systems with decomposable
invariant sets and evolving on Riemannian manifolds. In this work, we analyze the cascade interconnection of such ISS
systems and we characterize the finest possible decomposition of its invariant set for three different scenarios: 1. the
driving system exhibits multistability (convergence to fixed points only); 2. the driving system exhibits multi-almost
periodicity (convergence to fixed points as well as periodic and almost-periodic orbits) and the driven system is
assumed to be incremental ISS; 3. the driving system exhibits multiperiodicity (convergence to fixed points and
periodic orbits) whereas the driven system is ISS in the sense of [2]. Furthermore, we provide marginal results on the
backward/forward asymptotic behavior of incremental ISS systems and on the response of a contractive system under
asymptotically almost-periodic forcing. Three examples illustrate the potentiality of the proposed framework.

Keywords:
Input-to-State Stability, Lyapunov methods, interconnections.

1. Introduction

Input-to-State Stability (ISS) has been proven a very
meaningful notion of stability and sensitivity to distur-
bances for nonlinear systems [15]. Apart from being a
tool for the analysis, ISS has had a central role in the de-
sign of nonlinear feedback systems, with applications rang-
ing from feedback redesign, small-gain theorems, tracking
design, observers, and stabilization under saturated feed-
back. One of the major advances in this direction is the
stabilization of nonlinear cascades, whose recursive appli-
cation led to several constructive design methods such as
backstepping and forwarding [12]. Indeed, in many cases
of interest, the cascaded decomposition of the system un-
der consideration is advantageous in providing the explicit
stabilizing feedback law. Moreover, the ISS property be-
haves well under composition: a cascade of ISS system is
again ISS, under suitable dissipation rates and gain func-
tions of the driving/driven system, see [13].

Recently, a generalization of ISS theory for systems
with decomposable invariant sets and evolving on Rie-
mannian manifolds [2] has allowed the stability analysis
in presence of inputs for a broader variety of systems ex-
hibiting many dynamical behaviors of interests, such as
multistability, periodic oscillations, almost global asymp-
totic stability, just to name a few. In this new setting,
the decomposable invariant sets are no longer required to
satisfy the Lyapunov stability requirement as long as they
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retain the global attractivity property and admit a decom-
position without cycles, as specified in Definitions 2.1, 2.2,
and 2.3 (basically no homoclinic nor heteroclinic orbits
may exist).

Largely inspired by the applications in biological (see
the mitogen-activated protein kinase (MAPK) as an ex-
ample of cascade) as well as mechanical networks, in this
work we study nonlinear cascades of systems belonging
to the class described above, so that the novel general-
ized ISS theory can be applied. Not surprisingly, the ISS
property is still conserved under cascade interconnection,
under the implicit requirement to specify a compact in-
variant set for the cascade which is globally attractive and
admits a decomposition without cycles. In particular, we
characterize the finest possible decomposition of such in-
variant set in three different scenarios. In the first one,
the driving system is assumed to exhibit multistable be-
havior, that is asymptotic convergence of all trajectories to
fixed points only; the results provided by Thieme [16] for
asymptotically autonomous semiflows turn out to be cru-
cial in the analysis of this setting. In the second scenario,
the driving system is assumed to have fixed points as well
as periodic orbits and almost-periodic attractors (multi-
almost periodicity), whereas the driven system is assumed
to satisfy the incremental ISS property [1]. Indeed, incre-
mental ISS is a very natural option for the analysis of this
scenario. In the third scenario, the incremental ISS re-
quirement for the driving system is relaxed to only ISS in
the sense of [2]. It is within latter scenario that inferring
ISS of the cascades comprises particularly novel results
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concerning the so-called converging-input-converging-state
(CICS) [10, 14] for systems under asymptotically periodic
forcing.

The rest of the paper is organized as follows. Section
2 introduces the notion of decomposable invariant set and
the class of cascade systems under consideration. Sections
3 and 4 respectively address the first and second scenarios
(multistability and multi-almost periodicity). The third
scenario is studied in Section 5. Section 6 collects examples
for all three aforemention scenarios. Final remarks are
collected in Section 7.

Notation. Symbol d(w1, w2) denotes the Riemannian
distance between w1, w2 ∈Mw. For a point w ∈Mw, and
for a subset S ⊂Mw, the set-point distance is defined as:

|w|S = inf
a∈S

d(w, a).

We define the equivalent of the infinity norm of the dis-
tance of signals taking values on Mw as follows:

d[a,b](X1(·), X2(·)) := sup
t∈[a,b]

d (X1(t), X2(t)).

Notation |·| indicates the standard Euclidean norm. For
a measurable function d : R+ → Rm we define its in-
finity norm over the time interval [t1, t2] as

∥∥d[t1,t2]

∥∥ =

ess supt1≤t≤t2 |d(t)|, and denote ‖d‖ :=
∥∥d[0,+∞)

∥∥.

2. Definitions and main assumptions

2.1. Decompositions and ISS for multistable systems
In this Section we will introduce the notion of decompo-

sition of a compact invariant set of a nonlinear dynamical
system. In fact, as pointed out in [2], the decomposition
of a compact invariant set of a nonlinear system exhibiting
neither homoclinic nor heteroclinic cycles plays a crucial
role when claiming ISS. Moreover, it can be observed that
such assumption automatically rules out a number of con-
servative systems (for instance, Hamiltonian systems).

Let M be an n-dimensional connected and geodesically
complete Riemannian manifold without boundary. Let D
be a closed subset of Rm containing the origin. Consider
the system:

ẇ(t) = F (w(t), d(t)), (1)

where F (w, d) : M × D → TxM is a locally Lipschitz
continuous mapping with state w taking value in M and
d(·) any locally essentially bounded and measurable in-
put signal taking values in D. We denote by W (t, w; d)
the uniquely defined solution of (1) at time t fulfilling
W (0, w; d) = w under the input d(·).

The unperturbed system is defined by the following set
of equations:

ẇ(t) = F (w(t), 0). (2)

We assume that all solutions of (2) are complete1 and that
all (possibly empty) α- and ω-limit sets are compact.

1Without loss of generality, system (1) can be made backward
and forward complete by slowing down the dynamics with ẇ =

1
1+|F (w,d)|g

F (w, d), where g denotes the Riemannian metric on M .

Definition 2.1 (W-limit set). Let Ww ⊂M be a compact
invariant set containing all the α- and ω-limit sets of (2),
i.e. α(w) ∪ ω(w) ⊆ Ww for all w ∈ M . Then the set Ww

is called an W-limit set for (2).

Definition 2.2 (Decomposition). Let Ww ∈M be a com-
pact and invariant set for (2). A decomposition of Ww

is a finite, disjoint family of compact invariant sets Ww,1,
. . . , Ww,K (the atoms of the decomposition) such that:

Ww =

K⋃
i=1

Ww,i.

For an invariant set Ww, its attracting and repulsing
subsets are defined as follows:

A(Ww) = {w ∈Mw : |W (t, w, 0)|Ww
→ 0 as t→ +∞} ,

R(Ww) = {w ∈Mw : |W (t, w, 0)|Ww
→ 0 as t→ −∞} .

Define a relation on Ww,i and Ww,j by Ww,i ≺ Ww,j if
A(Ww,i) ∩R(Ww,j) 6= ∅.

Definition 2.3 (r-cycle, 1-cycle, filtration). LetWw,1, . . . ,
Ww,K be a decomposition of Ww, then:

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct
indexes i1, . . . , ir such that Ww,i1 ≺ · · · ≺ Ww,ir ≺
Ww,i1 .

2. A 1-cycle is an index i such that [R(Ww,i) ∩ A(Ww,i)]
\Ww,i 6= ∅.

3. A filtration ordering is a numbering of the Ww,i so
that Ww,i ≺ Ww,j ⇒ i ≤ j.

Existence of an r-cycle for (2) with r ≥ 2 is equivalent
to existence of a heteroclinic cycle, and existence of a 1-
cycle implies existence of a homoclinic orbit.

Definition 2.4 (No cycle condition). The autonomous
system (2) is said to satisfy the no-cycle condition if it has
anW-limit setWw as in Definition 2.1 that admits a finite
decomposition without cycles, namelyWw =

⋃K
i=1Ww,i for

some non-empty disjoint compact sets Ww,i, which form a
filtration ordering of Ww, as detailed in Definitions 2.2
and 2.3. Under the specified assumptions, the set Ww is
said to satisfy the no-cycle condition under the flow of (2).

In the following, we recall a particular robustness no-
tion for system (1) denoted as practical asymptotic gain
(pAG) property [2].

Definition 2.5 (pAG). System (1) is said to satisfy the
practical asymptotic gain (pAG) property if there exists a
class-K∞ function η and q ≥ 0 such that, for all w ∈ M
and all inputs d(·), solutions are defined for all t ≥ 0 and
the following holds:

lim sup
t→+∞

|W (t, w; d)|Ww
≤ η(‖d‖) + q. (3)

If q = 0, then we say that the asymptotic gain (AG) prop-
erty holds. If (3) holds with q = 0 and ‖d‖ = 0, we say that
the systems (1) and (2) satisfy the global zero-attractivity
(0-GATT) property.
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The generalized notion of ISS for multistable systems
in [2] replaces the Lyapunov stability requirement with
Assumption 2.4 and is formalized as follows.

Definition 2.6. System (6) is said to be ISS with respect
to the input d and the invariant set W if and only if W
satisfies Assumption 2.4 and (6) has the AG property.

We will then consider a characterization of the ISS
property in Definition 2.6 in terms of a Lyapunov dissi-
pation inequality.

Definition 2.7 (ISS-Lyapunov function). A C1 function
V : M → R is a practical ISS-Lyapunov function for (6)
if there exists K∞ functions α1, α, γ and q ≥ 0 such that,
for all w ∈M and all d ∈ D, the following holds:

α1(|w|Ww
) ≤ V (w) (4)

DV (w)F (w, d) ≤ −α(|w|Ww
) + γ(|d|) + q. (5)

If (5) holds with q = 0, then V is said to be an ISS-
Lyapunov function. If, in addition, V (Ww,i) is a singleton
for all i ∈ {1, 2, . . . ,K}, then V is said to be an ISS-
Lyapunov function constant on invariant sets. If, further-
more, DV (Ww) = 0, then V is said to be an ISS-Lyapunov
function flat on invariant sets.

Theorem 2.8 (Characterizations of ISS [2]). Consider a
nonlinear system as in (1) and let W be an W-limit set.
System (6) is ISS with respect to input d and set W if and
on if it admits a smooth ISS Lyapunov function constant
on invariant sets. Furthermore, if system (6) satisfies As-
sumption 2.4, then the following facts are equivalent:

1. the system satisfies the AG property;

2. the system satisfies the pAG property;

3. the system admits a smooth ISS Lyapunov function
flat on invariant sets;

4. the system admits a practical ISS Lyapunov function.

2.2. Cascades

Let Mx and Mz be two connected Riemannian mani-
folds without boundary and having dimension nx and nz
respectively. Let D be a closed subset of Rm containing
the origin. The subject of our study is the cascade system:

ẋ(t) = g(x(t), d(t)) (6a)

ż(t) = f(z(t), x(t)), (6b)

where g(x, d) : Mx × D → TxMx and f(z, x) : Mz ×
Mx → TzMz are two Lipschitz continuous mappings, and
d(·) is any locally essentially bounded and measurable in-
put signal taking values in D. We denote by X(t, x; d)
the uniquely defined solution of (6a) at time t fulfilling
X(0, x; d) = x, under the input d(·). In a similar way, we
denote by Z(t, z;X) the uniquely defined solution of (6b)
at time t fulfilling Z(0, z;X) = z, under the input X(·).
Finally, we denote by y = (x, z) ∈Mx×Mz the joint state

and by Y (t, y; d) the uniquely defined solution of (6) at
time t fulfilling Y (0, y; d) = y under the input d(·).

We also consider the unperturbed cascade system:

ẋ(t) = g(x(t), 0) (7a)

ż(t) = f(z(t), x(t)). (7b)

3. Multistability of the driving system

In this Section, we derive sufficient conditions for the
ISS stability of the cascade system (6), when assuming the
multistable behavior of the driving system (7a).

LetWx denote aW-limit set of the driving system (7a).
The set Wx is assumed to satisfy the following

Assumption 1. ( Multistability without cycles of driv-
ing system) The driving system (7a) satisfies the no-cycle
condition and, moreover, each atom of the decomposition
of Wx is a singleton, namely

Wx,i = {xi} with xi ∈Mx for all i = 1, . . . ,K.

We are looking for a W-limit set for (7) which satisfies
the no-cycle condition under the flow of the cascade system
(7). In order to characterize such a set in terms of its
finest decomposition, we could assume that all trajectories
X(t, x; 0) are globally attracted to one of the ω-limit sets
in Wx, i.e. for all x ∈ Mx there exists i ∈ {1, . . . ,K}
such that limt→+∞X(t, x; 0) = xi. Then, for any fixed
trajectory X(t, x; 0) converging to some xi, we may view
the differential system (7b) as the time-varying system:

ż(t) = F (t, z(t)) := f(z(t), X(t, x; 0)) , (8)

and subsequently define the autonomous time-invariant
systems:

ż(t) = Fi(z(t)) := f(z(t), xi) , i = 1, . . . ,K , (9)

with the property that F (t, z)→ Fi(z) as t→ +∞. locally
uniformly in z ∈ Mz for some i = 1, . . . ,K. Equation (8)
is called asymptotically autonomous with limit equation

(9). Let W(i)
z denote a W-limit set of the limit equation

(9) for i = 1, . . . ,K. Then, a natural question that arises
from this setting is whether the sought W-limit set for (7)
can be selected as:

WΘ :=

K⋃
i=1

(
{xi} ×W(i)

z

)
. (10)

In order to answer the question, we recall the following re-
sult due to Thieme [16, Corollary 4.3]: if the limit equation
(9) satisfies the no-cycle condition and the asymptotically
autonomous system (8) verifies boundedness of trajecto-
ries, then the ω-limit sets of (8) are subsets of the com-
pact invariant subsets of (9). For this reason, we make the
following
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Assumption 2. ( No-cycle condition of each limit equa-
tions) For all i = 1, . . . ,K, each limit equation (9), thus

each set W(i)
z , satisfies the no-cycle condition.

We are now ready to state the main result of this sec-
tion.

Theorem 3.1. Let Assumptions 1 and 2, hold. If:

• the driving system (6a) is ISS wrt input d and set
Wx;

• the driven system (6b) is ISS wrt input |x| 1 and one

of the sets W(i)
z ,

then:

• WΘ qualifies as a W-limit set for system (7) and
admits a finite decomposition without cycles under
the flow of (7);

• the cascade system (6) is ISS wrt input d and the set
WΘ.

In particular, a filtration ordering for WΘ is inherited by

the filtration orderings of Wx and W(i)
z as follows:

W(i)
z,h ≺ W

(i)
z,k ⇔ {xi} ×W

(i)
z,h ≺ {xi} ×W

(i)
z,k, (11)

for all i ∈ {1, . . . ,K} and all h, k ∈ {1, . . . ,Ki}.

Proof. Step 1: WΘ is a W-limit set. We are now go-
ing to prove that WΘ qualifies itself as a W-limit set for
system (7). The reader is referred to [16] for the forth-
coming notions of semiflow, ω-limit set, ω-Θi-limit set,
limit semiflow, asymptotically autonomous semiflow, iso-
lated compact Φi- and Θi-invariant subsets, precompact
Φi-orbit. Let Φi and Θi respectively denote the asymp-
totically autonomous semiflow and the limit semiflow as-
sociated with (8) and (9) for i = 1, . . . ,K. Consider the
following four facts: 1) since ISS holds for (7b), any Θ-
orbit is pre-compact; 2) by Assumption 2, the ω-Θi-limit
sets are isolated compact Θi-invariant subsets of Mz; 3)
condition (E) in [16, Section 4] is satisfied by Assumption
2; 4) by virtue of Lemma Appendix A.1 and in particular
of estimate (A.11), any forward Φ-orbit is pre-compact.
Therefore, by virtue of Corollary 4.3 and Remark 4.4 in
[16], it is concluded that any Φi-orbit converges towards a
compact Θi-invariant subset of Mx, namely that

ω-Φi-limit sets ⊆ ω-Θi-limit sets, i = 1, . . . ,K . (12)

By using the same arguments on the reverse semiflows, it
is also concluded that

α-Φi-limit sets ⊆ α-Θi-limit sets, i = 1, . . . ,K . (13)

The joint contribution of (12) and (13) yields the result

that all α- and ω-limit sets of (8) are contained in W(i)
z

and this set is therefore compact, invariant, and globally
attractive under the flow (8). By iterating the latter result

for all i = 1, . . . ,K, it follows that any α- and ω-limit set
of the cascade system (7) is contained in WΘ, which is
compact, invariant, and globally attractive under the flow
(7). Therefore WΘ qualifies itself as a W-limit set for
system (7).

Step 2: no-cycle condition for WΘ. Second, we prove
that WΘ admits a finite decomposition without cycles un-

der the flow of (7). Let W(i)
z,h denote the h-th atom of the

decomposition of W(i)
z , for i = 1, . . . ,K and h = 1, . . .Ki.

We prove statement (11) as follows. To see the forward
direction of the implication pick i = 1, . . . ,K and k, h =

1, . . . ,Ki such that W(i)
z,h ≺ W

(i)
z,k holds. We would like to

show that there exists ya ∈Mx×Mz such that, under the

flow of (7), α(ya) ⊆ {xi}×W(i)
z,k and ω(ya) ⊆ {xi}×W(i)

z,h,

and henceA
(
{xi} ×W(i)

z,h

)
∩R

(
{xi} ×W(i)

z,k

)
has at least

one element ya. By definition, W(i)
z,h ≺ W

(i)
z,k implies the

existence of some za ∈Mz such that, under the flow of (9),

α(za) ⊆ W(i)
z,k and ω(za) ⊆ W(i)

z,h. Consider the constant
trajectory X(t, xi; 0) ≡ xi for all t ∈ R. For this trajec-
tory the flow of (9) exactly matches the flow of (7) in the z
coordinates. We can then select ya = (xi, za) as the point
for which (11) is satisfied. For the converse implication
pick ya ∈ Mx ×Mz, and h, k ∈ {1, . . . ,Ki} with h 6= k,

such that α(ya) ⊆ {xi} ×W(i)
z,k and ω(ya) ⊆ {xi} ×W(i)

z,h.
Let xa and za respectively denote the x and z components
of ya. Since α(xa) = ω(xa) = {xi}, we can recall that
Assumption 1 rules out the existence of 1-cycles among
the atoms of (7a), therefore it holds that xa = xi and,
moreover, X(t, xa; 0) ≡ xi for all t ∈ R. The latter state-
ment implies that the flow of Z(t, za;X(·)) is given by limit
equation (9) for all t ∈ R, and hence conclude that, under

the flow of (9), we have α(za) ⊆ W(i)
z,k and α(za) ⊆ W(j)

z,k,

thus satisfying W(i)
z,k ≺ W

(j)
z,k.

We are now going to rule out the existence of a 1-

cycle around each atom {xi} × W(i)
z,h. By contradiction,

assume that there exists a couple of indices i, h such that[
R
(
{xi} ×W(i)

z,h

)
∩ A

(
{xi} ×W(i)

z,h

)]
\ ({xi} ×W(i)

z,h) 6=

∅. This implies the existence of ya = (xa, za) /∈ {xi}×W(i)
z,h

such that, under the flow of (7), α(ya) ∩ ω(ya) ⊆ {xi} ×
W(i)
z,h. Two cases then arise:

• xa 6= xi. Given that α(xa) = ω(xa) = {xi} and given
the independence of the flow of (7a) from the flow of
(7), the latter statement contradicts Assumption 1;

• xa = xi and za /∈ W(i)
z,h, which implies X(t, xa; 0) ≡

xi for all t ∈ R, thus making the flow of (8) exactly
match the flow of (9) in the z coordinates. Note

that α(za) ∩ ω(za) ⊆ W(i)
z,h with za /∈ W(i)

z,h, thus
contradicting Assumption 2.

We are now going to rule out the existence of a r-cycle
among the atoms of the decomposition (10). By contra-
diction, assume that a r-cycle exists. Two cases arise: 1)
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all atoms of the r-cycle have the same x component, say
xi; 2) at least one atom of the r-cycle has a different x
component. Case 1) implies the existence of a sequence

{xi} ×W(i)
z,k1
≺ · · · ≺ {xi} ×W(i)

z,kr
≺ {xi} ×W(i)

z,k1
(14)

with k1, . . . , kr ∈ {1, . . . ,Ki}. By equivalence (11), se-

quence (14) implies the existence of a sequence W(i)
z,k1
≺

· · · ≺ W(i)
z,kr
≺ W(i)

z,k1
, which in turn contradicts Assump-

tion 2. Case 2) implies the existence of a sequence

{xi1} ×W
(i1)
z,k1,1

≺ · · · ≺ {xi1} ×W
(i1)
z,k1,m1

≺

{xi2} ×W
(i2)
z,k2,1

≺ · · · ≺ {xi2} ×W
(i2)
z,k2,m2

≺

· · · ≺ {xir} ×W
(ir)
z,kr,mr

≺ {xi1} ×W
(i1)
z,k1,1

, (15)

with i1, . . . , ir ∈ {1, . . . ,K}, where at least one index does
not equal the others. Without loss of generality, select ir
as such index. Then, sequence (15) implies the existence of
a sequence xa1 , . . . , xar such that, under the flow of (7a),
it holds:

α(xal) =
{
xil+1

}
, ω(xal) = {xil} for l ∈ {1, . . . , r − 1}

α(xar ) = {xi1} , ω(xar ) = {xir} .

We can then pick up a subsequence of xa1 , . . . , xar , say
xb1 , . . . , xbr̃ such that xbn 6= xbn+1

for all n ∈ {1, . . . , r̃},
r̃ > 1. This implies the existence of a r̃-cycle under the
flow of (7a) which represents a contradiction with Assump-
tion 1.

Step 3: ISS of the cascade system. Finally, we prove
ISS of the cascaded system (6). Indeed, by virtue of Lemma
Appendix A.1, we can write the asymptotic estimate (A.5)
with respect to an arbitrary compact set W̃ ⊂ Mx ×Mz.
Specifically, we can write (A.5) with respect to the setWΘ.
Since WΘ satisfies the no-cycle condition under the flow
of (7), estimate (A.5) represents the practical asymptotic
gain (pAG) property as introduced in [2]. By virtue of
Theorem 2 in [2], we conclude ISS stability of (6) with
respect to input d and WΘ.

4. Multi-almost periodicity + incremental ISS

In this Section, we derive sufficient conditions for the
ISS stability of the cascade system (6), based on the fol-
lowing two key assumptions:

• the asymptotic behavior of the driving system (7a)
is characterized by fixed points, periodic orbits, and
almost-periodic attractors;

1In the definition of |x| for x ∈ Mx we use the following result.
For a Riemannian manifold Mx, the Euclidean metric is uniformly
equivalent to the Riemannian metric, i.e. there exists ν1, ν2 ∈ K∞
such that ν1(d(x,Ox)) ≤ |x| ≤ ν2(d(x,Ox)), with Ox denoting the
“origin” element of Mx. Therefore, we define |x| as the Euclidean
norm if Mx is Euclidean, and |x| := d(x,Ox) if Mx is not Euclidean,
thus implicitly making use of ν1, ν2 in all subsequent proofs.

• the driven system is incremental ISS (in the sense of
[1]).

In particular, we are mainly concerned with the response of
an incremental ISS system under different type of forcing
signals: asymptotically constant, asymptotically periodic,
and asymptotically almost periodic. To the aim of charac-
terizing the class of input signal in consideration, we use
the following two definitions.

Definition 4.1. An Rn-valued function v defined on (−∞,
+∞) is said to be almost periodic [4] if it is continuous on
(−∞,+∞) and if for each ε > 0 there exists a real number
l > 0 such that every intervals in (−∞,+∞) of length l
contains τ such that

|v(t+ τ)− v(t)| < ε (16)

holds for all t ∈ (−∞,+∞). For all ε, each τ in ev-
ery interval in (−∞,+∞) of length l will be called a ε-
displacement.

Definition 4.2. An Rn-valued function u defined on [0,+∞)
is said to be asymptotically almost periodic if it can be
decomposed as the sum u = u1 + u2, where u1 is the re-
striction to [0,+∞) of an almost periodic function, and
u2 is a continuous function defined on [0,+∞) such that
limt→+∞ u2(t) = 0 as t→ +∞.

An almost-periodic attractor Υx,i, i = 1, . . . , Nap of the
driving system (7a) will denote a compact invariant subset
defined as

Υx,i := clos {X(t, x; 0), t ∈ R}

for some x ∈ Υx,i, and where X(·, x; 0) is an almost peri-
odic function and is neither a periodic function nor a fixed
point. In virtue of [3, Theorem 6.7], every motion with
initial condition in Υx,i is almost periodic with the same
set of ε-displacements.

A periodic orbit Γx,j , j = 1, . . . , Np of the driving sys-
tem (7a) will denote a compact invariant subset satisfying
the following property:

∀ i ∈ {1, . . . , Np} ∃Ti > 0 such that

X(t+ Ti, x; 0) = X(t, x; 0) ∀x ∈ Γx,i ∀ t ∈ R.

Note that, since a periodic orbit is a one-dimensional closed
curve, any point on a periodic orbit can be characterized
by a scalar phase that uniquely determines its position on
the periodic orbit. For i = 1, . . . , Np, let Pi : Γx,i → [0, 2π)
denote the smooth bijective phase map associating to each
point x on the orbit Γx,i, its phase θ ∈ [0, 2π). Note that
the map P can be defined in such a way that, along a
trajectory starting on the limit cycle, θ evolves linearly
in time, namely the following property holds whenever
x ∈ Γx,i:

Pi(X(t, x; 0)) =
((2π

Ti
t

)
+ Pi(x)

)
mod 2π. (17)
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with i = 1, . . . , Np. We can then define:

X(i)(t) := X(t, P−1
i (0); 0) , i = 1, . . . , Np.

Note that X(i)(t) is periodic with period Ti and, in virtue
of (17), it holds for all i = 1, . . . , Np, all t ∈ R, and for all
θ ∈ [0, 2π), that:

X(i)(t+
θ

2π
Ti) = X(t, P−1

i (θ); 0). (18)

Let nowWx denote aW-limit set of the driving system
(7a). The set Wx is assumed to satisfy the following:

Assumption 3. ( Multi-almost periodicity without cycles
of driving system) The driving system (7a) satisfies the no-
cycle condition and, moreover, the decomposition of Wx

reads as the disjoint union of the following sets:

Nap+Np+Nf⋃
k=1

Wx,k =

Nap⋃
i=1

Υx,i +

Np⋃
j=1

Γx,j +

Nf⋃
h=1

{xh}, (19)

where Υx,i ⊂ Mx for i = 1, . . . , Nap is an almost periodic
attractor, Γx,j ⊂Mx for j = 1, . . . , Np is a periodic orbit,
and xh ∈Mx for h = 1, . . . , Nf is an isolated fixed point.

The following key assumption is made on the driven
system.

Assumption 4. ( Incremental ISS of driving system) Sys-
tem (7b) is incrementally input-to-state stable (δISS) in
the sense of [1]. The definition implies that the state man-
ifold is the Euclidean space (Mz = Enz) and that there ex-
ists a KL function β and γ ∈ K∞ such that for any t ≥ 0,
any z1, z2 ∈ Rnz and any couple of input X1(·), X2(·), the
following is true:

|Z(t, z1;X1)− Z(t, z2;X2)| ≤
β(|z1 − z2|, t) + γ

(
d[0,+∞)(X1(·), X2(·))

)
. (20)

Without loss of generality, we will assume f(0, Ox) = 0,
where Ox denotes the “origin” element of Mx.

We are looking for aW-limit set of the cascade system
(7), say WΦ, which satisfies the no-cycle condition under
the flow of (7). In order to provide a characterization
of the set WΦ in terms of its finest decomposition, we
first consider the case of isolated equilibria in the driving
system (7a), as in the following

Claim 4.1. If limt→+∞ d (X(t, x; 0) , xi) = 0 for some xi
with i = 1, . . . , Nf as in the decomposition (19), then there
exists a unique equlibrium point zi ∈Mz such that:

lim
t→+∞

|Z(t, z;X(·)) − zi| = 0.

Proof. This claim is proved by a straightforward applica-
tion of [1, Proposition 4.2] and [1, Proposition 4.6] for each
constant input signals xi.

We consider now the case of periodic orbits in the driv-
ing system (7a). First, we recall the following property
characterizing the behavior of solutions attracted to a pe-
riodic orbit.

Definition 4.3. Periodic orbit Γx,i is said to have the
asymptotic phase property if, for all x ∈ A(Γx,i), there
exists θ ∈ [0, 2π) such that the following limit holds true:

lim
t→+∞

d

(
X(t, x; 0) , X(i)(t+

θ

2π
Ti)

)
= 0, (21)

Typically, the asymptotic phase property does not nec-
essarily hold for subsystem (7a) and must be assumed.
Second, we recall the following additional property: by
virtue of [1, Proposition 4.4], the system (7b), forced with
a periodic input X(i)(t), has a state response which asymp-
totically tends to a periodic function of the same period
and, moreover, there exists initial condition z(i),0 such that
Z(t, z(i),0, X(i)(t)) is periodic. We claim that, for a δISS
system, if the forcing input asymptotically tends to a pe-
riodic function with phase shift θ ∈ [0, 2π), the state re-
sponse also tends to a periodic function with phase shift
θ, namely the shape of the state response does not de-
pend upon the phase of the input nor the initial state. We
formalize this result in the following

Claim 4.2. Consider the periodic input X(i)(t), with pe-
riod Ti, for some i = 1, . . . , Np. Let z(i),0 be the initial
condition as in [1, Proposition 4.4] such that

Z(i)(t) := Z(t, z(i),0, X(i)(·)) (22)

is the periodic state response of subsystem (7b) to input
X(i)(t). Let x ∈ Mx and assume that limit (21) holds for
some θ ∈ [0, 2π). Then, it holds for all z ∈Mz that:

lim
t→+∞

∣∣∣∣Z(t, z;X(·, x; 0))− Z(i)(t+
θ

2π
Ti)

∣∣∣∣ = 0. (23)

Proof. We first prove that a periodic input signal with non-
zero phase yields a state response which asymptotically
tracks a periodic function with the same phase, namely
we prove that:

lim
t→+∞

∣∣∣∣Z(t, z;X(i)(·+ θ

2π
Ti))− Z(i)(t+

θ

2π
Ti)

∣∣∣∣ = 0 ,

(24)
for any z ∈ Mz and for any θ ∈ [0, 2π). To this end, we
define:

z̄ := Z

(
− θ

2π
Ti, z,X

(i)(·+ θ

2π
Ti)

)
. (25)

Note that existence of z̄ follows from (7b) being incremen-
tally ISS, hence complete. By using the following invari-
ance property for non-autonomous flows:

Z(t+α,Z(β, z,X(·−β)), X(·)) = Z(t+α+β, z,X(·−β)), (26)

6



with α = −β = θ
2π Ti, we obtain:

Z
(
t+

θ

2π
Ti , Z

(
− θ

2π
Ti, z,X

(i)(·+ θ

2π
Ti)
)
, X(i)(·)

)
= Z

(
t, z,X(i)(·+ θ

2π
Ti)
)
. (27)

By using (25), equation (27) is immediately rewritten as:

Z

(
t+

θ

2π
Ti , z̄, X

(i)(·)
)

= Z

(
t, z,X(i)(·+ θ

2π
Ti)

)
. (28)

By virtue of the incremental ISS property, it then follows
from (28) that:∣∣∣∣Z (t, z,X(i)(·+ θ

2π
Ti)

)
− Z

(
t+

θ Ti
2π

, z(i),0, X(i)(·)
)∣∣∣∣

≤ β
(∣∣∣z̄ − z(i),0

∣∣∣ , t+
θ

2π
Ti

)
, (29)

By taking the limit for t → +∞, inequality (29) yields
the sought result (24). We are now going to prove (23).
Indeed, by [1, Proposition 4.5], it holds that:

lim
t→+∞

∣∣∣∣Z (t+
θ Ti
2π

, z̄,X(i)(·)
)
− Z

(
t+

θ Ti
2π

, z̄,X(t, x; 0)

)∣∣∣∣
(30)

equals zero for all θ ∈ [0, 2π) and all z̄ ∈ Mz as given
in definition (25). The claim is then proven by applying
the triangle inequality on the arguments of limits (24) and
(30).

Finally, we consider the case of almost-periodic attrac-
tors in the driving system (7a). For all i = 1, . . . , Nap,
we select an initial condition x̄ ∈ Υx,i and then we define
the almost-periodic function X [i](t, x̄) := X(t, x̄; 0) for all
t ∈ R. Incremental stability in a compact set implies uni-
form convergence [9, Theorem 11], and therefore there ex-
ists a unique solution Z [i](t, x̄) of the non-autonomous sys-
tem ż(t) = f

(
z(t) , X [i](t, x̄)

)
in Mz defined and bounded

for all t ∈ R (see [9, Definition 1]), and only depending
upon x̄. We recall the following property which typically
needs to be assumed for an almost-periodic attractor.

Definition 4.4. Almost-periodic attractor Υx,i is said to
have the asymptotic almost-phase property if, for all x ∈
A(Υx,i), there exists T ∈ R such that the following limit
holds true:

lim
t→+∞

d
(
X(t, x; 0) , X [i](t+ T, x̄)

)
= 0,

The following Claim and its proof are largely inspired
by the works [7] and [11]. Instrumental in the proof of the
Claim would be the following

Lemma 4.5. An Rn-valued function v defined on [0,+∞)
is asymptotically almost periodic if and only if for each
ε > 0 there are l > 0 and α > 0 such that every interval
in [0,+∞) of length l has a number τ for which

|v(t)− v(t+ τ)| < ε, (31)

for all t ≥ α. Furthermore, condition (31) is equivalently
rewritten as

‖v(·+ α)− v(·+ α+ τ)‖ < ε, (32)

where ‖·‖ denotes the standard ∞-norm, i.e.

‖s(·)‖ = sup
t≥0
|s(t)|.

Claim 4.3. The solution of an incrementally ISS system
under asymptotically almost periodic forcing is asymptoti-
cally almost periodic. Moreover, if the input is asymptoti-
cally almost periodic and converging to X [i](t, x̄) for some
x̄ ∈ Υx,i, then the state is converging to the unique solu-
tion Z [i](t, x̄).

Proof. Consider the incremental ISS system (7b) and func-
tions β ∈ KL and γ ∈ K∞ as in (20). Let X(·) = X(t, x; 0)
be an asymptotically almost periodic input signal corre-
sponding to the initial condition x ∈ Mx. We want to
prove that, for all z ∈ Mz, the solution Z(t, z;X(·)) is
asymptotically almost periodic. By Lemma 4.5, we can
formulate such a goal as follows: we want to prove that,
for all z ∈ Mz and all ρ > 0, there exists two constants
l′, α′ > 0 such that every interval I ⊂ [0,+∞) of length l′

has a number τ ′ for which

|Z(t, z;X(·))− Z(t+ τ, z;X(·))| < ρ, (33)

for all t ≥ α′. Condition (33) can be equivalently rewritten
as:

|Z(t+ α′, z;X(·))− Z(t+ α′ + τ, z;X(·))| < ρ, (34)

for all t ≥ 0. To this end, pick z ∈ Mz and ρ > 0. Since
X(·) is asymptotically almost periodic, we can select l, α >
0 such that every interval I ⊂ [0,+∞) of length l has a
number τ for which

d[0,+∞) (X(·+ α), X(·+ α+ τ)) <
ρ

2
. (35)

Moreover, due to property (26), we observe that, for all
t ≥ 0:

|Z(t+ α, z;X(·))− Z(t+ α+ τ, z;X(·))|
= |Z(t, zα;X(·+ α))− Z(t+ τ, zα;X(·+ α))|
= |Z(t, zα;X(·+ α))

−Z (t , Z(τ, zα;X(·+ α)) ; X(·+ α+ τ))| ,
(36)

with zα := Z(α, z;X(·)). Therefore, due to (6) being in-
cremental ISS, it holds:

|Z(t+ α, z;X(·))− Z(t+ α+ τ, z;X(·))|
≤ β (|zα − Z(τ, zα;X(·+ α))| , t)

+ γ
(
d[0,+∞) (X(·+ α)−X(·+ α+ τ))

)
,

(37)
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for all t ≥ 0. Since β is a KL function and boundedness
of trajectories holds for an asymptotically almost periodic
input, we can find a time tρ/2 such that

β (|zα − Z(τ, zα;X(·+ α))| , t) ≤ ρ

2
, (38)

for all t ≥ tρ/2. By using (35) and (38), estimate (36)
reads as:

|Z(t+ α, z;X(·))− Z(t+ α+ τ, z;X(·))| ≤ ρ, (39)

for all t ≥ tρ/2. It is then clear that, for all ρ > 0, there
exists constants l′ := l, α′ := α + tρ/2 such that every
interval I ⊂ [0,+∞) of length l′ := l has a number τ ′ := τ
for which (33) holds for all t ≥ α′, hence Z(t, z;X(·)) is
asymptotically almost periodic. The second statement of
the Claim is easily proved by [1, Proposition 4.5].

To the end of characterizing theW-limit set for (7), we
provide the following definitions. Let

Υi = clos

{(
X [i](t)
Z [i](t)

)
, t ∈ R

}
for all i = 1, . . . , Nap

(40)
as the almost-periodic attractor corresponding to Υx,i in
the decomposition (19). Let

Γi =

{(
X(i)(t)
Z(i)(t)

)
, t ∈ [0, Ti)

}
for all i = 1, . . . , Np (41)

as the periodic orbit corresponding to Γx,i in the decompo-
sition (19), with X(i)(t), Z(i)(t) as in Claim 4.2. Observe
that, by virtue of Claims 4.2 and 4.3, trajectories (X [i](t)
Z [i](t)) and (X(i)(t), Z(i)(t)) are time-varying, yet sets Υi,Γi
are time independent. Define

yi =

(
xi
zi

)
for all i = 1, . . . , Nf (42)

as the isolated fixed point corresponding to {xi} in the
decomposition (19), with xi, zi as in Claim 4.1.

Then, a natural question that arises from this setting
is whether the sought W-limit set for (7) can be selected
as:

WΘ =

Nap⋃
i=1

Υi ∪
Np⋃
j=1

Γj ∪
Nf⋃
h=1

{yh} (43)

Let:

Wi :=


Υi for i = 1, . . . , Nap

Γi−Nap for i = Nap + 1, . . . , Nap +Np{
yi−Nap−Np

}
for i = Nap +Np + 1, . . . , Nap +Np +Nf .

Then, the set WΘ would read as WΘ =
⋃Nap+Np+Nf

i=1 Wi.
We are now ready to state the main result of this sec-

tion.

Theorem 4.6. Let Assumptions 3 and 4 hold. Assume
that the asymptotic phase (respectively, almost-phase) prop-
erty holds for all Γx,is (respectively, for all Υx,i). Then,

the set WΘ in (43) qualifies as a W-limit set and admits
a finite decomposition without cycles (in the sense of Defi-
nition 2.4) under the flow of (7). Moreover, if the driving
system (6a) is ISS wrt input d and the set Wx, then the
cascade system (6) is ISS wrt input d and the set WΘ. In
particular, a filtration ordering for WΘ is inherited by the

filtration orderings of Wx and W(i)
z as follows:

Wx,i ≺ Wx,j ⇔ Wi ≺ Wj . (44)

for all i, j = 1, . . . , Nap +Np +Nf .

Proof. Step 1: WΘ is a W-limit set. By virtue of Claims
4.1, 4.2, and 4.3, all ω-limit sets of (7) are contained in
(43). By virtue of Claim 4.4, it will also be clear that all
α-limit sets of (7) are contained in (43).

Step 2: no-cycle condition for WΘ. We prove thatWΘ

admits a finite decomposition without cycles under the
flow of (7). To this end, we first prove statement (44) as
follows. For direction ⇒, pick i, j = 1, . . . , Nap +Np +Nf
such that Wx,i ≺ Wx,j holds. We would like to show that
there exists ya ∈Mx×Mz such that, under the flow of (7),
α(ya) =Wj and ω(ya) =Wi, and hence A (Wj) ∩R (Wi)
has at least one element ya. By definition, Wx,i ≺ Wx,j

implies the existence of some xa ∈Mx such that, under the
flow of (7a), α(xa) = Wx,j and ω(xa) = Wx,i. It follows
that trajectory X̄(t) := X(t, xa; 0) satisfies:

lim
t→+∞

d
(
X̄(t), X

(i)
SS(t)

)
= 0, (45)

lim
t→−∞

d
(
X̄(t), X

(j)
SS(t)

)
= 0, (46)

where, for h = 1, . . . , Nap + Np + Nf , the steady-state
trajectory has been defined as

X
(h)
SS (t) :=



X [h]
(
t, x[h]

)
for h = 1, . . . , Nap

X(h−Nap)
(
t+

θh−Nap

2π
Th−Nap

)
for h = Nap + 1, . . . , Nap +Np

xh−Nap−Np

for h = Nap +Np + 1, . . . , Nap +Np +Nf .

where x[h] ∈ Υx,h and θh ∈ [0, 2π) are selected in order
to satisfy (45), and (46).

In the following claim, we characterize the backward
attractor for the δISS system (7b) driven by X̄(t).

Claim 4.4. There exists an initial condition za ∈Mz such
that:

α

((
X̄(t)

Z
(
t, za; X̄(·)

))) ⊆ Wj . (47)

Proof. Consider the non-autonomous systems

ż(t) = F (t, z(t)) := f
(
z(t), X̄(t)

)
. (48)

ż(t) = FSS(t, z(t)) := f
(
z(t), X

(j)
SS(t)

)
, (49)

where F (t, z), FSS(t, z) are defined for all t ∈ R and for all

z ∈Mz, due to X̄(t), X
(j)
SS(t) being defined for all t ∈ R. In
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[9, Theorem 11] it is estabilished that incremental stability
in a compact set implies uniform convergence. Specifically,
the uniform convergence [9, Definition 1] implies that:

• (P1) all solutions Z(t, z0; X̄(· − T )) of (48) and all

solutions Z(t, z0;X
(j)
SS(·−T )) of (49) exist for all T ∈

R, for all t ≥ 0, and for all initial conditions z0 ∈Mz;

• (P2) there exists a unique solution Z̄(t) of (48) in
Mz defined and bounded for all t ∈ R.

Select za = Z̄(0). Clearly, we have that Z̄(t) = Z(t, za; X̄(·)).
To the end of proving the limit (47), we recall that δISS
implies:∣∣∣Z̄(t)− Z

(
t, z0, X

(j)
SS(·)

)∣∣∣ ≤
β
(∣∣Z̄(0)− z0

∣∣ , t)+ γ
(
d[0,t]

(
X̄(·), X(j)

SS(·)
))

, (50)

for all z0 ∈ Mz and for all t ≥ 0. Note that the δISS
inequality (50) holds with respect to time interval [0, t].
We want to take advantage of the invariance property for
non-autonomous flows in order to write (50) with respect
to the time interval [−T,−T/2]. To this end, we notice
that, in virtue of (26), the following relations hold for all
T ∈ R, for all z0 ∈Mz and for all t ≥ 0:

Z

(
T

2
, Z̄(−T ), X̄(· − T )

)
= (51)

Z

(
−T

2
, Z
(
T, Z̄(−T ), X̄(· − T )

)
, X̄(·)

)
= Z̄

(
−T

2

)
,

Z

(
T

2
, z0, X

(j)
SS(· − T )

)
=

Z

(
−T

2
, Z
(
T, z0, X

(j)
SS(· − T )

)
, X

(j)
SS(·)

)
. (52)

By using (51) and (52), the following δISS estimate holds
for all T ≥ 0 and for all z0 ∈Mz:∣∣∣∣Z̄ (−T2

)
− Z

(
−T

2
, Z
(
T, z0, X

(j)
SS(· − T )

)
, X

(j)
SS(·)

)∣∣∣∣
=

∣∣∣∣Z (T2 , Z̄(−T ), X̄(· − T )

)
− Z

(
T

2
, z0, X

(j)
SS(· − T )

)∣∣∣∣
≤ β

(∣∣Z̄(−T )− z0

∣∣ , T
2

)
+

+ γ
(
d[0,T

2
]

(
X̄(· − T ), X

(j)
SS(· − T )

))
. (53)

Note that the following equality holds for all T ≥ 0:

d[0,T
2

]

(
X̄(· − T ), X

(j)
SS(· − T )

)
= d[−T,−T

2
]

(
X̄(·), X(j)

SS(·)
)
,

and, due to (46), it also holds:

lim
T→+∞

d[0,T2 ]

(
X̄(· − T ), X

(j)
SS(· − T )

)
=

lim
T→+∞

d[−T,−T
2 ]

(
X̄(·)−X(j)

SS(·)
)

= 0.

In virtue of property (P2), states Z̄(−T2 ) and Z̄(−T ) exist
and are bounded for all T ∈ R. In virtue of property (P1),

states Z
(
T
2 , z0, X

(j)
SS(· − T )

)
and Z

(
T, z0, X

(j)
SS(· − T )

)
ex-

ist for all T ≥ 0 and for all z0 ∈ Mz. Therefore we can
take the limit for T → +∞ in (53), which yields:

lim
T→+∞

|Z̄
(
−T

2

)
−

Z

(
−T

2
, Z
(
T, z0, X

(j)
SS(· − T )

)
, X

(j)
SS(·)

)
| = 0 (54)

for all z0 ∈Mz. Pick z0 in such a way that:(
X

(j)
SS(−T2 )

Z
(
−T2 , Z

(
T, z0, X

(j)
SS(· − T )

)
, X

(j)
SS(·)

)) ∈ Wj ,

for all T ∈ R. This is indeed possible by selecting z0 = zj
ifWj is a fixed point or by selecting z0 as in [1, Proposition
4.4] if Wj is a periodic orbit. With such a choice of z0, we
can conclude from (54) that

α
((X̄ (−T2 )

Z̄
(
−T2

))) ⊆ Wj ,

so as to prove the Claim.

We continue with the proof of Theorem 4.6. We have
shown in Claims 4.1, 4.2, and 4.3 that, for all z0 ∈ Mz,
whenever limt→+∞X(t) ∈ Wx,i it then follows:

ω

((
X(t)

Z(t, z0;X(·))

))
⊆ Wi.

In particular, selecting z0 = za and X(t) = X̄(t) yields:

ω

((
X̄(t)

Z(t, za; X̄(·))

))
= ω

((
X̄(t)
Z̄(t))

))
⊆ Wi.

By selecting ya = (xa, za) ∈ A(Wj) ∩R(Wi), we can con-
clude Wi ≺ Wj .

For direction ⇐, pick i, j = 1, . . . , N + K such that
Wi ≺ Wj holds. Then there exists ya ∈ Mx ×Mz such
that, under the flow of (7), it holds α(ya) = Wj and
ω(ya) = Wi. Given the independence of the flow of (7a)
from the flow of (7b), we can then select the first compo-
nent of ya, say xa, as the point for which, under the flow of
(7a), we have that α(xa) = Wx,j and ω(xa) = Wx,i, thus
satisfying Wx,i ≺ Wx,j .

We are now going to rule out the existence of a 1-cycle
among the atomsWi, and similar arguments will apply for
the case of a r-cycle. By contradiction, assume that there
exists a 1-cycle around Wi, namely there exists an index
i such that [R (Wi) ∩ A (Wi)]−Wi 6= ∅. This implies the
existence of ya = (xa, za) /∈ Wi such that, under the flow
of (7), α(ya) = ω(ya).

Wz,i =
{
Z ∈Mz |Z = Z̄(i)(t) for some t

}
.

Two cases arise:
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• xa /∈ Wx,i or X(t̄, xa; 0) /∈ Wx,i for some t̄ ∈ R,
which implies the existence of a 1-cycle in the x co-
ordinates because, under the flow of (7a), we have
that ω(X(t̄, xa; 0)) = α(X(t̄, xa; 0)) ⊆ Wx,i. This
immediately yields a contradiction with Assumption
3;

• X(t, xa; 0) ∈ Wx,i for all t ∈ R whereas za /∈ Wz,i.
In virtue of property (P2) as in the proof of Claim
4.4, that there exists a unique bounded solution:

Z (t, ·;X(·, xa; 0)) =: Z
(i)
SS(t),

for all t ∈ R. Since X(t, xa; 0) ∈ Wx,i for all t ∈ R, it

can be written X(·, xa; 0) = X
(i)
SS(·) as in definition

(47), for x̄[i] = xa in case of an almost periodic input
signal, or some θi in case of a periodic input signal,
or xi = xa in case of a constant input signal. Corre-
spondingly, we can define the steady-state response
for all t ∈ R as:

Z
(h)
SS (t) :=



Z[h]
(
t, x̄[h]

)
for h = 1, . . . , Nap

Z(h−Nap)

(
t+

θh−Nap

2π
Th−Nap

)
for h = Nap + 1, . . . , Nap +Np

xh−Nap−Np

for h = Nap +Np + 1, . . . , Nap +Np +Nf .

By definitions (40), (41), and (42),
(
X

(h)
SS (t), Z

(h)
SS (t)

)
∈

Wh for all t ∈ R, thus contradicting (xa, za) /∈ Wi.

Step 3: ISS of the cascade system. We prove ISS of the
cascaded system (6). Since f(0, Ox) = 0 it is easy to check
that δISS implies ISS just comparing an arbitrary trajec-
tory with Z(t) ≡ 0 for all t ≥ 0. Then, by virtue of Lemma
Appendix A.1, we can write the asymptotic estimate (A.5)
with respect to an arbitrary compact set W̃ ⊂ Mx ×Mz.
Specifically, we can write (A.5) with respect to the setWΘ.
Since WΘ satisfies the no-cycle condition under the flow
of (7), estimate (A.5) represents the practical asymptotic
gain (pAG) property as introduced in [2]. By virtue of
Theorem 1 in [2], we conclude ISS stability of (6) with
respect to input d and WΦ.

5. Multiperiodicity + ISS

In this Section, we relax the assumption of incremental
ISS or any contraction properties for the driven system, by
only assuming ISS in the sense of [2]. Interesting complex
behavior can arise from this apparently simple setting, as
depicted in Figure 1. In order to simplify the analysis, we
will in fact restrict our analysis to multiperiodic driving
systems, namely excluding the presence of almost-periodic
attractors. Then, we will derive sufficient conditions for
the ISS stability of the cascade system (6).

Let Wx denote a W-limit set of the driving system
(7a). The setWx is assumed to satisfy Assumption 3 with
Nap = 0. We are looking for a W-limit set for (7) which is

Figure 1: The Duffing oscillator ẋ = y, ẏ = −x − x3 − 1
5
y + u

can be proven to be ISS wrt the origin and input u by selecting
the ISS-Lyapunov function V (x, y) = 1

2
(y + εx)2 + 1

2
x2 + 1

4
x4 with

ε > 0 small enough. The plot shows the three isolated periodic orbits
generated by the periodic forcing u(t) = 10 sin(5t) with different
initial conditions (x(0), y(0)) = (3,−2), (0, 0.1), (50,−60).

globally attractive and satisfies the no-cycle condition un-
der the flow of (7). In order to provide a characterization
of such set in terms of its finest possible decomposition, we
again assume that any trajectory X(t, x; 0) with x ∈Mx is
globally attracted to one of the ω-limit sets inWx, namely
either one of the equilibria xis, or one of the periodic orbits
Γx,is. Thus it makes sense to:

1. study the asymptotic behavior of the driven system
when its input evolves for all times on the ω-limit
sets of the driving system, namely X(t, x; 0) ∈ Wx,k

for some k ∈ {1, . . . , Np +Nf} and for all t ≥ 0;

2. provide the conditions for which the asymptotic be-
havior observed in 1. matches the asymptotic behav-
ior of the driven system when its input is approach-
ing the ω-limit sets of the driving system, namely
ω(x) ⊆ Wx,k.

To this end, we define the asymptotically autonomous
flow and the limit flow for subsystem (7b). Let x ∈ Mx

denote the initial condition for subsystem (7a). Assume
that X(t, x; 0) is converging to one of the Wx,k. In case
k ∈ {Np+1, . . . , Np+Nf}, the setWx,k is the equilibrium{
xk−Np

}
, and we have X(t, x; 0) → xk−Np

as t → +∞.
Hence, we will consider for each k ∈ {Np + 1, . . . , Np +Nf}
the (time-varying) asymptotically autonomous system:

ż(t) = Fk(z(t), t) := f (z(t) , X(t, x; 0)) , (55)

and its corresponding (time-invariant) limit system:

ż(t) = F̄k(z(t)) := f
(
z(t) , xk−Np

)
, (56)

In case k ∈ {1, . . . , Np}, the set Wx,k is the periodic orbit
Γx,k. Note that

d

(
X(t, x; 0), X(k)(t+

θ

2π
Tk)

)
as t→ +∞

for some θ ∈ [0, 2π). In this case we will consider for
each k ∈ {1, . . . , Np} the (time-varying) asymptotically
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autonomous system in the extended state-space z̃ = (τ, z) ∈
S×Mz:

˙̃z(t) =

(
τ̇(t)
ż(t)

)
= Fk(z(t), t) =

(
2π
Tk

f (z(t) , X(t, x; 0))

)
,

(57)
and its corresponding (time-invariant) limit system:

˙̃z(t) =

(
τ̇(t)
ż(t)

)
= F̄k(z̃(t), t) =

( 2π
Tk

f
(
z(t) , X(k)(τ(t))

)) .
(58)

It can be easily seen that the initial condition on τ can be
set equal to the phase θ of the periodic orbit X(k)(t+ θ

2πTk)
asymptotically approached by X(t, x; 0). In other words,
we can study the asymptotic behavior of the periodically
forced subsystem (7b) with different phases by simply con-
sidering the extended state-space S×Mz and changing the
initial condition τ .

The following key assumption is made on each limit

system. For k = Np + 1, . . . , Np + Nf , let W(k)
z denote a

W-limit set of limit equation (56) with the finest possible

decomposition. For k = 1, . . . , Np, let W(k)
z̃ denote a W-

limit set of limit equation (58) with the finest possible
decomposition.

Assumption 5. ( Limit systems without cycles) For all

k = 1, . . . , Np, the limit equation (58), thus each set W(k)
z̃

satisfies the no-cycle condition. For all k = Np+1, . . . , Np+

Nf , the limit equation (56), thus each set W(k)
z satisfies

the no-cycle condition. For all k = 1, . . . , Np + Nf , we
denote with Nk the number of atoms in the decomposition

of W(k)
z .

Our aim is to find aW-limit set for (7) which is globally
attractive and satisfies the no-cycle condition under the
flow of (7). To this end, we note that each solution of

(58) which evolves on an atom W(k)
z̃,h ⊆ W

(k)
z̃ for all t ≥ 0

and some h ∈ {1, . . . , Np} can be defined by selecting any

initial condition (τk,h, zk,h) ∈ W(k)
z̃,h and by denoting, for

all t ≥ 0,

Z̃
(k)
h (t, (τk,h, zk,h)) :=

([
τk,h + 2π

Tk
t
]

mod 2π

Z
(k)
h (t, (τk,h, zk,h))

)
,

where Z
(k)
h (t, (τk,h, zk,h)) simply denotes the projection of

Z̃
(k)
h (t, (τk,h, zk,h)) onto the Mz manifold. It is then imme-

diate to define the following invariant sets for the cascade
dynamics (7):

W(k,h) :=

{(
X(k)

(
t+

τk,h

2π
Tk
)

Z
(k)
h (t, (τk,h, zk,h))

)
∈Mx ×Mz , t ≥ 0

}
,

with k = 1, . . . , Np and h = 1, . . . , Nk. Observe that the
definition of set W(k,h) does not depend upon the choice
of initial condition (τk,h, zk,h). We can also define the set
W(k,h) for k = Np + 1, . . . , Np +Nf and h = 1, . . . , Nk, as
follows:

W(k,h) := {xk} ×W(k)
z,h. (59)

Therefore, a natural question that arises from this setting
is whether the sought W-limit set for the cascade system
(7) can be selected as the set:

WΘ :=

Np+Nf⋃
k=1

Nk⋃
h=1

W(k,h). (60)

In order to answer the question, we recall the following re-
sult due to Mischaikow, Smith and Thieme in [8, Theorem
1.8]: whenever the asymptotically autonomous semiflow
(55)-(57) verifies boundedness of trajectories, its ω-limit
sets are subsets of the compact, connected subsets of Mz

which are invariant and chain recurrent for (56)-(58) re-
spectively.

Theorem 5.1. Let Assumptions 3 and 5 hold with Nap =
0. If:

• the driving system (6a) is ISS wrt input d and the
invariant set Wx;

• the driven system (6b) is ISS wrt input |X(·)| and
some invariant set Wz;

then the cascade system (6) is ISS wrt input d and the
invariant set WΘ. Moreover, a filtration ordering of WΘ

under the flow of (6) is inherited by the filtration orderings
of Wx as follows:

W(k)
z̃,i ≺ W

(k)
z̃,j ⇔ W(k,i) ≺ W(k,j), (61)

for all k ∈ {1, . . . , Np +Nf} and all i, j ∈ {1, . . . , Nk};

Proof. The proof follows along the lines of [5] and of The-
orem 3.1. Main steps of the proof:

• Lemma Appendix A.1 yields the practical asymp-
totic gain (pAG) property with respect to an arbi-
trary compact set W̃ ∈Mx×Mz, hence boundedness
of trajectories for the unperturbed cascade system
(7);

• due to boundedness of trajectories and Assumption
5, it is possible to apply the results of Theorem 1.8
in [8] to conclude that the set WΘ as defined in (60)
is globally attractive for the flow of the cascade (7);

• the setWΘ satisfies the no-cycle condition under the
flow of cascade (7), and a proof of this claim together
with the proof of claim (61) follows along the lines
of Theorem 3.1;

• given the pAG property and the fact thatWΘ quali-
fies itself as aW-limit set for (7), Claim 4 in [2] yields
the AG property of the cascade (6) wrt to input d
and the set WΘ.

Corollary 5.1. Let Assumptions 3 and 5 hold with Nap =
0. If:
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• the driving system (7a) has an invariant setWx which
is globally attractive;

• the driven system (7b) is ISS wrt input |X(·)| and
some invariant set Wz;

then the invariant set WΘ is globally attractive for the cas-
cade system (7) and satisfies the no-cycle condition for (7).

6. Examples

6.1. Multistability of driving system

As an example of an ISS system driven by a multistable
system, consider the following cascade system:

ẋ = −x3 + x+ d (62a)

ż = − sin(z) + x, (62b)

with states x ∈ R and z ∈ S and disturbance d ∈ R.
For subsystem (62a), the decomposable W-limit set takes
the form: Wx = Wx,1 ∪ Wx,2 ∪ Wx,3 = {−1, 1, 0}. The
Lyapunov function Vx(x) = (x− 1)2(x+ 1)2 satisfies:

|x|4Wx
≤ Vx(x)

DVx(x)
(
−x3 + x+ d

)
≤ −|x|6Wx

+ 4d2,

and hence shows that (62a) is ISS wrt Wx and |d|. For
subsystem (62b) with input x, the decomposable W-limit

set takes the form: W(3)
z = W(3)

z,1 ∪ W
(3)
z,2 = {0, π}. The

Lyapunov function Vz(z) = 1− cos(z) satisfies:

0.1|z|2
W(3)

z
≤ Vz(z)

DVz(z) (− sin(z) + x) = − sin(z)2 + x sin(z)

− 1

2
sin(z)2 +

1

2
x2 ≤ −0.15|z|2

W(3)
z

+
1

2
x2,

and hence shows that (62a) is ISS wrt W(3)
z and |x|. In

virtue of Theorem 3.1, we consider the α- and ω-limit
sets of the limit equations for each equilibrium xi, i =
1, . . . , 3: Case i = 1: the solutions of the limiting system
ż = − sin(z) − 1 all converge to the equilibrium {π/2}.
This is not asymptotically stable. In fact it exhibits a ho-
moclinic cycle. Therefore, in order to satisfy Assumption
2 we need to consider an enlarged invariant set, namely

W(1)
z = S. Case i = 2: same arguments hold true for

equation ż = − sin(z) + 1, hence W(2)
z = S. Case i = 3:

for equation ż = − sin(z) we select W(3)
z = {0, π}. In

virtue of Theorem 3.1, we can conclude that the set

WΘ = ({−1} × S) ∪ ({1} × S) ∪ {(0, 0)} ∪ {(0, π)} (63)

qualifies itself as a W-limit set for (62) and, moreover,
system (62) is ISS wrt WΘ and d.

Figure 2: Phase plot of dynamics (62). The setWΘ in (63) is in red.

6.2. Multiperiodicity of driving system - Robotics

As an example of an incrementally ISS system driven
by an oscillating source, we study here the case of a robotic
manipulator tracking a trajectory provided by the so-called
Central Pattern Generators (CPGs). CPGs represent a
powerful method for the robust generation of rhythmic
patterns and for this reason they are widely used in lo-
comotion control of robots [6]. Consider a 3 degrees-of-
freedom mechanical manipulator whose motion is described
by the equations:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (64)

with q, q̇, q̈ ∈ R3 the joint angles, velocities and accelera-
tions, M(q) the inertia matrix, C(q, q̇) the Coriolis matrix,
G(q) the potential vector field, τ the vector of all available
control torques, and d disturbances occurring in the joint
dynamics. The standard computed torque control algo-
rithm is implemented on (64):

τ = M(q)ν + C(q, q̇)q̇ +G(q)

ν = qr(2) +Kd

(
qr(1) − q̇

)
+Kp (qr − q) , (65)

whereKd = diag [kd1, kd2, kd3] andKp = diag [kp1, kp2, kp3]
are tunable controller gains. In (65), variables

qr =

qr1qr2
qr3

 , qr(1) =

qr1(1)

qr2(1)

qr3(1)

 , qr(2) =

qr1(2)

qr2(2)

qr3(1)

 (66)

respectively denote the reference trajectory and its filtered
first and second time derivative, as specified in the follow-
ing:

qri(1)(s)

qri(s)
=

p s

p+ s
,
qri(2)(s)

qri(s)
=

p s2

(p+ s)2
, (67)

with i = 1, 2, 3 and p > 0 the tunable pole of the filter.
By combining equations (64), (65), and a minimal state-
space representation of (67), we obtain the following linear
system for each joint i = 1, 2, 3:

ż = Az +Bqr, (68)
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with

A =


−p 0 0 0
−p2 −p 0 0

0 0 0 1
kdi + p 1 −kpi −kdi

 , B =


−p2

−p3

0
p2 + kpi + kdip

 .
The reference trajectory qr for the torque-controlled ma-

nipulator is generated by the CPGs, which are implemented
as a set of coupled nonlinear oscillators (typically Ku-
ramoto model), as follows:

θ̇1 = ω + d1 +K sin(θ2 − θ1) +K sin(θ3 − θ1 + π)

θ̇2 = ω + d2 +K sin(θ1 − θ2) +K sin(θ3 − θ2 + π)

θ̇3 = ω + d3 +K sin(θ1 − θ3 − π) +K sin(θ2 − θ3 − π)

qri = q̄i + q̂i cos(θi), (69)

where θi ∈ S denotes the phase of oscillator i = 1, 2, 3,
ω > 0 is the common frequency for all oscillators, di ∈ R
represents a generic disturbance, K > 0 is the coupling
strength, and q̄i, q̂i ∈ R respectively denote bias and am-
plitude of the oscillation driving joint i = 1, 2, 3. Model
(69) has been studied in [2] where the authors have shown
that, by rewriting the dynamics wrt the synchronization
errors e1 := θ2 − θ1, e2 := θ3 − θ1 + π, the W-limit set for
the transformed dynamics takes the form:

We =

{
(0, 0), (0, π), (π, 0), (π, π), (

2π

3
,

4π

3
), (

4π

3
,

2π

3
)

}
, (70)

and, moreover, satisfies the no cycle condition (2.4), as
shown in Figure 3. This in turn implies that the W-limit
set Wx of the original system (69) consists of periodic or-
bits in a one-to-one correspondence with the elements of
(70) and satisfies the no cycle condition.

Figure 3: Phase plot of dynamics (69) in the coordinates e1, e2. The
set We as in (70) is depicted in red.

The authors in [2] have proved that system (69) is ISS
wrt to disturbances di and the set Wx. It can be easily
proved that system ż = Az + B(q̄i + q̂i cos(θi)) is incre-
mentally ISS wrt to input θi by noticing that it is a linear

system and |cos(θi)| ≤ 1 is bounded. Therefore the results
of Theorem 4.6 can be applied to infer the ISS property
for the cascade (68), 69) wrt disturbances di.

6.3. Multiperiodic subsystem driving ISS subsystem

The following example is a straightforward application
of Corollary 5.1. Consider the following set of differential
equations:(

ẋ1

ẋ2

)
=

(
−x2

x1

)
+

+

(
x1

x2

)(
1− x2

1 − x2
2

)(9

4
− x2

1 − x2
2

)(
4− x2

1 − x2
2

)
(71)

ż = −z3 + z (1 + sin (x1)) . (72)

The driving subsystem (71) has a W-limit set which can
be decomposed as follows:

Wx =Wx,1∪Wx,2∪Wx,3∪Wx,4 = Γx,1∪Γx,2∪Γx,3∪{x4}
(73)

with Γx,1 =
{

(x1, x2) ∈ R2 | x2
1 + x2

2 = 1
}

Γx,2 =

{
(x1, x2) ∈ R2 | x2

1 + x2
2 =

9

4

}
Γx,3 =

{
(x1, x2) ∈ R2 | x2

1 + x2
2 = 2

}
. (74)

In particular, the Poincaré map of system (71) proves that
Γx,1 and Γx,3 are locally asymptotically stable periodic
orbits, whereas Γx,2 is a repelling one, while x4 = (0, 0) is
repelling fixed point. Thus, the set Wx qualifies as a W-
limit set for subsystem (71). Moreover, a trajectory lying
on the limit cycles Γx,i with i = 1, . . . , 3 takes the form:(

x1(t)
x2(t)

)
=

(
Ai sin(t+ θ)
Ai cos(t+ θ)

)
where A1 = 1, A1 = 2, and A3 = 3/2. Subsystem ż =
−z3+z u is proven to be ISS by the ISS-Lyapunov function
Vz(z) = z2. Note that subsystem ż = −z3 + z u satisfies
the property that the sets R> 0, R< 0, and {0} are invariant
for all times regardless of the input function u(t).

We are now going to check that Assumption 5 is in-
deed satisfied for subsystem (72). We then study the limit
systems (58) in the extended state-space S×Mz for each
periodic orbit (74). In particular, we study the limit sys-
tem corresponding to Γx,1, namely:

τ̇ = 1

ż = −z3 + z (1 + sin(τ)) , (75)

and a similar analysis will hold true for Γx,2 and Γx,3. The
phase plot of dynamics (75), as depicted in Figure 4, shows
that the limit system (75) has 3 invariant sets which are
not cyclically chained, as proved in the following. The
Poincaré map

(x(0), θ(0) ≡ 0) 7→ (x(2π), θ(0) + 2π ≡ 0) ,
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Figure 4: Phase plot of dynamics (75) and corresponding W-limit
set (red).

can be computed analytically by means of software tools.
Indeed, a numerical approximation for such a map when
x(0) > 0 is:

x(2π) ∼=
196.9963√

89026.7678 + 0.1353
x2
0

. (76)

Map (76) has an equilibrium at x̄ ∼= 0.6602 which is asymp-
totically stable with basin of attraction R> 0. For the case
x(0) < 0, the numerical approximation of the Poincarè
map shows that the equilibrium at x̄1

∼= −0.6602 is asymp-
totically stable with basin of attraction R< 0. Hence, we
can conclude that the 3 periodic orbits of (75) are indeed
not cyclically chained. For the periodic orbit of the driving
system

X(1)(t) =

(
sin(t)
cos(t)

)
,

these periodic orbits are:

Z̃
(1)
1 (t) =

(
t

Z
(1)
1 (t, (x̄1, 0))

)
,

Z̃
(1)
2 (t) =

(
t

Z
(1)
2 (t, (−x̄1, 0))

)
=

(
t

−Z(1)
1 (t, (x̄1, 0))

)
,

Z̃
(1)
3 (t) =

(
t

Z
(1)
3 (t, (0, 0))

)
=

(
t
0

)
.

for some periodic orbit Z
(1)
1 (t, x̄1, 0)) A similar analysis

shows that, for each periodic orbit (74) of the driving sub-
system (71) there exist 3 periodic orbits of the limit sys-
tem (58) which are not cyclically chained. In particular,
for X(2)(t) = (2 sin(t), 2 cos(t)) we have

Z
(2)
1 (t, (x̄2, 0)) , Z

(2)
2 (t, (−x̄2, 0)) ≡ −Z(2)

1 (t, (x̄2, 0)) ,

Z
(2)
3 (t, 0) = (t, 0)

and for X(3)(t) =
(

3
2 sin(t), 3

2 cos(t)
)

we have

Z
(3)
1 (t, (x̄3, 0)) , Z

(3)
2 (t, (−x̄3, 0)) ≡ −Z(3)

1 (t, (x̄3, 0)) ,

Z
(3)
3 (t, 0) = t, 0).

Moreover, the origin of the unperturbed driven system (72)
is globally attractive, thus we can define the set W(4,1) =
(0, 0, 0) which is invariant under the flow of the cascade
(71)-(72). The remaining invariant sets are defined as:

W(k,h) =

(
X(k)(t)
Zkh

)
for allk = 1, . . . , 3 and all h = 1, . . . , 3.

Therefore, the W-limit set for the cascade dynamics (71)-
(72) takes the form:

WΘ =W(4,1) ∪
3⋃
k=1

3⋃
h=1

W(k,h).

7. Conclusions

Based on a novel ISS framework for systems with multi-
ple not-necessarily-connected invariant sets, we have stud-
ied the cascade interconnections of ISS systems exhibit-
ing typical nonlinear behaviors (multistability, periodic,
and almost-periodic and non-periodic orbits). We have
shown that the ISS property is conserved in cascaded sys-
tems whenever specific sufficient conditions are satisfied.
In particular, we have provided a characterization of the
W-limit set (invariant set containing all α- and ω-limit
sets) of such cascade system in terms of its finest possible
decomposition. We remark that among the sufficient con-
ditions yielding ISS for the cascade, the absence of cycles
in each component of the cascade turns out to be a very
important one. Indeed, without such assumption, no ap-
propriate definition of the decomposition of the W-limit
set of the cascade can be made and, furthermore, ISS of
each subsystem only guarantees boundedness of trajecto-
ries of the cascade.

Hopefully, this paper will serve as a starting point for
the analysis of the stability and sensitivity to disturbances
for many systems of interests, such as those arising in the
field of systems biology.

Appendix A. Technical lemmas

The following two lemmas are obtained by adapting
the arguments in the proof of Theorem 2 in [13].

Lemma Appendix A.1. If:

• for the driving system (6a) there exists a positive-
definite and proper function Vx, functions αx,1, αx,2,
αx, γx ∈ K∞, and positive constants cx, qx, which
satisfy the inequalities:

αx,1(|x|Wx) ≤ Vx(x) ≤ αx,2(|x|Wx + cx) (A.1)

∂

∂x
Vx(x)g(x, d) ≤ −αx(|x|Wx) + γx(|d|) + qx , (A.2)

with respect to an arbitrary compact set Wx ⊂Mx;
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• for the driven system (6b) there there exist a positive-
definite and proper function Vz, functions αz,1, αz,2,
αz, γz ∈ K∞, and a positive constant cz, qz, such
that:

αz,1(|z|Wz ) ≤ Vz(z) ≤ αz,2(|z|Wz + cz) (A.3)

∂

∂z
V̇z(z)f(z, x) ≤ −αz(|z|Wz ) + γz(|x|) + qz , (A.4)

with respect to an arbitrary compact set Wz ⊂Mz;

then the cascade system (6) enjoys the practical AG prop-
erty with respect to an arbitrary compact set W̃ ⊂ Mx ×
Mz, namely it holds that

lim sup
t→+∞

|Y (t, y; d)|W̃ ≤ σ
′(‖d‖) + q′ , (A.5)

for some K∞ function σ′ and positive constant q′.

Proof. Due to compactness of the set Wx, the following
bounds hold:

|x| ≤ ν3(|x|Wx) + c3, |x|Wx ≤ ν4(|x|) + c4,

for some K∞ function ν3, ν4 and some positive constant
c3, c4. Let β̃(s) be any class K∞ and smooth function
such that:

β̃(s) :=

{
αx(s) in a neighborhood of 0

γz(2ν3(s)) in a neighborhood of +∞.

It then follows that β̃(s) = O(αx(s)) as s → 0+, and
γz(s) = O( 1

2 β̃(s)) as s → +∞. By virtue of Lemma Ap-
pendix A.2, there exists a positive definite and proper func-
tion Ṽx(x), a K∞ function γ̃x, and a positive constant q̃x
such that inequality (A.2) can be rewritten as:

˙̃Vx(x) ≤ −β̃x(|x|Wx
) + γ̃x(|d|) + q̃x . (A.6)

Moreover, by noting that

γz(|x|) ≤ γz [ν3(|x|Wx) + c3] ≤ γz (2ν3(|x|Wx)) + γz(2c3),

inequality (A.4) can be rewritten as:

∂Vz(z)

∂z
f(z, x) ≤ −αz(|z|Wz ) + γz(2ν3|x|Wx) + γz(2c3) + qz.

(A.7)

In virtue of Lemma Appendix A.3, there exists a positive
definite and proper function Ṽz(z), a K∞ function α̃z, and
a positive constants q̃z such that inequality (A.7) can be
rewritten as:

˙̃Vz(z) ≤ −α̃z(|z|Wz
) +

1

2
β̃(|x|Wx

) + q̃x . (A.8)

Then, adding inequalities (A.6) and (A.8) yields the fol-
lowing estimate:

˙̃Vx(x, d) + ˙̃Vz(z, x) ≤ −1

2
β̃x(|x|Wx

)− αz(|x|Wz
) + q̃x + q̃z.

Consider now the extended state y = (x, z) and the set
Wy :=Wx ×Wz. Note that the function V (y) := Vx(x) +
Vz(z) satisfies the estimates:

α1(|y|Wy ) ≤ V (y) ≤ α2(|x|Wy + cy) (A.9)

V̇ (y) ≤ −α(|y|Wy
) + γ̃x(|d|) + qy , (A.10)

for some K∞ function α, α1, α2, and positive constants
cy, qy. Inequalities (A.9) and (A.10) in turn implies an
estimate as follows:

|Y (t, y; d)|Wy
≤ κ(|y|Wy

, t) + σ(‖d‖) + q ∀t ≥ 0 (A.11)

where κ ∈ KL, σ ∈ K and q > 0. Due to compactness
of the sets W̃ and Wy, additional bounds can be given to
relate the set point distance from both:

|y|W̃ ≤ ρ3(|y|Wy
) + b3 (A.12)

|y|Wy
≤ ρ4(|y|W̃) + b4 , (A.13)

for some ρ3, ρ4 ∈ K∞ and b3, b4 ≥ 0. By embedding
bounds (A.12) and (A.13) in estimate (A.11), for all t ≥ 0
it holds:

|Y (t, y; d)|W̃ ≤ κ
′(|y|W̃ , t) + σ′(‖d‖) + q′ , (A.14)

with κ′ := ρ3 ◦ κ ◦ ρ4, σ′ = ρ3 ◦ σ, and q′ := ρ3(q) +
ρ3(κ(b4))+b3. By taking the limit for t→ +∞, inequality
(A.5) immediately follows.

Lemma Appendix A.2. Assume that system (6a) ad-
mits an ISS-Lyapunov function, namely conditions (A.1)
and (A.2) hold. Suppose that α̃x is a K∞ function so
that α̃x(r) = O(αx(r)) as r → 0+. Then there exists a
positive-definite and proper function Ṽx(x), a K∞ func-

tion γ̃x, and a positive constant q̃x such that ˙̃Vx(x) ≤
−α̃x(|x|Wx

) + γ̃x(|d|) + q̃x.

Proof. We introduce a new candidate ISS-Lyapunov func-
tion Ṽx := ρ ◦Vx where ρ is a K∞ function defined in turn
by an integral of the form

ρ(s) :=

∫ s

0

q(t) dt, (A.15)

and where q is a positive, non-decreasing function which
will be defined in the following. Due to ρ being a K∞
function, inequality (A.1) translates to:

α̃x,1(|x|Wx) ≤ Ṽx(x) ≤ α̃x,2(|x|Wx) + c̃x , (A.16)

with α̃x,1 := ρ ◦ αx,1, α̃x,2 := ρ ◦ 2αx,2, and c̃x := ρ(2cx).
From condition (A.2), we have that:

˙̃Vx(x) ≤ q(Vx(x)) [−αx(|x|Wx
) + γx(|d|) + qx] . (A.17)

The following two cases arises:
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• if γx(|d|) + qx ≤ 1
2αx(|x|Wx) then

q(Vx(x)) [γx(|d|)− αx(|x|Wx
) + qx]

≤ −1

2
q(Vx(x))αx(|x|Wx)

≤ −1

2
q(αx,1(|x|Wx))αx(|x|Wx) ;

• if γx(|d|) + qx ≥ 1
2αx(|x|Wx) then

q(Vx(x)) [γx(|d|) + qx]

≤ q(αx,2(|x|Wx + cx)) [γx(|d|) + qx]

≤ q(αx,2(2|x|Wx) + αx,2(2cx)) [γx(|d|) + qx]

≤ q
[
αx,2

(
2α−1

x (2γx(|d|) + 2qx)
)

+ αx,2(2cx)
]
·

[γx(|d|) + qx]

≤ q[αx,2
(
2α−1

x (4γx(|d|)) + 2α−1
x (4qx)

)
+

αx,2(2cx)] [γx(|d|) + qx]

≤ q[αx,2
(
4α−1

x (4γx(|d|))
)

+ αx,2
(
4α−1

x (4qx)
)

+

αx,2(2cx)] [γx(|d|) + qx]

≤ q (θ(|d|) + cθ) [γx(|d|) + qx]

≤ q (θ(|d|) + cθ) γx(|d|) + qx q(2θ(|d|)) + qx q(2cθ)

≤ γ̃x(|d|) + q̃x

where we have made use of the general formula:

α(a+b) ≤ α(2a)+α(2b) for all α ∈ K∞ and a, b > 0 ,
(A.18)

and we have defined:

θ := αx,2 ◦ 4α−1
x ◦ 4γx

cθ := αx,2
(
4α−1

x (4qx)
)

+ αx,2(2cx)

γ̃x(r) := q (θ(r) + cθ) γx(r) + qx q(2θ(r)) for all r > 0

q̃x := qx q(2cθ) .

Therefore, inequality (A.17) can be rewritten as:

˙̃Vx(x) ≤ −1

2
q(αx,1(|x|Wx))αx(|x|Wx)+γ̃x(|d|)+q̃x (A.19)

By setting β := 1
2αx ◦ α

−1
x,1 and β̃ := 1

2 α̃x ◦ α
−1
x,1, Lemma

2 in [13] gives us the positive definite and non-decreasing
function q such that:(

1

2
α̃x ◦ α−1

x,1

)
(s) ≤ q(s)

(
1

2
αx ◦ α−1

x,1

)
(s) for all s > 0 .

(A.20)
By replacing s with αx,1(|x|Wx

) in (A.20), it then follows
that:

˙̃Vx(x) ≤ −α̃x(|x|W) + γ̃x(|d|) + q̃x .

Lemma Appendix A.3. Assume that system (6b) ad-
mits an ISS-Lyapunov function, namely conditions (A.3)
and (A.4) hold. Suppose that γ̃z is a K∞ function so
that γz(r) = O(γ̃z(r)) as r → +∞. Then there exists
a positive-definite and proper function Ṽz(z), a K∞ func-

tion α̃z, and a positive constant q̃z such that ˙̃Vz(z) ≤
−α̃z(|z|Wz

) + γ̃z(|x|) + q̃z.

Proof. We introduce a new candidate ISS-Lyapunov func-
tion Ṽz := ρ ◦ Vx with ρ being a K∞ function as defined
in (A.15), where q is a positive, non-decreasing function
which will be defined in the following. In a similar way as
in the proof of Lemma Appendix A.2, inequality (A.4) is
bounded from above by:

˙̃Vz(z) ≤ −
1

2
q(αz,1(|z|Wz ))αz(|z|Wz )

+ q (θ(|x|) + cθ) [γz(|x|) + qz] , (A.21)

where we have defined:

θ := αz,2 ◦ 4α−1
z ◦ 4γz

cθ := αz,2
(
4α−1

z (4qz)
)

+ αz,2(2cz).

By setting β := γz ◦ θ−1 and β̃ := γ̃z ◦ θ−1, Lemma Ap-
pendix A.4 gives us the positive definite and non-decreasing
function q such that:

q(s+ cθ)
(
γz(θ

−1(s)) + qz
)
≤ γ̃z(θ−1(s)) + q̃z for all s > 0.

(A.22)
By replacing s with θ(|x|), we obtain:

q(θ(|x|) + cθ) (γz(|x|) + qz) ≤ γ̃z(|x|) + q̃z for all s > 0.
(A.23)

Therefore, inequality (A.21) reads as:

˙̃Vz(z) ≤ −α̃z(|z|Wz ) + γ̃z(|x|) + q̃z,

with α̃z := 1
2q (αz,1(|z|Wz

)αz(|z|Wz
)).

Lemma Appendix A.4. Assume that the functions β, β̃ ∈
K∞ are such that β(r) = O(β̃(r)) as r → +∞. Then, for
all qx, q̃x, cθ > 0, there exists a positive non-decreasing
function q : R>0 → R>0 so that

q (r + cθ) [β(r) + qz] ≤ β̃(r) + q̃z. (A.24)

Proof. Due to β(r) = O(β̃(r)), the function

β̃(r) + q̃z
β(r) + qz

is well-defined and continuous for r > 0 and it is bounded
below by a strictly positive number on any interval of the
form [r0,+∞) with r0 ≥ 0. Then, the function

q̃(s) := inf
r≥s

β̃(r) + q̃z
β(r) + qz

satisfies the property q̃(0) > 0. We define the following
function on the interval [cθ,+∞) as follows:

q(r) := q̃(r − cθ) if r ≥ cθ.

It then follows that q(r+cθ) = q̃(r) ∀ r ≥ 0 and, moreover,
property (A.24) holds for all r ≥ 0.
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