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1. INTRODUCTION

Stability of dynamical systems is one of the fundamental
problems studied in control systems theory Bhatia and
Szegö (1970); Chetaev (1961); Gelig et al. (1978); Hahn
(1967); Khalil (1992); Lakshmikantham and Liu (1993);
Lyapunov (1992) and related domains, such as mechan-
ics, electric circuits, power systems, systems biology, etc.
In a general (nonlinear) setting, the main approach em-
ployed for stability analysis is based on Lyapunov theory
Lyapunov (1992). A key advantage of a Lyapunov-based
stability analysis is that boundedness and convergence
properties of the solutions can be assessed without explicit
computation of these solutions. Instead, it suffices to verify
some inequalities for the Lyapunov function and its time
derivative, which is derived with respect to the system
equations. More precisely, the existence of a continuously
differentiable (or at least Lipschitz continuous) Lyapunov
function, which is positive definite with respect to an
equilibrium (or an invariant set) and the time derivative
of which is negative definite along the solutions of the
system under investigation, is equivalent to stability of
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the equilibrium (or the set) of that dynamical system.
Similarly, instability of an equilibrium can be studied using
the Chetaev function approach Chetaev (1961); Efimov
et al. (2014). A Chetaev function may be sign indefinite
with a negative definite derivative. There are several exten-
sions of Lyapunov theory, including input-to-state stability
(ISS) and related notions Sontag (1995); Dashkovskiy et al.
(2011) and uniform stability Lin et al. (1996), all of which
allow to account for robustness in the presence of external
inputs.

Classical stability theory is mainly concerned with the
analysis of a single equilibrium. However, in numerous
applications, such as biological or power systems, there
exist several equilibria or invariant sets. Hence, the rigor-
ous analysis of such systems with several disjoint invariant
sets represents an important special case of stability the-
ory, which requires suitable methods Angeli et al. (2004);
Nitecki and Shub (1975); Gelig et al. (1978); Rantzer
(2001); Angeli and Sontag (2004); Efimov and Fradkov
(2009); Efimov (2012). For this case the stability notions
have to be significantly modified and relaxed as, in particu-
lar, it has been done in Efimov (2012) and further in Angeli
and Efimov (2013, 2015) for the ISS case. See also Angeli
(2004); Angeli and Praly (2011); Chaves et al. (2008) for
other results on robust stability analysis of multistable
systems. The main result of Angeli and Efimov (2015)
provides necessary and sufficient conditions under which
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a system is stable with respect to multiple invariant solu-
tions, which belong to a decomposable set (see Definition
3 below). Then, stability of the system with respect to
this decomposable set is equivalent to 1) the existence of
a nonnegative (taking zero value on some of that sets)
Lyapunov function, which is continuously differentiable on
the manifold where the system dynamics evolves and 2)
the time derivative of this Lyapunov function is negative
definite along the solutions of the system and only vanishes
at elements of the decomposable invariant set.

The present paper extends the results of Angeli and
Efimov (2013, 2015) by relaxing the requirements on
differentiability and positive definiteness of the Lyapunov
function. For this purpose, we consider a special class
of systems with periodic right-hand sides with respect
to a part of the state vector. This kind of dynamics
is ubiquitous in the area of power systems, which has
attracted the attention of researchers in the last few
years Ortega et al. (2005); Schiffer et al. (2014, 2015a);
Efimov et al. (2015); Schiffer et al. (2015b); Efimov et al.
(2016). To establish the result, we use the framework
of cell structure proposed in Leonov (1974) (and later
in Noldus (1977)) and developed in Gelig et al. (1978);
Yakubovich et al. (2004) for autonomous systems. As in
Angeli and Efimov (2013, 2015), under the aforementioned
relaxed assumptions, this permits to derive necessary
and sufficient conditions for ISS. The derived framework
is tested by applying it to a nonlinear pendulum with
constant permanent input.

The outline of this paper is as follows. Preliminaries and
the theories from Angeli and Efimov (2015) and Gelig et al.
(1978); Yakubovich et al. (2004) are given in Section 2.
The problem statement is given in Section 3 with the main
results in Section 4. The efficiency of the presented robust
stability conditions is illustrated by means of the example
of a nonlinear pendulum in Section 5.

2. PRELIMINARIES

For an n-dimensional C2 connected and orientable Rie-
mannian manifold M without a boundary, let the map
f(x, d) : M × Rm → TxM be of class C1, and consider a
nonlinear system of the following form:

ẋ(t) = f(x(t), d(t)), (1)

where the state x(t) ∈ M and d(t) ∈ Rm (the input d(·) is a
locally essentially bounded and measurable signal) for t ≥
0. We denote by X(t, x0; d) the uniquely defined solution
of (1) at time t fulfilling X(0, x0; d) = x0. Together with
(1) we will analyze its unperturbed version:

ẋ(t) = f(x(t), 0). (2)

A set S ⊂ M is invariant for the unperturbed system (2)
if X(t, x; 0) ∈ S for all t ∈ R and for all x ∈ S. Define
the distance from a point x ∈ M to the set S ⊂ M
as |x|S = mina∈S δ(x, a), where the symbol δ(x1, x2)
denotes the Riemannian distance between x1 and x2 in
M , |x| = |x|{0} for x ∈ M (0 is a point selected on M) or
a usual Euclidean norm of a vector x ∈ Rn. For a signal
d : R → Rm the essential supremum norm is defined as
‖d‖∞ = ess supt≥0 |d(t)|.
A continuous function α : R+ → R+ belongs to the class
K if α(0) = 0 and the function is strictly increasing.

The function α : R+ → R+ belongs to the class K∞ if
α ∈ K and it is increasing to infinity. A continuous function
β : R+×R+ → R+ belongs to the class KL if β(·, t) ∈ K∞
for each fixed t ∈ R+ and limt→+∞ β(s, t) = 0 for each
fixed s ∈ R+.

2.1 Decomposable sets

Let Λ ⊂ M be a compact invariant set for (2).

Definition 1. Nitecki and Shub (1975) A decomposition of
Λ is a finite and disjoint family of compact invariant sets
Λ1, . . . ,Λk such that

Λ =
k⋃

i=1

Λi.

For an invariant set Λ, its attracting and repulsing subsets
are defined as follows:

A(Λ) = {x ∈ M : |X(t, x; 0)|Λ → 0 as t → +∞},
R(Λ) = {x ∈ M : |X(t, x; 0)|Λ → 0 as t → −∞}.

Define a relation on W ⊂ M and D ⊂ M by W ≺ D if
A(W) ∩R(D) �= �.

Definition 2. Nitecki and Shub (1975) Let Λ1, . . . ,Λk be
a decomposition of Λ, then

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct
indices i1, . . . , ir such that Λi1 ≺ . . . ≺ Λir ≺ Λi1 .

2. A 1-cycle is an index i such that [R(Λi) ∩ A(Λi)] −
Λi �= �.

3. A filtration ordering is a numbering of the Λi so that
Λi ≺ Λj ⇒ i ≤ j.

As we can conclude from Definition 2, existence of an
r-cycle with r ≥ 2 is equivalent to existence of a hete-
roclinic cycle for (2) Guckenheimer and Holmes (1988).
Furthermore, existence of a 1-cycle implies existence of a
homoclinic cycle for (2) Guckenheimer and Holmes (1988).

Definition 3. The set W is called decomposable if it ad-

mits a finite decomposition without cycles, W =
⋃k

i=1 Wi,
for some non-empty disjoint compact sets Wi, which form
a filtration ordering of W (as in definitions 1 and 2).

2.2 Robustness notions

The following robustness notions for systems represented
by (1) have been introduced in Angeli and Efimov (2013,
2015) (see also Dashkovskiy et al. (2011) for a survey on
the ISS framework).

Definition 4. We say that (1) has the practical asymptotic
gain (pAG) property with respect to W if there exist
η ∈ K∞ and a non-negative real q such that for all x ∈ M
and all measurable essentially bounded inputs d(·) the
solutions are defined for all t ≥ 0 and the following holds:

lim sup
t→+∞

|X(t, x; d)|W ≤ η(‖d‖∞) + q.

If q = 0, then we say that the asymptotic gain (AG)
property holds.

Definition 5. We say that the system (1) has the limit
property (LIM) with respect to W if there exists µ ∈ K∞
such that for all x ∈ M and all measurable essentially
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Λ is a finite and disjoint family of compact invariant sets
Λ1, . . . ,Λk such that

Λ =
k⋃

i=1

Λi.

For an invariant set Λ, its attracting and repulsing subsets
are defined as follows:

A(Λ) = {x ∈ M : |X(t, x; 0)|Λ → 0 as t → +∞},
R(Λ) = {x ∈ M : |X(t, x; 0)|Λ → 0 as t → −∞}.

Define a relation on W ⊂ M and D ⊂ M by W ≺ D if
A(W) ∩R(D) �= �.

Definition 2. Nitecki and Shub (1975) Let Λ1, . . . ,Λk be
a decomposition of Λ, then

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct
indices i1, . . . , ir such that Λi1 ≺ . . . ≺ Λir ≺ Λi1 .

2. A 1-cycle is an index i such that [R(Λi) ∩ A(Λi)] −
Λi �= �.

3. A filtration ordering is a numbering of the Λi so that
Λi ≺ Λj ⇒ i ≤ j.

As we can conclude from Definition 2, existence of an
r-cycle with r ≥ 2 is equivalent to existence of a hete-
roclinic cycle for (2) Guckenheimer and Holmes (1988).
Furthermore, existence of a 1-cycle implies existence of a
homoclinic cycle for (2) Guckenheimer and Holmes (1988).

Definition 3. The set W is called decomposable if it ad-

mits a finite decomposition without cycles, W =
⋃k

i=1 Wi,
for some non-empty disjoint compact sets Wi, which form
a filtration ordering of W (as in definitions 1 and 2).

2.2 Robustness notions

The following robustness notions for systems represented
by (1) have been introduced in Angeli and Efimov (2013,
2015) (see also Dashkovskiy et al. (2011) for a survey on
the ISS framework).

Definition 4. We say that (1) has the practical asymptotic
gain (pAG) property with respect to W if there exist
η ∈ K∞ and a non-negative real q such that for all x ∈ M
and all measurable essentially bounded inputs d(·) the
solutions are defined for all t ≥ 0 and the following holds:

lim sup
t→+∞

|X(t, x; d)|W ≤ η(‖d‖∞) + q.

If q = 0, then we say that the asymptotic gain (AG)
property holds.

Definition 5. We say that the system (1) has the limit
property (LIM) with respect to W if there exists µ ∈ K∞
such that for all x ∈ M and all measurable essentially
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bounded inputs d(·) the solutions are defined for all t ≥ 0
and the following holds:

inf
t≥0

|X(t, x; d)|W ≤ µ(‖d‖∞).

Definition 6. We say that the system (1) has the practical
global stability (pGS) property with respect to W if there
exist β ∈ K∞ and q ≥ 0 such that for all x ∈ M and
measurable essentially bounded inputs d(·) the following
holds for all t ≥ 0:

|X(t, x; d)|W ≤ q + β(max{|x|W , ‖d‖∞}).

It has been shown in Angeli and Efimov (2013, 2015)
that to characterize pAG property in terms of Lyapunov
functions the following notion is appropriate.

Definition 7. We say that a C1 function V : M → R+ is a
practical ISS Lyapunov function for (1) if there exists K∞
functions α1, α2, α3 and γ, and scalars q ≥ 0 and c ≥ 0
such that

α1(|x|W) ≤ V (x) ≤ α2(|x|W + c),

the function V is constant on each Wi and the following
dissipation holds:

DV (x)f(x, d) ≤ −α3(|x|W) + γ(|d|) + q.

If the latter inequality holds for q = 0, then V is said to
be an ISS Lyapunov function.

Note that existence of α2 and c follows (without any ad-
ditional assumptions) by standard continuity arguments.

The main result of Angeli and Efimov (2013, 2015) relating
these robust stability properties is stated below, it extends
the results of Sontag and Wang (1995, 1996) obtained for
connected sets.

Theorem 8. Consider a nonlinear system as in (1) and let
a compact invariant set containing all α- and ω-limit sets
of (2) W be decomposable (in the sense of Definition 3).
Then the following facts are equivalent.

1. The system admits an ISS Lyapunov function;

2. The system enjoys the AG property;

3. The system admits a practical ISS Lyapunov function;

4. The system enjoys the pAG property;

5. The system enjoys the LIM property and the pGS.

Definition 9. Angeli and Efimov (2015) Suppose that a
nonlinear system as in (1) satisfies the assumptions and
the list of equivalent properties of Theorem 8. Then this
system is called ISS with respect to the set W.

2.3 Boundedness of solutions of periodic systems

As outlined in Section 1, the present paper is dedicated
to the stability analysis of periodic systems Gelig et al.
(1978); Yakubovich et al. (2004). More precisely, for the
system (1) there exists ξ ∈ Rn, ξ �= 0, such that

f(x, 0) = f(x+ ξ, 0)

for all x ∈ Rn. Roughly speaking, in such a case there
exists a coordinate transformation such that M = Rk×Sq,
where n = k + q and S is the unit sphere.

Next, we recall a sufficient criterion derived in Leonov
(1974); Gelig et al. (1978); Yakubovich et al. (2004), which

allows to establish boundedness of solutions of periodic
systems. To this end consider a special case of (2):

f(x, 0) = Px+ bϕ(cTx)

with M = Rn, where P ∈ Rn×n is a singular matrix,
c, b ∈ Rn, ϕ : R ⇒ R is a ∆-periodical set-valued function,
which is upper semicontinuous, with a nonempty, convex
and closed set of values for any value of its argument. We
note that a time-varying version of ϕ has been considered
in Gelig et al. (1978); Yakubovich et al. (2004), but we
restrict ourselves to autonomous version of ϕ. Then under
these restrictions and for any initial condition x0 ∈ Rn the
system (2) has a solution X(t, x0; 0). Assume also that for
all σ ∈ R \ {0} and all φ ∈ ϕ(σ)

µ1 ≤ φ

σ
≤ µ2; µ

−1
1 µ−1

2 ϕ(0) = 0

for some µ1 ∈ R ∪ {−∞} and µ2 ∈ R ∪ {+∞}. The
periodicity of ϕ implies that either µ1 < 0, µ2 > 0
or µ1 = µ2 = 0, and the latter case is excluded from
consideration due to its triviality.

Theorem 10. Leonov (1974); Gelig et al. (1978); Yakubovich
et al. (2004) Assume that there exists λ > 0 such that:

1) the matrix P + λIn, where In ∈ Rn×n is the identity
matrix, has n− 1 eigenvalues with negative real parts;

2) for all ω ∈ R
µ−1
1 µ−1

2 + (µ−1
1 + µ−1

2 )Reχ(iω − λ) + |χ(iω − λ)|2 ≤ 0,

where χ(s) = cT (P − sIn)
−1b.

Then, for any initial condition x0 ∈ Rn the solution
X(t, x0; 0) of (2) is bounded for t ∈ [0,+∞).

To prove this theorem (see Theorem 4.3.1 in Gelig et al.
(1978), or Theorem 4.7 in Yakubovich et al. (2004)) note
that under introduced conditions there is H = HT ∈
Rn×n (it has one negative and n− 1 positive eigenvalues)
such that for V0(x) = xTHx we have dV0(x(t))/dt ≤
−2λV0(x(t)) for all t ∈ [0,+∞), which implies that the
set Ω0 = {x ∈ Rn : V0(x) ≤ 0} is invariant for (2), i.e.
X(t, x0; 0) ∈ Ω0 for all t ∈ [0,+∞) provided that x0 ∈ Ω0.
Next, introducing the functions Vj(x) = V0(x−jδ) and sets
Ωj = {x ∈ Rn : Vj(x) < 0}, where j is any integer and
the vector δ ∈ Rn satisfies the conditions δ �= 0, Pδ = 0
and cT δ = ∆, by periodicity of f in (2) we obtain that
dVj(x(t))/dt ≤ −2λVj(x(t)) for all t ∈ [0,+∞), then the
set Ωj is invariant for (2). Finally, it is shown that for
any x0 ∈ Rn there is an index j0 such that x0 ∈ Γj0 ,
where Γj = Ωj ∩ Ω−j ∩ {x ∈ Rn : |hTx| ≤ j|hT δ|}
with h ∈ Rn being the eigenvector of the matrix H
corresponding to the negative eigenvalue. As it has been
shown above X(t, x0; 0) ∈ Γj0 for all t ∈ [0,+∞) (since
it is true for Ωj0 ∩ Ω−j0). In addition the set Γj0 is
bounded, which was necessary to prove. In other words,
an important observation of Leonov (1974); Gelig et al.
(1978); Yakubovich et al. (2004) is that any intersection
of the sets Ωj for all integers j forms a kind of cell cover
of Rn, where each cell is bounded and invariant.

3. PROBLEM STATEMENT

The main contribution of the present work is the deriva-
tion of necessary and sufficient conditions under which a
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periodic system possesses the ISS properties given in Def-
inition 9. This is achieved by combining the cell structure
approach presented in the proof of Theorem 10 (and firstly
introduced in Leonov (1974)) with the ISS approach for
multistable systems of Angeli and Efimov (2013, 2015).
The fundamental difference between the theories given in
subsections 2.2 and 2.3 is that the former makes analysis
on a manifold M , while the latter one considers a multi-
stable system in Rn. To this end, let M = Rk × Sq with
n = k + q and denote x = (z, θ) ∈ M with z ∈ Rk and
θ ∈ Sq, then by embedding (2) in Rn and due to continuity

of f we obtain that for all x̃ = (z̃, θ̃) ∈ Rn

f(x̃, 0) = f(x̃+ ξ, 0), ξ = [0, . . . , 0︸ ︷︷ ︸
k

, 2π, . . . 2π︸ ︷︷ ︸
q

] ∈ Rn.

In this case for any x̃0 ∈ Rn there is a unique and, at
least, locally in time defined solution of the system (1)

X̃(t, x̃0; d) ∈ Rn. Denote

P : Rn → M

as the projection from Rn to M (that is just a modulus of
the last q coordinates over 2π). Obviously, for any x̃0 ∈ Rn

the solution X̃(t, x̃0; d) ∈ Rn of (1) can be projected to
the solution X(t, x0; d) ∈ M with x0 = P(x̃0) ∈ M , then
both solutions are defined on the same interval of time and
X(t, x0; d) = P(X̃(t, x̃0; d)) for all such instants of time.
Similarly, the set W ⊂ M , containing all α- and ω-limit
sets of (2), can be extended to whole Rn using periodicity

of the last q variables, which we will denote as W̃ (but the

set W̃ becomes unbounded in Rn, in a common case), then
|x̃|W̃ = infy∈W̃ |x̃− y| is a distance to that set for x̃ ∈ Rn.

The ISS Lyapunov function introduced in Definition 7
should be positive definite with respect to distance to the
set W, while the functions proposed in Leonov (1974) for
analysis of boundedness of trajectories of periodic system
(2) are sign indefinite. Usually sign indefinite functions
with a sign definite derivative are used for establishment of
instability in (2), e.g. Chetaev functions Chetaev (1961);
Efimov et al. (2014). However, for the periodic systems
this drawback is overcome in Leonov (1974) using the
system period. Clearly, such a relaxation of definiteness
of Lyapunov function can simplify a lot applications of
the method, then inspired by Leonov (1974) we will define
the following characterization of ISS property with respect
to the set W for a periodic system:

Definition 11. We say that a C1 function V : Rn → R is a
practical ISS Leonov function for (1) with M = Rk × Sq
if there exist functions α1, α2, σ, γ ∈ K∞, a continuous
function λ : R → R, λ ∈ K∞ for nonnegative arguments,
and scalars r ≥ 0, g ≥ 0 such that for all x̃ = (z̃, θ̃) ∈ Rn

and d ∈ Rm

α1(|x̃|W̃)− σ(|θ̃|) ≤ V (x̃) ≤ α2(|x̃|W̃ + g), (3)

and the following dissipation holds:

DV (x̃)f(x̃, d) ≤ −λ(V (x̃)) + γ(|d|) + r. (4)

If the latter inequality holds for r = 0, then V is said to
be an ISS Leonov function.

Let us stress that an ISS Leonov function V can be
continuously differentiable on Rn, but discontinuous onM ,
while an ISS-Lyapunov function should be continuously
differentiable on M (i.e. in this case V should be 2π-

periodic in θ), which is another relaxation in Definition
11 compared to Definition 7. Therefore, any ISS-Lyapunov
function is a practical ISS Leonov function for a periodic
system (1) since for any x̃ ∈ Rn and any σ ∈ K∞:

α1(|x̃|W)− σ(|θ̃|) ≤ α1(|x̃|W),

−α3(|x̃|W) ≤ −α3(0.5[|x̃|W + c]) + α3(c)

≤ −α3(0.5α
−1
2 (V (x̃))) + α3(c).

Remark 12. If 0 ∈ W, then without loosing generality
the property (3) can be replaced in Definition 11 by the
following one:

α1(|z̃|)− σ(|θ̃|) ≤ V (x̃) ≤ α2(|x̃|W̃ + g). (5)

In the remainder of this work, it is shown that the existence
of ISS Leonov function is an equivalent characterization of
ISS property from Definition 9 for a periodic system (1).

4. MAIN RESULT

If V : M → R is a continuously differentiable function
admitting relations (3) for all x ∈ M and some α1, α2, σ ∈
K∞, then by adding a constant w > 0 the new function
V (x) + w can be made positive definite. Therefore, the
definition of V as a function from Rn to R is crucial in
Definition 11.

All proofs of the following results are omitted due to space
limitations.

Lemma 13. Let M = Rk × Sq with n = k + q, and
W ⊂ M be a compact invariant set. Then existence of
a practical ISS Leonov function for (1) implies pGS and
pAG properties with respect to W.

Theorem 14. Let M = Rk × Sq with n = k + q, and a
compact invariant set containing all α- and ω-limit sets of
(2) W ⊂ M be decomposable (in the sense of Definition
3). Then, for (1) the following properties are equivalent:

(a) ISS with respect to the set W;

(b) there is a practical ISS Leonov function.

Note that from this result, an ISS Leonov function is only
sufficient for the ISS property of (1) in general:

Corollary 15. Let M = Rk × Sq with n = k + q, and a
compact invariant set containing all α- and ω-limit sets
of (2) W be decomposable (in the sense of Definition 3).
Then for (1) existence of an ISS Leonov function implies
the ISS property with respect to the set W.

The practical interest of the proposed theory is illustrated
via a benchmark example taken from Forni and Sepulchre
(2014) in the next section.

5. APPLICATION TO A NONLINEAR PENDULUM

Consider a nonlinear pendulum with a biased external
input:

θ̇(t) = z(t), (6)

ż(t) =−κz(t)− ω2 sin(θ(t)) + c+ d(t),

where θ(t) ∈ S and z(t) ∈ R are angular position and
angular velocity of the pendulum, x = (z, θ) ∈ M = R×S,
κ > 0 and ω > 0 are two parameters, c ∈ R is the
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periodic system possesses the ISS properties given in Def-
inition 9. This is achieved by combining the cell structure
approach presented in the proof of Theorem 10 (and firstly
introduced in Leonov (1974)) with the ISS approach for
multistable systems of Angeli and Efimov (2013, 2015).
The fundamental difference between the theories given in
subsections 2.2 and 2.3 is that the former makes analysis
on a manifold M , while the latter one considers a multi-
stable system in Rn. To this end, let M = Rk × Sq with
n = k + q and denote x = (z, θ) ∈ M with z ∈ Rk and
θ ∈ Sq, then by embedding (2) in Rn and due to continuity

of f we obtain that for all x̃ = (z̃, θ̃) ∈ Rn

f(x̃, 0) = f(x̃+ ξ, 0), ξ = [0, . . . , 0︸ ︷︷ ︸
k

, 2π, . . . 2π︸ ︷︷ ︸
q

] ∈ Rn.

In this case for any x̃0 ∈ Rn there is a unique and, at
least, locally in time defined solution of the system (1)

X̃(t, x̃0; d) ∈ Rn. Denote

P : Rn → M

as the projection from Rn to M (that is just a modulus of
the last q coordinates over 2π). Obviously, for any x̃0 ∈ Rn

the solution X̃(t, x̃0; d) ∈ Rn of (1) can be projected to
the solution X(t, x0; d) ∈ M with x0 = P(x̃0) ∈ M , then
both solutions are defined on the same interval of time and
X(t, x0; d) = P(X̃(t, x̃0; d)) for all such instants of time.
Similarly, the set W ⊂ M , containing all α- and ω-limit
sets of (2), can be extended to whole Rn using periodicity

of the last q variables, which we will denote as W̃ (but the

set W̃ becomes unbounded in Rn, in a common case), then
|x̃|W̃ = infy∈W̃ |x̃− y| is a distance to that set for x̃ ∈ Rn.

The ISS Lyapunov function introduced in Definition 7
should be positive definite with respect to distance to the
set W, while the functions proposed in Leonov (1974) for
analysis of boundedness of trajectories of periodic system
(2) are sign indefinite. Usually sign indefinite functions
with a sign definite derivative are used for establishment of
instability in (2), e.g. Chetaev functions Chetaev (1961);
Efimov et al. (2014). However, for the periodic systems
this drawback is overcome in Leonov (1974) using the
system period. Clearly, such a relaxation of definiteness
of Lyapunov function can simplify a lot applications of
the method, then inspired by Leonov (1974) we will define
the following characterization of ISS property with respect
to the set W for a periodic system:

Definition 11. We say that a C1 function V : Rn → R is a
practical ISS Leonov function for (1) with M = Rk × Sq
if there exist functions α1, α2, σ, γ ∈ K∞, a continuous
function λ : R → R, λ ∈ K∞ for nonnegative arguments,
and scalars r ≥ 0, g ≥ 0 such that for all x̃ = (z̃, θ̃) ∈ Rn

and d ∈ Rm

α1(|x̃|W̃)− σ(|θ̃|) ≤ V (x̃) ≤ α2(|x̃|W̃ + g), (3)

and the following dissipation holds:

DV (x̃)f(x̃, d) ≤ −λ(V (x̃)) + γ(|d|) + r. (4)

If the latter inequality holds for r = 0, then V is said to
be an ISS Leonov function.

Let us stress that an ISS Leonov function V can be
continuously differentiable on Rn, but discontinuous onM ,
while an ISS-Lyapunov function should be continuously
differentiable on M (i.e. in this case V should be 2π-

periodic in θ), which is another relaxation in Definition
11 compared to Definition 7. Therefore, any ISS-Lyapunov
function is a practical ISS Leonov function for a periodic
system (1) since for any x̃ ∈ Rn and any σ ∈ K∞:

α1(|x̃|W)− σ(|θ̃|) ≤ α1(|x̃|W),

−α3(|x̃|W) ≤ −α3(0.5[|x̃|W + c]) + α3(c)

≤ −α3(0.5α
−1
2 (V (x̃))) + α3(c).

Remark 12. If 0 ∈ W, then without loosing generality
the property (3) can be replaced in Definition 11 by the
following one:

α1(|z̃|)− σ(|θ̃|) ≤ V (x̃) ≤ α2(|x̃|W̃ + g). (5)

In the remainder of this work, it is shown that the existence
of ISS Leonov function is an equivalent characterization of
ISS property from Definition 9 for a periodic system (1).

4. MAIN RESULT

If V : M → R is a continuously differentiable function
admitting relations (3) for all x ∈ M and some α1, α2, σ ∈
K∞, then by adding a constant w > 0 the new function
V (x) + w can be made positive definite. Therefore, the
definition of V as a function from Rn to R is crucial in
Definition 11.

All proofs of the following results are omitted due to space
limitations.

Lemma 13. Let M = Rk × Sq with n = k + q, and
W ⊂ M be a compact invariant set. Then existence of
a practical ISS Leonov function for (1) implies pGS and
pAG properties with respect to W.

Theorem 14. Let M = Rk × Sq with n = k + q, and a
compact invariant set containing all α- and ω-limit sets of
(2) W ⊂ M be decomposable (in the sense of Definition
3). Then, for (1) the following properties are equivalent:

(a) ISS with respect to the set W;

(b) there is a practical ISS Leonov function.

Note that from this result, an ISS Leonov function is only
sufficient for the ISS property of (1) in general:

Corollary 15. Let M = Rk × Sq with n = k + q, and a
compact invariant set containing all α- and ω-limit sets
of (2) W be decomposable (in the sense of Definition 3).
Then for (1) existence of an ISS Leonov function implies
the ISS property with respect to the set W.

The practical interest of the proposed theory is illustrated
via a benchmark example taken from Forni and Sepulchre
(2014) in the next section.

5. APPLICATION TO A NONLINEAR PENDULUM

Consider a nonlinear pendulum with a biased external
input:

θ̇(t) = z(t), (6)

ż(t) =−κz(t)− ω2 sin(θ(t)) + c+ d(t),

where θ(t) ∈ S and z(t) ∈ R are angular position and
angular velocity of the pendulum, x = (z, θ) ∈ M = R×S,
κ > 0 and ω > 0 are two parameters, c ∈ R is the
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input bias, d(t) ∈ R is an external disturbance (a locally
essentially bounded and measurable signal).

The unperturbed system (6), for c + d(t) ≡ 0, has two
equilibria [0, 0] and [π, 0] (the former is attractive and
the latter one is a saddle-point). Thus, in this case W =
{[0, 0] ∪ [π, 0]} is a compact set containing all α- and ω-
limit sets of (6). In addition, it is straightforward to check
that W is decomposable in the sense of Definition 3. An
ISS property of (6) has been shown in Angeli and Efimov
(2013, 2015) and an ISS Lyapunov function for (6) has
been proposed in Efimov et al. (2015). Using that result,
for the case |c| < ω2, the global convergence to one of
the two equilibria [asin(cω−2), 0] or [π− asin(cω−2), 0] has
been proven in Efimov et al. (2016) under some restrictions
on values of parameters c, κ, ω and using an additional
discontinuous Lyapunov function for a local analysis.

In this work we will show the ISS property of (6) under
less restrictive conditions than in Efimov et al. (2016) and
using the ISS Leonov function framework proposed above.
For this purpose, assume that |c| < ω2 and consider

V (x) = 0.5z2 + ω2w(θ − θ0),

w(s) = cos(θ0)− cos(s+ θ0)− sin(θ0)s− u cos(θ0)s
2,

where θ0 = asin(cω−2) and u ∈ R is a parameter to be
defined later. Note that w is not periodic in θ, thus V
cannot be an ISS-Lyapunov function, but it can be consid-
ered as an ISS Leonov function candidate. Straightforward
calculations yield:

w′(s) = sin(s+ θ0)− sin(θ0)− 2u cos(θ0)s,

w′′(s) = cos(s+ θ0)− 2u cos(θ0).

Since cos(θ0) =
√
1− c2ω−4 > 0, then w′′(0) < 0 for

u > 0.5 and there exist u∗ > 0.5 such that w′(s) = 0
only for s = 0 with u ≥ u∗ (the equation w′′(s) = 0
has no solution for a sufficiently high u and w′(s) is
strictly decreasing in such a case), which together with
the property w′′(0) < 0 implies that w(s) < 0 for all s �= 0
and w(0) = 0. Therefore, for u > u∗there exist ε1 > 0 and
ε2 > 0 such that

−ε1s
2 ≤ w(s) ≤ −ε2s

2,

then for all x̃ = (z̃, θ̃) ∈ R2:

0.5z̃2 − ε1ω
2(θ̃ − θ0)

2 ≤ V (x̃) ≤ 0.5z̃2 − ε2ω
2(θ̃ − θ0)

2

and the relations (3) are satisfied. Let us check (4):

V̇ = z̃d− κz̃2 − 2uω2 cos(θ0)(θ̃ − θ0)z̃

≤ d2

2κ
− κ

4
z̃2 +

4

κ
u2ω4 cos2(θ0)(θ̃ − θ0)

2

=
d2

2κ
− κ

2

(
z̃2

2
− ε2ω

2(θ̃ − θ0)
2

)

+

(
4

κ
u2ω4 cos2(θ0)−

κ

2
ε2ω

2

)
(θ̃ − θ0)

2.

Assume that ω2 cos2(θ0)
κ2 ≤ ε2

8u2 or equivalently

ω4 − c2

ω2κ2
≤ ε2

8u2
, (7)

then the last term in the estimate for V̇ becomes non-
positive, and finally we obtain:

Figure 1. Simulation results for the system (6) with d(t) =
0 and for several arbitrarily chosen initial conditions

Figure 2. Simulation results for the system (6) with d(t) =
1.1 sin(4t) and for several arbitrarily chosen initial
conditions

V̇ ≤ d2

2κ
− κ

2

(
z̃2

2
− ε2ω

2(θ̃ − θ0)
2

)
≤ d2

2κ
− κ

2
V

and V is an ISS Leonov function for (6). Taking d = 0 it
is easy to prove Efimov et al. (2016) that all solutions are
bounded in that case and converge to one of the equilib-
ria: [asin(cω−2), 0] or [π − asin(cω−2), 0]. Then under the
restriction on parameters (7) (ε2 and u are also some func-
tions of c, κ, ω),W =

{
[asin(cω−2), 0] ∪ [π − asin(cω−2), 0]

}
is a compact set containing all α- and ω-limit sets of (6) for
d = 0, and it is is decomposable in the sense of Definition 3.
Finally, by Theorem 14 the system (6) is ISS with respect
to W under the restriction (7).

Example 1. Select c = 0.75 and ω = 1, then u = 3
5 , ε1 = 1

and ε2 = 1
24 is an acceptable choice, and for any κ such

that the restriction (7) is satisfied, that is

κ ≥ 6

5

√
21 � 5.499,

the system (6) is ISS with respect to W = {[0.848, 0] ∪
[2.294, 0]}. Examples of the system trajectories with κ =
5.5 and d = 0 are given in Fig. 1, and for d(t) =
1.1 sin(4t) in Fig. 2 (the unstable equilibrium captures one
of the trajectories). Clearly, the simulations confirm the
conclusions of the proposed theory.

6. CONCLUSIONS

We have derived necessary and sufficient conditions of ISS
property for multistable periodic systems, i.e., systems

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

7492



7222 Denis Efimov  et al. / IFAC PapersOnLine 50-1 (2017) 7217–7222

whose dynamics is periodic with respect to a part of the
state variables. To prove this result and by building upon
pioneering ideas in Leonov (1974), we have introduced the
concept of an ISS Leonov function. Such a function can be
sign indefinite and not continuously differentiable on the
manifold where the system dynamics evolves. These repre-
sent significant relaxations compared to the usual require-
ments on a standard ISS Lyapunov function Angeli and
Efimov (2013, 2015). The proposed approach is illustrated
by providing a global analysis of a nonlinear pendulum
with constant input. We expect the derived methodology
to be applicable to many challenging engineering problems
and plan to investigate this in future works.
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