5,680 research outputs found

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF
    Primary liver cancer, consisting primarily of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a heterogeneous malignancy with a dismal prognosis, resulting in the third leading cause of cancer mortality worldwide [1, 2]. It is characterized by unique histological features, late-stage diagnosis, a highly variable mutational landscape, and high levels of heterogeneity in biology and etiology [3-5]. Treatment options are limited, with surgical intervention the main curative option, although not available for the majority of patients which are diagnosed in an advanced stage. Major contributing factors to the complexity and limited treatment options are the interactions between primary tumor cells, non-neoplastic stromal and immune cells, and the extracellular matrix (ECM). ECM dysregulation plays a prominent role in multiple facets of liver cancer, including initiation and progression [6, 7]. HCC often develops in already damaged environments containing large areas of inflammation and fibrosis, while CCA is commonly characterized by significant desmoplasia, extensive formation of connective tissue surrounding the tumor [8, 9]. Thus, to gain a better understanding of liver cancer biology, sophisticated in vitro tumor models need to incorporate comprehensively the various aspects that together dictate liver cancer progression. Therefore, the aim of this thesis is to create in vitro liver cancer models through organoid technology approaches, allowing for novel insights into liver cancer biology and, in turn, providing potential avenues for therapeutic testing. To model primary epithelial liver cancer cells, organoid technology is employed in part I. To study and characterize the role of ECM in liver cancer, decellularization of tumor tissue, adjacent liver tissue, and distant metastatic organs (i.e. lung and lymph node) is described, characterized, and combined with organoid technology to create improved tissue engineered models for liver cancer in part II of this thesis. Chapter 1 provides a brief introduction into the concepts of liver cancer, cellular heterogeneity, decellularization and organoid technology. It also explains the rationale behind the work presented in this thesis. In-depth analysis of organoid technology and contrasting it to different in vitro cell culture systems employed for liver cancer modeling is done in chapter 2. Reliable establishment of liver cancer organoids is crucial for advancing translational applications of organoids, such as personalized medicine. Therefore, as described in chapter 3, a multi-center analysis was performed on establishment of liver cancer organoids. This revealed a global establishment efficiency rate of 28.2% (19.3% for hepatocellular carcinoma organoids (HCCO) and 36% for cholangiocarcinoma organoids (CCAO)). Additionally, potential solutions and future perspectives for increasing establishment are provided. Liver cancer organoids consist of solely primary epithelial tumor cells. To engineer an in vitro tumor model with the possibility of immunotherapy testing, CCAO were combined with immune cells in chapter 4. Co-culture of CCAO with peripheral blood mononuclear cells and/or allogenic T cells revealed an effective anti-tumor immune response, with distinct interpatient heterogeneity. These cytotoxic effects were mediated by cell-cell contact and release of soluble factors, albeit indirect killing through soluble factors was only observed in one organoid line. Thus, this model provided a first step towards developing immunotherapy for CCA on an individual patient level. Personalized medicine success is dependent on an organoids ability to recapitulate patient tissue faithfully. Therefore, in chapter 5 a novel organoid system was created in which branching morphogenesis was induced in cholangiocyte and CCA organoids. Branching cholangiocyte organoids self-organized into tubular structures, with high similarity to primary cholangiocytes, based on single-cell sequencing and functionality. Similarly, branching CCAO obtain a different morphology in vitro more similar to primary tumors. Moreover, these branching CCAO have a higher correlation to the transcriptomic profile of patient-paired tumor tissue and an increased drug resistance to gemcitabine and cisplatin, the standard chemotherapy regimen for CCA patients in the clinic. As discussed, CCAO represent the epithelial compartment of CCA. Proliferation, invasion, and metastasis of epithelial tumor cells is highly influenced by the interaction with their cellular and extracellular environment. The remodeling of various properties of the extracellular matrix (ECM), including stiffness, composition, alignment, and integrity, influences tumor progression. In chapter 6 the alterations of the ECM in solid tumors and the translational impact of our increased understanding of these alterations is discussed. The success of ECM-related cancer therapy development requires an intimate understanding of the malignancy-induced changes to the ECM. This principle was applied to liver cancer in chapter 7, whereby through a integrative molecular and mechanical approach the dysregulation of liver cancer ECM was characterized. An optimized agitation-based decellularization protocol was established for primary liver cancer (HCC and CCA) and paired adjacent tissue (HCC-ADJ and CCA-ADJ). Novel malignancy-related ECM protein signatures were found, which were previously overlooked in liver cancer transcriptomic data. Additionally, the mechanical characteristics were probed, which revealed divergent macro- and micro-scale mechanical properties and a higher alignment of collagen in CCA. This study provided a better understanding of ECM alterations during liver cancer as well as a potential scaffold for culture of organoids. This was applied to CCA in chapter 8 by combining decellularized CCA tumor ECM and tumor-free liver ECM with CCAO to study cell-matrix interactions. Culture of CCAO in tumor ECM resulted in a transcriptome closely resembling in vivo patient tumor tissue, and was accompanied by an increase in chemo resistance. In tumor-free liver ECM, devoid of desmoplasia, CCAO initiated a desmoplastic reaction through increased collagen production. If desmoplasia was already present, distinct ECM proteins were produced by the organoids. These were tumor-related proteins associated with poor patient survival. To extend this method of studying cell-matrix interactions to a metastatic setting, lung and lymph node tissue was decellularized and recellularized with CCAO in chapter 9, as these are common locations of metastasis in CCA. Decellularization resulted in removal of cells while preserving ECM structure and protein composition, linked to tissue-specific functioning hallmarks. Recellularization revealed that lung and lymph node ECM induced different gene expression profiles in the organoids, related to cancer stem cell phenotype, cell-ECM integrin binding, and epithelial-to-mesenchymal transition. Furthermore, the metabolic activity of CCAO in lung and lymph node was significantly influenced by the metastatic location, the original characteristics of the patient tumor, and the donor of the target organ. The previously described in vitro tumor models utilized decellularized scaffolds with native structure. Decellularized ECM can also be used for creation of tissue-specific hydrogels through digestion and gelation procedures. These hydrogels were created from both porcine and human livers in chapter 10. The liver ECM-based hydrogels were used to initiate and culture healthy cholangiocyte organoids, which maintained cholangiocyte marker expression, thus providing an alternative for initiation of organoids in BME. Building upon this, in chapter 11 human liver ECM-based extracts were used in combination with a one-step microfluidic encapsulation method to produce size standardized CCAO. The established system can facilitate the reduction of size variability conventionally seen in organoid culture by providing uniform scaffolding. Encapsulated CCAO retained their stem cell phenotype and were amendable to drug screening, showing the feasibility of scalable production of CCAO for throughput drug screening approaches. Lastly, Chapter 12 provides a global discussion and future outlook on tumor tissue engineering strategies for liver cancer, using organoid technology and decellularization. Combining multiple aspects of liver cancer, both cellular and extracellular, with tissue engineering strategies provides advanced tumor models that can delineate fundamental mechanistic insights as well as provide a platform for drug screening approaches.<br/

    Single-cell time-series analysis of metabolic rhythms in yeast

    Get PDF
    The yeast metabolic cycle (YMC) is a biological rhythm in budding yeast (Saccharomyces cerevisiae). It entails oscillations in the concentrations and redox states of intracellular metabolites, oscillations in transcript levels, temporal partitioning of biosynthesis, and, in chemostats, oscillations in oxygen consumption. Most studies on the YMC have been based on chemostat experiments, and it is unclear whether YMCs arise from interactions between cells or are generated independently by each cell. This thesis aims at characterising the YMC in single cells and its response to nutrient and genetic perturbations. Specifically, I use microfluidics to trap and separate yeast cells, then record the time-dependent intensity of flavin autofluorescence, which is a component of the YMC. Single-cell microfluidics produces a large amount of time series data. Noisy and short time series produced from biological experiments restrict the computational tools that are useful for analysis. I developed a method to filter time series, a machine learning model to classify whether time series are oscillatory, and an autocorrelation method to examine the periodicity of time series data. My experimental results show that yeast cells show oscillations in the fluorescence of flavins. Specifically, I show that in high glucose conditions, cells generate flavin oscillations asynchronously within a population, and these flavin oscillations couple with the cell division cycle. I show that cells can individually reset the phase of their flavin oscillations in response to abrupt nutrient changes, independently of the cell division cycle. I also show that deletion strains generate flavin oscillations that exhibit different behaviour from dissolved oxygen oscillations from chemostat conditions. Finally, I use flux balance analysis to address whether proteomic constraints in cellular metabolism mean that temporal partitioning of biosynthesis is advantageous for the yeast cell, and whether such partitioning explains the timing of the metabolic cycle. My results show that under proteomic constraints, it is advantageous for the cell to sequentially synthesise biomass components because doing so shortens the timescale of biomass synthesis. However, the degree of advantage of sequential over parallel biosynthesis is lower when both carbon and nitrogen sources are limiting. This thesis thus confirms autonomous generation of flavin oscillations, and suggests a model in which the YMC responds to nutrient conditions and subsequently entrains the cell division cycle. It also emphasises the possibility that subpopulations in the culture explain chemostat-based observations of the YMC. Furthermore, this thesis paves the way for using computational methods to analyse large datasets of oscillatory time series, which is useful for various fields of study beyond the YMC

    The development of bioinformatics workflows to explore single-cell multi-omics data from T and B lymphocytes

    Full text link
    The adaptive immune response is responsible for recognising, containing and eliminating viral infection, and protecting from further reinfection. This antigen-specific response is driven by T and B cells, which recognise antigenic epitopes via highly specific heterodimeric surface receptors, termed T-cell receptors (TCRs) and B cell receptors (BCRs). The theoretical diversity of the receptor repertoire that can be generated via homologous recombination of V, D and J genes is large enough (>1015 unique sequences) that virtually any antigen can be recognised. However, only a subset of these are generated within the human body, and how they succeed in specifically recognising any pathogen(s) and distinguishing these from self-proteins remains largely unresolved. The recent advances in applying single-cell genomics technologies to simultaneously measure the clonality, surface phenotype and transcriptomic signature of pathogen- specific immune cells have significantly improved understanding of these questions. Single-cell multi-omics permits the accurate identification of clonally expanded populations, their differentiation trajectories, the level of immune receptor repertoire diversity involved in the response and the phenotypic and molecular heterogeneity. This thesis aims to develop a bioinformatic workflow utilising single-cell multi-omics data to explore, quantify and predict the clonal and transcriptomic signatures of the human T-cell response during and following viral infection. In the first aim, a web application, VDJView, was developed to facilitate the simultaneous analysis and visualisation of clonal, transcriptomic and clinical metadata of T and B cell multi-omics data. The application permits non-bioinformaticians to perform quality control and common analyses of single-cell genomics data integrated with other metadata, thus permitting the identification of biologically and clinically relevant parameters. The second aim pertains to analysing the functional, molecular and immune receptor profiles of CD8+ T cells in the acute phase of primary hepatitis C virus (HCV) infection. This analysis identified a novel population of progenitors of exhausted T cells, and lineage tracing revealed distinct trajectories with multiple fates and evolutionary plasticity. Furthermore, it was observed that high-magnitude IFN-Îł CD8+ T-cell response is associated with the increased probability of viral escape and chronic infection. Finally, in the third aim, a novel analysis is presented based on the topological characteristics of a network generated on pathogen-specific, paired-chain, CD8+ TCRs. This analysis revealed how some cross-reactivity between TCRs can be explained via the sequence similarity between TCRs and that this property is not uniformly distributed across all pathogen-specific TCR repertoires. Strong correlations between the topological properties of the network and the biological properties of the TCR sequences were identified and highlighted. The suite of workflows and methods presented in this thesis are designed to be adaptable to various T and B cell multi-omic datasets. The associated analyses contribute to understanding the role of T and B cells in the adaptive immune response to viral-infection and cancer

    Biomedical and Pharmacological Applications of Marine Collagen

    Get PDF
    Biomimetic polymers and materials have been widely used in a variety of biomedical and pharmacological applications. Particularly, collagen-based biomaterials have been extensively applied in various biomedical fields, such as scaffolds in tissue engineering. However, there are many challenges associated with the use of mammalian collagen, including the issues of religious constrains, allergic or autoimmune reactions, and the spread of animal diseases. Over the past few decades, marine collagen (MC) has emerged as a promising biomaterial for biomedical and pharmacological applications. Marine organisms are a rich source of structurally novel and biologically active compounds, and to date, many biological components have been isolated from various marine resources. MC offers advantages over mammalian collagen due to its water solubility, low immunogenicity, safety, biocompatibility, antimicrobial activity, functionality, and low production costs. Due to its characteristics and physicobiochemical properties, it has tremendous potential for use as a scaffold biomaterial in tissue engineering and regenerative medicine, in drug delivery systems, and as a therapeutic. In this Special Issue, we encourage submissions related to the recent developments, advancements, trends, challenges, and future perspectives in this new research field. We expect to receive contributions from different areas of multidisciplinary research, including—but not restricted to—extraction, purification, characterization, fabrication, and experimentation of MC, with a particular focus on their biotechnological, biomedical and pharmacological uses

    Investigation of the metabolism of rare nucleotides in plants

    Get PDF
    Nucleotides are metabolites involved in primary metabolism, and specialized metabolism and have a regulatory role in various biochemical reactions in all forms of life. While in other organisms, the nucleotide metabolome was characterized extensively, comparatively little is known about the cellular concentrations of nucleotides in plants. The aim of this dissertation was to investigate the nucleotide metabolome and enzymes influencing the composition and quantities of nucleotides in plants. For this purpose, a method for the analysis of nucleotides and nucleosides in plants and algae was developed (Chapter 2.1), which comprises efficient quenching of enzymatic activity, liquid-liquid extraction and solid phase extraction employing a weak-anionexchange resin. This method allowed the analysis of the nucleotide metabolome of plants in great depth including the quantification of low abundant deoxyribonucleotides and deoxyribonucleosides. The details of the method were summarized in an article, serving as a laboratory protocol (Chapter 2.2). Furthermore, we contributed a review article (Chapter 2.3) that summarizes the literature about nucleotide analysis and recent technological advances with a focus on plants and factors influencing and hindering the analysis of nucleotides in plants, i.e., a complex metabolic matrix, highly stable phosphatases and physicochemical properties of nucleotides. To analyze the sub-cellular concentrations of metabolites, a protocol for the rapid isolation of highly pure mitochondria utilizing affinity chromatography was developed (Chapter 2.4). The method for the purification of nucleotides furthermore contributed to the comprehensive analysis of the nucleotide metabolome in germinating seeds and in establishing seedlings of A. thaliana, with a focus on genes involved in the synthesis of thymidilates (Chapter 2.5) and the characterization of a novel enzyme of purine nucleotide degradation, the XANTHOSINE MONOPHOSPHATE PHOSPHATASE (Chapter 2.6). Protein homology analysis comparing A. thaliana, S. cerevisiae, and H. sapiens led to the identification and characterization of an enzyme involved in the metabolite damage repair system of plants, the INOSINE TRIPHOSPHATE PYROPHOSPHATASE (Chapter 2.7). It was shown that this enzyme dephosphorylates deaminated purine nucleotide triphosphates and thus prevents their incorporation into nucleic acids. Lossof-function mutants senesce early and have a constitutively increased content of salicylic acid. Also, the source of deaminated purine nucleotides in plants was investigated and it was shown that abiotic factors contribute to nucleotide damage.Nukleotide sind Metaboliten, die am PrimĂ€rstoffwechsel und an spezialisierten StoffwechselvorgĂ€ngen beteiligt sind und eine regulierende Rolle bei verschiedenen biochemischen Reaktionen in allen Lebensformen spielen. WĂ€hrend bei anderen Organismen das Nukleotidmetabolom umfassend charakterisiert wurde, ist in Pflanzen vergleichsweise wenig ĂŒber die zellulĂ€ren Konzentrationen von Nukleotiden bekannt. Ziel dieser Dissertation war es, das Nukleotidmetabolom und die Enzyme zu untersuchen, die die Zusammensetzung und Menge der Nukleotide in Pflanzen beeinflussen. Zu diesem Zweck wurde eine Methode zur Analyse von Nukleotiden und Nukleosiden in Pflanzen und Algen entwickelt (Kapitel 2.1), die ein effizientes Stoppen enzymatischer AktivitĂ€t, eine FlĂŒssig-FlĂŒssig-Extraktion und eine Festphasenextraktion unter Verwendung eines schwachen Ionenaustauschers umfasst. Mit dieser Methode konnte das Nukleotidmetabolom von Pflanzen eingehend analysiert werden, einschließlich der Quantifizierung von Desoxyribonukleotiden und Desoxyribonukleosiden mit geringer Abundanz. Die Einzelheiten der Methode wurden in einem Artikel zusammengefasst, der als Laborprotokoll dient (Kapitel 2.2). DarĂŒber hinaus wurde ein Übersichtsartikel (Kapitel 2.3) verfasst, der die Literatur ĂŒber die Analyse von Nukleotiden und die jĂŒngsten technologischen Fortschritte zusammenfasst. Der Schwerpunkt lag hierbei auf Pflanzen und Faktoren, die die Analyse von Nukleotiden in Pflanzen beeinflussen oder behindern, d. h. eine komplexe Matrix, hochstabile Phosphatasen und physikalisch-chemische Eigenschaften von Nukleotiden. Um die subzellulĂ€ren Konzentrationen von Metaboliten zu analysieren, wurde ein Protokoll fĂŒr die schnelle Isolierung hochreiner Mitochondrien unter Verwendung einer AffinitĂ€tschromatographie entwickelt (Kapitel 2.4). Die Methode zur Analyse von Nukleotiden trug außerdem zu einer umfassenden Analyse des Nukleotidmetaboloms in keimenden Samen und in sich etablierenden Keimlingen von A. thaliana bei, wobei der Schwerpunkt auf Genen lag, die an der Synthese von Thymidilaten beteiligt sind (Kapitel 2.5), sowie zu der Charakterisierung eines neuen Enzyms des Purinnukleotidabbaus, der XANTHOSINE MONOPHOSPHATE PHOSPHATASE (Kapitel 2.6). Eine Proteinhomologieanalyse, die A. thaliana, S. cerevisiae und H. sapiens miteinander verglich fĂŒhrte zur Identifizierung und Charakterisierung eines Enzyms, das an der Reparatur von geschĂ€digten Metaboliten in Pflanzen beteiligt ist, der INOSINE TRIPHOSPHATE PYROPHOSPHATASE (Kapitel 2.7). Es konnte gezeigt werden, dass dieses Enzym desaminierte Purinnukleotidtriphosphate dephosphoryliert und so deren Einbau in NukleinsĂ€uren verhindert. Funktionsverlustmutanten altern frĂŒh und weisen einen konstitutiv erhöhten Gehalt an SalicylsĂ€ure auf. Außerdem wurde die Quelle der desaminierten Purinnukleotide in Pflanzen untersucht, und es wurde gezeigt, dass abiotische Faktoren zur NukleotidschĂ€digung beitragen

    Studying the interplay between ageing and Parkinson's disease using the zebrafish model

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Ageing is the major risk factor for developing PD but the interplay between ageing and PD remains elusive. To investigate the effect of ageing on PD-relevant pathological mechanisms, zebrafish mutant lines harbouring mutations in ageing-associated genes (klotho-/-, sirt1-/-, satb1a-/-, satb1b-/- and satb1a-/-;satb1b-/-) were generated, using CRISPR/Cas9 gene editing. Likewise, a chemical model for SIRT1 deficiency was utilised. klotho-/- zebrafish displayed an accelerated ageing phenotype at 3mpf and reduced survival to 6mpf. Dopaminergic neuron number, MPP+ susceptibility and microglial number were unaffected in klotho-/- larvae. NAD+ levels were decreased in 6mpf klotho-/- brains. However, ATP levels and DNA damage were unaffected. sirt1-/- zebrafish did not display a phenotype through adulthood. il-1ÎČ and il-6 were not upregulated in sirt1-/- larvae, and chemical inhibition of sirt1 did not increase microglial number. cdkn1a, il-1ÎČ and il-6 were not upregulated in satb1a-/- and satb1b-/- larvae. Dopaminergic neuron number and MPP+ susceptibility were unaffected in satb1a-/- larvae. However, satb1b-/- larvae demonstrated a moderate decrease in dopaminergic neuron number but equal susceptibility to MPP+ as satb1b+/+ larvae. Adult satb1a-/- but not adult satb1b-/- zebrafish were emaciated. satb1a-/-;satb1b-/- zebrafish did not display a phenotype through adulthood. Transgenic zebrafish expressing human wildtype α-Synuclein (Tg(eno2:hsa.SNCA-ires-EGFP)) were crossed with klotho-/- and sirt1-/- zebrafish, and treated with a sirt1-specific inhibitor. Neither genetic cross affected survival. The klotho mutation did not increase microglial number in Tg(eno2:hsa.SNCA-ires-EGFP) larvae. Likewise, sirt1 inhibition did not induce motor impairment or cell death in Tg(eno2:hsa.SNCA-ires-EGFP) larvae. In conclusion, the suitability of zebrafish for studying ageing remains elusive, as only 1 ageing-associated mutant line displayed accelerated ageing. However, zebrafish remain an effective model for studying PD-relevant pathological mechanisms due to the availability of CRISPR/Cas9 gene editing, neuropathological and neurobehavioral tools

    Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach

    Get PDF
    Quantitative proteomics has matured into an established tool and longitudinal proteomics experiments have begun to emerge. However, no effective, simple-to-use differential expression method for longitudinal proteomics data has been released. Typically, such data is noisy, contains missing values, and has only few time points and biological replicates. To address this need, we provide a comprehensive evaluation of several existing differential expression methods for high-throughput longitudinal omics data and introduce a Robust longitudinal Differential Expression (RolDE) approach. The methods are evaluated using over 3000 semi-simulated spike-in proteomics datasets and three large experimental datasets. In the comparisons, RolDE performs overall best; it is most tolerant to missing values, displays good reproducibility and is the top method in ranking the results in a biologically meaningful way. Furthermore, RolDE is suitable for different types of data with typically unknown patterns in longitudinal expression and can be applied by non-experienced users
    • 

    corecore