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ABSTRACT 

Mass spectrometry (MS)-based proteomics has evolved into an important tool 
applied in fundamental biological research as well as biomedicine and medical 
research. The rapid developments of technology have required the establishment of 
data processing algorithms, protocols and workflows. The successful application of 
such software tools allows for the maturation of instrumental raw data into biological 
and medical knowledge. However, as the choice of algorithms is vast, the selection 
of suitable processing tools for various data types and research questions is not 
trivial. In this thesis, MS data processing related to the label-free technology is 
systematically considered. Essential questions, such as normalization, choice of 
preprocessing software, missing values and imputation, are reviewed in-depth. 
Considerations related to preprocessing of the raw data are complemented with 
exploration of methods for analyzing the processed data into practical knowledge. In 
particular, longitudinal differential expression is reviewed in detail, and a novel 
approach well-suited for noisy longitudinal high-througput data with missing values 
is suggested.  

Knowledge enrichment through integrated functional enrichment and network 
analysis is introduced for intuitive and information-rich delivery of the results. 
Effective visualization of such integrated networks enables the fast screening of 
results for the most promising candidates (e.g. clusters of co-expressing proteins with 
disease-related functions) for further validation and research. Finally, conclusions 
related to the prepreprocessing of the raw data are combined with considerations 
regarding longitudinal differential expression and integrated knowledge enrichment 
into guidelines for a potential label-free discovery proteomics workflow. Such 
proposed data processing workflow with practical suggestions for each distinct step, 
can act as a basis for transforming the label-free raw MS data into applicable 
knowledge. 

KEYWORDS: Mass spectrometry, labe-free, proteomics, normalization, missing 
values, imputation, longitudinal differential expression, knowledge enrichment   
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TIIVISTELMÄ 

Massaspektrometriaan (MS) pohjautuva proteomiikka on kehittynyt tehokkaaksi 
työkaluksi, jota hyödynnetään niin biologisessa kuin lääketieteellisessäkin 
tutkimuksessa. Alan nopea kehitys on synnyttänyt erikoistuneita algoritmeja, 
protokollia ja ohjelmistoja datan käsittelyä varten. Näiden ohjelmistotyökalujen 
oikeaoppinen käyttö lopulta mahdollistaa datan tehokkaan esikäsittelyn, 
analysoinnin ja jatkojalostuksen biologiseksi tai lääketieteelliseksi ymmärrykseksi. 
Mahdollisten vaihtoehtojen suuresta määrästä johtuen sopivan ohjelmistotyökalun 
valinta ei usein kuitenkaan ole yksiselitteistä ja ongelmatonta. Tässä väitöskirjassa 
tarkastellaan leimaamattomaan proteomiikkaan liittyviä laskennallisia työkaluja. 
Väitöskirjassa käydään läpi keskeisiä kysymyksiä datan normalisoinnista sopivan 
esikäsittelyohjelmiston valintaan ja puuttuvien arvojen käsittelyyn. Datan 
esikäsittelyn lisäksi tarkastellaan datan tilastollista jatkoanalysointia sekä erityisesti 
erilaisen ekspression havaitsemista pitkittäistutkimuksissa. Väitöskirjassa esitellään 
uusi, kohinaiselle ja puuttuvia arvoja sisältävälle suurikapasiteetti-pitkittäis-
mittausdatalle soveltuva menetelmä erilaisen ekspression havaitsemiseksi.  

Uuden tilastollisen menetelmän lisäksi väitöskirjassa tarkastellaan havaittujen 
tilastollisten löydösten rikastusta käytännön ymmärrykseksi integroitujen 
rikastumis- ja verkkoanalyysien kautta. Tällaisten funktionaalisten verkkojen 
tehokas visualisointi mahdollistaa keskeisten tulosten nopean tulkinnan ja 
kiinnostavimpien löydösten valinnan jatkotutkimuksia varten. Lopuksi datan 
esikäsittelyyn ja pitkittäistutkimusten tilastollisen jatkokäsittelyyn liittyvät 
johtopäätökset yhdistetään tiedollisen rikastamisen kanssa. Näihin pohdintoihin 
perustuen esitellään mahdollinen työnkulku leimaamattoman MS proteomiikka-
datan käsittelylle raakadatasta hyödynnettäviksi löydöksiksi sekä edelleen 
käytännön biologiseksi ja lääketieteelliseksi ymmärrykseksi.  

ASIASANAT: Massaspektrometria, proteomiikka, normalisointi, puuttuvat arvot, 
imputointi, erilainen ekspressio, pitkittäistutkimus, tiedon rikastaminen  
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Abbreviations 

AP-MS Affinity-Purification Mass Spectrometry 
AUC Area Under the ROC-curve 
BETR Baysian Estimation of Temporal Regulation 
BP  Biological Processes 
BPCA Bayesian Principal Component Analysis 
CIP2A Cancerous Inhibitor of Protein Phosphatase 2A 
CPTAC Clinical Proteomic Tumor Analysis Consortium 
CRAPome Contaminant Repository for Affinity Purification-mass spectrometry 

data 
CV  Coefficient of Variation 
DAVID Database for Annotation, Visualization and Integrated Discovery 
DE  Differentially Expressed 
FC  Fold Change 
FDR False Discovery Rate 
FN  False Negatives 
Fn  Francisella tularensis subspecies novicida 
FP  False Positives 
GO  Gene Ontology 
GSEA Gene Set Enrichment Analysis 
IBAQ Intensity-Based Absolute Quantification 
IgG Immunoglobulin G 
IP  ImmunoPrecipitates 
IPA Ingenuity Pathway Analysis  
IQR InterQuartile Range 
KEGG Kyoto Encyclopedia of Genes and Genomes 
KNN K-Nearest Neighbours 
LFQ Label-Free Quantification 
Limma Linear models for microarray data 
LLS Local Least Squares 
Lme Linear mixed effects regression 
logFC Fold Change in log2 - transformed data 
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MAD  Median Absolute Deviation 
MAR Missing At Random 
MaSigPro Microarray Significant Profiles 
MCAR Missing Completely At Random 
MCL Markov Clustering 
MNAR Missing Not At Random 
MS Mass Spectrometry 
MSE Mean Squared Error 
PANTHER Protein Annotation Through Evolutionary Relationship 
pAUC partial Area Under the ROC-curve 
PCA Principal Component Analysis 
PCV Pooled Coefficient of Variation 
PEV Pooled Estimate of Variance 
PID Pathway Interaction Dabase 
PMAD Pooled Median Absolute Deviation 
Pme Polynomial mixed effects regression 
POI Proteins of Interest 
PPI Protein-Protein Interaction 
PTM Post-Translational Modification 
ROC Receiver Operating Characteristic 
ROTS Reproducibility Optimized Test Statistic 
SGSDS Shotgun Standard Set Data Set 
SVA Surrogate Variable Analysis 
SVD Singular Value Decomposition 
Th0 T helper cell – activated, undifferentiated 
Th17 T helper cell 17 
Thp T helper precursor cells 
TN  True Negatives 
UPS1 Universal Proteomics Standard Set 1 
Vsn Variance stabilization normalization 
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Definitions 

True Positives (TP) Positive test result correctly identified as such. 
False Positives (FP) Negative test result incorrectly identied as positive. 
True Negatives (TN) Negative test result correctly identified as such. 
False Negatives (FN) Positive test result incorrectly identified as negative. 
Sensitivity   TP/TP+FN 
Specifity   TN/TN+FP 
ROC-curve   In the ROC-curve analysis, sensitivity is plotted 

  against specificity while varying the threshold for 
  detection (e.g. significance value, differential 
  expression statistic). 

AUC   Area Under the ROC-curve. Typically varies from 0.5 
  to 1, where 1 equals to perfect performance of the 
  examined method in terms of sensitivity and 
  specificity and 0.5 equals to performance achieved by 
  random ranking of the detections. An AUC value of 
  less than 0.5 corresponds to worse performance of the 
  examined method than what would be expected by 
  randomly ranking the detections and typically 
  indicates a problem with labeling of the classes. 

pAUC   Partial area under the ROC-curve. Typically, the 
  interest of the researcher is in the top findings (e.g. the 
  (most) DE proteins), partial AUC then focuses on the 
  most essential part of the ROC-curve. In the analysis 
  performed in this thesis, pAUC refers to the area under 
  the ROC-curve between specificity values 1 and 0.9. 
  The pAUC values are rescaled to correspond to full 
  AUC values (i.e. to have a maximal value of 1.0 and 
  a non-discriminant value of 0.5) using the pROC-
  package [1]. 
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Spike-in data  A dataset where specific proteins (e.g. UPS1 proteins) 
  have been “spiked-in” in known concentrations for 
  different sample groups and mixed with a stable 
  background proteome. As this ground truth of the 
  truly changing spike-in proteins (TP) and the stable 
  background proteins (TN) is known, spike-in datasets 
  enable the benchmarking of methods with the ROC-
  curve analysis. 
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1 Introduction 

Biological systems are complex collections of biologically active molecules. 
Proteins are one of the most abundant and diverse class of such functional 
biomolecules. Formed by long chains of amino acid residues, polypeptides; proteins 
are large macromolecules facilitating all cellular function [2]. The functionality of a 
protein is determined by the amino acid sequence of the polypeptide chain and the 
folding of the polypeptide chain into complex three-dimensional structures [2]. 
Changes in the abundance of proteins can significantly alter the state of biological 
systems. The analysis of proteins and protein abundances can thus be said to form 
the basis for understanding the functioning of the cell [3].  

The set of all proteins expressed by a biological structure such as a genome, cell, 
tissue or an organism is referred to as a proteome and the science that studies 
proteomes is titled proteomics. Proteomics is a central tool used in basic biological 
research and has great relevance in life sciences more generally. Clinical proteomics 
is interested in the discovery of proteins, protein abundance changes and pathways 
related to specific cell stress states, such as disease emergence/progeression or 
toxicity [4,5]. Ultimately, key proteins involved in such stress states could be used 
as novel biomarkers and drug targets addressing these unwanted conditions.  

For the reliable and reproducible study of protein expression from complex 
samples, robust identification and quantification methods are required. Protein mass 
spectrometry (MS) is an integral part of modern proteomics and forms the basis of 
reproducible proteins measurements. During the recent decades, the evolution of MS 
technologies has been rapid. Modern high quality MS workflows are able to identify 
and quantify tens of thousands of peptides and thousands of proteins, protein 
modifications and localizations in a single run [2]. The resolution, speed and cost 
efficiency of MS technologies are expected to even further increase in the future [2]. 
The successful application of a modern MS powered workflow requires many 
considerations from the experimental as well as the data analysis point of view. In 
this thesis, the focus is on considerations regarding proteomics data analysis, 
especially in questions related to the data analysis methodology of successful protein 
quantification.  
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In the first part of the thesis, a brief introduction to related MS technologies is 
given, after which the focus turns to more specific issues from the viewpoint of data 
analysis. Typical problems of normalization (publications I and IV), the choice of 
a suitable label-free proteomics software workflow (publication II), missing values 
and imputation (publication II) are addressed in more detail. After considering the 
specific data analysis challenges related to the reliable quantification of proteins, the 
focus of the thesis turns to data analysis methodology used to mine the processed 
data for knowledge. Specifically, the interest is in the robust detection of differential 
expression in longitudinal experimental settings (publication III). Following the 
discovery of the proteins of interest (POI), knowledge enrichment of the findings 
through combined enrichment and network analysis is explored (publications IV 
and V). Finally, the conclusions and implications from all the performed work 
included in the thesis are combined into a suggestion for a label-free proteomics 
discovery workflow. 
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2 Mass Spectrometry-Based 
Proteomics 

Before the discovery of modern mass spectrometry, the identification of a proteins 
amino acid sequence was time consuming and required large amounts of sample 
material [6]. The sequence was determined by identifying chemically cleaved amino 
acids sequentially beginning from the N terminus with the Edman degradation 
method [6]. This method required substantial expertise and often an unambiguous 
sequence could not be assigned [6]. Since the development of mass spectrometry in 
1990s, it soon replaced the Edman Degradation method [6]. In contrast to the Edman 
degradation, with MS, the sensitivity is increased, peptide fragmentation is much 
faster and the peptides or proteins do not need to be purified to homogeneity [6]. 
Furthermore, MS can be used to identify blocked or modified proteins.  

While diverse sample types (e.g. cell cultures, tissue and fecal samples) can be 
analyzed with MS, the proteins need to be first extracted from the samples, purified, 
typically digested into peptides and separated [2,6,7]. The optimal way to extract 
proteins from a sample is varying and application dependent [2]. Although mass 
spectrometers can measure the mass of entire intact proteins, digesting the proteins 
into peptides is considered a more favorable solution in most settings [6,8,9]. The 
proteins are digested into peptides using enzymes that cleave the backbone of the 
proteins amino acid sequence at specific sites [6,7]. Most commonly this enzyme is 
a protease known as trypsin [2,6,7]. Trypsin cleaves the backbone of the protein very 
specificly on the carboxy (C) terminal side of the arginine and lysine amino acid 
residues. The cleaving by trypsin generally leaves the charge carrying amino acids 
at C termini side of the peptide and creates uniquely classifiable peptides in the 
suitable mass range for the MS analysis [1–3]. 
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Figure 1. A simplified schematic diagram of a mass spectrometer. 

The mass spectrometer consists of three fundamental components: an ion source, 
a mass analyzer and a detector [7] (Figure 1). Before entering the mass spectrometer 
to be ionized, the digested peptides need to be separated [6]. This typically happens 
by injecting the peptides into a microscale capillary high performance liquid 
chromatography (HPLC) or an ultrahigh pressure liquid chromatography (UHPLC) 
column coupled to the mass spectrometer [2,6]. If very complex samples are being 
processed, the proteins might have to be separated already prior to digestion into 
separately processed fractions by gel electrophoresis or other techniques [6]. The 
peptides flow through the column and through a needle point, get vaporized and 
ionized by a strong electric potential [6]. This type of setup, where the peptides are 
ionized from a liquid column is called electrospray ionization (ESI) or LC-MS [6,7]. 
Another type of approach, where the peptides are ionized from a dry crystalline 
matrix, is called the matrix assisted laser desorption/ionization (MALDI). While 
MALDI has been generally used to analyze relative simple peptide mixtures and ESI 
has been used in the analysis of more complex samples [7], recent studies have 
suggested that these two techniques might be complementary while neither is 
comprehensive in identifying all the peptides in a sample [10]. However, in this 
introduction the focus is in ESI or LC-MS systems. 

Once the ionized peptides have entered the vacuum of the mass analyzer, they 
are controlled by strong electrical currents. The mass analyzer plays a central part in 
the MS technology. It separates the ionized peptides according to the mass to charge 
(m/z) ratios. The detector then registers the numbers of ions at each m/z value [6] 
(Figure 2A-B). Once all the m/z ratios and intensities of all the peptides are recorded, 
in a typical MS experiment individual peptides are further fragmented and the mass 
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spectra of the resulting fragments are recorded in a second mass spectral scan [2,6] 
(Figure 2C). The first scan is generally called MS1 spectra or survey spectrum and 
the second scan as tandem MS or MS/MS or MS2 [2,6]. This type of MS experiment 
is generally referred to as tandem MS [6]. Typically, the MS2 spectra is obtained 
only for the most abundant peaks in the MS1 spectra [6]. The masses of the peptides 
and the fragments are used to identify the peptides while the intensity information is 
used for quantification [2]. Multiple different types of mass analyzers with different 
strategies exist [2,6,7]. Four basic types of mass analyzers can be distinguished: the 
ion trap, time of flight (TOF), quadrupole and Fourier transform ion cyclotron (FT-
MS) [7]. However, multiple variations and combinations of these basic analyzer 
types have been developed. The basic types differ in how they determine the m/z 
ratios of the ionized peptides and in their resolution [6,7]. In the recent decade, 
especially the Orbitrap and TOF analyzers have greatly improved in their resolution 
and popularity [2].  

The identity of the peptides can be inferred from the peptide and peptide 
fragment masses mainly in two ways: via a technique called de novo sequencing or 
through database searching [2,6,7]. In database searching, the experimentally 
acquired peptide fragmentation spectrum is typically matched to in silico digested 
theoretical spectra of a database using a specified search engine [6]. The matching 
theoretical peptide sequences are scored and the identity inferred based on the most 
probable solution [6,7]. There are several popular search engines such as Mascot 
[11], X!Tandem [12], MS-GF+ [13], Andromeda [14] and others for performing the 
peptide and protein database searching. The identification of proteins via database 
searching follows a similar strategy as peptide identification: based on the identified 
peptide sequences for a protein, the most probable proteins from which these 
sequences could arise from, are presented. Distinct species specific protein sequence 
databases, such as Swiss-Prot/TrEMBL [15], can be used for this type of protein 
identification. In de novo sequencing, the identity of the peptides is attempted to be 
inferred based on the tandem MS fragmentation spectrum alone [6]. However, such 
de novo sequencing is a very challenging task, which is why database searching is 
commonly applied for peptide and protein identification [2,6]. 
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Figure 2. Representative chromatograms from a mass spectrometer. A) A representative MS1 

level base peak chrotomatogram showing the most intense peaks over retention time 
across the whole range of masses. B) A 3D representation of raw MS1 level data 
showing the peak intensities at different m/z values over retention time. C) A 
representative peptide ion MS2 level fragmentation spectrum.   

2.1 Label-free proteomics 
Different sample types (e.g. cell cultures, fecal samples, body fluids) or properties 
of the investigated proteome may require distinct considerations for protein 
quantification via MS [2,16]. The quantification techniques used in MS experiments 
can be divided into two main categories: label-based quantification and label-free 
quantification [2,5,16].  

In label-based MS, the samples are typically labeled with stable protein isotopes 
acting as internal standards or references, allowing for accurate quantification of 
protein abundances in the samples [5,16]. The labels can be incorporated into the 
samples using metabolic, chemical or enzymatic labeling resulting in various 
methodologies such as stable isotope labeling by amino acids in cell culture 
(SILAC), stable isotope labeling of mammals (SILAM), isotope-coded affinity tags 
(ICAT), isotope-coded protein labeling (ICPL), isobaric tags for relative and 
absolute quantification (iTRAQ), tandem mass tags (TMT) etc. [5,16]. The labeling 
based approaches offer accurate and robust quantification of protein abundances but 
require high sample concentrations, are expensive and can generally be performed 
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for a limited number of samples per run [5,16,17]. In contrast to the labeling-based 
methods, label-free approaches are not dependent on the specific labeling of samples, 
can be simultaneously performed for a higher number of samples, typically require 
less sample preparation and are more cost effective [16,18]. Furthemore, label-free 
methods can be applied even when the metabolic labeling of samples is not possible 
[18].   

The label-free approaches can be further divided into two main techniques: 
spectral counting and peak intensity methods. In spectral counting, protein 
quantification is performed by counting the number of identified MS2 fragment 
spectra matched to peptides derived from a specific protein [19]. However, the 
accuracy of the spectral count method has been questioned [19–21] and the peak 
intensity methods have been observed to give more robust quantifications at a larger 
dynamic range [19–22]. In peak intensity methods, peptide quantification is 
performed by measuring the area under the peak or the maximum intensity (height) 
in the MS1 or MS2 level data [16]. Protein quantification is then performed by 
“rolling up” or aggregating the peptide intensity measurements of a protein through 
various methods (such as summing, median, mean, top n). The intensity based 
quantification is motivated by the observation that the measured ion signal intensity 
linearly correlates with ion concentration [16,21]. Furthermore, the combined peak 
areas of the peptide ions for proteins have been observed to correlate with protein 
amount [16].  

The quantitative label-free MS approaches can be applied in various 
experimental settings, such as the shotgun or the discovery approach, as well as the 
directed or targeted approaches [23]. The emphasis in the shotgun approach is the 
discovery analysis of the whole proteome [23]. In the targeted and directed 
approaches on the other hand, previous information is applied to select a set of 
proteins or peptides which are then explored in more detail [23]. Perhaps the most 
widely used application of targeted approaches is the selected reaction monitoring 
approach (SRM) [23]. In SRM, specific representative peptides relating to some 
proteins of interest are targeted. The characteristics of these peptides (such as the 
fragment ion spectrum) have been determined beforehand and can be used to select 
peptides for further analysis during the course of the experiment. Thus particular 
fragment ion(s) for a selected peptide precursor ion are monitored and the signal 
intensity associated with these specific pair of m/z values (referred to as the SRM 
transitions) are used for quantification [23,24]. The SRM transitions together with 
the retention time of the targeted peptide offer good selectivity for the SRM approach 
[23,24]. Developments in the MS technologies during the past decades have enabled 
the shotgun method to become a popular approach, able to identify and quantify 
thousands of proteins from complex samples in a single run [2,23]. 
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Depending on the used MS instrument and settings of the instrument, the 
quantitative label-free shotgun experiments can be performed in the Data Dependent 
Acquisition (DDA) or Data Independent Acquisition (DIA) modes. Typically in 
DDA, for each scan cycle of the MS device, only 10-20 most abundant peptides at 
the MS1 level are sequentially selected for fragmentation and for the acquisition of 
the MS2 spectra [25]. Consequently, the selection of different subsets of peptides in 
different replicates and samples can cause moderate amounts of missing values in 
the DDA data [25]. On the other hand, in the DIA mode, all peptides within a 
selection window at a narrow m/z range are fragmented and the MS2 spectra 
acquired [25,26]. This acquisition is repeated in a stepwise manner for different 
selection windows in a wider mass-to-charge range (e.g. 400-1000 m/z range) [25]. 
However, the DIA mode typically requires more sample material for the generation 
of spectral libraries by multiple runs of the MS instrument in DDA mode [25,26], 
although also library-free DIA approaches have been developed [27]. Typically, 
DDA has been used in the knowledge-blind shotgun discovery studies while the 
strength of the DIA has been seen in developing targeted assays and more accurate 
and reproducible workflows [26]. Furthemore, while DIA may provide an inherent 
solution to the missing value problem presented by DDA, DIA requires more 
complicated data analysis and is still developing in terms of bioinformatics software 
and instrumentation [28]. In the following subchapters of the introduction of this 
thesis, data preprocessing methods related to the label-free peak intensity approach 
are discussed in more detail. The specific challenges and methods presented are 
discussed mainly from the point of view of DDA data, but most of the solutions 
suggested are likely applicable to DIA data as well. Some of the main strategies for 
quantification in MS based proteomics discussed in this chapter are summarized in 
Figure 3. 
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Figure 3.  Some of the central approaches for mass spectrometry based proteomics with their 

respective main advantages and possible challenges. 

2.2 Normalization in proteomics 
While MS has evolved rapidly during the past decades and modern MS instruments 
have greatly developed in terms of accuracy and robustness [2,5], the data produced 
by the instruments are still prone to systematic biases [29]. This kind of bias may 
result from small variations in the experimental conditions such as differences in 
sample handling or preparation, variations in liquid chromatography flow rates, 
changes in temperature during the course of the experiment, device calibration, etc 
[30,31]. More generally, the bias can be defined as unwanted non-biological 
variation occurring spontaneously during the course of the MS experiment [30–32] 
(Figure 4A). Furthermore, the specific cause of the bias is typically unknown and 
cannot solely be countered by adjusting the instrumentation or the experimental 
settings [29,31]. The observed bias can be dependent or independent of the measured 
protein or peptide abundances. 
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Figure 4. An example of the effects of normalization in proteomics. A) Sample distributions of the 

log2-transformed peak intensities in an unnormalized label-free proteomics dataset. B) 
Quantile normalization performed on the same dataset. Samples are colored according 
to sample groups. 
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The process that tries to compensate for this bias, make the samples more 
comparable and the downstream data analysis more reliable, is called normalization 
[29–32] (Figure 4B). As a result of normalization, the data should be less biased and 
the true biological signal more prominent in the data. Normalization is not a process 
related solely to proteomics, rather most high-throughput methods producing large 
amounts of data through complex experimental settings and instruments, require 
normalization [29,31,32]. Normalization in proteomics thus builds on normalization 
in preceding, more established technologies, such as DNA microarrays [29,31]. 
Many popular normalization methods used in proteomics, such as quantile 
normalization [33], median normalization, variance stabilization normalization (vsn) 
[34] have all been developed or applied already in conjunction with DNA 
microarrays. Normalization in proteomics and the best practices for normalizing MS 
data have been investigated on several accounts [29–31,35–37]. Typically, 
normalization methods have been evaluated in their ability to decrease intragroup 
variability in technical and/or biological replicate sample groups [29,36,37]. 
However, prior to publication I, the effect of the normalization methods for 
detecting differential expression had not been systematically and comprehensively 
evaluated.  

To summarize, missing or improper normalization can result in incomparable 
samples and biased or non-reliable findings in the differential expression analysis 
(e.g. incorrectly detecting variation arising from technical reasons as biological 
variation). In the first work included in this thesis (publication I), 11 popular 
normalization methods were evaluated in their ability to decrease intragroup 
variation and produce unbiased data from which the true biological signal can 
correctly be detected in the differential expression analysis. Furthermore, the effect 
of the different normalization procedures on the known magnitude of change of the 
true signal in the data was evaluated [32]. 

2.3 Label-free proteomics data processing 
software tools 

As discussed in the previous chapter, normalization is an essential part of the MS 
powered label-free proteomics workflow. Normalization can be integrated as part of 
the workflow within a label-free proteomics software or it can be an external 
algorithm, applied after receiving the non-normalized protein abundances from the 
used processing software workflow. In addition to normalization, there are several 
typical steps common to a label-free proteomics software workflow.  
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Figure 5. A simplified schematic of a possible label-free proteomic software data processing 

worklfow. Several alternatives to such simplified workflow and processing order exist. 
Retention time alignment may preceed or happen simultaneuously with peptide 
identification and peptide detection. Normalization may also take place before protein 
level summary. 

Such common steps can include feature detection, peptide identification, 
alignment of the peptides in different samples and aggregation of peptide 
identification and quantification information into protein identities and relative 
quantities [38] (Figure 5). 

Feature detection is the process, where the isotopic envelope for a single eluting 
compound is determined [38,39]. Typically, a single eluting peptide will produce a 
collection of peaks at the MS1 level, corresponding to different isotopes of the same 
peptide [38,39]. A single peptide feature thus has three dimensions: the retention 
time, m/z ratio and the measured intensity (Figure 2B). Feature detection algorithms 
aim to identify all three aspects related to a peptide as accurately as possible [38]. 
The resulting feature list for an isotope peak cluster can for example consist of a 
combination of monoisotopic m/z value (m/z value for the peak of the primary 
isotope), apex retention time (highest point of the feature), charge and intensity [38]. 
Quantification can be performed by using total intensities: the sum of all integrated 
isotope peaks along the retention time, or apex intensities: sum of only the isotope 
apex retention time intensities [38,39]. As the resolution of the MS instruments is 
ever improving, the more accurate total sum based quantification approaches have 
become popular choices [38]. However, considerable variation exists between 
different software in their approach to quantification and feature detection [38–43]. 
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As mentioned earlier in chapter 2, identities for the detected features, or peptides, 
can be inferred by two main approaches: de novo sequencing or database searching. 
A database search engine is typically included or applied by a label-free software 
proteomics workflow [38]. For example, several search engines, such X!Tandem 
[12], MS-GF+[13] or OMSSA [44], can be applied within the OpenMS [41] and 
Proteios [45] software workflows, while the Andromeda [14] search engine and the 
PEAKS DB [46] search engine are incorporated into the MaxQuant [42] and Peaks 
[47] software environments, respectively. A suitable FASTA sequence database is 
generally provided for the applied database search engine(s) for the inference of 
protein identities. De novo sequencing is possible for example by using the PEAKS 
DB [46] included the Peaks studio software environment or open source tools such 
as pNovo 3 [48]. As database searching relies on the reference protein sequences 
provided in the FASTA sequence databases, variations in the amino acid sequence 
of the protein to be identified can induce problems for the identification [49,50]. 
Such variations in the amino acid sequence may arise from individual genetic 
variability and genetic mutations. As amino acid substitutions in the experimental 
sequence can impair its matching to in silico digested peptide spectra in the database, 
the identification of mutated or heavily modified peptides can be highly susceptible 
to errors [49,50]. However, many tools have been developed to overcome this 
problem, such as the SPIDER software [51] in the Peaks Studio software suite 
utilizing de novo sequence tags and cross-species database searching. Similarly, 
proteogenomics approaches [52,53] and associated tools have been developed 
[49,54], where RNA or DNA sequences from the same samples or a variety of 
samples under similar conditions (e.g. cancer) are used in inferring experiment 
specific peptide sequence databases with genetic variation considered. 

Alignment is the process in which the discovered peptide identifications are 
transferred between different MS runs (samples) [38,43]. Furthermore, alignment 
corrects for retention time distortions between different samples by aligning the 
peptide maps of the different MS runs [38]. Alignment together with normalization 
allows for the reliable downstream comparison of samples and conditions. 
Alignment can be performed mainly at two different stages: before or after feature 
detection [38,43,55]. In feature based alignment, feature detection is performed 
before alignment whereas in profile based alignment the order is reversed [43,55].  
Simplified, in profile based alignment approaches, the different runs are aligned 
based on their chromatographic profiles, where as in feature based alignment, the 
runs are aligned according to the identified features [38,55]. The less 
computationally costly feature based approach is used mainly for high resolution 
data, where the identification of the features is less error prone [38]. In addition, the 
alignment algorithms can be further divided into two main approaches: reference run 
based alignment and reference free alignment [38,43]. In the reference run based 
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alignment, one representative run is selected either automatically by the software or 
by the user [38]. All the other runs are then aligned using the selected reference run. 
The Progenesis software for example applies a reference run based alignment 
approach. On the other hand, in the reference run free approach, the different runs 
are aligned without a chosen reference run using for example clustering approaches. 
For instance, MaxQuant [42] uses hierarchical clustering to align the runs [42,56].  

As typically the interest of the experimental researcher is in protein quantities 
instead of peptide quantities, most of the label-free software provide options to “roll-
up” the peptide quantifications into protein quantifications [56,57]. Several varying 
strategies for protein quantification exist. In MaxQuant [42] proteins can be 
quantified using the Intensity-Based Absolute Quantification (IBAQ) [57] or the 
MaxLFQ [56] methods. In Progenesis, relative protein quantification can be 
performed by using the sum of non-conflicting peptides for a protein (peptides 
unique to the quantifiable protein), by calculating the sum of all the peptides for a 
protein or by using the averaged intensity of top N peptides for a protein. Similarly, 
the ProteinQuantifier module in OpenMS [41] contain several options for calculating 
the protein intensities from peptide intensities. 

Label-free proteomics software workflows can be divided into two main groups 
based on their modularity: modular and complete workflows [58]. Modular 
workflows, such as OpenMS [41] and Proteios [45], provide a software environment 
in which several algorithms for a given task (such as peak picking for feature 
detection, varying search engines for peptide and protein identification, etc.) can be 
plugged in to formulate a full label-free proteomics software workflow [41,59]. Such 
modular software environments are typically open source and provide a flexible 
software environment for developers to deliver their new tools for separate tasks as 
well as give the user control in defining the workflow as desired [41,59] (Figure 6). 
However, while being flexible, such modular workflows typically require a certain 
level of expertise from the researcher for proper application. 
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Figure 6.  An example of part of a label-free MS discovery workflow with the OpenMS software. 

As opposed to modular workflows, complete worklows typically have one or a 
few built-in specific algorithms for a given task [58]. Such complete workflows 
might be open source or non-profit, such as the popular MaxQuant [42] software, or 
commercial such as the Progenesis and Peaks [47] software solutions. These kinds 
of complete solutions are typically easy to use and require less prior knowledge about 
the workings of the specific algorithms used.  

In the second work included in this thesis (publication II), five popular label-
free proteomics software workflows were evaluated in their ability to correctly detect 
the known truly differentially expressed proteins and to correctly estimate the known 
fold changes [60]. Both commercial and non-profit, as well as complete and modular 
solutions were evaluated [60]. 

2.4 Missing values and imputation in label-free 
proteomics 

Missing values are an inherent and a well known problem in MS data, especially in 
the label-free DDA data [25,30,31,61–63]. Typically, non-random missing values in 
MS data might occur when the instrument is not able to detect low abundant peptides 
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or this weak signal cannot be distinguished from the background noise during data 
processing [61,63]. However, other more random processes, such as miscleavages, 
ionization competition, ion suppression, peptide misidentification, and retention 
time drifts, can cause missing peptide values in a given MS experiment [61]. 
Additionally, the data generation process of the DDA label-free proteomics data is 
known to result in a high proportion of missing values [25,31,61]. As described in 
chapter 2.1, typically 10-20 of the most abundant peptide precursor ions at the MS1 
level at each scan cycle are selected for further fragmentation at the MS2 level in 
DDA mode [25]. This stochastic selection of peptide precursors leads to inconsistent 
detection of peptides and missing values in multiple MS runs, even if the same 
sample is measured multiple times [25]. The selection of different peptide subsets in 
different MS runs leads to a high number of low to medium abundant peptides not 
detected across all runs (Figure 7).  

 
Figure 7. An example of a log2-transformed label-free proteomics peptide quantification matrix 

with missing values. Missing values are depicted as NA.  

More generally, missing values have been classified according to their cause of 
origin as Missing Completely At Random (MCAR), Missing At Random (MAR) and 
Missing Not At Random (MNAR) [61]. Typically with regards to MS data, it is 
assumed that most MAR observations are MCAR and MAR cases are not analyzed 
or treated separately [61]. Thus, missing values in MS data are mainly divided into 
two categories based on their origin: abundance dependent missing values (MNAR) 
and MCAR [31,61]. It has been observed, that while a relationship between peptide 
intensities and missing values exist (MNAR), depending on the dataset and 
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technique used, as large a proportion as 50-70% of missing values might be MCAR 
[62].  

Imputation of the missing values with different methods has been proposed as a 
solution to missing values in MS data [31,61,62]. A previous comparison of 
imputation in proteomics by [62], evaluated the imputation methods based on their 
accuracy when missing values were artificially generated. The performance of 
various imputation approaches with regards to missing values of different origins 
(MCAR and MNAR) have also been investigated [61]. Simple methods, such as 
imputation of half of the minimum observed values or minimum of the observed 
values, have been evaluated together with more sophisticated approaches [61,62]. 
The more complex methods have included local similarity approaches, such as k-
nearest neighbours (KNN) or local least squares (LLS) [62], as well as global 
structure approaches such as the Probabilistic Principal Component Analysis 
(PPCA) [62] and Singular Value Decomposition (SVD) [61]. In general, the simple 
value imputations have been observed to be less accurate than the more sophisticated 
approaches [62]. However, if a majority of the missing values are MNAR, the simple 
minimum value imputations can perform well and even outperform the more 
complex methods [61]. 

Overall, missing values can distort the following statistical analysis in many 
ways. As many statistical approaches (e.g. PCA, many statistical tests) require 
complete data, the data needs to be either filtered or imputed to contain no missing 
values. The incorrect application of these approaches can result for example in biased 
results in the differential expression analysis (e.g. the detection of technical noise 
from imputation as true biological signal) or not detecting some true findings 
containing missing values at all. In the second included work in this thesis 
(publication II), the performance effects of seven imputation methods together with 
a filtering approach and a combined filtering imputation approach were also 
evaluated. The imputation and filtering approaches were evaluated in their effect on 
the performance of the different tested label-free-proteomics software workflows in 
the differential expression analysis.  

2.5 Label-free proteomics for biomarker discovery 
Once the MS-data has been properly preprocessed, the focus turns to what can be 
discovered from the data. There is a high demand for various biomarkers in the 
medical field [64–68]. A biomarker is more generally characterized as: ”a defined 
characteristic that is measured as an indicator of normal biological processes, 
pathogenic processes, or a response to an exposure or intervention” by the Food and 
Health Administration (FHA) and National Health Institute (NHI) Biomarker 
Working Group [69]. Depending on their intended usage, biomarkers can be further 
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divided into main classes such as: diagnostic biomarkers, monitoring biomarkers, 
predictive biomarkers, prognostic biomarkers, etc. [70,71]. A good diagnostic 
biomarker is able to differentiate between the healthy and the diseased states early 
in the disease progression with good  sensitivity and specificity [64,65,71]. A popular 
approach for discovering diagnostic or prognostic biomarker candidates is detecting 
differential expression or differentially expressed (DE) proteins between the 
conditions of interest (e.g. healthy and diseased).  

The use of proteins as biomarkers is well established in clinical medicine and the 
concentrations of many plasma proteins for example, are routinely measured in 
clinics worldwide [64,65,72]. MS-based proteomics is routinely used in several 
applications, for example toxicological testing and therapeutic drug monitoring [64]. 
However, many clinical operations utilizing protein biomarkers apply various non-
MS techniques, such as enzymatic or immunoassays [64,65]. During the recent 
decades, MS techniques have evolved rapidly [2,5] and gained popularity, especially 
in biomarker discovery studies [65]. MS-powered proteomics has the power to 
potentially analyze all, or at least thousands of, proteins in a sample, including their 
post-translational modifications (PTMs) [65,72]. Despite the rapid developments, 
challenges, such as the large dynamic ranges of proteins in a sample (e.g. blood 
plasma), still remain [65]. Quantitative label-free shotgun DDA proteomics has 
emerged as a popular choice for the initial discovery phase, due to its cost-
effectiveness and lower sample preparation complexity [16,18]. A biomarker 
discovery study workflow utilizing MS-powered proteomics might involve a 
quantitative shotgun proteomics discovery phase followed by a validation of the 
discovered candidates with targeted techniques, such as immunoassays (e.g. 
enzyme-linked immunosorbent assays), western blotting, selected reaction 
monitoring  (SRM)-, or multiple reaction monitoring (MRM)-MS [65]. For a 
successful discovery of a new applicable clinical biomarker, further validations 
utilizing independent disease related cohorts are also typically required [65,72].  

Typically in a quantitative shotgun proteomics workflow, thousands of proteins 
are quantified in a limited number of samples, limiting the statistical power and the 
ability to detect differential expression between the conditions [72]. Specifically, 
poor experimental design and incomplete power analysis may lead to an insufficient 
number of samples [73,74]. In addition to increasing sample size (e.g. including 
more individuals), an alternative for increased statistical power are repeated 
measurements, or a longitudinal study design [74–76]. In addition to providing more 
statistical power, a longitudinal experimental design also delivers important 
information on the changes in the response/behavior of the individuals and proteins 
over time [74].   

Following the discovery of the potential biomarker candidates (e.g. DE proteins), 
further analysis is typically performed to deepen the understanding of the possible 
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biological mechanisms involded. For example, enriched pathways, biological 
processes, cellular locations and molecular functions within the candidate 
biomarkers can be explored [5]. The analysis of protein-protein interactions together 
with such functional enrichment information can enable the fast discovery of 
interesting proteins (e.g. clusters of co-expressing proteins with similar research 
question related functionalities). The successful refinement of data from the 
instrument into biological or medical knowledge and interpretations thus typically 
requires multiple successive and different computational analysis to be performed.  

In the following chapters, computational methods for the discovery of the DE 
proteins in label-free proteomics data from longitudinal experiments and the further 
refinement of these findings into biological knowledge through the integration of 
network and functional enrichment analysis are considered in more detail. 

2.6 Longitudinal differential expression in 
proteomics 

Experiments with longitudinal study designs utilizing high-throughput techniques 
are not unprecedented. DNA microarray experiments with repeatedly measured 
samples over time, have been performed already more than two decades ago [77–
80]. Similarly, timecourse experiments applying RNA-sequencing transcriptomics 
have been increasing in popularity during the past decade [81–84]. While 
longitudinal study designs in proteomics experiments have not so far been as popular 
as the traditional cross-sectional studies, also proteomics experiments with several 
time points have started to emerge [85–89].  

Proteomic intensity data, such as the label-free peak intensity data discussed in 
the previous chapters, is continuous numerical data and is typically close to normally 
distributed after the logarithm transformation [31]. While no specialized longitudinal 
differential expression methods for proteomics data exist, multiple such methods 
have been developed in the context of DNA microarrays [81,90–92] and RNA 
sequencing [84]. Similar to proteomics data, DNA microarray data is continuous 
numerical intensity data distributed approximately normally after the logarithm 
transformation [93]. In addition to the longitudinal differential expression methods 
designed specifically for longitudinal high-throughput data, various more general 
frameworks can be applied in detecting the longitudinally DE proteins. Analysis of 
Variance (ANOVA) together with several different types of linear and non-linear 
regression models, with or without random effects, have been applied in analyzing 
longitudinal data more generally [88,94–99]. A popular approach for grouping the 
samples in longitudinal omics data is also clustering, where samples of the data are 
clustered based on similarity of their temporal profiles using various methods such 
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as correlation analysis [100], hierarchical clustering [101] or unsupervised machine 
learning approaches [101]. 

While similar to other types of longitudinal high-throughput data, proteomics 
data has some special characteristics that create additional challenges for the applied 
methods. Some of these challenges, such as the presence of a high proportion of 
missing values and a high degree of experimental technical variation, has already 
been discussed in the previous chapters. However, as no optimal solution for these 
problems has yet been developed, the statistical framework applied in detecting the 
DE proteins should be tolerant against such challenges. The high degree of noise 
present in proteomics data renders the methods subjective to false positive and false 
negative detections, especially for the low intensity proteins.  

In publication III, several specialized high-throughput longitudinal DE methods 
together with traditional modelling approaches and a novel method designed 
especially for longitudinal proteomics were evaluated. The methods were evaluated 
in their performance to correctly detect the truly longitudinally DE proteins using 
almost two thousand semi-simulated label-free proteomic spike-in datasets (for 
spike-in data, see definitions). Furthermore, the methods were tested for their 
tolerance against missing values, in their reproducibility, and their ability to produce 
biologically meaningful results. 

2.7 Knowledge enrichment through integrated 
functional enrichment and network analysis 

As discussed in the previous chapter, a typical approach for discovering the potential 
biomarker candidates is detecting differential expression between the experimental 
conditions of interest. Other approaches in discovering the potential biomarker 
candidates, or more generally the proteins of interest (POI), might include exploring 
the interaction partners for a known/suggested POI [102–105] or evaluating the 
genome- or proteome-wide effects of silencing a known/suggested POI [106–108]. 
Typically in most approaches, a resulting candidate list of potentially interesting 
proteins is acquired. After the reliable discovery of such POI, generally some further 
analysis are required to deepen the knowledge about the candidates and allow for 
possible interpretations into the underlying biological mechanisms [5]. For example, 
the discovered protein candidates can be functionally annotated and connected to 
known biological processes, molecular locations and pathways. As proteins are 
fundamentally interacting molecules forming complexes, signaling pathways and 
complicated interaction networks, the analysis of protein-protein interactions plays 
an essential and natural role in interpreting the results from proteomic experiments 
[109–112]. Existing and predicted interactions between the proteins can be 
investigated using protein-protein interaction (PPI) databases [109,112]. Interaction 
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networks of the candidate proteins can reveal tight clusters of co-expressing proteins 
and possibly proteins with a central role in the interaction networks (i.e. hub 
proteins). Combining multiple levels of functional annotation together with protein-
protein interactions can result in informative networks, essential for the meaningful 
interpretation of the results. 

A popular approach in analyzing functional enrichment in high-throughput data 
is gene ontology (GO) [113,114]. In gene ontology, genes are annotated functionally 
into terms which are ontologically related to other terms [114]. The terms are 
hierarchically related to each other; a parent term (such as immune response) might 
have multiple more specific child terms (e.g. adaptive immune response, humoral 
immune response). There are three main classes of GO term annotations: biological 
processes (BP), molecular functions (MF) and cellular compartments (CC)  [114]. 
The enrichment of GO terms in the feature candidate list can be performed through 
several specialized tools, such as AmiGO [115], the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) [116,117], Protein Annotation 
Through Evolutionary Relationship (PANTHER) [118,119] and others. 

For GO enrichment, the features in the result list (e.g. proteins) are first converted 
to gene annotations. Following, the enrichment of GO terms in features of the result 
list is explored as statistical overrepresentation against what would be randomly 
expected from a gene set of the size of the result list (e.g. with Fisher’s exact test, 
binomial test [110]). In whole genome or transcriptome experiments, the used 
background genes defining the expected GO terms and the expected gene counts of 
GO terms, are typically the whole genome [115]. However, this might be 
problematic, as necessarily not all the genes can be expected to be expressed in a 
sample of a given type (e.g. cancerous tissue, blood serum, etc.) [120,121] or 
detected with equal reliability [121]. This is especially true for proteomics data, as 
only a subset of all the possible protein coding genes are expressed in a given tissue 
at a time [122]. A conservative choice for a background universe for the enrichment 
analysis in proteomics might then be all the proteins reliably detected in the 
experiment [110,120]. However, a unianonymous consensus concerning the 
selection of an appropriate background to be used for a statistical overrepresentation 
analysis has yet to be reached [121]. Another popular approach in exploring the 
enrichment of GO terms within the data, is gene set enrichment analysis (GSEA) 
[123]. As opposed to analyzing enrichment in a list of defined candidates (e.g. DE 
proteins), GSEA can be used to analyze the functional enrichment (including the GO 
terms) within the whole data, based on a selected score ranking the proteins (e.g. p-
values, fold change). An advantage of GSEA is that no specific input list or 
background needs to be defined, rather the whole ranked data is used as an input list 
[123,124]. However, if the interest is specifcally in functional enrichment among a 
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specific group of proteins, such as the DE proteins, GSEA might not be the most 
suitable available tool.  

In addition to GO terms, pathway databases such as the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [125], Reactome [126], Biocarta [127] and the Pathway 
Interaction Database (PID) [128], can be explored for additional biological insight. A 
pathway can be described as a set of chemical reactions leading to a detectable change 
in cell state [124]. These pathway databases include a high number of various 
interaction data arising from e.g. metabolism or signaling pathways, genetic 
interactions or drug development studies [124]. Similar to the GO terms, statistical 
overrepresentation or GSEA can be used to analyze enriched pathways in the input list 
or the data in general [110,124]. Although KEGG, Reactome, PID and Biocarta can 
be considered as some of the most popular pathways databases [109,110,124], 
altogether several hundreds of databases for biological pathways exist [129]. Another 
very popular complete commercial pathway and network analysis tool with a broad 
and constantly updated functional annotation information database is the Ingenuity 
Pathway Analysis (IPA, https://www.qiagenbioinformatics.com). 

Although useful in providing biological insight and knowledge about the overall 
functionality within a group of proteins, ontological enrichment of related terms 
(such as GO) or pathways, do not provide information about the relative importance 
of specific proteins within the input list or data [120]. However, investigating the 
interactions, or the “local interactome”, within the input list in addition to functional 
enrichment, can provide additional information into the relative importance of 
proteins in the result list [120]. Network databases such as STRING [112], BioCarta 
[127] or ReactomeFIViz [130] accommodate information about the known 
experimentally detected as as well as predicted interactions between proteins. The 
STRING database includes known and predicted interactions from more than 24 
million proteins in 5090 organisms [112]. The gathered interactions from multiple 
sources are categorized according to their type (e.g. experimentally determined, co-
occurrence, text mining, etc.) and scored according to their strength [112]. Given a 
list of input proteins, STRING composes an interaction network with the proteins of 
the input list as nodes of the network and the scored interactions between the proteins 
as edges of the network. Various sorts of processing (e.g. clustering, filtering based 
on interaction strength) can be performed within the on-line tool and the network can 
be downloaded for further processing [112]. 

In publications IV and V, various functional annotation and network analysis 
tools were used to perform integrative knowledge enrichment for the detected 
proteins of interest.  

 

https://www.qiagenbioinformatics.com/
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3 Aims of the Thesis 

This thesis aims to discuss some of the major challenges related to the processing 
and analysis of label-free discovery proteomics data and suggests best practices and 
improvements where applicable. More specifically, the thesis addresses issues 
concerning: 

• Normalization of the raw data (publications I and IV). 

• Choice of the data processing software (II). 

• Missing values and imputation (II). 

• Differential expression detection in longitudinal experiments (III). 

• Knowledge enrichment for the proteins of interest (IV and V).  

Finally, on the basis of the performed research work, the thesis aims to provide 
suggestions and guidelines for a complete label-free proteomics data processing 
discovery workflow. 
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4 Materials and Methods 

4.1 Datasets 
The UPS1 dataset. The technical benchmarking dataset of [131] contains forty eight 
(48) Universal Proteomics Standard Set 1 (UPS1) proteins spiked into an unchanging 
yeast proteome background digest. Five different concentrations were used for the 
spike-in proteins: 2, 4, 10, 25 and 50 fmol/μl. For every sample, three technical 
replicate runs were analyzed using a LTQ Orbitrap Velos MS. The UPS1 
benchmarking dataset is freely available via the ProteomeXchange Consortium 
[132] partner repository, the Proteomics Identification Database (PRIDE) [133] with 
the identifier PXD002099. The UPS1 dataset was used in publications I, II and III.  

The UPS1B dataset. The technical proteomic standard dataset of [134] is similar 
to the UPS1 dataset with forty eight (48) UPS1 proteins spiked into an unchanging 
yeast proteome, but with different concentrations. For the UPS1B dataset, nine 
different concentration groups for the spike-in proteins were utilized: 0.05, 0.125, 
0.25, 0.5, 2.5, 5, 12.5, 25 and 50 fmol/μl. Again for each sample, three technical runs 
were analyzed usin a Orbitrap Velos MS. The UPS1B dataset is also openly available 
in the PRIDE [133] archive with the identifier PXD001819. The UPS1B dataset was 
used publication II. 

The CPTAC dataset. The dataset of [135] Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) Study 6 consists of forty eight (48) UPS1 proteins spiked into 
a steady yeast proteome digest in five different concentrations: 0.25, 0.74, 2.2, 6.7 
and 20 fmol/μl. For each concentration sample, three technical replicate runs were 
analyzed using a Orbitrap MS (test instrument for this dataset was located at test site 
86). The CPTAC dataset is freely available from the CPTAC-portal and was used 
for publications I, II and III.  

The SGSDS dataset. The Shotgun Standard Set Data Set (SGSDS) of [136] 
includes 12 non-human proteins spiked into an unchanging human proteome [human 
embryonic kidney cell line proteins (HEK-293)]. Eight (8) different samples with 
established concentrations of the non-human spike-in proteins in three master mixes 
were generated for the dataset and three technical replicate runs for each sample were 
analyzed using a Q Exactive Orbitrap MS in both DDA and DIA modes. In 
publications I, II and III, the DDA mode dataset was utilized for benchmarking the 
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methods. The SGSDS dataset can be freely accessed from PeptideAtlas [137] 
(username PASS00589, password WF6554orn). 

Mouse data. In addition to the spike-in datasets, a mouse dataset of [138] was 
used to evaluate the different normalization methods in publication I. The used 
mouse dataset includes liver samples from seven wild-type male mice together with 
samples from five male mice genetically modified to overexpress the aromatase 
enzyme cytochrome P450. Samples in the mouse dataset were analyzed with a LTQ 
Orbitrap Velos Pro MS. The mouse data is available from the ProteomeXchange 
repository [132] with the identifier PXD002025. 

The Francisella tularensis subspecies novicida (Fn) dataset. The Fn dataset 
used in publication III for evaluating the performance of the longitudinal 
differential expression methods, consisted of a wild type strain and three null mutant 
strains of the acyltransferase enzymes LpxD1 (D1) [139], LpxD2 (D2) and LpxL (L) 
[140]. The modified acyltransferases are related to the production of important Fn 
membrane proteins and are essential components of the Fn lipolysaccharide 
pathway. Three biological replicates in each strain were measured in five 
temperatures: 18°C, 21°C, 25°C, 32°C and 37°C. Three technical replicate runs of 
each biological sample were analyzed using a LTQ Orbitrap Elite MS. The dataset 
consisted of 180 samples in total and has been stored in the PRIDE repository with 
the identifier PXD025439. The dataset will be released upon publication of the 
manuscript in a peer-reviewed journal. Details related to the dataset can be found in 
publication III. 

The Th17 proteome profiling data. In publication IV, human peripheral blood 
mononuclear cells (PBMCs) were isolated from the umbilical cord blood of five 
healthy neonates. Naive CD4+ (Thp) cells were further purified from the isolate and 
either activated by T cell receptor (TCR) cross-linking with CD3 and CD28 
antibodies (Th0 cells) or polarized with a cytokine cocktail in combination with 
TCR/CD28 cross-linking to commence Th17 cell differentiation. A Q Exactive HF 
MS was used to analyze three technical replicate runs of each biological sample at 
24h and 72h after the onset of Th17 differentiation. Altogether 75 samples were 
analyzed. For details about the dataset, see publication IV [85]. In addition to 
publication IV, The Th17 proteome profiling data was used as a background 
reference proteome for the enrichment analysis in publication V and for an 
additional case study into normalization in this thesis. The dataset is availaible from 
the PRIDE [133] repository with the identifier PXD008973.  

The cancerous Inhibitor of protein phosphatase 2A (CIP2A) interactome. In 
publication V, white blood cells were isolated from the umblical cord blood 
received from the Turku University Hospital. Naive CD4+ T cells were further 
purified from the isolate, activated with CD3 and CD28 antibodies (Th0 cells) and 
polarized with a cytokine cocktail to initiate differentiation into Th17 cells. After 
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72h the onset of Th17 polarization, CIP2A immunoprecipitation was performed 
using two separate antibodies recognizing distint regions of CIP2A and respective 
Immunoglobulin G (IgG) antibodies for control immunoprecipetates (IP). Each of 
the IPs were analyzed from two biological replicates using a Q Exactive HF MS. The 
IP-MS data consisted of eight samples (four CIP2A IPs, four IgG controls) 
altogether. For more details about the dataset, see publication V [102]. The data was 
deposited in the PRIDE [133] archive with the identifier PXD008983. 

4.2 Normalization in proteomics 
The evaluated methods in publication I consisted of a baseline transformation and 
10 various normalization approaches [32]. The used baseline transformation was the 
log2-transformation, commonly applied for high-throughput data prior to 
normalization and/or downstream data analysis [32]. The logarithm transformation 
is typically applied for various high-throughput data to make the data more normally 
distributed for statistical testing [31,37]. Furthermore, the logarithmic 
transformation allows the variances of the observed abundance measurements to be 
less dependent on the absolute magnitude of the measured abundances [34,141], a 
phenomenon typical for both DNA microarray and MS data. Similar deviation along 
the whole intensity range is a desirable quality in data, as it enables more equal 
detection of differences within the lowly and highly expressed features alike. In 
addition, the logarithm transformation transforms multiplicative relationships 
between measurements in the data to additive, allowing for simpler models to be 
used in normalizing the data [141,142]. A base two for the logarithm transformation 
is typically used for ease of interpretation; a log2 fold change (FC) of one corresponds 
to a fold change of two, a log2 fold change of two corresponds to a fold change of 4, 
etc. [31,142]. The log2-transformed protein intensity of protein i in sample j can be 
represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖′ =  𝑙𝑙𝑙𝑙𝑙𝑙2(𝑦𝑦𝑖𝑖𝑖𝑖)   

where 𝑦𝑦𝑖𝑖𝑖𝑖 is the intensity for protein i in sample j, i=1,…,n, j=1,…,p, n is the number 
of proteins and p is the number of samples.   

Another common transformation related to high-troughput techniques and used 
especially in conjunction with normalization, is the MA transformation. The MA 
transformation is based on the MA plot, which enables an easy comparison of 
abundance levels, patterns and possible biases between two samples [37,141]. It is 
generally assumed that most features are not differentially expressed in a given high-
troughput dataset [34,141]. Under this assumption, for non-biased data or data 
properly normalized, the data points in an MA plot between the compared samples 
should be centered around the x axis (M=0) [37]. The M represents the difference 
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between the two compared samples and the A is the average of the two samples. For 
example, the A value for protein i between samples j and k is: 

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 =  
𝑦𝑦𝑖𝑖𝑖𝑖′ +  𝑦𝑦𝑖𝑖𝑖𝑖′

2
  

while the M value is: 

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑦𝑦𝑖𝑖𝑖𝑖′ −  𝑦𝑦𝑖𝑖𝑖𝑖′  

If the data points are not centered around the x axis throughout the whole length of 
the x axis (changing A values), we can assume that there is bias in the data and can 
try to correct this bias with normalization. For example, in Figure 8, it can be clearly 
observed that the samples in the unnormalized UPS1 spike-in data (Figure 8A) have 
different expression levels and a constant difference (M-values) of 1-2 for most of 
the proteins. If we were to make conclusions from the unnormalized data, we might 
detect a large number of DE proteins, which in the case of this spike-in dataset would 
be an erroneous conclusion, as the background proteins (colored black in Figure 8) 
are known to remain constant between the conditions. This bias is removed with 
normalization (Figure 8B) and the downstream conclusions are made more reliable.  

4.2.1 Evaluated normalization approaches 
The evaluated normalization approaches were roughly divided into two categories 
for this thesis: general approaches and specialized approaches. The general 
approaches are common approaches used for normalization in high-troughput data, 
whose form is not necessarily fixed and several variants of these methods can exist. 
The specialized methods on the other hand are specific algorithms or statistical 
frameworks designed specifically to normalize the data in a certain defined manner 
or to achieve a specific structure for the data. 
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Figure 8. MA-plots. An MA-plot of the 2fmol and the 25fmol samples in A) the unnormalized log2-

transformed UPS1 data, and B) the normalized UPS1 data. The stable backround 
proteins are colored black while the truly changing spike-in proteins are colored red.  
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General approaches 

Linear regression normalization (Rlr, RlrMA, RlrMACyc) 

Sometimes, the unknown bias in the data can be assumed to be linearly dependent 
on the magnitude of the observed protein abundances. This type of linear dependency 
can be caused for example by the expansion of the measured protein intensities due 
to sample carry over on a LC column [37]. To normalize for this type of bias, a linear 
regression normalization can be performed. The general form of the linear regression 
normalization can be simply described as: 

𝑦𝑦𝑖𝑖𝑖𝑖∗ =
(𝑦𝑦𝑖𝑖𝑖𝑖′ − 𝑏𝑏0)

𝑏𝑏1
 

where 𝑦𝑦𝑖𝑖𝑖𝑖∗  is the normalized abundance of protein i in sample j,  𝑏𝑏0 and 𝑏𝑏1 are the 
intercept and the slope from the fitted linear regression model, respectively.  

The linear regression normalization can be performed in multiple ways. All the 
samples can be adjusted to one another in a cyclic manner or all the samples can be 
compared to a common reference sample, typically a mean or a median sample 
[29,33,36]. In publication I, variants of linear regression normalization approaches 
using a median reference sample (Rlr and RlrMA) as well as a cyclic approach 
(RlrMACyc) were evaluated. In the RlrMACyc approach, no predefined reference 
array was defined but instead the MA transformation and the normalization was 
always performed pairwise between two samples [32]. All samples were iterated in 
this way and the cycle was repeated three times, observed to be enough to reach 
convergence between iteration cycles [33,36]. In the RlrMA and the RlrMACyc 
approaches the data was MA transformed prior to normalization. 

Local regression normalization (LoessF, LoessCyc) 

In addition to being linear in nature, the bias in the data can also be non-linearly 
dependent on the observed protein abundances. A non-linear bias in the protein 
abundances can occur e.g. when the peptide abundances near the detection saturation 
limit of the instrument or by ion suppression effects [37]. One approach to account 
for a non-linear bias is local regression (loess) normalization [37,143]. In local 
regression, linear regression curves are fit locally to selected subpopulations or 
neighborhoods of proteins in the sample to predict for the normalized protein 
abundances. Similar to the linear regression approaches, variants of loess using a 
common average reference sample (LoessF) and a pairwise cyclic loess variant 
(LoessCyc) were explored. Loess was performed by using the loess normalization 
functions [144] included in the limma-package [91]. The data was MA transformed 
prior to the loess normalizations [32].  



Materials and Methods 

 41 

Median normalization (Median) 

If the samples in the data are assumed to differ by a constant factor, the data can be 
normalized using a median normalization. Such a constant difference between the 
samples can occur for example due to different masses of peptides injected from 
different samples into the MS system [37]. With median normalization, the samples 
are scaled to have the same median, typically 0 or the median or mean of median 
intensities of the samples [29]. The median normalized intensity for protein i in 
sample j then becomes: 

𝑦𝑦𝑖𝑖𝑖𝑖∗ = (𝑦𝑦𝑖𝑖𝑖𝑖′ −𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦𝑖𝑖′)) + 𝑐𝑐 

where 𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦𝑖𝑖′) is the median intensity over all the protein intensities in sample j 
and c is the level where the new medians of each sample are adjusted to, such as the 
mean of median intensities: 

𝑐𝑐 =  
∑ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦𝑖𝑖′)
𝑝𝑝
𝑖𝑖=1

𝑝𝑝
 

where 𝑝𝑝 is the number of samples. Median normalization has been observed to be 
effective in practice when analyzing MS-data [145].  

Specialized approaches 

Quantile normalization (Quantile) 

The quantile normalization is another evaluated normalization method developed 
first for DNA microarrays [33]. The quantile normalization is a non-parametric 
method and makes no assumptions about the specific nature of the bias, but instead 
aims to make the distributions of the samples in the data similar [33]. The quantile 
normalization for matrix M (n x p) consisting of n proteins and p samples can be 
summarized in a few steps: 

 
1) Each sample j of the matrix M is ordered into ascending order based on the 

protein intensity values in the sample to get the sorted dataset matrix 
Msorted. 

2) The intensity values in row 1 in each sample j of the ordered dataset Msorted 
are replaced by the mean intensity value over all the samples in row 1. The 
same procedure is repeated for all the rows of Msorted. 

3) The normalized protein intensities are obtained by reorganizing the rows of 
each sample j in Msorted into the same order as in sample j in the original 
matrix M. 
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Variance stablization normalization (Vsn) 

As mentioned earlier in this chapter, the variances of the observed protein 
abundances are typically dependent on the magnitude of the abundances in the 
untransformed data [34,141]. The variance stabilization normalization (Vsn) is a 
complete statistical method replacing the logarithm transformation. Vsn was first 
introduced for DNA microarrays by [34]. Vsn aims at making the samples of the 
data more comparable by transforming the data in a manner decreasing the 
dependence between the variances and the magnitude of abundances [34].  While the 
mean-variance dependence is accounted through a set of parametric transformations, 
the samples are simultaneously normalized to the same scale through a collection of 
linear mappings [34]. A detailed description of the method can be found in [34]. 

EigenMS Normalization (EigenMS) 

Similar to the quantile normalization, EigenMS does not make any specific 
assumptions about the nature of the bias in the data [30]. The EigenMS normalization 
follows the approach of the surrogate variable analysis (SVA) [146], where the 
essential steps include [30]: 

 
1) Composition of a model for protein expression to estimate the effects of 

the experimental factors using knowledge about the experimental design. 
2) Singular value decomposition (SVD) on the model residuals to explore 

systematic trends remaining in the unexplained variation. 
3) Use of the observed additional trends in the residuals as factors to be 

adjusted for in the downstream inferential model. 

EigenMS adopts the approach of SVA, developed for microarrays [146], into the 
proteomics environment and further complements it with a rescaling algorithm. In 
the rescaling part, the systematic variability removed by the normalization method 
is replaced by a small amount of random variation. This rescaling is done in order to 
achieve approximately the correct number of degrees of freedom to be able to 
calculate valid significance values for the normalized data in the downstream 
analysis [30]. The EigenMS normalization aims in conserving the original group 
level differences in the data while removing the technical bias. Details about the 
method can be found in [30]. 

Progenesis normalization (Progenesis) 

As Progenesis was used to process the data in this study, Progenesis normalization 
was also included in the comparison. The Progenesis normalization is similar to the 
median normalization; a global normalization factor is calculated to normalize 
between the samples. An automatically selected representative reference sample is 
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used to calculate this scaling factor. More information about the normalization 
procedure provided by the software can be acquired from the Progenesis website 
(http://www.nonlinear.com/progenesis/qi-for-proteomics/v3.0/faq/how-normalisation-
works.aspx). 

4.2.2 Evaluation of normalization 
Typically, the normalization methods in proteomics have been evaluated in their 
ability to decrease intragroup variation [29,36,37]. The examined sample groups 
might be composed of technical or biological replicates. Especially in the case of 
technical replicates, decreased intragroup variation indicates successful 
normalization, as unwanted technical variation is removed from the data. There are 
multiple ways to visualize the effect of normalization on data. Some common plot 
types to explore the need and effect of normalization include boxplots (Figure 4), 
MA plots (Figure 8), scatter plots (Figure 9A-B) and quantile-quantile plots (Figure 
9C-D). 

In publication I, the normalization methods were evaluated in their ability to 
decrease intragroup variation between technical and biological replicates. The UPS1, 
CPTAC and SGSDS spike-in datasets introduced in chapter 4.1, were used to 
evaluate the normalization methods ability to decrease unwanted intragroup 
variation between the technical replicates. In addition to the spike-in datasets, the 
experimental proteomics mouse dataset of [138] (chapter 4.1) was used to explore 
the ability of the normalization methods to decrease intragroup variation between 
biological replicates. As variability measures, the intragroup pooled median absolute 
deviation (PMAD), intragroup pooled coefficient of variance (PCV) and intragroup 
pooled estimate of variance (PEV) were used. 

http://www.nonlinear.com/progenesis/qi-for-proteomics/v3.0/faq/how-normalisation-works.aspx
http://www.nonlinear.com/progenesis/qi-for-proteomics/v3.0/faq/how-normalisation-works.aspx
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Figure 9. Scatter plots of the 2 fmol and the 10 fmol samples in the A) unnormalized UPS1 data, 

B) normalized UPS1 data. The background proteins are colored in black and the spike-
in proteins in red. Quantile-quantile plots of the 2 fmol and 10 fmol samples in the C) 
unnormalized UPS1 data, D) normalized UPS1 data.  

The PMAD for sample group l consisting of technical or biological replicates 
can be simply defined as: 

𝑃𝑃𝑀𝑀𝐴𝐴𝑃𝑃𝑙𝑙 =  
∑ 𝑀𝑀𝐴𝐴𝑃𝑃𝑖𝑖𝑙𝑙𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

where 𝑀𝑀𝐴𝐴𝑃𝑃𝑖𝑖𝑙𝑙 is the median absolute deviation (MAD) for proteins i=1,…,n in 
sample group l and n is the number of proteins in the data. PCV for sample group l 
is defined as the mean coefficient of variation (CV) over all the proteins i=1,…,n: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙  =  
∑ 𝑃𝑃𝑃𝑃𝑖𝑖𝑙𝑙𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 

where the 𝑃𝑃𝑃𝑃 for protein i in sample group l is: 

𝑃𝑃𝑃𝑃𝑖𝑖𝑙𝑙 =  
𝑠𝑠(𝑦𝑦𝑖𝑖𝑙𝑙∗ )
𝑚𝑚�𝑦𝑦𝑖𝑖𝑙𝑙∗ �
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𝑠𝑠(𝑦𝑦𝑖𝑖𝑙𝑙∗ ) is the standard deviation and 𝑚𝑚(𝑦𝑦𝑖𝑖𝑙𝑙∗ ) is the mean of the normalized protein 
abundances for protein i across the samples in sample group l.  PEV is defined as the 
mean of variances in sample group l over all the proteins i=1,…,n : 

𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙 =  
∑ (𝑠𝑠(𝑦𝑦𝑖𝑖𝑙𝑙∗ )2)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

where 𝑠𝑠(𝑦𝑦𝑖𝑖𝑙𝑙∗ )2is the variance of protein i across the samples in sample group l.  
As the aim of many proteomics experiments is to detect differentially expressed 

(DE) proteins between the experimental conditions, the effect of the normalization 
method on the correct definition of the DE proteins is typically of utmost interest for 
the researcher. While [36] explored the effect of a few normalization methods on the 
number of the DE proteins detected, no prior comprehensive evaluation of the effect 
of the normalization method to the validity of the detected DE proteins had been 
performed. Therefore, in addition to examining the normalization methods ability to 
decrease intragroup variation, we evaluted how well true differential expression 
could be detected from data normalized with the different methods in publication I 
[32]. As explained in the definitions chapter, the TPs (spike-in proteins) and the TNs 
(background proteins) are known in the spike-in datasets, enabling the benchmarking 
of the methods with a receving operator characteristic (ROC)-curve analysis (see the 
definitions chapter). The area under the ROC-curve (AUC) then describes how 
correctly true differential expression could be detected from data normalized with 
the different methods. Furthermore, it was evaluated how well the true known fold 
change (FC) between the examined samples could be estimated from the data 
normalized with the different methods. As the data was logarithm transformed prior 
to normalization and the results were examined on the log2 transformed scale, 
logarithmic fold change (logFC) was used instead of FC. The logFC of protein i 
between sample j and sample k was defined as: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖∗ −  𝑦𝑦𝑖𝑖𝑖𝑖∗  

Finally, as the data can be normalized in various ways depending on the samples 
examined, it was evaluated whether the stage in which the data is normalized had a 
major effect on the performance of the methods. It was explored whether performing 
the normalization globally on the whole data or normalizing only the examined 
samples separately in each examined comparison, had a major effect on the 
performance of the normalization methods.  

4.2.3 An additional case study into normalization 
The data in publication IV consisted of discovery work into the cellular proteome 
during Th17 cell polarization using a quantitative label-free DDA proteomics 
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approach. The proteome profiles of CD4+ human T cells, CD3/CD28 activated T 
(Th0) cells, and Th17 cells were explored at 24h and 72h after the initiation of the 
polarization [85] (chapter 4.1).  

As opposed to the work performed related to publication I and the spike-in 
datasets with relatively few DE proteins, there were considerable changes in protein 
expression in the Th17 proteome of publication IV during the polarization process 
(Figure 10A). Exploration of the non-normalized data of publication IV indicated 
a clear need for normalization (Figure 10B-D). While Progenesis was used to 
process the data for evaluating the normalization methods in publication I, 
MaxQuant [42] was used to analyze the Th17 quantitative proteomics data [87] for 
publication IV. Based on the experiences gained from publications I and II, it was 
known that different normalization methods varied in their performances but also 
different software workflows resulted in data from which the truly DE proteins could 
be detected with varying accuracies. Due to these reasons, Vsn, LoessF and Median 
normalizations, each noted to perform consistently in the evaluation work of 
publication I and represent different approaches into normalization, were explored 
together with the MaxQuant innate normalization method MaxLFQ [18] in order to 
choose the most suitable normalization approach for the data in publication IV.  

The MaxLFQ algorithm [18] is a combined strategy for normalization and 
protein quantification implemented in the MaxQuant software [42]. MaxLFQ allows 
for the normalization of samples in large proteome wide experiments even when the 
samples are fractionated prior to the MS analysis [18]. The algorithm determines a 
normalization coefficient for each sample based on the extracted ion chromatograms 
(XIC) for the peptides. It is assumed that the majority of the peptides do not change 
between the samples and the normalization coefficients are optimized as such that 
the changes in XIC between the samples are minimized for the bulk of the peptides. 
In addition to normalizing the samples, MaxLFQ aims to estimate protein quantities 
as accurately as possible [18]. Protein quantities are calculated by determining 
pairwise protein ratios between all samples using only the common peptides present 
in both evaluated samples. A median ratio over all the common peptide ratios for a 
protein is used as a representative protein ratio between the examined samples. A 
least squares approach is then used to calculate the LFQ protein intensities from the 
matrix of pairwise protein ratios over all the samples. In addition to the LFQ 
approach, protein intensities in MaxQuant can be calculated using the intensity-
based absolute quantification (IBAQ) method [57], where peptide intensities for a 
protein in the given sample are summed up and divided by the number of theoretical 
peptides for the given protein. Even though assuming that most proteins remain 
unchanged, the authors report good performance using the LFQ approach even when 
30% of the proteome was changing [18]. To compare to the MaxLFQ normalized 
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data, IBAQ data from MaxQuant was extracted and normalized with the previously 
mentioned selected best approaches from publication I.  

 
Figure 10. A) Correlation heatmap of the data in publication IV. Pearson correlation coefficients 

have been calculated pairwise between all samples. The samples are clustered using 
hierarchical clustering with complete linkage. B) Distributions of the samples as 
boxplots. Samples are colored according to sample groups in the data. MA-plots 
between the C) Th0 sample for replicate 1 at 24h and Th17 sample for replicate 1 at 
24h and D) Th17 sample for replicate 3 at 24h and Th17 samples for replicate 5 at 72h. 
The red curve represents a loess fit between the M and A values. For all visualizations, 
the data has been log2-transformed and the technical replicates for each biological 
replicate have been averaged.  

4.3 Label-free proteomics data processing 
software tools 

Evaluation and comparison of the software workflows in publication II was 
performed using common settings as much as possible in the different evaluated 
software. Within each software workflow, the proper level of instrumentation was 
selected. The same spike-in datasets and FASTA files were used for each software 
[60]. The UPS1, CPTAC, SGSDS and UPS1B spike-in datasets (chapter 4.1) were 
used to evaluate the performance of the different software. Furthermore, the same 
search modification, digestion enzyme, peptide length, precursor and fragment mass 
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tolerance settings were used for all the software workflows. Peptides unambiguously 
mapping to one protein (non-conflicting peptides) were used in calculating the 
relative protein-level abundances. Non-normalized protein intensities were extracted 
from each software workflow and normalized with the Vsn normalization previously 
detected to perform well with proteomics data in publication I [32]. 

4.3.1 Evaluated label-free software workflows  

Commercial solutions 

Peaks 

Peaks Studio is a complete commercial proteomics software workflow. The Peaks 
Studio software package contains multiple specialized tools for various analysis 
purposes. PEAKS DB [46] is a database searching tool with incorporated de novo 
sequencing included in the Peaks Studio software. Peptides with unspecified single 
amino acid mutations can be searched using the SPIDER [51] search tool. In 
addition, PEAKS PTM can be used to search proteins and peptides with unspecified 
post translational modifications [147]. In publication II, Peaks was allowed to 
automatically identify the reference sample and align the runs.  

Progenesis 

Progenesis is a commercial proteomics quantification workflow. The Mascot [11] 
search engine within the Thermo Fisher provided software Proteome Discoverer was 
used to produce the peptide and protein identifications imported into Progenesis. 
Progenesis was allowed to perform automatic alignment of the MS runs. 
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Freeware and open source solutions 

MaxQuant  

MaxQuant [42] is a popular non-profit complete proteomics software workflow. 
MaxQuant uses its own built-in Andromeda [14] search engine to identify the 
peptides and the proteins. Quantification in MaxQuant is performed using either the 
IBAQ [148] method or the LFQ [18] as described in chapter 4.2.3. For this 
comparison, the IBAQ method was used to allow for the normalization of the data 
with the Vsn normalization. MaxQuant was allowed to automatically align the runs 
and transfer identifications between the runs. 

OpenMS 

OpenMS is an open source software environment for MS data processing 
algorithms [41]. OpenMS is fully modular; the user can combine various modules 
to construct a desired workflow. Workflows can be constructed for different 
types of MS-data with the use of distinct modules. Toppas [149] (Figure 6) is a 
graphical workflow editor which can be applied in building the OpenMS 
workflows instead of the command line user interface. Several related suitable 
algorithms, such as PeakPickerHiRes, BaselineFilter, FeatureFinderCentroided, 
MapAlignerPoseClustering, FeatureLinkerUnlabeledQT and ProteinQuantifier, 
were used to construct a full label-free proteomics workflow with identification and 
quantification. The X!tandem [12] and MS-GF+[13] search engines were used to 
identify the peptides and the proteins. The MapAlignerPoseClustering algorithm was 
allowed to automatically select a reference run and align the samples.  

Proteios 

Proteios [45,150] is another open source modular proteomics software environment. 
Proteios is designed to operate in a server environment and to be a repository in 
which all the metadata as well as the actual experimental data can be stored and 
managed in addition to performing various analyses on the data [45]. Analogous to 
OpenMS, distinct algorithms for different analysis tasks can be plugged into the 
Proteios environment [45]. X!Tandem [151] and MS-GF+ [13] were used to identify 
the peptides and the proteins similar to OpenMS. The Dinosaur [39] algorithm was 
used for feature detection and the innate Proteios alignment algorithm [43] to 
automatically align the runs. 

4.3.2 Evaluation of the label-free software workflows 
Similar to the evaluation of the normalization methods (chapter 4.2.2), ROC-curve 
analysis and the related partialAUC (pAUC) values (for the definition of pAUC, see 
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definitions chapter) were used in evaluating the different softwares’ ability to 
correctly detect the truly DE proteins. The ROC curves were drawn both over all the 
pairwise comparisons in each dataset and also separately for each pairwise 
comparison of sample groups in each dataset. The associated pAUC values were 
calculated for all the ROC curves.  

The known true fold changes in the different comparisons of the spike-in datasets 
were used to evaluate each software’s ability in estimating the fold changes. The 
mean squared error (MSE) between the estimated LogFCs and the true known 
LogFCs were calculated for each software workflow. The MSEs for the spike-in 
proteins and the non-changing background proteins were calculated separately for 
each pairwise comparison for each software workflow. The MSE for the spike-in or 
the background proteins in a given comparison for a software was calculated as: 

𝑀𝑀𝑀𝑀𝑃𝑃 =  
∑ �𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 −  𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑛𝑛𝑘𝑘𝑘𝑘𝑛𝑛𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

where n is the number of evaluated proteins. 

4.4 Missing values and imputation in label-free 
proteomics 

4.4.1 Evaluated imputation methods 
The evaluated imputation methods in publication II were divided into four 
categories for this thesis based on their approach to imputation/missing values: single 
value approaches, local similarity approaches, global structure approaches and 
filtering approaches.  

Single value approaches 

Zero imputation (zero) 

The missing values in the data were replaced with zeros. Typically, the Progenesis 
software does not produce missing values but sometimes produces zero values, 
indicating non-existent expression. The zero imputation implemented a similar 
approach, assuming values are missing due to non-existent expression.  

Background imputation (back) 

The missing values in the data were replaced with the minimum detected value. This 
approach is similar to the MinDet approach of [61] and assumes most of the missing 
values are abundance dependent MNARs.  
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Censored imputation (censored) 

Censored imputation is a more sophisticated variant of the background imputation. 
If a protein in a sample group had only one missing value, it was consired as MCAR 
and no value was imputed for it. However, if more than one missing value for a 
protein in a sample group were detected, they were considered as MNAR and similar 
to the background imputation, a minimum detected value was imputed for them.  

Local similarity approaches 

Local least squares imputation (lls) 

For each imputable protein i, the k most similar proteins were selected using the 
Pearson’s correlation coefficient [152]. Least squares regression was then used to 
estimate the missing values as a linear combination of the non-missing values from 
the k most similar proteins. A value of 150 was used for k, observed to be suitable in 
most cases by [153–155]. 

K-nearest neighbor imputation (knn) 

Similar to the lls imputation, k  most similar proteins (nearest neighbours) for the 
imputable protein i were first selected [156]. Similarity was inferred using the 
Euclidean distance metric. A weighted average over the values of the k nearest 
neighbours in the imputable sample j was used to impute a value for protein i in 
sample j. Similarity of the k nearest neighbours and protein i was inferred using other 
samples than the imputable sample j. A value of 10 for k was used, previously 
observed to deliver good performance by [156]. 

Global structure approaches 

Bayesian Principal Componet Analysis (bpca) 

The Bayesian Principal Component Analysis (BPCA) is a global structure based 
imputation developed first for microarray data [157]. The BPCA algorithm consists 
of three parts combined together: principal component regression, Bayesian 
estimation and an expectation maximization like Variational Bayes (VB) algorithm. 
Estimates for the missing values and parameters for the model, such as scores for the 
principal components are repetitively updated using the VB algorithm until 
convergence. Orthogonality between the principal components is not enforced by the 
VB algorithm [152]. The principal components in BPCA are scaled differently than 
in standard PCA [152]. Such different scaling suppresses redundant components but 
can lead to unreliable estimates in the case of small numbers of observations. 
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Singular value decomposition imputation (svd) 

Similar to PCA, the data is reduced to a set of mutually orthogonal expression 
patterns, the principal components, using singular value decomposition (SVD) 
[152,156]. Protein i with missing values was then regressed against the k most 
significant principal components or eigenproteins [156]. Sample j with a missing 
value for protein i was not used in the regression.  The coefficients of the regression 
were used to determine a value for sample j in protein i as a linear combination of 
the k eigenproteins for sample j. A proportion of 20% of the eigenproteins have been 
previously observed to be a suitable value for k [156] and was also used as k for SVD 
in publication II. 

Filtering approaches 

Basic filtering (filtered) 

A strict filtering was applied where all proteins having more than one missing value 
in any sample group were removed. Each sample group consisted of three technical 
replicates. Thus, a protein was required to have two valid non-missing values in each 
sample group to remain in the analysis.  

Filtering + local least squares imputation (filtlls) 

In this approach, filtering was first performed as in the filtered approach followed by 
imputation of the remaining missing values with the lls imputation.   

4.4.2 Evaluation of the imputation approaches 
The imputation and filtering approaches were evaluated together with the label-free 
software data processing software workflows (chapter 4.3) in publication II. Each 
imputation method was benchmarked with each of the five evaluated software in all 
pairwise comparisons of the UPS1, CPTAC, SGSDS and UPS1B datasets (chapter 
4.1). ROC-curves over all the pairwise comparisons in each dataset for each 
imputation approach were drawn and the related pAUC values were recorded. The 
pAUC values of the imputation methods were ranked within each dataset and each 
software. An overall mean rank for each imputation method was calculated over all 
the examined datasets and software.  
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4.5 Longitudinal differential expression in 
proteomics 

4.5.1 Evaluated longitudinal differential expression 
approaches 

The evaluated methods in publication III were divided into four types for this thesis 
according to their origin: the baseline method, specialized longitudinal DE methods 
for high-throughput data, general regression modelling approaches and the new 
proposed solution.  

Baseline method 

Reproducibility Optimized Test Statistic (BaselineROTS) 

ROTS [158] is a differential expression method observed to perform well on multiple 
platforms [32,131,159–161], especially in controlling type 1 errors [162]. ROTS 
maximizes the reproducibility of the top differentially expressed features with group 
preserving bootstraps [158]. ROTS was used as a baseline method for benchmarking 
the evaluated longitudinal methods. Differential expression between the conditions 
was examined at each timepoint and the minimum significance value over all the 
timepoints was recorded as the representative significance value for each protein.  

Specialized longitudinal DE methods 

Bayesian Estimation of Temporal Regulation (BETR) 

Bayesian Estimation of Temporal Regulation is a longitudinal differential expression 
method developed for the analysis of timecourse DNA microarray data already a 
decade ago [90]. BETR accounts for the correlation in expression between the 
timepoints. Timepoints closer to each other are assumed to be more similar than 
those further apart. For each feature, two models are fitted. The first model assumes 
no differential expression between the examined conditions, while the second model 
considers timepoint correlated differential expression. The Bayes’ rule is used to 
determine the probabilities of the features comings from either of these models. 

Linear models for microarray data (Limma, LimmaSplines_L, LimmaSplines_H) 

Limma is a well-established analysis toolkit developed for microarray and RNASeq 
data [91]. At the core of Limma are linear models, which can be utilized in several 
ways to assess differential expression. In publication III, Limma with two different 
strategies for detecting differential expression were applied. Similarly to [163], the 
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first option (Limma) included designing the coefficient vector for the linear models 
in a way that each timepoint and condition combination was represented by a 
separate coefficient. Next, the examined contrasts of coefficients were defined to 
reflect the differences in expression between the conditions at each timepoint. 
Finally, it was investigated whether all the separate timepoint contrasts are zero, i.e. 
if differential expression at any timepoint between the conditions exists. The second 
option (LimmaSplines) involved fitting polynomial regression splines for each 
protein and exploring the condition related coefficients [91].  

Microarray Significant Profiles (MaSigPro_L, MaSigPro_H) 

Microarray Significant Profiles (MaSigPro) was first designed for the analysis of 
longitudinal DNA microarray experiments by [92]. Subsequently, MaSigPro has 
been further developed to incorporate the analysis of timecourse RNASeq data [164]. 
As proteomics data resembles more DNA microarray data than RNASeq data, the 
performance of the original MaSigPro in the detection of longitudinal differential 
expression in label-free proteomics data was explored. MaSigPro uses a two-step 
regression strategy where the significantly longitudinally differentially expressed 
features are first identified using generally defined polynomial regression models. 
Secondly, the relevant variables (e.g. time, condition, time*condition) are identified 
separately for each feature using a stepwise regression approach [92]. Dummy 
variables are used to encode the polynomial regression models. While the overall 
time-associated changes in expression over both (all) conditions is explored by 
MaSigPro by default [92], only the condition associated coefficients of the results 
were utilized, as the focus was on longitudinal differential expression between the 
conditions, not on overall longitudinal changes.  

Timecourse 

Similar to BETR, Timecourse applies a Bayesian framework in detecting 
longitudinal differential expression [165]. Timecourse uses the Maxwell–Boltzmann 
and/or the Hotellings t2 -statistics through a multivariate empirical Bayes approach 
in ranking the features. Correlations in expression between time points and 
individual/replicate variances are considered. Furthermore, Timecourse estimates 
differential expression over all the features simultaneously, borrowing information 
across features to better estimate the variance-covariance matrices.  
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General regression modelling approaches 

Linear mixed effects regression modelling (Lme) 

Together with the specifically designed longitudinal DE methods, several regression 
based modelling approaches for detecting longitudinal differential expression were 
explored in publication III. Linear regression is a simple approach, where the 
expression is assumed to change in a linear fashion over time. Differential expression 
with linear regression can be investigated by examining the intercept and the slope 
at different levels of a condition related categorical factor included in the model.  

Individual variation in the baseline and longitudinal expression can be taken into 
consideration by using random effects and the mixed modelling approach. Linear 
mixed modelling has been a popular approach in modelling longitudinal data 
[88,166,167]. In publication III, the linear mixed effects modelling approach was 
explored via two variants: 1) allowing an individual baseline for the replicates but 
using a common slope and 2) allowing an individual specific slope in addition to the 
individual baseline. The first linear mixed effects model variant with an individual 
baseline and a common slope for a protein was defined as: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛾𝛾𝑘𝑘𝑐𝑐 + 𝛾𝛾1𝑐𝑐 ∙ 𝑡𝑡 +  𝛿𝛿0𝑟𝑟 + 𝜀𝜀 

where 𝛽𝛽0 is the intercept, 𝛽𝛽1 is the linear time-related slope over both conditions and 
all the replicates, 𝛾𝛾𝑘𝑘 is the condition (c) related intercept, 𝛾𝛾1 is the condition related 
linear slope for the protein,  𝛿𝛿0𝑟𝑟~𝑁𝑁(0,𝜎𝜎0𝑟𝑟2 ), 𝑟𝑟 =  1, … ,ℎ is the random effect for the 
individual/replicate-specific baseline, h is the number of replicates and 𝜀𝜀 is the 
remaining error variation. The average condition related differences in longitudinal 
expression can be examined by investigating 𝛾𝛾𝑘𝑘 and differences in linear longitudinal 
expression patterns between the conditions by investigating 𝛾𝛾1. In the case of the 
second model variant, a random effect term 𝛿𝛿1𝑟𝑟𝑡𝑡, 𝛿𝛿1𝑟𝑟~𝑁𝑁(0,𝜎𝜎1𝑟𝑟2 ), 𝑟𝑟 =  1, … ,ℎ, 
describing the individual specific longitudinal linear experession (slope), was added 
to the model:  

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛾𝛾𝑘𝑘𝑐𝑐 + 𝛾𝛾1𝑐𝑐 ∙ 𝑡𝑡 +  𝛿𝛿0𝑟𝑟 +  𝛿𝛿1𝑟𝑟𝑡𝑡 + 𝜀𝜀 

For each protein with enough information to determine both model variants, a 
likelihood ratio test was performed to explore if the more complex second variant 
yielded a significantly better fit. If the fit for the second variant was not significantly 
better, the first model variant was used.  

Polynomial mixed effects modelling (Pme_L, Pme_H) 

A polynomial regression model enables the detection of more complex longitudinal 
trend differences between the conditions. Similar to the linear mixed effects 
modelling approach, two model variants for each protein were inspected in 
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publication III. The first variant utilized random effects only for the replicate-
specific baseline, while the second variant allowed a random effect also for the linear 
term. Mixed models incorporating higher order random effects were typically 
unavailable due to insufficient information to define such models in the short time 
series data with only few replicates and were thus excluded from the analysis. The 
first polynomial mixed effects model variant was defined as: 

𝑦𝑦 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑡𝑡𝑖𝑖
𝑒𝑒

𝑖𝑖=1

+ 𝛾𝛾𝑘𝑘𝑐𝑐 +�𝛾𝛾𝑖𝑖𝑐𝑐 ∙ 𝑡𝑡𝑖𝑖
𝑒𝑒

𝑖𝑖=1

+  𝛿𝛿0𝑟𝑟 + 𝜀𝜀 

and the second variant as: 

𝑦𝑦 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑡𝑡𝑖𝑖
𝑒𝑒

𝑖𝑖=1

+ 𝛾𝛾𝑘𝑘𝑐𝑐 +�𝛾𝛾𝑖𝑖𝑐𝑐 ∙ 𝑡𝑡𝑖𝑖
𝑒𝑒

𝑖𝑖=1

+  𝛿𝛿0𝑟𝑟 +  𝛿𝛿1𝑟𝑟𝑡𝑡 + 𝜀𝜀 

where d is the degree of the polynomial. Similar to the linear approach, longitudinal 
differential expression can be examined by investigating 𝛾𝛾𝑘𝑘 and  𝛾𝛾𝑖𝑖 for the different 
polynomial degrees. For each protein, the second variant with random effects also 
for the linear term, was selected only if it resulted in a significantly better fit than the 
first variant. For all the polynomial regression models, orthogonal polynomials were 
used. As typically, the polynomials of different degree are highly correlated, 
orthogonal polynomials can decrease such collinearity and allow for a more 
independent exploration of coefficients of different polynomial degree within the 
same model [168,169].  

Two levels of model complexity were explored for each longitudinal differential 
expression approach based on polynomial regression (LimmaSplines, MaSigPro and 
Pme). Less complex models with t/2 degrees were explored together with more 
complex models of t-1 degrees, where t was the number of time points. The less 
complex models are denoted with the extension _L in the results section while the 
more complex models are denoted with an _H extension, respectively.  To detect any 
condition related longitudinal differential expression, a representative significance 
value for each protein was selected as the minimum over all the condition coefficient 
related significance values of the protein for MaSigPro, LimmaSplines and the 
regression modelling approaches. 

The new proposed approach, Robust longitudinal Differential Expression 
(RolDE) 

In high-throughput data, especially in proteomics data, there is typically a great deal 
of noise in addition to the true biological signal. Such noise variation renders the 
differential expression methods subjective to false detections and complicates the 
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detection of the true signal. The new method, RolDE, is a composite method, 
consisting of three independent modules with different approaches to detecting 
differential expression. The combination of these diverse modules allows RolDE to 
robustly detect varying changes in longitudinal trends and expression levels in 
different data types and experimental settings. 

The RegROTS module merges the power of regression modelling with the power 
of the established differential expression method ROTS [158,170]. A polynomial 
regression model for longitudinal protein expression is fitted separately for each 
replicate (individual) in each condition. Differential expression for a protein between 
two replicates, r1 and r2, in different conditions c1 and c2, is then examined by 
comparing all the coefficients of the corresponding degrees of the replicate-specific 
regression models: 

Δ𝛽𝛽𝑟𝑟1𝑐𝑐1𝑟𝑟2𝑐𝑐2 = �𝛽𝛽0𝑟𝑟1𝑐𝑐1 −  𝛽𝛽0𝑟𝑟2𝑐𝑐2  ,𝛽𝛽1𝑟𝑟1𝑐𝑐1 −  𝛽𝛽1𝑟𝑟2𝑐𝑐2 , … ,𝛽𝛽𝑒𝑒𝑟𝑟1𝑐𝑐1 −  𝛽𝛽𝑒𝑒𝑟𝑟2𝑐𝑐2  � 

where Δ𝛽𝛽𝑟𝑟1𝑐𝑐1𝑟𝑟2𝑐𝑐2  are all the coefficient differences between the replicate-specific 
models of r1 in c1 and r2 in c2 and d is the degree of the polynomial regression. If all 
coefficient differences are zero, no longitudinal differential expression between the 
two replicates in different conditions exist. For a thorough exploration of differential 
expression between the conditions, all possible combinations of replicates in 
different conditions are examined. The null hypothesis for a protein becomes: 

𝐺𝐺1 =  𝐺𝐺2 = , … , =  𝐺𝐺(𝑒𝑒+1) = 0 

where 𝐺𝐺1 are the coefficient differences between all the replicate-specific models in 
the different conditions related to the intercept and 𝐺𝐺2, … ,𝐺𝐺(𝑒𝑒+1) are all the 
coefficient differences related to different polynomials of the regression models. 
Using multigroup ROTS, the coefficient differences over all the proteins are 
investigated simultaneously. To preserve the proper degrees of freedom for statistical 
testing, multiple runs are typically required, so that each replicate in each condition 
is used only once in each run, when all possible comparisons between the replicates 
in the different conditions are performed. The different RegROTS runs are combined 
by using the rank product. The final score for protein in the RegROTS module then 
becomes: 

𝑀𝑀𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��𝑅𝑅𝑖𝑖

𝑞𝑞

𝑖𝑖=1

� 
1
𝑞𝑞 

where 𝑅𝑅𝑖𝑖 is the rank of the protein in run i and q is the number of runs.  
In the DiffROTS module, the expression of the replicates in the different 

conditions are directly compared at all timepoints. Differential expression for a 
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protein between two replicates, r1 and r2, in different conditions c1 and c2, is 
examined simply by: 

Δ𝑦𝑦𝑟𝑟1𝑐𝑐1𝑟𝑟2𝑐𝑐2 = �𝑦𝑦1𝑟𝑟1𝑐𝑐1 −  𝑦𝑦1𝑟𝑟2𝑐𝑐2 , … ,𝑦𝑦𝑒𝑒𝑟𝑟1𝑐𝑐1 −  𝑦𝑦𝑒𝑒𝑟𝑟2𝑐𝑐2  � 

where Δ𝑦𝑦𝑐𝑐1𝑟𝑟1𝑐𝑐2𝑟𝑟2 are the differences in the normalized protein expression between 
r1 in c1 and r2 in c2 at all timepoints, 𝑦𝑦1𝑟𝑟1𝑐𝑐1  is the expression of the protein for r1 in 
c1 at timepoint 1 and t is the number of timepoints. If the expression level differences 
at all timepoints are zero, no differential expression between the examined replicates 
in different conditions exist. Similarly to the RegROTS module, differential 
expression is examined between all possible combinations of replicates in the 
different conditions. As with the RegROTS module, multigroup ROTS is used to 
examine differential expression over all the proteins simultaneously. The groups for 
multigroup ROTS now consist of all the expression level differences at different 
timepoints (e.g. 𝐺𝐺1 for all the expression level differences for a protein at timepoint 
1, 𝐺𝐺2 at timepoint 2, etc.). Similar to RegROTS module, the possible comparisons 
between all the replicates in the different conditions are divided into multiple runs 
so that each replicate is used only once in each run and the different runs are 
combined via the rank product for a final score for the DiffROTS module: 

𝑀𝑀𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��𝑅𝑅𝑖𝑖

𝑞𝑞

𝑖𝑖=1

� 
1
𝑞𝑞 

The PolyReg module uses polynomial regression to explore differences in 
longitudinal expression between the conditions. The expression y for a protein in the 
PolyReg module is described as: 

𝑦𝑦 = 𝛽𝛽0 +�𝛽𝛽𝑖𝑖𝑡𝑡𝑖𝑖
𝑒𝑒

𝑖𝑖=1

+ 𝛾𝛾𝑘𝑘𝑐𝑐 + �𝛾𝛾𝑖𝑖𝑐𝑐 ∙ 𝑡𝑡𝑖𝑖
𝑒𝑒

𝑖𝑖=1

+ 𝜀𝜀 

The average condition related differences in longitudinal expression can again be 
examined by exploring 𝛾𝛾𝑘𝑘 and differences in longitudinal expression patterns 
between the conditions by exploring 𝛾𝛾𝑖𝑖 , 𝑗𝑗 = 1, … ,𝑀𝑀. For each protein, the results 
from the PolyReg module are summarized in a final score as the minimum over the 
significance values of the condition related coefficients:  

𝑀𝑀𝑃𝑃𝑘𝑘𝑙𝑙𝑃𝑃𝑅𝑅𝑒𝑒𝑅𝑅 = min
𝑖𝑖
𝑝𝑝(𝛾𝛾𝑖𝑖). 

where j=0,1,…,d. Alternative to a fixed effects only model, a polynomial mixed 
effects model can be used in the PolyReg module with either random effects only for 
the intercept or for both the intercept and the slope. Both the RegROTS module, as 
well as the PolyReg module, apply orthogonal polynomials to allow for a more 
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independent investigation of the coefficients of different polynomial degrees within 
their regression models [168,169]. 

Finally, to conclusively detect any differential expression for a protein, the 
scores from the different modules are combined into a final RolDE score using the 
rank product (geometric mean) of the ranks of the scores from the different modules: 

𝑀𝑀𝑅𝑅𝑘𝑘𝑙𝑙𝐷𝐷𝑅𝑅 = �𝑅𝑅�𝑀𝑀𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� ∙ 𝑅𝑅�𝑀𝑀𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� ∙  𝑅𝑅�𝑀𝑀𝑃𝑃𝑘𝑘𝑙𝑙𝑃𝑃𝑅𝑅𝑒𝑒𝑅𝑅�
3  

For details about the new proposed method, RolDE see publication III.  

4.5.2 Evaluation of the longitudinal differential expression 
methods 

The explored approaches for the detection of longitudinal differential expression 
were evaluated in multiple ways: 1) The proportion of proteins each method was 
able to provide a score for, 2) The performance of the methods in differentiating the 
known truly longitudinally DE proteins from the known non-DE proteins in the 
differential expression analysis, 3) The reproducibility of the findings, and 4) The 
biological relevance of the findings of each method.  

Semi-simulated spike-in datasets 

For the evaluation of the longitudinal differential expression methods, semi-
simulated spike-in datasets with various longitudinal trends and trend differences 
were generated. In short, the mean values and standard deviations of proteins in 
sample groups of the UPS1, SGSDS and CPTAC spike-in datasets (chapter 4.1) were 
used to recreate semi-simulated sample groups with similar levels of protein 
expression and some variation. Thus, the same sample group could be generated 
multiple times with some random diversity. Longitudinal trends within a condition 
were generated by organizing the generated semi-simulated sample groups in the 
desired combinations (e.g. 2fmol, 4fmol, 10fmol, 25fmol 50fmol for a type of linear 
trend in the UPS1 dataset) (Figure 11A, Figure 11B). As in the original datasets, 
only the concentrations of the spike-in proteins varied between the sample groups. 
The expression of the background proteins remained constant between sample 
groups, excluding experimental noise (Figure 11C). The number of sample groups 
within a condition was the same as in the original datasets, and in each sample group, 
the number of technical replicates was the same as in the original dataset. Thus, the 
number of timepoints in each semi-simulated dataset type (UPS1=5, SGSDS=8, 
CPTAC=5) was the same as the number of sample groups in the original dataset. 
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Furthermore, the pattern of missing values was directly replicated from the original 
dataset.  

 
Figure 11. Examples of the generated longitudinal trends in the semi-simulated UPS1 dataset for 

evaluating the longitudinal differential expression methods in publication III. 
Longitudinal trends for A) all the spike-in proteins, B) selected spike-in proteins and C) 
all the background proteins in a representative semi-simulated UPS1 dataset. All the 
examples are from the same semi-simulated UPS1 dataset with mixed trends and trend 
differences for the the spike-in proteins. The different conditions in the dataset are 
colored as red and blue for the spike-in proteins. The true positive spike-in proteins in A 
and B show varying trends and longitudinal differential expression between the 
conditions. The true negative background proteins in C show a constant and unvarying 
expression over time and between the conditions.     

For each semi-simulated dataset, two conditions with different trends – or same 
trends but different levels of expression – were combined (Table 1). Six basic trend 
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categories were generated (Stable, Linear, LogLike, Poly2, Sigmoid and 
PolyHigher), with multiple variations of the category trend within each category 
(Table 1).  

Table 1. The created longitudinal trends and combinations of trends for the UPS1 semi-simulated 
spike-in datasets. The longitudinal trends were created for the spike-in proteins by 
organizing the semi-simulated sample groups in the desired order. All possible 
combinatios of trend categories are shown in columns three and four. 

CATEGORY LONGITUDINAL 
TREND (SAMPLE 

FMOL) 

 ALL COMBINATIONS OF TRENDS 

STABLE 2, 2, 2, 2, 2  Condition1 Condition2 
STABLE 4, 4, 4, 4, 4  Stable Stable 
STABLE 10, 10, 10, 10, 10  Stable Linear 
STABLE 50, 50, 50, 50, 50  Stable LogLike 
STABLE 25, 25, 25, 25, 25  Stable Poly2 
LINEAR 2, 4, 10, 25, 50  Stable Sigmoid 
LINEAR 50, 25, 25, 10, 4  Stable PolyHigher 
LINEAR 2, 4, 4, 10, 25  Linear Linear 
LINEAR 25, 25, 10, 4, 2  Linear LogLike 
LINEAR 4, 4, 10, 25, 50  Linear Poly2 

LOGLIKE 2, 10, 25, 25, 25  Linear Sigmoid 
LOGLIKE 50, 10, 4, 4, 4  Linear PolyHigher 
LOGLIKE 25, 25, 25, 10, 2  LogLike LogLike 
LOGLIKE 4, 4, 4, 10, 50  LogLike Poly2 
LOGLIKE 4, 10, 50, 50, 50  LogLike Sigmoid 

POLY2 2, 4, 10, 4, 2  LogLike PolyHigher 
POLY2 50, 25, 10, 25, 50  Poly2 Poly2 
POLY2 2, 10, 10, 10, 2  Poly2 Sigmoid 
POLY2 50, 10, 10, 10, 50  Poly2 PolyHigher 
POLY2 25, 4, 4, 25, 50  Sigmoid Sigmoid 

SIGMOID 2, 4, 4, 25, 25  Sigmoid PolyHgher 
SIGMOID 50, 25, 25, 4, 4  PolyHigher PolyHigher 
SIGMOID 4, 4, 4, 10, 10      
SIGMOID 25, 25, 25, 10, 10      
SIGMOID 50, 50, 50, 25, 25      

POLYHIGHER 2, 10, 2, 25, 50      
POLYHIGHER 50, 10, 50, 4, 2      
POLYHIGHER 10, 50, 2, 25, 50      
POLYHIGHER 25, 4, 50, 10, 4      
POLYHIGHER 50, 2, 25, 2, 50      

 
To comprehensively evaluate the ability of the different methods to detect trend 

differences of various kinds, all unique combinations of the basic trend categories 
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were used to generate trend differences between the conditions resulting in 21 trend 
difference combinations (Table 1).  

Two variants for each dataset were created to test the methods: full and filtered. 
In the full datasets, no filtering of missing values was performed. In the filtered 
datasets on the other hand, all proteins with missing values were filtered out. In 
addition to generating datasets where all the spike-in proteins had trend differences 
from the same combination (e.g. Linear  vs. Sigmoid), mix datasets were generated. 
In the mix datasets 10 randomly selected trend difference combinations were created 
for the spike-in proteins (Figure 11). The semi-simulated mix datasets further 
assessed the method’s abilities to effectively detect differential expression – even 
when multiple different patterns of longitudinal differential expression were present 
within a single dataset. The mix datasets were generated using the UPS1 data and its 
sample groups as a basis. Semi-simulated datasets with a high proportion of missing 
values to further push and stress test the methods were generated using the CPTAC 
data. Altogether, 1920 semi-simulated datasets with varying trend and/or expression 
level differences were generated. 

Evaluation metrics 

The proportion of proteins from the total number of proteins in a dataset each method 
was able to provide a valid score, was inspected over the full and the filtered semi-
simulated datasets and the experimental Fn data (chapter 4.1). The performance of 
the methods in correctly detecting true longitudinal differential expression was 
evaluated with a ROC-curve analysis in the semi-simulated spike-in datasets. Partial 
AUC values (see definitions) from each semi-simulated dataset were recorded for 
each method.  

The reproducibility of the methods was estimated using the experimental Fn 
data. The Fn dataset was divided into three replicate datasets according to the three 
technical replicates of each measurement. Overall reproducibility was estimated as 
similarity of the technical replicate result lists over all the possible pairwise 
comparison of strains using the Spearman’s correlation coefficient. Reproducibility 
of the top results was further evaluated as the overlap of the top k results in the 
technical replicate result lists when k was varied. Median proportional overlap at 
each size of k over all the pairwise comparisons was considered.  

Biological relevance of the findings of the different methods were assessed in 
the Fn dataset against the KEGG [125] Lipopolysaccharide Biosynthesis pathway 
(ftn00540) and the associated knockout pathway (ko00540) assumed to be affected 
by the generated modifications in the null mutant strains (D1, D2 and L). The 
modified asyltransferases in these strains were directly related to the production of 
lipid A and the Lipopolysacchararide (LPS) in Fn. Longitudinal differential 
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expression between the wild type and each of the null mutant strains was examined 
pairwise from the full Fn dataset with no filtering of proteins performed and the 
technical replicates for a biological replicate averaged. Gene Set Enrichment 
Analysis (GSEA) [70] was used to explore how the defined pathway proteins were 
enriched in the result lists of the methods in the different comparisons of wild type 
and the null mutant strains. Normalized Enrichment Scores (NES) from the GSEA 
analysis within each comparison for each method were considered as measures of 
the methods ability to provide biologically meaningful results. 

4.6 Knowledge enrichment through integrated 
functional enrichment and network analysis 

4.6.1 Common data processing 
The proteins of interest (POI) within publication IV and publication V were first 
determined (see the following chapters 4.6.2 and 4.6.3). Following the discovery of 
the POI, the enrichment of GO [114] terms within the POI was performed as 
statistical overrepresentation using DAVID [116]. As a background for the 
enrichment analysis, the whole detected proteome of Th17/Th0/Thp from 
publication IV was used for both studies (publication IV and publication V). The 
enriched biological processes (BP) were investigated using the GO FAT terms which 
filter out the very broad/general GO terms, and comprise only of the more specific 
lower-level terms [171]. Only statistically significantly overrepresented biological 
processes with a false discovery rate (FDR) of 0.05 were considered as enriched. 

The known and predicted interactions among the DE proteins were queried from 
the STRING [112] database. All interactions, including both known and predicted 
interactions, were considered. Only high-quality interactions, with a combined 
interaction score of >=0.7, were included in the subsequent analysis. The resulting 
high-quality interaction network was downloaded and imported into Cytoscape for 
further visualization and processing [172]. Cytoscape is an open source software 
platform designed for visualizing complex networks and integrating these with any 
type of attribute data (e.g. annotations, expression data, state data) [172]. Within 
Cytoscape, different types of analysis, data modification and integration can be 
performed using the core algorithms included in the software. Furthermore, plenty 
of plug-ins for Cytoscape are available for more specialized tasks, such as clustering, 
GO enrichment, pulling STRING interactions, combining annotations, etc. 
Cytoscape offers flexible and rich ways to visualize data and networks, with many 
pre-installed and custom layouts and visualization styles [172]. The chosen styles 
and layouts can easily be further adjusted and modified according to user 
preferences.  
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Markov Clustering (MCL) in the Cytoscape plug-in clusterMaker v2 [173] was 
used to determine clusters in the protein-protein interaction networks. The edges of 
the networks, the combined interaction scores assigned by STRING, were used as 
input for the algorithm. In MCL, a symmetric similarity matrix between the nodes in 
the network (proteins) is constructed by weighting node interactions (edges) 
according to their strength [174]. The cluster structure is then discovered by 
simulating the flow of the graph, and the probability of transitioning from one state 
(node) to another [174,175]. The probabilities are determined through iterative 
rounds of matrix multiplication and inflation [174]. The inflation step promotes the 
differences between areas with strong and weak flows in the network graph and the 
inflation parameter is used to control for the tightness of the clusters (i.e. granularity) 
[174,175]. The chosen inflation value highly influences the number of the resulting 
clusters [175]. The clustering algorithm converges to a partitioned graph, where 
clusters of high-flow regions are separated from low or no flow regions [175]. As 
the inflation parameter for the clustering of our PPI network, a value of 1.8 was used, 
as suggested by [175] for the MCL clustering of high-throughput data.  

4.6.2 Quantitative proteomics reveals the dynamic protein 
landscape during initiation of human Th17 cell 
polarization 

The proteins of interest in publication IV were determined as the differentially 
expressed proteins between Th17 cells and naive activated T cells (Th0) at two time 
points. Differential expression between the cell types was examined at 24h and 72h 
after the onset of polarization using ROTS [158,170].  

After the common data processing described in the previous chapter, the POI 
between Th17 and Th0 cell types at 24h and 72h were visualized with their respective 
LogFCs and most frequent GO BP FAT terms for each cluster. To examine 
biological functional enrichment in the main cluster in more detail, cluster 1 was 
further clustered into subclusters using the Cytoscape plug-in ReactomeFIViz [130]. 
In addition, ReactomeFIViz was used to explore pathway enrichment in the detected 
subclusters. ReactomeFIViz integrates information from several pathway databases 
[130], such as Reactome [126], NCI PID [128], Panther [118] and Biocarta [127].  

4.6.3 Protein interactome of the Cancerous Inhibitor of 
Protein phosphatase 2A (CIP2A) in Th17 cells  

The proteins of interest in publication V were defined as the CIP2A interacting 
proteins determined by the Significance Analysis of INTeractome (SAINT) 
algorithm [176]. SAINT is a software tool assigning confidence scores for the 
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detected interactions in affinity-purification mass spectrometry (AP-MS) data such 
as the data in publication V (chapter 4.1). Only interactions with a SAINT 
probability score of ≥ 0.95 coming from a distribution of true interactions were 
included in the further analysis. Furthermore, of the interacting proteins with a 
SAINT score ≥ 0.95, only proteins present in <60% of the datasets listed in the 
Contaminant Repository for Affinity Purification-mass spectrometry data 
(CRAPome) [177] were allowed to enter the subsequent analysis. The CRAPome 
lists common contaminants aggregated from multiple AP-MS studies.  

Following the common data preprocessing (chapter 4.6.1), the CIP2A interacting 
proteins together with the LogFCs between the CIP2A immuno-precipitates and the 
IgG controls and the most frequent significantly enriched GO BP FAT term for each 
cluster, were visualized. 
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5 Results 

5.1 Normalization in proteomics  

5.1.1 Intragroup variation 
Normalization in general decreased intragroup variation in publication I. Intragroup 
variation between technical replicates in the spike-in datasets, as well as between 
biological replicates in the experimental data, was lower in data after normalization 
by all the methods when compared to the non-normalized log2 transformed data 
(Figure 12). Of the explored normalization methods, the Vsn normalization was 
found to decrease intragroup variation the most (Figure 12). In addition to Vsn, also 
the EigenMS normalization was found to decrease intragroup variation more than 
the other examined normalized methods in the experimental mouse data (Figure 
12D).   
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Figure 12. The pooled median absolute deviations (PMAD) between the technical replicates in data 

normalized with the different methods in the A) UPS1, B) CPTAC, C) SGSDS spike-in 
datasets and D) between the biological replicates in the experimental mouse dataset. 
Adopted with permission from Publication I: Figures 1 and 5. 

5.1.2 Performance in the differential expression analysis  
Overall, normalizing the data improved the consistency of correctly detecting the 
truly DE proteins (Figure 13). While no single normalization method was able to 
perform best in all examined comparisons and datasets, Vsn produced consistently 
good results. In many of the examined comparisons, the AUCs from Vsn normalized 
data were significantly better than the AUCs from data normalized with the other 
methods (Figure 13). However, several other normalization methods were also able 
to provide data from which the true DE proteins could be detected consistently and 
the AUC differences to Vsn were small. In addition to Vsn, LoessF, Rlr, RlrMA, 
Progenesis and Median normalization consistently performed well in the DE 
analysis. The Quantile normalization method performed mostly well in the examined 
comparisons but had clearly worse AUC values compared to the other methods in 
some comparisons. Interestingly, out of the cyclic methods, RlrMACyc performed 
rather consistently between the comparisons, while LoessCyc performed excellent 
in some comparisons but poorly on others (Figure 13). 
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Surprisingly, while EigenMS was effective in reducing intragroup variation, it 
produced AUC values in the differential expression comparable to the non-
normalized data. This is interesting, since typically the normalization methods are 
evaluated in their ability to decrease intragroup variation [29,36,37] while the 
interest of the experiments are in the DE proteins. Based on these results, considering 
only the ability of a normalization method to reduce unwanted variation might not 
be sufficient.  

 
Figure 13. The areas under the ROC-curves (AUC) in all the pairwise comparisons of sample 

groups in the A) UPS1, B) CPTAC and C) SGSDS spike-in datasets. For the ROC-curve 
analysis, the spike-in proteins have been considered as true positives and the 
background proteins as true negatives. For the UPS1 and CPTAC datasets, the sample 
group numbers refer to the concentrations of the spike-in proteins (fmol) in the sample 
group. For the SGSDS data, the numbers refer to sample group identifiers. Adopted 
with permission from Publication I: Figure 2. 

5.1.3 Logarithmic fold change 
The LogFCs of the stable background proteins were more concentrated around 0 in 
Vsn-normalized data than in data normalized with the other methods (Figure 14). 
Furthermore, the logFCs of the spike-in proteins were systematically underestimated 
in the Vsn-normalized data when the spike-in proteins in either of the evaluated 
samples were spiked at low concentrations in the original data (Figure 14C). 
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However, when the concentration of the spike-in proteins was higher in both 
samples, the logFCs calculated from Vsn-normalized data coincided with logFCs 
calculated from data normalized with the other methods (Figure 14B). More 
generally, the logFCs of the spike-in proteins were often underestimated in all 
normalized and non-normalized datasets compared to expected theoretical logFCs 
based on the concentrations of the spike-in proteins (Figure 14C).  

 
Figure 14.  A) The densities of logarithmic fold changes (LogFC) of the background proteins over 

the UPS1, CPTAC and SGSDS spike-in datasets in data normalized with the different 
methods. The vertical dashed line represents the theoretical expected LogFC of the 
background proteins (0). B) The LogFCs of the proteins in the 10 fmol vs. 25 fmol sample 
group comparison from the UPS1 data normalized with the different methods. C) The 
LogFCs of the spike-in proteins in the 0.74 fmol vs. 2.2 fmol sample group comparison 
from the CPTAC data normalized with the different methods. In B and C, the colored 
boxplots represent the observed LogFCs of the spike-in proteins while the black boxes 
represent the LogFCs of the background proteins from data normalized with the different 
methods. The dashed horizontal line represents the expected theoretical LogFC 
between the spike-in proteins while the horizontal solid black line represents the 
theoretical expected LogFC for the background proteins. Adopted with permission from 
Publication I: Figure 4. 

The arsinh function based parametric transformations performed by Vsn return 
the data on a scale that coincide with log2 transformed data on large intensity values 
but are typically larger on low intensities [34] (Figure 15). Such different scaling 
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typically results in smaller logFC ratios. Therefore, even though differential 
expression between samples at low intensities might be better detected due to 
decreased variance, the logFC values at low intensities are systematically 
underestimated by Vsn.  

 
Figure 15. The density curves of intensity values over all the proteins in the 0.25 fmol sample in 

the CPTAC dataset. The black curve corresponds to log2-transformed data and the red 
curve to vsn-normalized data.  

5.1.4 Effect of normalization stage 
Apart from the cyclic methods, the stage in which the normalization was performed 
did not have a large effect in publication I. When the normalization was performed 
globally, simultaneously for all the samples in the data, the cyclic methods were not 
able to center the data on the x axis in the MA plots (Figure 16). When only the 
examined samples were normalized pairwise, the cyclic methods performed 
similarly to the non-cyclic methods (Figure 16).  
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Figure 16. MA-Plots of the 2 fmol and 50 fmol samples in the A) globally cyclic loess normalized 

UPS1-data, B) pairwise normalized cyclic loess data, C) globally vsn normalized data 
and D) pairwise vsn normalized data. The non-changing background proteins are 
colored black while the truly differentially expressed spike-in proteins are colored as red.  

5.1.5 An additional case study into normalization 
In the Th17 proteome of publication IV, all examined normalization approaches 
aligned the sample distributions when compared to non-normalized data (Figure 
17A). The effects of normalization were explored using best approaches from 
publication I together with the MaxQuant [42] innate normalization method 
MaxLFQ [18] to determine the most suitable normalization for this dataset with 
considerable changes in protein expression between the different timepoints.  

The standard deviation was more constant along the whole intensity range in 
MaxLFQ normalized data when compared to IBAQ data normalized with the other 
methods or non-normalized IBAQ data (Figure 17B). Normalization of the IBAQ 
data with other methods than MaxLFQ seemed to have only a very slight effect on 
the mean-to-variance relationship when compared to non-normalized data. As 
discussed in chapter 4.2, a constant mean-to-variance relationship along the whole 
intensity range is a desirable quality in the data. 
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Figure 17. A) Distributions of samples, and B) mean intensity vs. standard deviation in the 

unnormalized log2-transformed data from publication IV and the same data normalized 
with different methods. For A, the samples are colored according to biological sample 
groups. For B, the proteins in each dataset are ordered ascending based on ranks of 
mean intensity of the proteins. The red line in B corresponds to a loess fit between 
standard deviation and mean intensity. Technical replicates of the data have been 
averaged. 
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Variance between technical replicates was decreased in data normalized by all 
the methods when compared to non-normalized data (Figure 18A). However, 
intragroup variation in LFQ data was considerably lower than in IBAQ data 
normalized with the other methods (Figure 18A). Similarly, variation between 
biological replicates was decreased in normalized data (Figure 18B). Again, 
intragroup variation between biological replicates was smallest in the MaxLFQ data 
followed by Vsn-, and Loess-normalized datas (Figure 18B).  

 
Figure 18. Intragroup variation between A) the technical replicates, and B) the biological replicates 

in the unnormalized log2-transformed data from publication IV and the same data 
normalized with different methods.PCV stands for Pooled Coefficient of Variation, 
PEV=Pooled estimate of Variance and PMAD=Pooled Median Absolute Deviation. 
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 Furthermore, samples in the MaxLFQ data were overall more higly correlated 
with each other and clustered better according to the biological sample groups than 
in data normalized with the other methods or in the un-normalized data (Figure 19). 
In addition to being normalized differently, the MaxLFQ data was also quantified 
differently and thus contained a different proportion of missing values. However, no 
large differences in missing values or missing value patterns were observed between 
the two quantitation approaches. The proportion of missing values in the averaged 
IBAQ data was 4.4% and 6% in the MaxLFQ data.  

 
Figure 19. Pearson correlations coefficients between the samples in the averaged A) unnormalized 

log2-transformed, B) MaxLFQ normalized, C) vsn normalized, D) loess normalized and 
E) median normalized data from publication IV. The correlation data has been 
clustered using hierarchical clustering with Euclidean distances and the complete 
linkage method. 

To conclude, while the previously observed well performing methods Vsn and 
Loess (publication I), were also observed to perform well in normalizing the Th17 
proteome data, exploration of the data normalized with the different chosen 
approaches suggested MaxLFQ as the most suitable method for normalizing the data 
in publication IV. 
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5.2 Label-free proteomics data processing 
software tools 

5.2.1 Protein identification and quantification 
In publication II, different software workflows identified and quantified a varying 
number of proteins in each dataset (Table 2). Progenesis clearly quantified the 
lowest number of proteins in all datasets. However, in practice, there were no 
missing values in Progenesis data while all the other software produced varying 
proportions of missing values for each dataset.  

Table 2. The number of quantified proteins, number of detected spike-in proteins and the 
proportion of missing values produced by the different label-free software workflows in 
the CPTAC and SGSDS datasets. Adopted with permission from Publication II: Table 
1. 

  PROGENESIS MAXQUANT PROTEIOS PEAKS OPENMS 
CPTAC SGSDS CPTAC SGSDS CPTAC SGSDS CPTAC SGSDS CPTAC SGSDS 

PROTEINS 
QUANTIFIED 

614 2168 1247 3487 1383 3554 1223 3161 1276 1401 

SPIKE-IN 
PROTEINS 
DETECTED 

32    
(67%) 

12    
(100%) 

41    
(85%) 

12    
(100%) 

42    
(88%) 

12    
(100%) 

42    
(88%) 

12    
(100%) 

41    
(85%) 

11    
(92%) 

PROPORTION OF 
MISSING VALUS 

IN THE 
DETECTED 

SPIKE-IN 
PROTEINS 

0,0% 0,0% 29,4% 4,2% 20,8% 0,0% 21,7% 0,3% 23,6% 2,3% 

PROPORTION OF 
MISSING 

VALUES IN THE 
DETECTED 

BACKGROUND 
PROTEINS 

1,2% 0,0% 19,1% 3,4% 18,0% 6,4% 19,5% 3,2% 32,1% 8,8% 

TOTAL 
PROPORTION OF 

MISSING 
VALUES 

1,0% 0,0% 19,0% 3,0% 18,0% 6,0% 20,0% 3,0% 32,0% 9,0% 

 
Most of the protein identifications between software workflows were shared with 

almost all of the proteins identified in the Progenesis workflow, identified also by 
other software workflows (Figure 20).  
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Figure 20.  The number of shared and distinct protein identifications by each software workflow in 

the UPS1 dataset. Adopted with permission from Publication II: Figure 1. 

5.2.2 Performance in the differential expression analysis 
Missing value proportion in the data was the main determining factor differentiating 
the performance of the evaluated software in the differential expression analysis in 
publication II. In the presence of missing values, Progenesis clearly outperformed 
the other software (Figure 21A, Figure21B, Table2). The performance of 
MaxQuant on the other hand was most prominently hindered by the missing values 
in the CPTAC and UPS1B datasets. Proteios, Peaks and OpenMS all performed 
better in producing data from which the true DE proteins could be correctly detected 
in the differential exression analysis than MaxQuant. However, when no large 
proportion of missing values were present in the data, all software workflows 
performed well (Figure 21C, Figure 21D).  
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Figure 21. ROC-curves over all the pairwise comparisons of sample groups for the different 

software in the A) CPTAC data, B) UPS1B data, C) UPS1 data and D) SGSDS data. 
Adopted with permission from Publication II: Figure 2. 
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5.2.3 Evaluation of logarithmic fold changes by the software 
workflows 

The LogFCs of the spike-in proteins were estimated most accurately in MaxQuant 
data (Figure 22). Most variation was detected in the estimates of OpenMS and 
Progenesis. The LogFCs of the background proteins were estimated accurately by 
all the software with Progenesis having slightly more accurate estimates than the 
other software.  

 
Figure 22. Mean squared erros (MSE) of the observed logarithmic fold changes (LogFC) from the 

theoretical expected LogFCs over all the pairwise comparisons of the A) spike-in 
proteins in the UPS1 data, B) spike-in proteins in the SGSDS data, C) background 
proteins in the UPS1 data and D) background proteins in the SGSDS data. Adopted 
with permission from Publication II: Figure 4. 
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5.3 Missing values and imputation in label-free 
proteomics 

 
Figure 23. ROC-curves over all the pairwise comparisons of sample groups after the best 

performing filtlls (filtering + local least squares) imputation for the different software in 
the A) CPTAC data, B) UPS1B data, C) UPS1 data and D) SGSDS data. Adopted with 
permission from Publication II: Figure 5. 
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In general, filtering and/or imputation improved the correct detection of the 
spike-in proteins (TP) and the background proteins (TN), when the proportion of 
missing values in the datasets was high (Figure 21A, Figure 21B, Figure 23A, 
Figure 23B). Interestingly, the proportion of missing values in the background 
proteins did not seem to be so relevant for the performance effect of the imputation 
approaches (Table 3). Moreover, in the presence of a low proportion of missing 
values in the spike-in proteins (e.g. the UPS1 dataset), the application of imputation 
or filtering had a detoriating effect on performance more often (Table 3). 

Table 3. Differences in pAUCs from the ROC-curves drawn over all the pairwise comparisons in 
data imputed with the different methods in all the evaluated software compared to 
corresponding unimputed data. Green color of the cell indicates improvement in pAUC 
after imputation while red colod indicates a decrease in pAUC after imputation. Mean 
ranks for each imputation method is calculated as the mean over all the ranks within 
each dataset and and each software.  

 
 

Filtering combined with the lls imputation was the most effective approach, 
increasing the performance of the software in the differential expression analysis the 
most (Table 3). Similarly, the pure filtering approach as well as the lls, bpca and knn 
imputations mostly improved the performance of the software in the differential 
expression analysis. Out of the pure imputations methods, the lls imputation method 
resulted in highest performance gains on average, while the bpca imputation 
improved the performance of the different software in the differential expression 
analysis most often (Table 3). Furthermore, the applicability of the different filtering 
and imputation methods was software dependent. While MaxQuant with the largest 
proportions of missing values in the spike-in proteins, benefitted most from 
imputation or filtering, Progenesis with no missing values remained largely 

CPTAC 0.137 0.08 0.122 0.213 0.222 0.097 0.16 0.044 0.003
SGSDS 0.029 0.028 0.014 0.014 0.017 0.027 0.036 0.031 -0.027
UPS1 -0.191 0.002 -0.267 -0.003 0 -0.1 -0.01 -0.127 -0.306

UPS1B 0.129 0.137 0.11 0.249 0.251 0.17 0.203 0.177 0.099
CPTAC 0.029 0.038 -0.026 0.089 0.099 0.022 0.072 0.001 -0.077
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UPS1 -0.312 0.011 -0.34 -0.013 -0.015 -0.115 -0.042 -0.172 -0.287

UPS1B -0.049 0.027 -0.105 0.041 0.046 0.007 0.029 -0.011 -0.082
CPTAC -0.001 0.056 -0.05 0.133 0.128 0.065 0.094 0.071 -0.043
SGSDS -0.003 0.001 -0.016 0.003 0.006 0.004 0.01 0.006 -0.024
UPS1 -0.221 -0.004 -0.295 0.001 0.002 -0.09 -0.041 -0.168 -0.284

UPS1B -0.019 0.045 -0.04 0.04 0.048 0.065 0.068 0.052 -0.057
CPTAC 0.001 0.002 0 0 0.001 0.001 0.002 0.001 -0.014
SGSDS 0 0 0 0 0 0 0 0 0.003
UPS1 0.001 0.002 0.001 0.001 0.001 0 0.001 0.001 -0.009

UPS1B -0.001 -0.001 -0.001 0 0 -0.001 -0.001 0 -0.005
CPTAC 0.027 0.064 0.044 0.113 0.15 0.054 0.131 0.043 -0.106
SGSDS -0.014 -0.003 -0.043 0.002 0.012 0.006 -0.009 -0.012 -0.032
UPS1 -0.283 -0.017 -0.312 -0.003 0 -0.21 -0.024 -0.143 -0.379

UPS1B 0.05 0.095 0.029 0.133 0.133 0.093 0.119 0.043 0.009

MaxQuant

OpenMS
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Proteios
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unaffected. For the other software than MaxQuant, the effect of the simple 
imputations methods (zero, back, censored) was mainly deteriorating and resulted in 
reduced performance. MaxQuant benefitted from the back and censored imputations 
in all but the UPS1 dataset.  

5.4 Longitudinal differential expression in 
proteomics 

5.4.1 Performance in the differential expression analysis 
Overall, in publication III the new proposed method RolDE performed best in 
detecting the truly longitudinally DE spike-in proteins from the semi-simulated 
spike-in label-free proteomic datasets (Figure 24). This was especially true in the 
presence of missing values in the data (Figure 24B-D). The specialized Bayesian 
longitudinal method Timecourse and all variants of Limma also displayed good 
overall performance. The higher order regression models outperformed the lower 
order models. 
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Figure 24. The partial AUCs (pAUC) of the ROC-curve analysis of longitudinal differential 

expression over all the semi-simulated datasets with varying longitudinal trend 
differences between two conditions in A) the UPS1 filtered datasets, B) SGSDS full 
datasets, C) UPS1 mix full datasets and D) CPTAC full datasets. In filtered datasets, all 
proteins with any missing values have been filtered out. In full datasets, no filtering of 
the datasets has been performed. 300 semi-simulated datasets have been tested for A, 
C and D. 210 semi-simulated datasets have been tested for B. Adopted with permission 
from Publication III: Figure 2. 

Furthermore, the performance of RolDE was most balanced over the different 
categories, offering consistent performance in detecting trend differences of various 
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types (Figure 25). In general, the polynomial complexity of the detected trend 
differences was concordant with the degree of the regression, as can be expected. Of 
the evaluated regression approaches, the full polynomial models (Pme_H) was able 
to detect the broadest spectrum of trend differences (Figure 25).  

 
Figure 25. Interquartile (IQR) mean partial AUCs (pAUCS) of the ROC-curve analysis of 

longitudinal differential expression in all trend difference categories in the A) UPS1 
filtered, B) UPS1 mix full and C) SGSDS full semi-simulated datasets. In filtered 
datasets, all proteins with any missing values have been filtered out. In full datasets, no 
filtering of the datasets has been performed. 300 semi-simulated datasets altogether 
have been tested for A, B. 210 semi-simulated datasets have been tested for C. Adopted 
with permission from Publication III: Supplementary Figure 2. 

5.4.2 Ability to provide a valid ranking  
Different methods were able to provide a ranking for a different proportion of 
proteins in the data (Table 4). In general, the linear regression based approach, Lme, 
together with RolDE were able to consistently deliver a valid ranking/score for the 
majority of proteins in each dataset (IQR mean value <10%). When missing values 
were present, the proportion of proteins Timecourse was able to provide a ranking 
for decreased markedly and BETR does not tolerate missing values. 
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Table 4. Interquartile (IQR) mean proportions of proteins each method was not able to determine 
a ranking / score for in the different dataset types. Adopted with permission from 
Publication III: Table 1. 

  UPS1 
FILTERED 

SGSDS 
FILTERED 

UPS1 MIX 
FILTERED 

UPS1 
FULL 

SGSDS 
FULL 

CPTAC 
FULL 

UPS1 
MIX 

FULL 

BASELINEROTS 0.0 % 0.0 % 0.0 % 12.4 % 1.8 % 16.3 % 9.9 % 

LME 0.0 % 0.0 % 0.0 % 7.7 % 0.5 % 7.4 % 7.2 % 

PME_H 0.0 % 0.0 % 0.0 % 19.3 % 3.2 % 19.5 % 19.1 % 

PME_L 0.0 % 0.0 % 0.0 % 11.9 % 1.2 % 11.4 % 11.2 % 

BETR 0.0 % 0.0 % 0.0 % 
    

TIMECOURSE 0.0 % 0.0 % 0.0 % 23.4 % 6.9 % 27.8 % 24.4 % 

LIMMA 0.0 % 0.0 % 0.0 % 19.3 % 3.2 % 19.2 % 19.0 % 

LIMMASPLINES_H 0.0 % 0.0 % 0.0 % 19.3 % 3.2 % 19.2 % 19.0 % 

LIMMASPLINES_L 0.0 % 0.0 % 0.0 % 11.9 % 1.2 % 11.1 % 11.1 % 

MASIGPRO_H 20.3 % 22.8 % 23.2 % 30.6 % 24.1 % 40.6 % 32.9 % 

MASIGPRO_L 33.6 % 35.7 % 46.0 % 41.1 % 36.5 % 52.2 % 51.8 % 

ROLDE 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 

5.4.3 Reproducibility 
Overall reproducibility was high and comparable in all versions of Limma (Limma, 
LimmaSplines_H, LimmaSplines_L) and RolDE (Figure 26A). The reproducibility 
of the top results was similarly high in RolDE and different variants of Limma 
(Figure 26B).  
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Figure 26.  Reproduciblity in of the results of the evaluated methods. A) Spearman’s rank 

correlation coefficients between technical replicate datasets over all the pairwise 
comparisons of longitudinal differential expression between different strains in the Fn 
dataset. B) Median proportional overlaps of the top k longitudinal differential expression 
findings between technical replicate dataset result lists over all the pairwise 
comparisons of strains in the Fn dataset. The included number of proteins, k, was varied 
from 1 to the length of the entire dataset. Adopted with permission from Publication III: 
Figure 4. 
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5.4.4 Biological relevance of the findings 
All 16 proteins from the KEGG Lipopolysaccharide Biosynthesis pathway 
(ftn00540) were detected in our data, complemented with two proteins from the 
associated knockout pathway ko00540. These 18 proteins, assumed to be affected 
by the modified acyltransferases of the null mutants, were most often detected in the 
top results of RolDE, Pme_L and MaSigPro_L (Table 5).  

Table 5. The normalized enrichment scores (NES) from the gene set enrichment analysis 
(GSEA) of the Lipopolysaccharide synthesis pathway and the associated knockout 
pathway proteins among the findings of the different methods in comparisons of the 
acyltransferase null mutant strains and the wild type. The NES of the methods were 
ranked within each comparison and a mean rank was calculated over all the 
comparisons for each method.  Adopted with permission from Publication III: Figure 4. 

 

5.5 Knowledge enrichment through integrated 
functional enrichment and network analysis 

5.5.1 Quantitative proteomics reveals the dynamic protein 
landscape during initiation of human Th17 cell 
polarization 

The discovered Th17 proteome in publication IV clustered into one main and 
several smaller clusters according to the known interactions within the differentially 
regulated proteins between the Th17 and Th0 conditions. Two tight clusters (clusters 
2 and 3) of interacting DE proteins similarly upregulated at 24h in the Th17 condition 
related to lipid biosynthesis and metabolism were discovered (Figure 27A). Fatty 
acids and lipid metabolism have been shown to be involved in driving Th17 
differentiation [178–180]. Discovered interacting enzymes ACSL1, ACSL3 and 
ACSL4, all associated with lipid metabolism and commonly upregulated in the Th17 

 WT vs. L WT vs. D2 WT vs. D1 WT vs. L WT vs. D2 WTv vs. D1 Mean Rank
BaselineROTS 0.879 1.008 1.009 12 12 12 12.0

Lme 1.090 1.226 1.199 11 4 7 7.3
Pme_H 1.354 1.019 1.117 4 11 10 8.3
Pme_L 1.475 1.140 1.496 1 9 2 4.0
BETR 1.154 1.185 1.533 8 8 1 5.7

Timecourse 1.095 1.216 1.480 10 6 3 6.3
Limma 1.228 1.226 1.160 6 3 8 5.7

LimmaSplines_H 1.221 1.218 1.151 7 5 9 7.0
LimmaSplines_L 1.152 1.115 1.401 9 10 4 7.7

MaSigPro_H 1.238 1.197 1.248 5 7 5 5.7
MaSigPro_L 1.367 1.531 1.054 3 1 11 5.0

RolDE 1.422 1.235 1.207 2 2 6 3.3

Gene Set Enrichment Analysis (GSEA) 
Normalized Enrichment Score (NES)

Method GSEA NES ranks within comparisons
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condition (Figure 27A), could provide valuable targets for future research related to 
Th17 mediated autoimmune diseases. 

Over half of the interacting proteins in the main cluster, cluster 1, were associated 
with immune responses. Furthermore, pathways related to Th17 cell differentiation, 
Th1 and Th2 cell diffentiation were discovered as enriched in the subcluster 1 
(Figure 27B). Coincidently, many proteins in subclusters 1 and 3 are known 
modulators of Th17 differentiation [85]. Antiviral pathways, including the interferon 
alpha/beta signaling pathway, were highly enriched in subcluster 2, consisting of 
interacting proteins mostly upregulated similarly in the Th17 condition at 72h. 
Interestingly, interferon-beta-1a (IFN-β-1a) has been also observed to inhibit Th17 
cell differentiation [181]. Many of the proteins in subcluster 2 could thus provide 
targets for future research regarding their relationship with Th17 expression and 
differentiation. In summary, co-expressing clusters of interacting proteins with 
common interesting Th17 related functions were discovered. 
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Figure 27. The protein-protein interaction (PPI) network within the DE Proteins between Th17 and 

Th0 cells. A) The PPI network from the DE proteins between Th17 and Th0 cells over 
both the 24h and 72h time points. B) Cluster 1 of the PPI network divided into sub-
clusters and functionally annotated with identified enriched pathways. Letters in 
parentheses after pathway names denote sources for the annotations: R, Reactome; K, 
KEGG; N, NCI PID. The logarithmic fold changes between Th17 and Th0 depicted as 
continuous color mapping (at 24 h node inner color, at 72h node outer color). Adopted 
with permission from Publication IV: Figure 4. 
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5.5.2 Protein interactome of the Cancerous Inhibitor of 
protein phosphatase 2A (CIP2A) in Th17 cells 

As a result of the performed MS analysis in publication V, a novel protein-protein 
interactome of Cancerous inhibitor of PP2A (CIP2A) was constructed. A large 
cluster of CIP2A interacting proteins with previous known or predicted interactions 
related to RNA metabolic processes and RNA splicing was discovered (Figure 28). 
RNA metabolic processes and RNA splicing as the main functions of the detected 
interactome was further confirmed by a separate statistical overrepresentation 
analysis performed in PANTHER [118]. RNA splicing has been observed to be one 
of the main CIP2A regulated processes [182]. CIP2A is an oncogene, first detected 
as an inhibitor of PP2A in cancerous cells [183]. Alternative protein isoforms in 
genes related to apoptosis typically have opposing, antagonistic functions in 
apoptosis regulation, suggesting an essential role for alternative splicing in the 
regulation of apoptosis [184]. Thus, in cancer progression, alternative RNA splicing 
can lead to the promotion of isoforms and pathways that promote cell proliferation 
and inhibit apoptosis [184,185].  
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Figure 28. The protein-protein interaction (PPI) network among the proteins interacting with CIP2A. 

Identified clusters with over two members are indicated by different coloring schemes. 
For each cluster with over four members, a gene ontology (GO) term representing 
cluster function is displayed. Node inner color depicts median mass spectrometry 
intensity differences between the CIP2A immuno-precipitates and the IgG controls. 
Increasingly grey color represents stronger expression in the CIP2A immuno-
precipitates compared to the IgG controls. The STRING database was used to query for 
the known PPI and the enrichment analysis was performed with DAVID against a Th17 
proteome reference background. Adopted with permission from Publication V: Figure 
4. 

Viral processes were also detected as significantly enriched in the CIP2A 
interactome and the network analysis revealed a cluster of interacting proteins related 
to viral processes. Many of these proteins’ functions are related to viral response and 
interferon signaling. Interferon regulatory factor 4 (IRF4) for example, has been 
shown to be involved in the dysregulation of PP2A and the production of interleukin-
17 (IL-17), resulting in increased pro-inflammatory response of T cells related to the 
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amplification of autoimmune diseases [186]. CIP2A is known to inhibit PP2A in 
cancer cells and the depletion of CIP2A in T cells has been shown to result in 
enhanced IL-17 production [106]. The effect of CIP2A on IRF4 could thus provide 
an interesting target for future studies and potential therapies.  
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6 Discussion 

6.1 Normalization in proteomics 
Normalization in general decreased intragroup variation in the data in publication I 
and improved the consistency of a statistical test in correctly detecting the true DE 
proteins (Figures 11-12). The vsn normalization was observed to consistently 
produce data from which the true DE proteins could be detected reliably. In previous 
studies of normalization in proteomics, [36] observed the linear regression 
normalization using a median reference array and the linear regression normalization 
complemented with the sample analysis order information to reduce intragroup 
variation the most. Of the four normalization methods evaluated, [37] also noted the 
linear regression normalization to perform better than the local regression 
normalization in removing intragroup variation. However, while no large differences 
between the examined methods were detected, [29], observed vsn and loess to 
perform best in reducing intragroup variation.  Nonetheless, the exact linearity of the 
bias seems to vary between experiments, being more linearly dependent on the 
measured protein abundances in some experiments than in others. As the exact nature 
of this bias is typically not known, a simple linear regression normalization as a 
generally applicable method warrants for caution. 

Many characteristics of the data, typically unknown beforehand, can affect the 
performance of a normalization method. Such characteristics may include: the total 
amount of proteins, the number (typically unknown) of true DE proteins, proportion 
of missing values, the underlying reason (typically unknown) for the observed 
missing values (technically censored, MAR/MNAR, missingness related to an 
experimental condition), the magnitude of differences (typically unknown) between 
the true DE proteins, amount of noise and bias (typically unknown), etc. Due to many 
of these underlying characteristics typically being unknown, a method performing 
adequately well in various different types of conditions and datasets might be more 
favorable than a method performing excellent in some specific comparisons/datasets 
while failing in others. 

While suggestive, all differential expression performance testing in our 
normalization work was performed using spike-in datasets with relatively few 
proteins changing. Further evaluating the performance of the different normalization 



Discussion 

 93 

methods in datasets with a larger proportion of the proteins changing between the 
samples, would markedly increase the understanding needed for the selection of a 
proper normalization method in varying experimental settings. A series of spike-in 
and mixture datasets with a varying proportion of known proteins changing in 
various known ratios between the samples, could be explored to complement the 
current findings. Furthermore, the benchmarking of normalization methods in 
publication I was performed on protein level. Normalization can also be performed 
on peptide level, generally even with the same methods. As the units of interest are 
typically proteins, evaluating normalization at protein level was chosen to be 
explored in our current study. However, it would be equally interesting to explore 
normalization prior the peptide intensities are summarized to proteins and observe if 
the same methods would be applicable. However, as many of the label-free 
workflows, such as Progenesis used in the current study, use specialized methods to 
summarize the peptides within the workflow, the exported normalized peptides 
would then possibly have to be manually rolled-up to proteins. 

As the data produced by the different label-free proteomics software from the 
same raw data are quite different (e.g. no missing values in Progenesis when 
compared to MaxQuant/Peaks for example), most likely even the software used has 
its implications for the choice of a suitable normalization method. The performed 
exploratory work and case study into normalization in conjunction with publication 
IV demonstrates that even though performing well, the previously observed best 
acting methods might not be the most suitable choices for all datasets and software. 
While Vsn and Loess performed well in reducing unwanted intragroup variation 
between the samples, the performed exploratory work suggested the innate 
MaxQuant normalization method, MaxLFQ, as the most suitable method for the 
normalization of data in publication IV.  

While the comparison work performed in publication I was comprehensive, it 
was not complete, but rather directive and informative of favorable approaches for 
normalizing label free DDA proteomics data. As the spectrum of proteomics 
preprocessing software and possible normalization methods is vast and increasing, a 
single best method for all datasets and software workflows is unlikely to exist. Thus, 
in the case of a particular preprocessing software workflow and dataset, it can be 
reasonable to explore the performance of some of the known well performing 
approaches together with the provided approach by the software, if available. 
Moreover, the field is developing constantly and new normalization methods are 
introduced regularly. Including some of the recently developed methods in similar 
benchmarking experiments, would be highly informative.  

Our evaluation of normalization was performed using label-free DDA 
proteomics data. While most of the conclusions of this study could be expected to be 
at least partly similar for label-free DIA data, for label-free spectral count data and 
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for labeled proteomics data these conclusions might not be valid. If the nature of the 
data is very different (ratios, discrete counts) or if the structure of the data is very 
different (e.g. no similar mean-to-variance relationship, less noise), the requirements 
for a normalization method might be different.  

6.2 Label-free proteomics data processing 
software workflows 

While a considerably different number of proteins were identified and quantified by 
the different workflows, a substantial amount of the identifications were shared 
(Figure 20). These shared identifications will then be discovered regardless of the 
software used. Such common identifications, identified by multiple software, could 
be considered as more reliable. The final list of quantified proteins for each software 
workflow consisted of proteins identified with enough unique peptides, aligned and 
quantified reliably enough by the software. Following, even though the identification 
of the peptides and proteins by search engine plays a large role in the final list of 
quantified proteins by a software, it is not the only determinator. Also other 
properties of the software workflow (e.g. transferring identifications between the 
samples, aligning the samples) affect the final list of the quantified peptides and 
proteins by a software from the input raw data. The commercial Mascot [11] search 
engine applied in the Progenesis workflow through the Proteome Discoverer, is one 
of the most established search engines available and has been observed to deliver 
good results in the identification of histone modifications from the data [187]. 
However, in comparisons of the performance of search engines, no notable 
differences in performance have been observed between Mascot and open source 
alternatives such as X!Tandem [188,189]. Furthemore, while combining the results 
from multiple search engines as suggested by [190] is feasible in many software (e.g. 
OpenMS, Proteios), the final list of identifications also depends on how this 
combination is then performed.  

In our comparison (publication II), Progenesis performed consistently well in 
the differential expression analysis and outperformed the other software when no 
imputation or filtering was performed. However, it delivered less accurate fold 
change estimates for the changing spike-in proteins than the other software while the 
fold changes for the non-changing proteins were estimated most accurately. The 
number of proteins quantified by Progenesis was markedly lower when compared to 
the other software, possibly indicating that Progenesis automatically filters out some 
of the unreliable measurements during its preprocessing of the data. However, even 
in union datasets, containing all proteins identified and quantified at least by one 
software, Progenesis outperformed the other software when the data was not imputed 
or filtered post software. In general, the number of missing values in the datasets 
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generated by the software was the main factor determining the performance of the 
software in the differential expression analysis. Similar to our results, a previous 
evaluation of preprocessing software for label-free DDA data [58], observed 
Progenesis to perform best and to have the least amount of missing values and 
highest quantification accuracy at the peptide level when compared to MaxQuant 
and Proteios. In an another earlier comparison of two software [191], Progenesis and 
the Elucidator suite (discontinued), Elucidator was observed to estimate the fold 
change ratios better than Progenesis. Elucidator was also observed to correctly 
quantify the tested QC samples as more similar to each other than Progenesis.  

The performance of each of the software workflows is dependent on many 
parameters. The evaluations performed in the included publication II were run with 
the default settings as much as possible, which might work in favor of some 
workflows. It is difficult to evaluate to which extent using the common default 
settings might possibly bias the results of the comparison in favor of some workflows 
as compared to others. As each software workflow includes multiple parameters (e.g. 
different ways of assigning unique protein identifications, alignment and matching 
window sizes, alignment settings, allowed post-translational modifications, etc.) or 
even alternative algorithms for specific purposes (e.g. alignment, normalization, 
summarizing peptides to proteins) it is unclear how much the performance of each 
software workflow could be tuned with optimal choices. Indeed, in publication I, 
the vsn normalization was observed to perform consistently well in Progenesis data 
when compared to other normalization methods. Based on this experience, the data 
from all software workflows was normalized using the vsn normalization in 
publication II. However, perhaps for some other software workflow, some other 
normalization method might have been more suitable, as the data produced from the 
different workflows have different attributes (e.g. number of missing values, 
variability of measures, etc.). Then, to exhaustively evaluate the performance of the 
different software workflows, all relevant parameter and algorithm combinations 
should be explored, but this soon becomes an infeasible task due to the large number 
of possible combinations. An expert user, familiar with a certain software workflow, 
might be able to considerably increase the performance of the chosen workflow by 
tuning the parameters. This is even more likely, when considering the modular 
workflows, where specific modules/algorithms for a certain task can be replaced. 
However, often in practice the software worfkflows are used without much further 
tuning the parameters of the selected workflow, corresponding to the experimental 
setting in publication II.  

As mentioned earlier, the results from multiple database search engines can be 
combined for more reliable protein identification [190,192]. Similarly, ensemble 
methods integrating multiple models are routinely used in the field of machine 
learning for better predictive performance as compared to the separate approaches 
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[193]. Extending this principle to protein quantification would be a highly interesting 
prospect. Can the quantification results from the different software workflows be 
combined for higher reliability and more robust quantifications? However, as 
mentioned in the previous chapter, the data from different software typically 
accommodate different attributes (e.g. missing values, variability) and normalization 
should be carefully considered if combination of data from several softwares were 
considered to avoid serious batch effects. Furhermore, the required computational 
time for analyzing the data would markedly increase when using multiple software 
workflows, possibly limiting the usefulness of this approach for large datasets. 
Nevertheless, integrating results from multiple approaches remains an interesting 
topic for possible future research.  

In addition to previous reseach work and experience, the available resources 
further determine the selection of a suitable software, as some of the processing 
software are commercial (e.g. Progenesis, Peaks) while others are non-commerical 
(e.g. MaxQuant [42], OpenMS [41]). Furthermore, as the comparisons in 
publication II were performed using label-free DDA data, the results might not be 
generalizable to other types of proteomics data. DIA data has significantly less 
missing values, which most likely will affect the performance of the software 
workflows. Additionally, entirely separate default workflows and modules for 
labeled data exist in most software, thus the performance of the software with labeled 
data should be compared separately. 

6.3 Missing values and imputation in label-free 
proteomics 

As discussed in the previous chapter and in the results section, the proportion of 
missing values in the data, especially in the true positives, was the largest 
determinator of performance in the differential expression analysis (Figure 23, 
Table 3). Missing values are a common phenomenon in proteomics data, especially 
in the label-free DDA proteomics data, and thus it is essential how they are 
processed. The proportions of missing values were observed to vary highly in data 
preprocessed with the different software workflows in publication II. Progenesis 
performs a type of imputation already together with its effective alignment algorithm 
and Progenesis data was observed to contain virtually no missing values. However, 
even among the other evaluated software, there were highly varying proportions of 
missing values in the data generated by them. 

In the tested datasets and software, the more complex local similarity and global 
structure based methods, defined as MCAR/MAR methods by [61], outperformed 
the simple value based approaches. Lazar et al. [61] also concluded that without prior 
knowledge into the origin of the missing values, a MAR/MCAR approach should be 
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preferred as they are more general in nature. Devoted MNAR methods, such as the 
back, censored, and zero imputation in our comparison, assume that the missing 
values result purely from abundance dependent left censoring and will perform 
poorly on other types of missing values [61]. However, if the missing values are 
known to be purely MNAR, the single value approaches can perform well and offer 
a simple approach to deal with missigness in the data [61]. In the tested spike-in 
datasets, missing values in the spike-in proteins had a larger impact on performance 
in the differential expression analysis than missing values in the background 
proteins. The spike-in proteins in the tested datasets are lowly expressed in some 
sample groups while highly expressed in others. As observed, simply substituting all 
the missing values in the spike-in proteins with proxies for low expression was not 
a fruitful strategy in our comparison, indicating that at least partly the missing values 
in the spike-in proteins are not resulting from left censoring. Similarly, [62] have 
observed the local similarity based approaches to outperform the simple single value 
imputations.  

Filtering followed by imputation with the lls method was observed to improve 
the performance in the differential expression analysis the most. While filtering 
might be an effective approach in improving the detection of the truly DE proteins 
in the remaining filtered dataset, consideration should be applied, as some of the 
truly DE proteins can be also filtered out. In this comparison, performance in the 
filtered datasets was only assessed with regards to the remaining spike-in proteins in 
the dataset. Application of the bpca or lls imputations methods resulted mostly in 
improved performance or only slightly decreased performance in the differential 
expression analysis, while preserving all the proteins. The choice of a suitable 
imputation/filtering approach then depends also on whether the emphasis is in 
detecting as many true DE proteins as possible or in detecting less true DE proteins 
as reliably as possible. Without prior knowledge and depending on the emphasis of 
the researcher, the filtering, lls or bpca approaches could be considered as valid 
candidates in dealing with missing values. However, as was observed in the case of 
the UPS1 dataset in our comparison, sometimes the best performance is achieved 
when no imputation or filtering is performed. Thus, the decision to impute should 
depend on the proportion of missing values in the data but also on the ability of the 
downstream statistical analysis tool in dealing with missing values.  

In publication II, the work related to missing values and imputation was 
performed on protein level. Lazar et al. [61] suggested that imputation should be 
performed already at the peptide level. Missing peptide values will contribute to 
protein values in various ways, depending on the chosen peptide-to-protein 
aggregation method. If the peptides are aggregated to proteins by simply summing 
the peptide abundances, missing peptide values will not contribute to protein values 
and this aggregation method would coincide with imputing zero for the missing 
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peptide values. If protein level values are aggregated via averaging, missing peptide 
values will again not contribute to protein level values, which is the same as imputing 
an average of all the proteins peptide values for each missing peptide in a sample. 
Thus protein aggregation can be considered an imputation method itself and will 
impact the resulting pattern of missing values at protein level in various ways. A 
protein level missing value will only occur if all/enough peptides for a given protein 
are missing.   

A similar investigation as performed in the included work with imputation 
performed already at the peptide level would be highly interesting. How would 
imputation at the peptide level affect the performance in the differential expression 
analysis? However, as many of the label software workflows evaluated in the current 
work use their own specialized peptide-to-protein aggregation methods, the 
extracted and imputed peptide level intensities would possibly need to be aggregated 
into proteins manually via other methods.  

6.4 Longitudinal differential expression in 
proteomics 

In the examined semi-simulated spike-in datasets in publication III, the new 
proposed method RolDE, displayed excellent performance, outperforming the other 
evaluated methods in each tested dataset type (UPS1, SGSDS, CPTAC, UPS1 mix) 
(Figure 24). Furthermore, the performance of RolDE was most balanced over 
categories of trend differences (Figure 25), indicating that RolDE can detect various 
kinds of longitudinal differential expression reliably. Specifically, RolDE clearly 
outperformed the other examined methods in the SGSDS and CPTAC full datasets. 
Missing values in general clearly decreased the performance of all the other methods 
except RolDE. In the CPTAC datasets, with a high proportion of missing values in 
the true positive spike-in proteins, all methods performed clearly worse than in other 
datasets with less missing values. As discussed in the previous chapters, missing 
values are prevalent in proteomics data, especially the popular label-free DDA 
technique, and the ability of the chosen differential expression method to withstand 
them is crucial for reliable results. 

There is typically no prior knowledge of the types of longitudinal trend and 
expression level differences that can be found from the data. The ability of a method 
to consistently detect various trend differences as well as expression level differences 
between the conditions, is thus an essential quality for an exhaustive analysis of the 
data. In their comparison of longitudinal differential methods for RNASeq data [84], 
observed that many of the specific longitudinal DE methods performed worse than 
the traditional pairwise methods when the number of timepoints was low (<8). As 
currently relatively few timepoints are typical for longitudinal omics data, methods 
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unable to perform reliably on such short timeseries data are limited in their usability. 
The examined semi-simulated  and experimental datasets in this study contained 5 
(UPS1, CPTAC, Fn), 8 (SGSDS) or 9 (T1D dataset of [88]) timepoints. Of the 
specifically designed longitudinal DE methods examined in our study, only RolDE 
and Timecourse consistently outperformed the pairwise baseline method ROTS 
(BaselineROTS). However, when missing values were present in the spike-in 
proteins as well as in the background proteins (SGSDS and CPTAC datasets), only 
RolDE was able to outperform the established pairwise differential expression 
method ROTS, known to perform well in cross-sectional data [32,131,159,161,170]. 

As the discovered protein biomarker candidates in a discovery proteomics study 
are commonly validated with other techniques [65], the top DE hits produced by the 
used differential expression method are of great importance. The overall 
reproducibility but especially the reproducibility of the top results are therefore of 
great interest to a researcher. Good top reproducibility indicates the competence of 
a method to reliably and robustly deliver the same findings in the presence of 
experimental random noise. Best reproducibility of the top results was observed with 
Limma and RolDE.  

Generally, the higher order polynomial regression models outperformed the 
lower degree models. This is most likely due to the fact that the higher order models 
were able to detect trend differences in a broader spectrum of categories than the less 
complex models. Orthogonal polynomials were used with all the polynomial 
regression approaches. As the polynomials of different order can be highly 
correlated, using orthogonal polynomials can reduce such multicollinearity and 
allow for more independent inspection of coefficients of different polynomial degree 
[168,169].  

Allowing for the overall time-associated changes and inspecting the overall 
significance values of the regression models instead of specific condition-related 
coefficients, might improve also the detection of the longitudinally DE proteins and 
increase the performance of most of the regression based methods (e.g. MaSigPro, 
Pme). This increase in performance would then result from the longitudinally DE 
proteins having an overall time-associated trend in their expression over the 
examined conditions in addition to being DE between the conditions. Thus, when 
only time-associated changes are also examined, the DE proteins can be detected as 
a consequence (not specifically because they are DE but because they have overall 
time-associated changes). However, if the interest is specifically in longitudinal 
differential expression and allowing also for the overall-time associated changes in 
ranking of the results, non-DE features with an on overall strong time-associated 
trend might also be detected, resulting in false positive detections. The prevalence of 
such overall non-DE time-associated changes are highly data specific and must be 
assessed in the experimental context where the method is used. Thus, the efficient 
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applicability of methods such as MaSigPro, where by default the overall time-
associated changes are included, require careful consideration and interpretation 
from the researcher.  

Due to practical reasons, the timepoints in different conditions of longitudinal 
data are not always perfectly aligned. This is especially true for clinical data 
involving humans [86,88]. Furthermore, the number of timepoints between 
individuals within and between conditions might vary. The flexibility of a 
differential expression method to take many kinds of different experimental settings 
into account, reflect the general applicability of the method. RolDE can be used to 
detect longitudinal differential expression even when the number of timepoints differ 
between conditions and/or the individual timepoints and are not aligned. To 
conclude, the choice of a well-performing suitable longitudinal DE method results 
in the robust and reliable detections of interesting findings for futher analysis or 
validation.  

6.5 Knowledge enrichment through integrated 
functional enrichment and network analysis 

Through combining functional enrichment analysis, i.e the statistical 
overrepresentation of GO terms and pathway analysis, with protein-protein 
interaction networks, tightly connected clusters of interacting proteins with common 
functionalities were discovered (Figure 27, Figure 28). Moreover, many 
functionalities discovered for the detected clusters among the proteins of interest, are 
related to known important biological processes and disease progression. Thus, 
knowledge enrichment through combined functional and network analysis can 
bolster the biological and biomedical conclusions of the performed statistical 
analysis (i.e. DE analysis) and suggest potential biomarker candidates for further 
studies (e.g IRF4, ACSL4). 

 As discussed in chapter 2.7, the used background for the statistical 
overrepresentation analysis markedly effects the results of the analysis [110,120–
122]. As both of the analysis in publication IV and publication V, were performed 
in the Th17 cell environment, the same background of all the detected proteins in the 
activated Th17 cells, CD3/CD28 activated non-differentiated Th0 cells and naive T 
helper precursor (Thp) cells was used in both studies. As the selected background 
defines the biological environment (and the possible enrichment terms / pathways) 
for the enrichment analysis, the selection of a suitable background is essential for a 
successful overrepresentation analysis.  

With the choice of visualization style and effective use of color-coding, several 
informative attributes, such as fold change at different timepoints or difference in 
expression between the immunoprecipitates and controls, can be included in the 
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network. Through the use of a proper visualization theme and refinement of the 
results, even more complex characteristics can be displayed, such as in [106]. In the 
network of [106], where the interactome of phosphorylated STAT3 was explored in 
two conditions, CIP2A-deficient and CIP2A-sufficient Th17 cells, node inner color 
represents the specificity of the interaction of the prey proteins with the bait protein 
(STAT3). Thus, the effect of CIP2A on the interaction of all the detected prey 
proteins with STAT3 can be viewed/explored straightforwardly through the 
visualized network. 

To conclude, the combination of a properly selected functional enrichment 
analysis with a suitable network analysis and visualization, can provide valuable 
additional insight and knowledge about the biological mechanisms involved within 
the POI, essentially help in interpreting the findings and transforming data to 
knowledge. 
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7 Conclusions 

As has been demonstrated in this thesis, proper preprocessing and analysis of the 
data is crucial for reliable findings in label-free proteomics. The use of suitable 
methodology for different stages of the workflow can greatly influence the 
interprations made from the data and add or decrease the effective value of the input 
raw data. Based on the performed research work, rough outlines for a possible label-
free proteomics discovery workflow can be compiled in the following suggested 
main steps (Figure 29): 

1. Preprocessing software 

Considering the prior expertise and knowledge on label-free data processing 
software, available resources, algorithmic experience and established related 
research work (such as publication II), an informed decision can be made to select 
a suitable software for the preprocessing of label-free proteomics data. In 
publication II, the commercial Progenesis software performed overall best as is but 
was matched by the non-commercial MaxQuant after filtering of missing values or 
application of proper imputation.  

2. Exploration 

Initial exploration is an essential step, revealing important properties of the data 
and affecting choices for the later steps. Proportion of missing values, shape of the 
intensity distribution, intragroup variability, clustering of the samples according to 
technical/biological replicates, sample correlations, PCA, etc. can all shed light into 
characteristics of the data. Log2-transformation of the data and averaging of the 
technical replicates should be considered where applicable.  

3. Normalization 

A crucial step for the the downstream analysis of the data. Ideally, several 
previously observed well-performing normalization methods (e.g. publication I) 
should be explored together with the normalization provided by the chosen software 
workflow (e.g. MaxLFQ), if available. Some previously well-performing 
normalization methods for the normalization of label-free proteomics data from 
publication I in this thesis and other works include: the variance stabilization 
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normalization (vsn), local regression (loess), linear regression, linear run order 
regression and median normalization. 

4. Exploration 

Data normalized with different methods from step 3 should be thoroughly 
explored to determine the most suitable approach. MA-plots, boxplots, correlation 
heatmaps, clustering of the samples according to sample groups, meanSD-plots, 
intragroup variability (PCV, PEV, PMAD) and missing value proportions in 
normalized data are some tools in assessing the succesfulnes of normalization.  

5. Imputation 

In this thesis (publication II), the proportion of missing values in the data has 
been shown to markedly affect the performance of the statistical tests in correctly 
detecting the true DE proteins. The proportion of missing values in the preprocessed 
raw data is not equivalent between different software and considerations related to 
missing values are naturally related to the choice of the processing software in step 
1. Filtering of proteins with lots of missing values and/or imputation of missing 
values are possible solutions for dealing with missing values in the data. In 
publication II, filtering or imputation with the local least squares (lls) and bayesian 
principle component analysis (bpca) methods generally improved the correct 
detection of the true DE proteins from the data. Furthermore, choices related to the 
downstream analysis tools in step 7 (e.g. statistical test), and their ability to withstand 
missing values in the data, greatly affects the need to filter or impute the data.  

6. Exploration 

If imputation or filtering of the data is performed, the effect of different 
imputation/filtering methods should be explored with similar metrics as in step 1 and 
step 4 for the selection of a suitable method.  

7. Determination of the POI 

Once the data has been suitably preprocessed, it can be further analyzed to 
determine the proteins of interest. In this thesis, the focus has been on longitudinally 
DE proteins between the conditions (publication III). It has been shown, that 
different statistical approaches greatly differ in their performance in detecting the 
true longitudinally DE proteins, especially in the presence of missing values. The 
new suggested method, RolDE, performed best in all data types, was especially 
tolerant to missing values, had good reproducibility and was among the top method 
in producing biologically meaningful results. For cross-sectional data, the 
Reprodudibility Optimized Test Statistic (ROTS) [158,170] has been shown to 
perform well [32,131,170]. 
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8. Functional enrichment 

Following the determination of the proteins of interest, the enrichment of 
biological functionalities related to the POI can be performed to increase 
understanding of the underlying biological mechanisims. For statistical 
overrepresentation analysis of terms and pathways among the POI, a suitable 
background should be used. Some popular tools for investigating statistical 
overrepresentation of ontology terms or pathways in a list of POIs include 
PANTHER [108], DAVID [107], KEGG [115], IPA [190] and Reactome [116]. 
Alternatively, for exploring the enrichment of terms and pathways in the whole data, 
GSEA can be performed using an appropriate score. 

9. Network construction 

To explore protein-protein interactions within the POI, network databases such 
as STRING or ReactomeFiViz can be queried. 

10. Integrated knowledge enrichment and visualization 

Finally, the processed data, POI, biological functional information and network 
information can be integrated and visualized for a clear and meaningful 
representation of the findings from the data (e.g. publications IV and V). Such 
information-rich representation can be applied in selecting the most potential and 
interesting targets for validation or further future research work.  
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Figure 29. A potential label-free proteomics discovery data processing workflow. The dashed lines 

represent possible alternative paths.  
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