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ABSTRACT 
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Yong-In Kim 
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Department of Veterinary Medicine 

The Graduate School 
Seoul National University 

 

 

 

  Biomarkers have been in high demand for disease diagnosis and therapeutics. 

Traditional hypothesis-based research has been challenging due to massive 

screening studies. Together with the emergence of omics technologies, 

currently, the paradigm for disease research has been moving toward evidence-

based large-scale discovery studies. Proteins, as key effector molecules, can 

serve as ideal biomarkers for various diseases because they catalyze every 

biological function. Proteomics, which is represented by mass spectrometry 

(MS) technologies, stands as a solution for disease diagnosis and drug target 

discovery. 
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CHAPTER I includes a portion of a report from of the human proteome 

project (HPP) related to chromosome 9 (Chr 9). To identify missing proteins 

(MPs) and their potential features in regard to proteogenomic view, both LC-

MS/MS analysis and next-generation RNA sequencing (RNA-seq)-based tools  

were used for the clinical samples including adjacent non-tumor tissues. When 

the Chr 9 working group of the Chromosome-Centric Human Proteome Project 

(C-HPP) began this project, there were 170 remaining MPs encoded by Chr 9 

(neXtProt 2013.09.26 rel.); currently, 133 MPs remain unidentified at present 

(neXtProt 2015.04.28 rel.). Proteome analysis in this study identified 19 

missing proteins across all chromosomes and one MP (SPATA31A4) from Chr 

9. RNA-seq analysis enable detection of RNA expression of 4 nonsynonymous 

(NS) SNPs (in CDH17, HIST1H1T, SAPCD2, and ZNF695) and 3 

synonymous SNPs (in CDH17, CST1, and HNF1A) in all 5 tumor tissues but 

not in any of the adjacent normal tissues. By constructing a cancer patient 

sample-specific protein database based on individual RNA-seq data, and by 

searching the proteomics data from the same sample, 7 missense mutations in 

5 genes (LTF, HDLBP, TF, HBD, and HLA-DRB5) were identified. Two of 

these mutations were found in tumor tissues but not in the paired normal tissues. 

Additionally, this study discovered peptides that were derived from the 

expression of a pseudogene (EEF1A1P5) in both tumor and normal tissues. In 
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summary, this proteogenomic study of human primary lung tumor tissues 

enabled detection of additional missing proteins and revealed novel missense 

mutations and synonymous SNP signatures, some of which are predicted to be 

specific to lung cancer. 

 

CHAPTER II describes a study of the combination marker model using 

multiple reaction monitoring (MRM) quantitative data. Misdiagnosis of lung 

cancer remains a serious problem due to the difficulty of distinguishing lung 

cancer from other respiratory lung diseases. As a result, the development of 

serum-based differential diagnostic biomarkers is in high demand. In this study, 

198 serum samples from non-cancer lung disease and lung cancer patients were 

analyzed using nLC-QqQ-MS to examine the diagnostic efficacy of seven lung 

cancer biomarker candidates. When the candidates were assessed individually, 

only SERPINEA4 showed statistically significant changes in the sera of cancer 

patient compared to those of control samples. The MRM results and clinical 

information were analyzed using logistic regression analysis to a select model 

for the best ‘meta-marker’, or combination of biomarkers for the differential 

diagnosis. Additionally, under consideration of statistical interaction, variables 

having a low significance as a single factor but statistically influencing the 

meta-marker model were selected. Using this probabilistic classification, the 

best meta-marker was determined to comprise two proteins SERPINA4 and 
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PON1, with an age factor. This meta-marker showed an enhanced differential 

diagnostic capability (AUC=0.915) to distinguish the lung cancer from lung 

disease patient groups. These results suggest that a statistical model can 

determine optimal meta-markers, which may have better specificity and 

sensitivity than a single biomarker and may thus improve the differential 

diagnosis of lung cancer and lung disease patients.    

 

 

Keywords : Lung cancer; LC-MS/MS; Proteogenomics; Proteomics;  
          Multiple reaction monitoring (MRM) 

Student Number : 2013-21536 
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BACKGROUND 

 

 

1. LUNG CANCER 

  Cancer is a major life-threatening disease in Korea (Table B-1). In 2015, the 

total number of deaths from cancer was 76,855, accounting for 27.9% of all 

deaths (Jung et al., 2018). The number of cancer incidences and deaths is 

expected to increase with the aging population and westernized lifestyles (Jung 

et al., 2015). Additionally, the economic burden of cancer in Korea has 

increased approximately 1.8-fold, from $11,424 to $20,858 million, between 

2000 and 2010 (Lee et al., 2015). 

Lung cancer has demonstrated the highest mortality among all types of solid 

cancers in both the US and Korea (Figure B-1 and Table B-2). According to the 

cancer statistics reported in 2002 and 2012, lung cancer was the most common 

cancer since 1985 and by 2002, and in 2012, lung cancer was not the most 

frequently diagnosed cancer, but it was the second leading cause of cancer 

related deaths (Jemal et al., 2011, Parkin et al., 2005). Regarding the cancer 

statistics in 2017 estimated in the US, the 5-year survival rate of patients who 

were diagnosed with lung cancer showed the least increase along with liver and 
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pancreatic cancers (Siegel et al., 2017), likely due to the low diagnostic rate in 

the early stages of cancer.  

Compared with other cancers, lung cancer has little subjective symptoms and 

there are few screening methods for lung cancer diagnosis. The diagnosis of 

lung cancer is still largely depend on imaging techniques; such as X-rays and 

computed tomography (CT) scans. Histopathological examination is conducted 

on the biopsied mass when a suspicious mass is detected during imaging 

screening. The recent development of low-dose, fast-spiral CT and advances in 

imaging machines have improved the accuracy of chest CT (Midthun and Jett, 

2008). Despite the improvement of imaging diagnostic methods, several 

problems, such as the cost, high misdiagnosis rates, and poor early diagnosis 

rates, persist. 
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Table B-1. The top 10 leading causes of death in Korea, 2015 

Rank Cause of death No. of deaths 
(%) 

Age-standardized 
death rate per 

100,000* 

  All causes 275,895 (100) 289.3 

1 Cancer 76,855 (27.9) 82 

2 Heart disease 28,326 (10.3) 27.9 

3 Cerebrovascular 
disease 

24,455 (8.9) 23.4 

4 Pneumonia 14,718 (5.3) 13.5 

5 Intentional self-harm 
(suicide) 

13,513 (4.9) 18.3 

6 Diabetes mellitus 10,558 (3.8) 10.2 

7 Chronic lower 
respiratory diseases 

7,538 (2.7) 6.8 

8 Disease of liver 6,847 (2.5) 8.1 

9 Transport accidents 5,539 (2.0) 7.6 

10 Hypertensive diseases 5,050 (1.8) 4.6 

  Others 82,496 (29.9) 87.1 

Source: Mortality Data, 2015, Statistics Korea. 

*Age-adjusted using the Segi’s world standard population. 

Adapted from Jung et al., 2018 
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Figure B-1. Ten Leading Cancer Types for the Estimated New Cancer 

Cases and Deaths by Sex, United States, 2017. 

Estimates are rounded to the nearest 10 and cases exclude basal cell and 

squamous cell skin cancers and in situ carcinoma except urinary bladder. 

Adapted from Siegel et al., 2017 
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Table B-2. Cancer incidence, deaths and prevalence by sex in Korea, 2015 

Rank by 
Deaths Site/Type 

Deaths New cases 
Both 
sexes Men Women 

Both 
sexes Men Women 

  All sites 76,855 47,678 29,177 214,701 113,335 101,366 
1 Lung 17,399 12,677 4,722 24,267 17,015 7,252 
2 Liver 11,311 8,382 2,929 15,757 11,732 4,025 
3 Stomach 8,526 5,507 3,019 29,207 19,545 9,662 
4 Colon and rectum 8,301 4,698 3,603 26,790 15,911 10,879 
5 Pancreas 5,439 2,908 2,531 6,342 3,359 2,983 
6 Gallbladder* 4,211 2,135 2,076 6,251 3,220 3,031 
7 Other and ill defined 3,931 2,101 1,830 16,309 8,300 8,009 
8 Breast 2,354 16 2,338 19,219 77 19,142 
9 Non-Hodgkin lymphoma 1,771 1,026 745 4,396 2,519 1,877 

10 Leukemia 1,720 1,003 717 3,242 1,830 1,412 
11 Prostate 1,700 1,700 - 10,212 10,212 - 
12 Esophagus 1,531 1,401 130 2,420 2,201 219 
13 Bladder 1,299 960 339 4,033 3,245 788 
14 Brain and CNS 1,266 674 592 1,776 958 818 
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15 Lip, oral cavity, and pharynx 1,170 884 286 3,309 2,390 919 
16 Ovary 1,055 - 2,443 2,443 - 2,443 
17 Cervix uteri 967 - 3,582 3,582 - 3,582 
18 Kidney 952 672 280 4,555 3,134 1,421 
19 Multiple myeloma 889 466 423 1,455 762 693 
20 Larynx 344 319 25 1,146 1,079 67 
21 Thyroid 341 106 235 25,029 5,386 19,643 
22 Corpus uteri 319 - 2,404 2,404 - 2,404 
23 Hodgkin lymphoma 49 33 16 271 174 97 
24 Testis 10 10 - 286 286 - 

*Include the gallbladder and other/unspecified parts of the biliary tract. 

Adapted from Jung et al., 2018 
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2. BIOMARKERS 

Biomarkers are a means of measurement that can define the normal and 

abnormal status of an individual. Biomarkers have been in high demand, 

because the discovery of predictive biomarkers will save time and money, and 

leading to better diagnoses and disease cure. Biomarkers include any types of 

hall mark of physiological states, such as physiologic profiles, images, genes, 

or proteins (Dalton and Friend, 2006). Particularly, proteins as key effector 

molecule have been regarded as ideal biomarkers for various diseases because 

they catalyze every biological function (Gygi and Aebersold, 2000a).  

The advantages of proteins as a class of biomarkers include their enormous 

diversity, dynamic turnover and secretion into blood and bodily fluids. There is 

an estimated number of 20,300 genes (Legrain et al., 2011), 40,000 unique 

metabolites (Wishart et al., 2012), ~100,000 mRNA transcripts, and up to 1.8 

millions of different proteoforms, if posttranslational modifications (PTMs) are 

considered (Jensen, 2004). Such enormous diversity in proteoforms increases 

the chances to identify a marker, or a panel of markers, for each disease state. 

Since protein sequences may also reflect some genomic variations, a single 

instrumentation platform of mass spectrometry can measure not only changes 

in protein abundance but also genomic and transcriptomic variations, such as 

mutant proteins (Drabovich et al., 2015).  
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However, traditional hypothesis-based research has been challenging due to 

massive screening studies for biomarker development. Together with emerging 

of proteomics, which is represented by mass spectrometry (MS) technologies, 

presently, the paradigm for biomarker development has been moving toward 

evidence-based, large-scale discovery studies. The major advantage of 

hypothesis-free MS-based proteomics is that no assumptions need to be made 

regarding the possible nature and number of potential biomarkers, in stark 

contrast to single-protein measurements in classical biomarker research.  

Conceptually, MS-based proteomics combines all possible hypothesis-

driven biomarker studies for each disease into one and furthermore defines the 

relationship of potential biomarkers to each other (Geyer et al., 2017). In 

practice, the challenges of plasma proteomics have, thus far, prevented in-depth 

and quantitative studies on large cohorts. Instead, a stepwise strategy for 

biomarker discovery has been advocated, with several phases in which the 

number of individuals increases from a few to many, whereas the number of 

proteins decreases from hundreds or thousands to just a few (Rifai et al., 2006, 

Geyer et al., 2017) (Figure B-2). The bottom-up proteomics strategy is regarded 

as a typical workflow for hypothesis-free biomarker discovery (Aebersold and 

Mann, 2016, Altelaar and Heck, 2012). Targeted proteomics for candidate 

verification is a second phase of the stepwise strategy. A few proteins (typically 

< 10) with differential expression in the discovery phase are tested in a larger 
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and ideally independent cohort. Because immunoassays are often not available, 

targeted MS methods can be employed. The most widespread of these is 

multiple reaction monitoring (MRM). The sensitivity of proteomics can be 

improved to the low ng/ml or even high pg/ml ranges by more extensive sample 

preprocessing with depletion or fractionation both in the discovery and 

verification phases (Burgess et al., 2014, Kim et al., 2015, Nie et al., 2017). The 

final phase in the triangular strategy is the validation with immunoassays, a 

field that has matured over decades. For maximum specificity, sandwich assays 

are typically preferred (Geyer et al., 2017). 
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Figure B-2. Current paradigms in plasma biomarker research  

(A) A relatively small number of cases and controls are analyzed by hypothesis-

free discovery proteomics in great depth, ideally leading to the quantification 

of thousands of proteins (top layer in the panel). This may yield tens of 

candidates with differential expression that are screened by targeted proteomics 

methods in cohorts of moderate size (middle layer). Finally, for one or a few of 

the remaining candidates, immunoassays are developed, which are then 
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validates in large cohorts and applied in the clinic (bottom layer). (B) 

Workflow for hypothesis-free discovery proteomics. (C) Targeted proteomics 

for candidate verification. (D) Development of immunoassays for clinical 

validation and application. 

Adapted from Geyer et al., 2017  
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3. MASS SPECTROMETRY-BASED PROTEOMICS 

Edman degradation, which is used to sequence a protein, relies on the 

identification of amino acids that have been chemically cleaved in a stepwise 

fashion from the amino terminus of the protein and requires much 

expertise(Steen and Mann, 2004). In 1996, Mann and colleagues showed that 

MS could identify gel-separated proteins using a much smaller quantity of the 

sample than was required by Edman degradation and can fragment the peptides 

in seconds instead of hours or days (Wilm et al., 1996). Currently, MS-based 

proteomics has proliferated, and many biologists have access to a service to 

which they can submit a sample and are handed back a list of proteins that have 

been identified by MS. 

To measure biomolecules, which can be peptides or proteins, by mass 

spectrometry, analytes are ionized via electrospray ionization (ESI) or matrix-

assisted laser desorption/ionization (MALDI) (Figure B-3d), and their mass is 

measured by following their specific trajectories in vacuum system. Ionized 

molecules are recorded as values on the m/z scale, which has units of mass per 

charge (Steen and Mann, 2004).  

Having determined the m/z values and intensities of all the peaks in the 

spectrum, the mass spectrometer then proceeds to obtain sequence information 

about these biomolecules. This process is called MS/MS because it couples two 
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stages of MS. In tandem MS, a particular biomolecule ion is isolated, energy is 

imparted by collisions with an inert gas, and this energy causes the analyte to 

break apart. A mass spectrum of the resulting fragments is then generated 

(Figure B-3e). 

In general proteomics, the mass spectrometer does not measure proteins, but 

peptides. First, peptides can be easy to handle and are stable to introduce MS. 

Second, the sensitivity of MS for peptides is much better than that for proteins, 

and the protein might be processed and modified such that the combinatorial 

effect makes determining the masses of the numerous resulting isoforms 

impossible. Third, the sequence of a peptide is easy to predict, unlike that of a 

mature protein is not. Finally, mass spectrometry is most efficient at obtaining 

sequence information from peptides that are up to ~20 residues long, rather than 

from whole proteins peptides (Steen and Mann, 2004). The mostly highly 

sequence-specific proteases are used to convert proteins to peptides, such as 

trypsin. 
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Figure B-3. General workflow of gel-based proteomics.  
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(a) Proteins are extracted from bio specimen. (b) Extracted protein mixture 

from biosamples separated by 2-DE or SDS-PAGE. In most case, proteins are 

quantified on a gel. Using the quantitative difference from DIGE, target spots 

can be selected from 2-DE. (c) Excised gel pieces are trypsinized and resulting 

peptides are collected. (d) Peptides are ionized via MALDI or nano ESI and are 

inducted to MS. (e) Peptide is measured in MS spectrum, followed by selected 

and isolated, subsequently fragmented to get the sequence information from 

MS/MS spectrum.  
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After the acquisition of peptide sequence information (MS/MS), peptide 

identification software tools analyze the fragmentation spectra by de novo or 

database search engines(Sinitcyn et al., 2018). De novo peptide sequencing 

uses only information from the input spectrum and characteristics of the 

fragmentation method. Mass differences between certain peak pairs correspond 

to amino acid masses, which are interpreted as consecutive ions in one of the 

expected fragment series.  

However, the most popular approach is database search. This search method 

is easier than de novo sequencing because incompletely fragmented MS/MS 

spectra still have sufficient information to match it uniquely to a peptide 

sequence in the database (Steen and Mann, 2004). The database is generated 

from all protein sequences that are known or thought to be produced according 

to the instructions in the genome sequence of an organism. For a given 

measured fragmentation spectrum, the search engine calculates a match score 

against all theoretical fragmentation spectra within a specified peptide mass 

tolerance.  

Since the highest scoring spectra might be false positive, most workflows 

control the false discovery rate using a target-decoy approach (Elias and Gygi, 

2007). In this approach, fragmentation spectra are searched not only against the 

target database but also against a decoy database, which is designed to produce 

a false-positive result. Comparing the score distributions of the target and decoy 
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spectra, posterior error probabilities could be calculated and false discovery rate 

(FDR) could be controlled (Figure B-4b) (Sinitcyn et al., 2018). 
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Figure B-4. Overview of peptide identification methods.  

(a) In the peptide database search engine approach, measured MS/MS spectra 

are scored against a list of theoretical spectra from an in silico digest of protein 

sequences. De novo peptide identification allows reading the peptide sequence 

partially or completely out of the MS/MS spectrum. (b) In the target-decoy 

approach, true and decoy protein sequences are offered to estimate the false 

discovery rate (FDR). 

Adapted from Sinitcyn et al., 2018 
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In the early era of proteomics, gel electrophoresis was a dominant technique 

of sample preparation for MS analysis. O'Farrell introduced modern 2-DE in 

1975 that combined the separation according to the charges by isoelectric 

focusing under denaturing conditions with the fractionation corresponding to 

the sizes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) (Westermeier, 2016, O'Farrell, 1975). This separation technique 

provides a suitable resolution of protein mixture and has become the standard 

methods for proteome analysis (Wasinger et al., 1995). Highly separated 

proteins through 2-DE are visualized by gel staining (Chevalier, 2010) followed 

by the preparation of gel spots, which include the protein-of-interest, excision 

and in-gel digestion using an endopeptidase (e.g., trypsin, lys-C, glu-C, and 

chymotrypsin). The resulting peptides generated by trypsin were highly capable 

of ionization and were measurable within the MS dynamic range (Gygi et al., 

2000, Hustoft et al., 2012, Shevchenko et al., 2006). The peptides were 

measured by MS via MALDI or ESI. Tandem mass spectra derived from the 

fragmented peptide ion in the mass spectrometry were unique identifiers for 

amino acid sequence information (Figure B-3). 

It is undeniable that gel-based proteomics represent one of the most powerful 

protein separation and qualitative methods. SDS-PAGE has a nice capability to 

separate proteomes; however, some proteins are not applicable, such as highly 

acidic or basic proteins, extremely high/low molecular weight (MW) proteins, 
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and membrane proteins (Gygi and Aebersold, 2000b). Additionally, the gel has 

a loading capacity limit of approximately 100 µg of proteins onto a single gel; 

and if using DIGE to compare three samples, the amount of protein loaded per 

sample is reduced (~33 µg). It should be noted that load limitation makes it 

difficult to detect low-abundant proteins (Mansour and Coorssen, 2018, Timms 

and Cramer, 2008). Additional weaknesses of gel separation are gel-to-gel 

variation, expensive dyes, uncertain recovery from a gel piece, and low-

throughput identification due to the lack of an automated procedure (Wu et al., 

2006, Thelen and Peck, 2007, Gygi and Aebersold, 2000b, Mansour and 

Coorssen, 2018, Noaman et al., 2017, Vadivel and Arun, 2015). 

Alternative simple methods for large-scale study have been developed and 

demonstrated that LC-ESI-MS systems can handle highly complex peptide 

mixtures without gel separation (Appella et al., 1995). Thus, the application of 

liquid chromatography to the analysis of peptide mixtures generated by the 

proteolysis of complex protein samples is a considerable step toward gel-

independent proteomic technologies (Yates et al., 1997). Instead of omitting a 

protein gel electrophoresis step, separating peptides directly using one or more 

orthogonal chromatography steps following in-solution digestion results in 

better protein identification coverage (Figure B-5) (Schirle et al., 2003, 

Washburn et al., 2001). Additionally, SDS-PAGE-incompatible proteins, 

which include low-abundance proteins such as transcription factors, protein 
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kinases, and other regulatory proteins, are detectable and quantifiable in LC-

ESI-MS/MS; thus, the LC-based proteomics utilizes a routine procedure for 

global proteome analysis (Gygi and Aebersold, 2000a). The contemporary 

trend of disease research has been altered to high-throughput omics approaches 

that involve not only proteomics but also genomics, transcriptomics and 

metabolomics. In this context, it stands to reason that gel-free, LC-based mass 

spectrometry has became a dominant player in modern proteomics. 

The high-throughput fractionation technique was established to develop 

various quantitative methods, which can provide better sensitivity, a broader 

dynamic range, and high accuracy. Chemical labeling using a stable isotope 

(e.g., 18O and dimethyl) or isobaric tags (e.g., iTRAQ and TMT), which are 

simple and quick methods compatible from in vitro to clinical disease samples 

(Hsu et al., 2003, Yao et al., 2001, Thompson et al., 2003, Ross et al., 2004). 

Metabolic labeling (e.g., SILAC and AHA) can reach a higher labeling 

efficiency than others (Dieterich et al., 2006, Ong et al., 2002). Gel-based 

proteome quantification is analyzed on the gel via densitometric imaging. 

However, the quantification techniques described above can be utilized only 

when measured by MS and/or tandem MS. 
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Figure B-5. Current gel-free proteomics workflow.  
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(a) Extracted proteins are digested without gel electrophoresis. (b) Peptide 

mixtures are enriched (e.g. tags, PTMs) and/or fractionated (e.g. SCX, High-

pH RP) to reduce complexity, which contribute to enhanced sensitivity on MS. 

(c) Peptides are separated by reverse phase liquid chromatography, followed by 

ionization via nano ESI and are inducted to MS. (d) Each peptides is measured 

in MS spectrum, followed by selection and isolation, subsequently fragmented 

to get the sequence information from MS/MS spectrum. 
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4. PROTEOGENOMICS 

The important step during proteogenomics is construction of a customized 

database of proteins sequences, which are obtained from genomic data and can 

be further used to investigate the model of interest (Figure B-6). Because the 

entire genome, exome and mRNA sequencing are available at a reasonable 

price, it is possible to explain the sequences of complete theoretical proteins 

that are present a specific structure to be evaluated (Sajjad et al., 2016). 

Through proteogenomics different classes of peptide can be identified on the 

sample-sample specific genome. Novel peptides not found in any reference 

genome database include those that identify previously undiscovered protein-

coding loci (intergenic peptides) and variant peptides (single amino acid variant, 

SAAV). These may also include peptide mapping to the untranslated regions of 

introns, peptides spanning the boundary between the coding region and 

neighboring intron region (exon extension), peptides spanning alternative 

splice junctions and out-of-frame peptides. Novel peptides may also provide us 

with evidence of protein expression for chimeric transcripts, transcripts thought 

to be noncoding RNAs, gene fusions and RNA-editing events, although such 

events are expected to be rare in proteomic data sets (Figure B-7) (Sajjad et al., 

2016). 
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With the proteogenomics searches, peptides are identified based on 

customized protein sequence databases generated from genomic or 

transcriptomic information (Nesvizhskii, 2014). Search spaces for 

proteogenomics searches are typically larger than those in conventional 

searches because they often involve three- or six-frame translations of genomic 

sequences. Because of its large database size, it is necessary to consider the 

difference in the likelihood of identifying different classes of peptides (Figure 

B-8) (Ning and Nesvizhskii, 2010, Branca et al., 2014). Furthermore, these 

search spaces are heterogeneous, because the sequence content ranges from 

clearly existing, manually validated protein sequences to in silico-translated 

genomic regions without any prior evidence for their expression. Hence, extra 

measures need to be taken in the identification process to account for this 

heterogeneity. 
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Figure B-6. The concept of proteogenomics. 

In a proteogenomic approach, genomic and transcriptomic data are used to 

generate customized protein sequence databases to help interpret proteomic 

data. In turn, the proteomic data provide protein-level validation of the gene 

expression data and help refine gene models. The enhanced gene models can 

help improve protein sequence databases for traditional proteomic analysis. 

Adapted from Nesvizhskii, 2014 
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Figure B-7. Type of peptides identified in proteogenomics. 

Peptides identified by searching customized protein sequence databases are 

mapped on the genome. Intergenic peptides map to regions located between 

annotated gene models, whereas intragenic peptides map to genomic regions 
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contained within or in close proximity to an annotated gene model. Intragenic 

peptides can be further categorized according to the annotation of the 

corresponding gene model. The majority of peptide map to a protein-coding 

gene and can be divided into exon and exon-exon junction peptides. Novel 

peptides include peptides mapping to untranslated regions, intron peptides, 

peptides spanning the boundary between the coding sequence region and the 

neighboring UTR or intron region, peptides spanning alternative splice 

junctions, and out-of-frame peptides. 

Adapted from Nesvizhskii, 2014 
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Figure B-8. Statistical assessment of peptide identifications in 

proteogenomics. 

MS/MS spectra are searched against a customized protein sequence database 

that includes target sequences for the organism of interest, i.e., a reference 

protein database and predicted protein sequences (containing novel peptides). 

In addition, two 'decoy' databases of the same sizes as the target reference and 

predicted databases are appended to the target databases. The best database 

peptide match for each spectrum is selected for further analysis. Peptide 

identifications are classified as known or novel. When simple database search 

score–based filtering is used, the numbers of target and decoy peptide 
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identifications passing a certain score threshold are counted and used to 

estimate the FDR corresponding to that threshold. FDR analysis should be done 

separately for known and novel peptides (class-specific FDR) because of 

differences in the number of known and novel sequences in the searched 

customized sequence database and because of the lower likelihood of correctly 

identifying a novel peptide. For more advanced methods based on computing 

posterior peptide probabilities, both the database search scores and the peptide 

class (known or novel) should be taken into consideration. 

Adapted from Nesvizhskii, 2014 
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The advancement of proteogenomics is best shown with research on cancer 

where tremendous advancement has been achieved. The progression of cancer 

is carried out by alteration in the genome and uncertainty that occurs because 

of the cascade of genomic variation that which includes mutation, copy number 

aberration or translocation and methylation (Hanahan and Weinberg, 2011). 

However, as massive cancer genome sequencing projects (Consortium, 2010, 

Weinstein et al., 2013) were gradually developed, it is now obvious that the 

association of cancer genotype and phenotype also needs a cancer proteotype 

description. The development of in high-throughput proteomics has enabled a 

consistent and significant methodology with the abilities to compare the 

genomics for blood samples and tumor analysis. The National Cancer Institute, 

in this context, has launched, in 2011, the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) (Ellis et al., 2013). 

A major development in CPTAC has been shown recently in an important 

study (Zhang et al., 2014) that described the proteogenomics of human 

colorectal cancer. This investigation evaluated five proteomics subtypes in The 

Cancer Genome Atlas cohort for colorectal cancer. Intriguingly, the 20q 

chromosome amplicon was linked to the prime universal alteration at the 

mRNA and proteins levels and data from proteomics showed 20q candidate 

targets and biomarkers for colorectal cancer therapy. The results also showed 

that the mRNA transcript quantity did not make a reliable prediction about 
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protein quantity variance between cancers. It is noteworthy that the cancer 

taxonomy generated thus far totally depends on genomics and transcriptomics 

examination. 

Although the proteogenomics approach shows novel progress in omics 

technology, with the expected results applied results in medicine and biology, 

it is in the initial phase, and further progress is required before it can be broadly 

adopted. More bioinformatics assimilation is needed to entirely use the 

complete information spectra acquired in genomics, transcriptomics and 

proteomics studies (Sajjad et al., 2016). 
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5. TARGETED PROTEOMICS 

To verify potential protein biomarkers, it is necessary to build an adequate 

quantitative assay platform. There are two main ways to detect and quantify 

proteins: affinity reagent-based methods, exemplified by ELISA, Western 

blotting or immunohistochemistry staining, and MS-based peptide 

identification and quantification, which are mainly used for research and 

discovery proteomics. However, the dynamic range and number of proteins 

quantifiable using affinity reagent-based assays are limited (Leng et al., 2008, 

Ebhardt et al., 2015). 

MRM is a mass spectrometry technique for the detection and quantification 

of specific, predetermined analytes with known fragmentation properties in 

complex backgrounds. MRM is used most effectively in an LC-MS system 

(Picotti and Aebersold, 2012), where a capillary chromatography column is 

connected in-line to the electrospray ionization source of the mass spectrometer. 

MRM exploits the unique capability of triple quadrupole (QqQ) mass 

spectrometers to act as mass filters and to selectively monitor a specific analyte 

molecular ion and one or several fragment ions generated from the analyte by 

collisional dissociation (Figure B-9) (Yost and Enke, 1978, Yost and Enke, 

1979, Kondrat et al., 1978, Glish and Vachet, 2003). 
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Molecular ions within a mass range centered around the mass of the targeted 

peptide are selected in the first mass analyzer (Q1) and are fragmented at the 

peptide bonds by collision-activated dissociation (in Q2), and then one or 

several of the fragment ions uniquely derived from the targeted peptide are 

measured by the second analyzer (Q3) (Kuhn et al., 2004, Lange et al., 2008). 

Integration of the chromatographic peaks for each transition supports the 

relative or, if suitable heavy isotope-labeled reference standards are used, 

absolute quantification of the targeted peptide initially released from the protein 

and loaded on the LC-MS system. A suitably chosen set of MRM transitions 

therefore constitutes a specific assay to detect and quantify a target peptide and, 

by inference, a target protein in complex samples. 
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Figure B-9. Pictorial diagrams of the quadrupole during multiple reaction 

monitoring (MRM). 

(a) In a quadrupole mass analyzer, the correct magnitude of the radio frequency 

and direct current voltages applied to the rods allows ions of a single m/z to 

maintain stable trajectories from the ion source to the detector, whereas ions 
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with different m/z values are unable to maintain stable trajectories. (b) In the 

triple quadrupole (QqQ) instrument, which are suitable machine for MRM, the 

first and third quadrupoles are operated as mass spectrometers, whereas the 

second (middle) quadrupole acts as the collision region for collision induced 

dissociation (CID). Through HPLC eluting time, QqQ monitoring the 

fragmented ions and quantifying multiplexed targets. 

Adopted from Glish et al., 2003 
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A targeted proteomics experiment consists of multiple steps: first, the 

generation of a hypothesis, a target list of proteins to test the hypothesis and a 

fit-for-purpose quantitation strategy; second, the study design and experimental 

planning; third, sample preparation; fourth, method refinement; fifth, data 

acquisition; and, finally, analysis and modeling (Gillette and Carr, 2013b, 

Picotti and Aebersold, 2012, Liebler and Zimmerman, 2013). Bioinformatics 

and computational proteomics are part of each step of the workflow (Figure B-

10). 

The findings of promising biomarkers or signatures from preclinical studies 

should be followed by clinical testing. The bulk of recent work has focused on 

candidate discovery and overcoming the associated challenges related to tissues 

and bodily fluids. Targeted proteomics can be used to validate biomarkers 

found in a project’s discovery phase across many patient samples with high 

accuracy and reproducibility.  

In 2006 the National Cancer Institute (USA) started the CPTAC to evaluate 

targeted and discovery technologies for quantitative analysis in tissues and 

biofluids. This program was renewed in 2011 as the CPTAC, which began 

focusing on applications (Ellis et al., 2013). CPTAC member laboratories 

applied the standardized methods of MRM and demonstrated reproducibility, 

precision, and sensitive quantitation in tissues and biofluids (Cox et al., 2014). 
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Figure B-10. Typical targeted proteomics workflow.  

(A) Discovery results from LC-MS/MS experiments, protein network modeling 

and literature search typically form the basis to generate the final candidate list 
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to be quantified by MRM. (B) MRM assays for peptides are generated from 

extensive LC-MS/MS experiments under consideration of proteotypic peptides 

generated and best performing transitions per peptide. (C) Data anlysis starts 

with the primary LC-MS/MS performance examination. If spiked in, stable 

isotope labeled peptides serve as reference for consistent quantification. 

Statistical analysis of peptides quantified serve to identify peptides, and 

therefore proteins, changing in abundance. Further analysis include the 

clustering of data corresponding to proteins quantified and condition. If 

multiple kinase substrates were quantified, a consensus motif analysis could 

identify novel substrate motifs of a kinase. In case the conditions are time 

course data, the abundance of proteins can be plotted as a function of time. 

Using MRM-MS, protein stoichiometry of purified protein complexes can be 

determined (to be precise, this method requires newly synthesized externally 

calibrated reference peptides). The quantification of proteins and together with 

sample knowledge integration might lead to signatures which protein signature 

results in resistant or sensitive samples. The ultimate analysis is the protein 

network analysis leading to the prediction of novel perturbations. 

Adapted from Ebhardt et al., 2015 
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INTRODUCTION 

 

 

The Chromosome-Centric Human Proteome Project (CHPP), in which teams 

focus on individual chromosomes, is a global initiative that characterizes 

proteins encoded by genes across the complete human genome. (Paik et al., 

2012b) The proposed goals of C-HPP include the identification of all proteins 

encoded by each protein coding gene and the characterization of their 

localization, alternate splice variants, nonsynonymous variant-containing 

peptides, and major posttranslational modifications, including phosphorylation, 

glycosylation and acetylation, if any, by mass spectrometry (MS) and antibody-

based methods. (Paik et al., 2012a) 

Chromosome 9 (Chr 9) DNA is approximately 145 megabases in length. A 

total of 1,467 genes have been annotated from Chr 9 (GENCODE release 19), 

including genes implicated in male-to-female sex reversal, cancers and 

neurodegenerative diseases, along with 426 pseudogenes. (Humphray et al., 

2004) Among these genes, 815 genes are currently classified as protein-coding 

genes. It has been reported that mutations of the genes on Chr 9 are associated 
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with various types of cancer, including lung cancer. (Aravidis et al., 2012, 

Dagher et al., 2013, Narayanan et al., 2013) 

When searching spectra with established annotated reference protein 

databases, it is not possible to evaluate many characteristics, including splicing 

variants, missense mutation, 5’ and 3’ UTR translated peptides, and 

pseudogene expression. Therefore, to identify proteins in wide, uncharacterized 

sections of the human genome, a customized database, such as a 6-frame open 

reading frame database or a sample-specific RNA-seq-origin protein database, 

is required. Several research groups have published disease specific novel 

protein identifications that were determined using proteogenomics approaches 

and custom databases. However, this is not a generalized analytic tool and it 

needs to be applied to various diseases. (Sheynkman et al., 2013, Zhang et al., 

2014) 

Previous has focused on the study of lung cancer biomarkers, as lung cancer 

still presents the highest mortality rate among all cancer-related deaths. (Siegel 

et al., 2015) However, there is still a lack of information regarding novel 

proteins or variant-based biomarkers and their pathogenesis related to lung 

cancer.  

It has been shown that only approximately 16% of risk-associated loci harbor 

SNPs that affect coding sequences, and this absolves the majority of risk-
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associated loci from alterations to protein sequence. (Schaub et al., 2012) These 

synonymous, or silent, mutations are categorized as passenger events because 

they do not modify the protein sequence. They are therefore considered 

functionally irrelevant, although their potential involvement in tumorigenesis 

has been suspected. Recently, a compelling analysis suggested that such silent 

mutations can become oncogenic by altering transcript splicing and thereby 

affecting protein function. (Gartner et al., 2013, Supek et al., 2014, Sauna and 

Kimchi-Sarfaty, 2011) In this study, I performed RNA sequencing (RNA-seq) 

and MS-based proteomics analyses on lung adenocarcinoma (ADC) tissues and 

adjacent normal tissues. I identified 19 missing proteins across all 

chromosomes, tumor-specific 3 synonymous and 4 nonsynonymous SNPs at 

transcript level, 7 missense mutants at both protein and transcript levels, and an 

expressed pseudogene protein. For missense mutant identification, I searched 

RNA-seq and proteomics data after sample-specific protein database generation. 
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MATERIALS AND METHODS 

 

 

Tissue samples 

A total of 10 lung tissue specimens, including paired tumor and adjacent 

normal tissues from 5 patients with lung ADC, were obtained from the Samsung 

Medical Center Biobank (Seoul, Korea). Age and sex of the samples are 58 year 

male (ID11001563), 79 year male (ID13001628), 56 year male (ID11001794), 

35 year female (ID10000306), and 74 year male (ID10004557). TNM stages 

were T4N2M0 in one patient (ID10004557) and T2N2M0 in remaining four 

patients. All samples were obtained and used in accordance with the study 

protocol approved by the Institutional Review Board at the Samsung Medical 

Center (Seoul, Korea) (IRB No. 2012-11-025-003). The tissue samples were 

obtained from dissected surgical specimens that were snap-frozen in liquid 

nitrogen immediately after surgery, with written informed consent from each 

patient. The specimens were kept at -80°C until RNA or protein extraction.   

 

RNA-sequencing analysis 
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Total RNA was extracted from both adjacent normal and tumor tissues, and 

their quality was evaluated using an Agilent RNA 6000 Nano kit (Agilent 

Technologies, CA, USA). The cytoplasmic ribosomal RNA (rRNA) was 

depleted, and the cDNAs were subjected to end-repair and poly-(A) addition 

and then connected with sequencing adapters using the TruSeq RNA sample 

prep Kit (Illumina, CA, USA). The libraries from both tumor and adjacent 

normal tissues were sequenced by an Illumina HiSeq2500 sequencer (Illumina, 

CA, USA). RNA-seq data were aligned with the GENCODE human reference 

genome (release19, GRCh37.p13) and matched to Ensemble (release74) using 

STAR (version 2.4.0j). (Dobin et al., 2013) Abundance of both transcripts and 

genes was measured as Fragments Per Kilobase of exon per Million fragments 

mapped (FPKM). To detect genomic variants, aligned RNA-seq BAM files 

were processed by RVboost (version 0.1). (Wang et al., 2014) 

 

Sample preparation for proteomics  

  For liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

analysis, proteins were extracted from homogenized tissue samples using a 

NucleoSpin TriPrep kit (Macherey-Nagel GMH & Co KG, Düren, Germany) 

according to the manufacturer’s instructions. The protein concentration of 

diluted tissues was measured using Quick Start™ Bradford 1x Dye Reagent 



47 

 

(Bio-Rad Laboratories, Hercules, CA). Then, 80 µg of protein was prepared in 

50 mM ammonium bicarbonate and reduced and alkylated by treatment with 

dithiothreitol (Bio-Rad Laboratories, Hercules, CA) and iodoacetamide 

(Sigma-Aldrich, St Louis, MO, USA). Trypsin (Promega, Madison, WI, USA) 

was added to digest samples at a protein-to-enzyme ratio of 50:1 (w/w), and the 

solution was incubated at 37 °C for 16 hours. Digested samples were separated 

into 10-12 fractions using high pH on a C18 column as first dimension.  

  

LC-MS/MS analysis 

Spectra raw data were acquired on an LTQ-Orbitrap (Thermo Fisher, San 

Jose, CA) with EASY-nLC II (Proxeon Biosystems, now Thermo Fisher 

Scientific). An autosampler was used to load 6-µL aliquots of the peptide 

solutions into an EASY-Column; C18 Trap-column of i.d. 100 µm, length 20 

mm, and particle size of 5 µm (Thermo Scientific). The peptides were desalted 

and concentrated on the trap column for 15 min at a flow rate of 2 µL/min. Then, 

the trapped peptides were separated on an EASY-Column; C18 analytic-column 

of i.d. 75 µm and length 100 mm, and 3 µm particle size (120Å from Thermo 

Scientific). The mobile phases were composed of 100% water (A) and 100% 

acetonitrile (ACN) (B), and each contained 0.1% formic acid. The voltage 

applied to produce the electrospray was 2.0 kV. During the chromatographic 
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separation, the LTQ-Orbitrap was operated in a data-dependent acquisition 

mode. The MS data were acquired using the following parameters; full scans 

were acquired in Orbitrap at resolution 60,000 for each MS/MS measurement, 

six data-dependent collision induced dissociation (CID) MS/MS scans, CID 

scans were acquired in linear trap quadrupole (LTQ) with 10 ms activation time 

performed for each sample, 35% normalized collision energy (NCE) in CID, 

±1.5 Da isolation window. Previously fragmented ions were excluded for 180 

sec.   

Then, the datasets generated by LTQ-Orbitrap were analyzed using the 

Proteome Discoverer (version 1.3.0.339, Thermo Fisher Scientific) and 

Scaffold (version 4.4.1, Proteome Software Inc., Portland, OR) Platform, and 

searched against the UniProt human protein database (release 2015_02) using 

SEQUEST and X!tandem. Peptide identifications were accepted if they could 

be established at a greater probability to achieve an FDR less than 1.0% by a 

Scaffold Local FDR algorithm. Protein identifications were accepted if they 

could be established at a greater than 95.0% probability and if they contained 

at least 2 identified unique peptides. Protein probabilities were assigned by the 

Protein Prophet algorithm. The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner 
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repository (Vizcaíno et al., 2012) with the dataset identifier PXD002523 and 

DOI 10.6019/PXD002523. 

 

Proteogenomic data analysis 

To integrate the RNA-seq and LC-MS/MS datasets, I customized a sequence 

database, composed of SNP-containing or ORF-excluding transcripts, for each 

sample pair (Figure 1-1). SNP sequence data from individual patients was also 

processed by QUILTS (http://quilts.fenyolab.org/) to convert it to amino acid 

sequence for somatic non synonymous variant identification. Converted variant 

sequence and ensembl_human_37.70.fasta were combined to generate a 

working database, which was used for exclusive unique MS/MS spectrum 

searching for missense variation in peptides. The customized fasta format 

database is available from public data repository platform GitHub located at 

https://github.com/vetbio/2015jpr. 

I also generated other databases from identified transcripts above FPKM 2 to 

find pseudogenes or novel proteins/peptides that contain long non-coding 

transcripts and splicing variants. These databases contain pseudogenes or long 

non-coding transcripts in the introns of coding genes, long non-coding 

transcripts that contain a possible coding gene in the intron on the same strand, 

short non-coding transcripts from the 3’UTR, and processed transcripts that do 
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not contain an ORF. Nucleotide to amino acid sequence conversions were 

conducted by 3-frame translation and converted sequences were combined with 

human Fasta (UniProt 2015-02 rel.). MS/MS spectra searches were processed 

using the same platform mentioned above to identify proteins via 

proteogenomic data analysis with an estimated peptide FDR threshold of 1%, a 

protein probability threshold of 95%, and containing at least 1 unique peptide 

and with manual confirmation. 
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Figure 1-1. Schematic diagram of this study 

(a) LC-MS/MS analysis was performed for proteome identification, and RNA-

seq analysis was performed for customized database generation using a 
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proteogenomic data acquisition process. To identify new proteins/peptides and 

transcript and protein mutants, customized databases composed of SNP- and 

ASV including or ORF-excluding transcripts were used. (b) Identified both 

proteome and proteogenome were used for C-HPP datamatrics to fill the gap 

towards the genome; and also utilized for the lung cancer biomarker discovery 

with multi-omics technologies.
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RESULTS AND DISCUSSION 

 

 

Recent updates to the chromosome 9 proteome  

First, I revisited the neXtProt database and compared the protein lists on Chr 

9 between neXtProt 2013.09.26 rel. (just prior to the submission of Chr 9 

working group’s last C-HPP special issue) and neXtProt 2015.04.28 rel. The 

total number of genes and proteins on Chr 9 was decreased by 11; from 826 to 

815 for genes and from 821 to 810 for proteins (Figure 1-2a). The difference 

(5) in the number of genes and proteins is due to 4 overlapping genes: Interferon 

alpha-1/13 (Gene: Ifna13, Ifna1), Protein FAM74A1/A2 (Gene: Fam74a1, 

Fam74a2), Protein FAM74A4/A6 (Gene: Fam74a4, Fam74a6), and Protein 

FAM27A/B/C (Gene: Fam27a, Fam27b, Fam27c). The number of missing 

proteins was decreased from 170 to 133. Thus, in the last one and a half years, 

39 missing proteins were identified, 2 missing proteins were downgraded to 

PE5, and 2 were eliminated from the neXtProt index. Meanwhile, 6 proteins 

that were demoted from PE1 to PE2 were newly added to the missing protein 

list (Figure 1-2b). The newly identified 39 missing proteins were contributed 

mostly from previous JPR issue (Ahn et al., 2013) and from two publications 
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in Nature by the Pandey and Kuster groups in May 2014. (Kim et al., 2014, 

Wilhelm et al., 2014) These two Nature publications received a great attention 

because the authors showed a large amount of human proteome coverage in 

various tissues. However, they were criticized because the protein identification 

reliability used for protein identification was low. (Ezkurdia et al., 2014) This 

low reliability was shown by the high number of identified olfactory receptors 

despite the fact that there was no tissue included in the study where the 

expression of those proteins is to be expected. Thereafter, the C-HPP 

consortium set up strict protein identification criteria. Henceforth, to be 

identified as a missing protein, the peptide FDR should be less than 1%, two or 

more unique peptides should be identified, and the protein probability should 

be more than 95%. In the C-HPP previous special issue, I originally identified 

45 missing proteins in Chr 9. However, after applying these strict criteria, only 

16 out of 45 of these proteins were found to be valid, newly identified, missing 

proteins.  
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Figure 1-2. Recent updates to the chromosome 9 proteome 

(a) Pie charts show Chr 9-encoded proteome statistics between neXtProt 

2013.09.26 rel. and neXtProt 2015.04.28 rel. (b) Trends of Chr 9-encoded 

missing proteins. In the neXtProt 2014.04.28 rel., 43 proteins were expelled 

from the 2013.09.26 rel. and 6 proteins were newly added from PE1 to the 

missing protein list.  
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Newly detected missing proteins  

To find new missing proteins, I performed LC-MS/MS proteomics analysis 

on 5 pairs of human lung ADC tissues and adjacent normal tissues. Proteome 

data were searched using the database from neXtProt release 2015-04-28. In 

the Protein Evidence (PE) 2-4 category, I identified 19 new missing proteins 

with the criteria of peptide FDR <1%, unique peptide ≥2 and protein probability 

>95% (Table 1-1). Out of 19 missing proteins, 13 were found only in lung ADC 

tissues (AKR7L, PHTF1, DNAH6, CTAGE9, TEX15, SPATA31A4, LRRC27, 

CCDC38, DNAH3, FBXW10, ZNF221, ZNF780A, BHLHB9), whereas only 

4 were found only in normal tissues (ANKRD36, ZNF619, SLC35A4, 

CCDC178). One missing protein, SPATA31A4, was a Chr 9 gene-coded 

protein that was found in one of the ADC tissue samples. The peptide identified 

in the protein had a mis-cleaved arginine in the middle of its sequence. Thus, 

the CID may generate limited backbone cleavage and may usually produce poor 

tandem spectra. This may explain, in part, why this peptide was difficult to 

identify. Electron transfer dissociation (ETD) may help to increase the quality 

of the tandem spectra, if used. (Snijders et al., 2010) 

From the missing protein identification data so far, and because different 

tissues express different protein sets, it is important to use in-depth analysis to 

analyze proteomes in diverse tissues to find the remaining missing proteins. In 

addition, using digestion enzymes other than trypsin, or using enzymes in 
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combination with trypsin, such as Glu-C, chymotrypsin, or Lys-C proteases, 

may also be used to increase the sequence coverage and thus chance to detect 

peptides that holds splicing variants or specific isoforms for better proteome 

identification. Alternative fragmentation methods, such as ETD and ultraviolet 

photo dissociation (UVPD), will also improve the identification of missing 

proteins. (Tsiatsiani and Heck, 2015, Greer et al., 2015, Hendricks et al., 2014, 

Vasicek and Brodbelt, 2010, Yoon et al., 2009) 
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Table 1-1. List of newly detected missing proteins 

neXtProt ID Gene Chr PE Description 
Identified Sample 

Normal Tumor 

NX_Q8NHP1 AKR7L 1 
transcript 

level 
Aflatoxin B1 aldehyde reductase 

member 4 
  10004557_T 

NX_Q9UMS5 PHTF1 1 
transcript 

level 
Putative homeodomain 
transcription factor 1 

  11001563_T* 

NX_A6QL64 ANKRD36 2 
transcript 

level 
Ankyrin repeat domain-containing 

protein 36A 
11001563_N*   

NX_Q9C0G6 DNAH6 2 
transcript 

level Dynein heavy chain 6, axonemal   13001628_T 

NX_Q8N2I2 ZNF619 3 
transcript 

level 
Zinc finger protein 619 10004557_N*   

NX_Q96G79 SLC35A4 5 
transcript 

level 
Probable UDP-sugar transporter 

protein SLC35A4 
10004557_N*   

NX_Q5TEZ5 C6orf163 6 predicted        Uncharacterized protein C6orf163 11001794_N 11001563_T 

NX_A4FU28 CTAGE9 6 
transcript 

level 
cTAGE family member 9   11001563_T 

NX_Q9BXT5 TEX15 8 transcript 
level 

Testis-expressed sequence 15 
protein 

  11001563_T 

NX_Q4VX67 SPATA31A4 9 homology         
Spermatogenesis-associated 

protein 31A4 
  10000306_T 
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NX_Q9C0I9 LRRC27 10 
transcript 

level 
Leucine-rich repeat-containing 

protein 27 
  11001794_T* 

NX_Q502W7 CCDC38 12 
transcript 

level 
Coiled-coil domain-containing 

protein 38 
  10004557_T 

NX_Q8TD57 DNAH3 16 
transcript 

level 
Dynein heavy chain 3, axonemal   11001563_T 

NX_Q5XX13 FBXW10 17 transcript 
level 

F-box/WD repeat-containing 
protein 10 

  11001794_T 

NX_Q5BJE1 CCDC178 18 
transcript 

level 
Coiled-coil domain-containing 

protein 178 
11001563_N*   

NX_Q9UK13 ZNF221 19 
transcript 

level 
Zinc finger protein 221   11001563_T 

NX_O75290 ZNF780A 19 
transcript 

level Zinc finger protein 780A   11001563_T* 

NX_Q6PI77 BHLHB9 X 
transcript 

level 
Protein BHLHb9   11001563_T 

NX_Q96LI9 CXorf58 X 
transcript 

level 
Putative uncharacterized protein 

CXorf58 
11001563_N   

  *RNA-seq analysis supported with FPKM>1 

  Abbreviation used: Chr, chromosome; PE, protein existence level 
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Proteome and transcriptome analysis of lung cancer tissues  

In the LC-MS/MS proteomic analysis of the 5 pairs of ADC and adjacent 

normal tissues, 1257 proteins were identified (Figure 1-3e). To classify 

biological function, proteins and genes were clustered according to gene family, 

as annotated by the Human Genome Nomenclature Committee (HGNC; 

http://www.genenames.org/genefamily.html) (Figure 1-3f). The gene family 

with the most proteins and transcripts expressed was the Lipocalin family, 

which exhibits great functional diversity, with roles in the regulation of cell 

homeostasis and the modulation of the immune response, transporter, 

prostaglandin synthesis and as carrier proteins. (Flower, 1996) Five of the 

proteins and eight of the transcripts showed 100% coverage.  

A total of 87946 transcripts from 18145 genes were identified in the RNA-

seq analysis, using a cutoff of FPKM>1 for genes and >0.3 for transcripts in at 

least one specimen (Figure 1-3a & 3b). 676 genes (46% of 1467 genes) on 

chromosome 9 were detected, including 24 genes (18%) out of 133 missing 

protein genes (Figure 1-3a, 3c & 3d). Cancer tissues expressed more genes, but 

proportions of protein coding genes (~85%) and others were similar to normal 

tissues (Figure 1-3a). The number of unique genes found only in cancer tissues 

was 2206 (12%), whereas 14764 (81 %) of the expressed genes overlapped in 

cancer and normal tissues. The gene expression levels varied greatly across 

different tissues and specimens. A total of 11024 genes (60 %) were identified 
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in all 10 specimens at the transcript level. However, 1784 genes (9 %) were 

detected only in one specimen, and 4547 genes (25%) were detected in less than 

half of the specimens.   

As shown in Figure 1-3d, the RNA abundance of 24 chromosome 9-encoded 

missing proteins was shifted toward lower FPKM values. No corresponding 

protein was detected for these 24 genes in the proteome analysis. The missing 

protein, SPATA31A4, which was identified by proteomics, was not detected 

by RNA-seq analysis at an FPKM>1 level.  Meanwhile, 7 (37%) out of 19 

new missing proteins detected by MS had an FPKM>1. These findings indicate 

the extreme difficulty encountered when attempting to detect the remaining 

missing proteins using current proteomics techniques in one sample type of 

tissue. 
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Figure 1-3. Categorization of the identified transcriptome and proteome in 

lung cancers 

(a) Number of genes and transcripts identified in RNA-seq analysis. Transcript 

abundance distribution in total (b), chromosome 9-encoded (c), and missing 
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chromosome 9-encoded genes (d).  (e) A comparison of the number of peptide 

spectrum matches (PSMs), peptides, and proteins identified in LC-MS/MS 

analysis from 5 pairs of lung tissues. (f) Transcriptome and proteome 

expression enriched in major gene families encoded by Chr 9. 
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Synonymous and nonsynonymous SNPs in lung cancer tissues 

Using the RVboost tool, 52910~63453 variants in five tumor and 

56404~60680 variants were identified in five adjacent normal tissues, 

respectively. To extract tumor-specific somatic SNPs, variants derived from 

adjacent normal tissues were eliminated from the list of variants found in tumor 

tissues. As a result, 18263~23496 tumor-specific variants were acquired from 

5 pairs of samples. The total number of enriched tumor-specific variants is 

91985 in overall samples, containing 3172 chromosome 9-encoded variants 

(including 358 synonymous and 509 nonsynonymous mutations), which were 

distributed 625~821 per sample. Four nonsynonymous variants, in CDH17, 

HIST1H1T, SAPCD2, and ZNF695, and four synonymous variants, in CDH17, 

CST1, HNF1A, and CSMD2, were identified as common to all 5 tumor samples 

but none of normal adjacent tumors (Table 1-2). 
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Table 1-2. Identified tumor specific synonymous and nonsynonymous mutations in RNA-seq analysis 

Chr Gene 
name Position Ref Alt Codon 

change 

Amino 
acid 

change 
Effect Exon ID 

1 CSMD2 34285381 C T aaG/aaA K379 Synonymous NM_052896.ex.62 

8 CDH17 95158382 C T ttG/ttA L647 Synonymous NM_001144663.ex.4 

12 HNF1A 121435342 C T Ctg/Ttg L459 Synonymous NM_000545.ex.7 

20 CST1 23729722 G T cgC/cgA R91 Synonymous NM_001898.ex.2 

1 ZNF695 247162658 C T aGa/aAa R84K Nonsynonymous NM_001204221.ex.4 

6 HIST1H1T 26108168 G A Ctt/Ttt L52F Nonsynonymous NM_005323.ex.1 

8 CDH17 95143186 C G gaG/gaC E734D Nonsynonymous NM_001144663.ex.3 

9 SAPCD2 139964447 G C Cgc/Ggc R156G Nonsynonymous NM_178448.ex.6 

  Abbreviation used: Chr, chromosome; Ref, reference nucleotide; Alt, altered nucleotide 
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The data was further analyzed to determine whether these synonymous 

mutations have any correlation with transcript expression levels. Synonymous 

mutations, which occur as a single nucleotide substitution in an exon region, do 

not modify coding amino acids and are considered functionally silent mutations. 

However, the possibility that a synonymous SNP might modulate 

transcriptional processes or induce tumorigenesis has been proposed. 

(Sheynkman et al., 2013, Narayanan et al., 2013, Supek et al., 2014) Four 

synonymous mutants that were common to all tumor samples were enriched, 

and three of these genes were identified as having transcript levels with an 

FPKM value greater than 0.3, with the exception of CSMD2 (Figure 4). 

Interestingly, the transcripts of CDH17, CST1, and HNF1A were detected only 

in tumor tissues and not in normal tissues. These data suggest that the 

synonymous SNPs at CDH17, CST1, and HNF1A in tumor tissues resulted in 

the selective enrichment of the mutant genes in these tissues and, therefore, to 

higher expression in tumor tissues than in adjacent normal tissues. Future study 

is needed to clarify the mechanisms involved in this selective expression of 

synonymous mutants in lung ADC. 

Expression of CDH17, also known as an adhesion molecule, is restricted to 

the colon, intestine, and pancreas in adult humans. However, it has been 

reported to be reduced in colorectal and pancreatic cancers and induced in liver 

and gastric cancers. (Lee et al., 2010b) CDH17 is known as a liver-intestine 
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cadherin and an onco-fetal gene and as a potential biomarker of hepatocellular 

carcinoma and gastric cancer. (Wong et al., 2003, Lee et al., 2010a) 

However, its synonymous SNP variant selectivity was not reported in lung 

cancers prior to this study. CST1 is expressed in the lacrimal gland, gall bladder 

and seminal vesicle in adult humans and is upregulated in the fetal 

submandibular gland. (Dickinson et al., 2002) CST1 regulates cysteine protease 

activity and is highly involved in gastric cancer and colorectal cancer. (Yoneda 

et al., 2009, Choi et al., 2009) HNF1A is a transcriptional activator that 

functions in the tissue specific expression of multiple genes, especially in 

pancreatic b-cells, liver and other tissues. (Ryffel, 2001) A frameshift mutation 

in exon 4 of HNF1A - Pro291fsinsC-HNF1A - causes HNF1A-MODY, which 

is a type of monogenic form of noninsulin-dependent diabetes mellitus. (Bell 

and Polonsky, 2001, Yamagata et al., 1996) Moreover, it has been reported that 

pancreatic cancer and hepatocellular carcinoma may be associated with 

HNF1A expression levels. (Pierce and Ahsan, 2011, Laumonier et al., 2007, 

Zucman-Rossi et al., 2006) 
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Figure 4. Lung tumor-specific synonymous variants 

Tumor specific synonymous mutation exon map and transcript expression 

levels in lung tumor and adjacent normal tissues. (a) HNF1A (b) CST1 (c) 

CDH17. 
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Accordant nonsynonymous (missense) mutation identifications from 

proteogenomic analysis 

Through the combined analysis of RNA-seq and proteomics in 5 pairs of 

lung ADC and adjacent normal tissues, this study first searched for any 

expressed SNP that caused amino acid changes in proteins. For this purpose, a 

sample-specific protein database was generated based on the RNA-seq 

sequences performed on the same samples. I used the web based ‘QUILT’ 

software (http://quilts.fenyolab.org/) that was developed by Dr. David Fenyo’s 

lab at New York University. The RNA-seq in VCF Format was processed with 

QUILTS to generate each lung cancer tissue-specific reference protein database. 

Then, these proteome data were searched against this reference database to 

specifically select nonsynonymous mutants identified between ribonucleotide 

and amino acid sequences. The original search revealed a total of 16 

nonsynonymous mutants. After manual validation for spectrum quality, 7 

nonsynonymous mutants in 5 peptides of 5 different proteins remained (Table 

1-3). Of these mutants, Lactotransferrin (LTF) was expressed in one tumor 

tissue sample and HDLBP was expressed in two tumor tissue samples. 

However, these mutations were not identified when the proteome data were 

searched using normal annotated protein databases. The two representative 

peptides from the LTF and HDLBP genes are presented on Figure 1-5. These 
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mutations (LTF E535D and HDLBP S61A) were identified in lung cancer 

tissues but not in adjacent normal tissues.  
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Table 1-3. Identified nonsynonymous variant peptides in proteogenomic analysis 

Chr Gene name 

R

e

f 

A

l

t 

Codon 

change 

AA 

change 
Exon ID 

Identified 

sample 
Identified peptide 

2 HDLBP A C Tct/Gct S61A 
NM_005336.

ex.25 

13001628

T 
AACLESAQEPAGAWGNK 

3 LTF C G gaG/gaC E535D 
NM_001199

149.ex.3 

11001794

T 

DVTVLQNTDGNNNDAWA

K 

3 TF C T Cct/Tct P589S NM_001063 
11001794

N/T 
SVEEYANCHLAR 

6 HLA-DRB5 A C Ttg/Gtg L67V 
NM_002125.

ex.5 

11001794

N 
GIYNQEENVR 
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6 HLA-DRB5 C T Gac/Aac D66N 
NM_002125.

ex.5 

11001794

N 
GIYNQEENVR 

6 HLA-DRB5 T C gAc/gGc D59G 
NM_002125.

ex.5 

11001794

N 
GIYNQEENVR 

11 HBD G T gCa/gAa A23E 
NM_000519.

ex.3 

11001563

N 
VNVDEVGGEALGRL 

  Abbreviation used: Chr, chromosome; Ref, reference nucleotide; Alt, altered nucleotide 
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Figure 1-5. Identification of nonsynonymous variant peptides 

(a) A representative example of the missense variant peptide from 

lactotransferrin (LTF). The red box indicates a region that contained a missense 
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variant at the ribonucleotide and amino acid level. (b) Representative MS/MS 

spectrum of a missense variant peptide (DVTVLQNTDGNNN(E>D)AWAK) 

in lactotransferrin (LTF) (c) A representative example of the missense variant 

peptide HDLBP (Vigilin). The red box indicates a region that contained a 

missense variant at the ribonucleotide and amino acid level. (d) Representative 

MS/MS spectrum of a missense variant peptide 

(AACLESAQEP(S>A)GAWGNK) in Vigilin (HDLBP) 

 

 



75 

 

RNA-seq revealed a GàT mutation at position Chr3: 46480958 

(release19, GRCh37.p13) in the LTF gene, and proteome data showed a 

matched glutamic acid to aspartic acid change at the 535 position (E535D) 

(Figure 1-5a). LTF is a strong iron binding member of the transferrin family 

that has antineoplastic, antibacterial, antimycotic, antiviral and anti-

inflammatory activities. LTF is one of the genes most commonly inactivated in 

lung cancers by chromosomal elimination or epigenetic modulations. (Iijima et 

al., 2006) In this study, I found a novel NS mutation in LTF in lung cancers, 

displayed both as an expressed SNP and in peptide micro-sequencing by 

transcriptomics and proteomics approaches. 

Another mutation was identified in High-density lipoprotein-binding 

protein (HDLBP), in which RNA-seq revealed a TàG mutation at position 

Chr2: 242203916 (release19, GRCh37.p13), and proteome data showed a 

matched serine to alanine change at peptide position 61 (S61A). HDLBP 

encodes the RNA-binding protein Vigilin, which contains 14 type I KH 

(hnRNP K homology) domains that participates in single strand nucleic acid 

binding and protein–protein interactions. (Grishin, 2001) HDLBP has been 

reported as a tumor suppressor that is frequently deleted or mutated in cancer 

cells. (van der Weyden et al., 2014, Molyneux et al., 2014) Again, my combined 

proteogenomic approach showed evidence of both an expressed SNP and an 

amino acid change.  
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Other nonsynonymous mutants identified are in Transferrin (TF P589S), 

hemoglobin delta (HBD A23E), and major histocompatibility complex, class II, 

DR beta 5 (HLA-DRB5 D59G, L67V, and D66N) (Table 1-3). I detected 3 

nonsynonymous polymorphisms in an exon-5 region peptide of HLA-DRB5 

protein, which belongs to the HLA class II beta chain paralogues that are 

expressed in antigen presenting cells such as B lymphocytes, dendritic cells, 

and macrophages. Since lung cancer recruits immune cells, this HLA-DRB5 

might be presented by the immune cells in lung cancers. Among 6 exons of 

HLA-DRB5, exon 5 encodes the cytoplasmic tail. Within the DR molecule, the 

beta chain contains all the polymorphisms specifying the peptide binding 

specificities. Hundreds of DRB1 alleles have been described and typing for 

these polymorphisms is routinely done for tissue transplantation. (Reche and 

Reinherz, 2003) Thus, it should be noted that this HLA-DRB5 nonsynonymous 

variant is a form of naturally occurring polymorphisms and not a true cancer 

missense mutation. 

I have not identified many nonsynonymous mutants that have been 

confirmed by proteomics. It is also notable that the four common 

nonsynonymous SNP variants in the genes CDH17, HIST1H1T, SAPCD2, and 

ZNF695, which were identified only in the 5 tumor samples and not in adjacent 

normal tissues, were not detected by my dual identification approach using both 

RNA-seq and proteomics. This is due in part to the low peptide coverage of 
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protein identification in this discovery mode of proteomics analysis. To obtain 

wider coverage, and to therefore identify and confirm more missense mutants, 

it is required that I develop deep proteomics analysis that uses extensive 

fractionation, other digestion enzymes, and other ion dissociation methods, 

such as ETD.  

So far, these results suggest that proteomics data analysis that uses a RNA-

seq based, sample-specific protein reference database will help researchers to 

identify new variants and mutant proteins and their mutant sequences. Future 

studies of the missense mutations identified in LTF and HDLBP will reveal the 

function and role of these mutations in lung ADC. 
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Proteogenomic analysis identified a novel peptide derived from a 

pseudogene 

I then performed proteogenomic data analysis to determine whether any 

pseudogene expression was detected. To select a confident list of expressed 

pseudogenes, a customized database was generated using measured 

pseudogene sequence at the transcript level that had an FPKM value above 2 

(Figure 1-1). The selected transcript lists were converted to amino acid 

sequences by 3-frame translation and combined with the 

ENSEMBL_human_37.70.fasta database to determine an appropriate FDR cut-

off within the score-spectra distribution by adding the effective number of the 

true positive population. However, by using this analysis with a customized 

database, I did not find any peptides from pseudogenes.  

One pseudogene (EEF1A1P5) was identified with the UniProt human 

database (2015.02. rel.), which denotes the existence of this protein as 

‘uncertain’. EEF1A1P5 (Putative elongation factor 1-alpha-like 3) was detected 

all tissue samples. However, tumor tissues had 3.7-fold higher average 

quantitative values when normalized by total spectral counts (Figure 1-6). The 

sequence of EEF1A1P5 includes three GTP binding domains, which may result 

in the upregulation of protein synthesis by promoting translational elongation 

activities. Such a quantitative difference in pseudogene expression implies that 

EEF1A1P5 may be a potential lung cancer biomarker or causative gene. An 
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increased rate of both global and/or specific protein synthesis is known to 

promote cell survival, angiogenesis, transformation, invasion and metastasis. 

Alterations to translation factors, including elongation factors of putative 

EEF1A1P5 and translational regulatory factors, have been reported in human 

cancers. (Silvera et al., 2010, Sonenberg, 1993, Anand et al., 2002, Ruggero 

and Pandolfi, 2003) 

 

Figure 1-6. Detection of pseudogene expression at the protein level 

The EEF1A1P5 pseudogene expression pattern was present at the most elevated 

levels in lung tissues. Quantitative values were used after normalizing by total 

spectra.  
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Similar proteogenomic analysis used for pseudogene identification has 

been performed to identify intron inclusion splicing variants, LNC RNA 

expression etc. However, in this analysis I did not identify any intron inclusion 

splicing variants and LNC RNA expressions by proteogenomic approaches. 

Alternatively, it is possible to find novel splice variants reads in reanalysis using 

other tools. If I use new tools such as MISO (Mixture of Isoforms) and 

Cufflinks as a de novo mode novel splicing events can be identified, because 

those tools have capacity to analyze all major types of alternative pre-mRNA 

processing at either the exon level or the isoform level. I am planning to analyze 

further for novel splicing variant aspect using additional tools such as MISO 

and Cufflinks. 
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CONCLUSION 

 

 

Before C-HPP was launched in 2012, missing proteins on Chr 9 represented 

20% of Chr 9-encoded proteins. At the time of this second publication, the 

remaining missing proteins represent 16% of Chr 9-encoded proteins (132 

proteins). Proteome analysis using LTQ-Orbitrap in lung ADC tissues 

identified 19 missing proteins in whole human genome. RNA-seq analysis 

indicated that the remaining missing proteins are probably expressed at very 

low levels and the extreme difficulty encounters when attempting to detect the 

remaining missing proteins using current proteomics techniques in one sample 

type of tissue. Therefore, the use of various tissue types with more fractionation 

and high-speed mass spectrometry will be required to reveal the remaining 

missing proteins.  

RNA-seq analysis detected RNA expression for 4 nonsynonymous and 4 

synonymous mutations in all 5 tumor tissues but not in any of the adjacent 

normal tissues. I have also used a proteogenomic approach by combining 

proteomic data analysis with RNA-seq supported data from the same matched 

pairs of human lung tumor and adjacent normal tissues. The combined sample-



82 

 

specific proteogenomic analysis revealed 7 missense mutations from 5 peptides 

in lung tissues, demonstrating that variant gene and protein expression can be 

identified through this type of proteogenomic analysis. I also discovered 

peptides that were derived from the expression of a pseudogene. These results 

from the confirmation of both transcript and protein levels may present better 

disease specificity (Zhang et al., 2014, Alfaro et al., 2014) when analyzed 

in disease samples.  

Analyzing mutations in genomic DNA level does not provide any 

information as to whether the mutated genes are expressed at the transcript level 

or, more importantly, whether they are expressed at the protein level and 

survive the protein degradation system and, thus, can cause cancers or be 

involved in tumorigenesis. However, my approach of using dual identifications 

of nonsynonymous variants expression by sample-specific RNA-seq based 

protein databases provides not only data confirmation but also direct 

information regarding diagnostic and/or drug target possibilities. Future studies 

will reveal the function of the missing proteins and confirm, quantitatively, the 

missense mutations between cancer tissues and normal tissues by MRM 

approaches, and thus diagnostic and therapeutic target possibilities in lung 

cancers.  
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INTRODUCTION 

 

 

  Lung cancer still presents high levels of mortality in cancer-related deaths 

(Siegel et al., 2014). Currently, lung cancer diagnosis largely depends on 

clinical imaging methods such as radiography, computed tomography (CT) and 

positron emission tomography (PET). However, these technologies are often 

incapable of distinguishing lung cancer from other lung abnormalities due to 

poor specificity (Henschke et al., 1999). Lesions from non-cancerous lung 

diseases can cause interference with solid tumor detection in imaging-based 

diagnosis, in which case only biopsy can definitively diagnose lung cancer (Ost 

et al., 2003). To overcome the current problems involved in diagnosing lung 

cancer apart from other respiratory diseases, the development of feasible, 

molecular marker-based differential diagnostic methods is highly desirable. 

  Several biochemical diagnostic molecules, called biomarkers, have been 

discovered from serum, allowing simple and non-invasive diagnosis. Several 

protein biomarkers are already used in the clinics for screening or monitoring 

therapy response, such as PSA for prostate cancer, CA125 for ovarian cancer, 

CA19-9 for pancreatic cancer, and CEA for colon cancer (Hanash et al., 2008). 
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Much research has been conducted in hopes of finding lung cancer diagnostic 

biomarkers in body fluids. At the present time, no biomarkers which discovered 

by proteomics are FDA-approved and used in clinical fields, (Kulasingam and 

Diamandis, 2008, Cho, 2007, Ludwig and Weinstein, 2005) and no biomarker 

has been developed for the differential diagnosis of lung cancers from other 

lung diseases.  

  Numerous biomarker candidates for lung cancer diagnosis have been 

discovered and reported. However, these biomarkers have never been tested as 

tools for the differential diagnosis of lung cancers and other lung diseases. For 

this purpose, discovered biomarker candidates should be validated on large 

scale using clinical samples. Conventional methods for validation, such as 

enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), 

and western blotting, are based on immuno-affinity, which require costly 

antibodies for each biomarker. In contrast, nano-flow liquid chromatography 

triple quadrupole mass spectrometry (nLC-QqQ-MS) along with stable isotope 

dilution (SID) is the most widely used MS-based, antibody-free technology for 

quantifying multiple proteins with high-sensitivity, high-specificity, and high-

reproducibility (Addona et al., 2009, Keshishian et al., 2009, Kuzyk et al., 2009, 

Gillette and Carr, 2013a). In this large-scale validation process, it is particularly 

useful to develop a method with improved sensitivity but without additional 

enrichment or pre-fractionation of samples. In addition, because no single 
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marker is significantly differentially expressed in sera from lung cancer patients, 

focusing on the combination of two or more variables under consideration of 

statistical interaction would be particularly valuable for improving the 

differential diagnosis of lung cancer and other lung diseases (Lombardi et al., 

1990).  

  In this study, 198 serum samples from patients with non-cancerous lung 

disease or lung cancer were subjected to nano-flow MRM to analyze the levels 

of multiple lung cancer biomarker candidates. Comparison of a panel of marker 

combinations using logistic regression generated meta-markers with improved 

capabilities for differential diagnosis of lung cancer from other lung diseases. 
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MATERIAL AND METHODS 

 

 

Sample Collection 

  Serum samples from lung disease patients and lung cancer patients were 

obtained at Asan Medical Center (Table 2-1). Ninety nine serum samples of 

non-cancerous lung disease patients, who visited Asan Medical Center, 

department of pulmonology and critical care medicine, were collected from 

May, 2011 to April, 2013, and similarly ninety nine serum samples from lung 

cancer patients, who visited Asan Medical Center, department of pulmonology 

and critical care medicine, were collected from March, 2012 to February, 2013. 

All serum samples were collected using a serum-separating tube (SST). The 

SSTs were centrifuged to separate the serum from whole blood within 24 hours 

after venipuncture. Samples were stored at -70 °C until analysis. Informed 

consent was obtained from all donors (IRB 2011-0076). 

 



89 

 

Table 2-1. Clinical information of serum samples 

Abbreviations used: TB, tuberculosis; PN, pneumonia; ND, nodule; NSCLC, 

non-small cell lung cancer; SCLC, small cell lung cancer; LD, limited disease; 

ED, extensive disease; Curr, current-smoker; Ex, ex-smoker; Non, non-smoker 

 

  

Training Set Validation Set 

Lung  

Disease 

Lung  

Cancer 

Lung  

Disease 

Lung  

Cancer 

Population 30 30 69 69 

Age 57 (33-82) 61.8 (25-80) 56.8 (27-79) 60.4 (30-75) 

Sex (Male/Female) 17/13 21/9 40/29 45/24 

Disease diagnosis   

(TB/PN/ND/etc.) 
3/12/9/6   14/20/17/18   

Cancer types         

Carcinoid tumor   0   1 

NSCLC (1/2/3/4)   11/2/5/4   29/10/7/15 

SCLC (LD, ED)   8/0   7/0 

Smoking history          

(Curr, Ex, Non) 
6/10/14 14/6/10 18/18/33 21/21/27 
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Sample Preparation; In-solution Tryptic Digestion  

  Serum samples were diluted 20-fold with HPLC-grade water (Honeywell 

Burdick & Jackson, Muskegon, MI). The protein concentration of diluted 

serum was measured using Quick Start™ Bradford 1x Dye Reagent (Bio-Rad 

Laboratories, Hercules, CA). Then, 30 µg of protein was prepared in 50 mM 

ammonium bicarbonate and denatured by boiling at 100 °C for 20 min. 

Dithiothreitol (Bio-Rad Laboratories, Hercules, CA) and iodoacetamide 

(Sigma-Aldrich, St Louis, MO) were added for reduction and alkylation, both 

at a concentration of 10 mM. Trypsin (Roche, Mannheim, Germany) was added 

to samples at a protein-to-enzyme ratio of 50:1 (w/w) and incubated at 37 °C 

for 16 hours. The digested peptide mixtures were cleaned using Pierce C18 spin 

column (Thermo Scientific, Rockford, IL, USA) according to the 

manufacturer’s instructions, dried, and stored at -20 °C until analysis. Dried 

tryptic digests were resuspended in 30 µL of 0.1% formic acid for mass 

spectrometric analysis. 

 

Target Peptide Selection 

  Tryptic target peptides were selected using the Skyline program (64-bit, 

Version 1.4.0.4421) (MacCoss Laboratory, University of Washington, Seattle, 

WA). Peptides containing NXT/NXS and RP/KP motifs were excluded, and 
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peptides with lengths of 7 to 24 amino acids were selected. Carbamidomethyl 

cysteine structural modifications were included. To select proteotypic peptides, 

unique peptides were sorted using Uniprot human database (2012.11 released 

version). To select easily detectable peptides by nLC-QqQ-MS, the NIST Q-

Tof database was also used as a reference. Stable isotope synthetic peptides 

used in this study are as follows: b-Galactosidase; LNVENPK, AHGS; 

EHAVEGDCDFQLLK, ITIH1; LDAQASFLPK, CLUS; ASSIIDELFQDR 

(JPT Peptide Technologies GmbH, Berlin, Germany), SERPINA4; 

GDATVFFILPNQGK, PON1; YVYIAELLAHK (21st Century Biochemicals, 

MA, USA). 

 

nLC-MRM-MS Analysis 

  Liquid chromatography was conducted using a 1260 Infinity LC system with 

Chip Cube (Agilent technologies, Santa Clara, CA). The tryptic digest was 

separated in HPLC-Chip, which consisted of a 40 nL enrichment column and a 

75 µm x 150 mm analytical column packed with 300 Å C18. Separation was 

performed using binary gradients with buffers A (HPLC-grade water in 0.1% 

formic acid solution) and B (acetonitrile in 0.1% formic acid solution). The 

column was initially equilibrated and eluted at a flow rate of 0.4 µL/min for the 

nano-flow pump and 4 µL/min for the capillary-flow pump. The 30-min LC 
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schedule with 14-min gradient was programmed as follows: 1–15 min, 3–40% 

B for reverse phase separation; 15–18 min, 40–80% B to wash the chip column; 

finally, 12 min in 3% B to equilibrate the chip column prior to the injection of 

the next sample.  

  A triple quadruple mass spectrometer (6490 Agilent technologies, Santa 

Clara, CA) was used with the following parameters: positive ion mode, a drying 

gas flow rate of 11 L/min at 150 °C, and MS1 and MS2 set to unit resolution. 

For relative quantification of 60 sera, dynamic MRM was conducted with a 

cycle time set to 500 ms, and the minimum and maximum dwell times were 

19.36 and 198.55 ms, respectively. For SID-MRM validation of sera, dynamic 

MRM was conducted with cycle time of 500 ms, and the minimum and 

maximum dwell times were 18.16 and 123.12 ms, respectively. Delta retention 

time was 4 min. The data were visualized by Skyline (64-bit, Version 

1.4.0.4421) (MacCoss Laboratory, University of Washington, Seattle, WA).  

 

Statistical Analysis 

  Normalized MRM data were statistically analyzed using the T-test, and P < 

0.05 was considered statistically significant. Combinations of markers were 

analyzed using the binary logistic regression. All of the analyses were 

performed using SPSS Statistics 23 (IBM Corp., NY, USA). 
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RESULTS 

 

 

Target Screening for Differential Diagnosis of Lung Cancer and Other 

Lung Diseases  

To study biomarker combinations using targeted proteomics, the targets were 

selected from previous studies, and the analytic conditions were optimized 

(Figure 2-1). Fifteen potential single biomarkers were selected from Ahn’s 

previous lung cancer biomarker study (Ahn et al., 2014a) and a publication 

from another research group, which analyzed secretome of 23 cancer cell lines 

(Table 2-1) (Wu et al., 2010). 

Relative quantification using MRM was conducted, and the data were 

normalized to the LNVENPK SIS-peptide derived from b-galactosidase of 

Escherichia coli, which had been used as an internal standard (Figure 2-2). A 

training set of human serum samples consisting of 30 cases of non-cancerous 

lung diseases (LD) and 30 cases of lung cancer (LC), which are subsets of total 

198 samples, were subjected to MRM analysis (Figure 2-3). Eight target 

proteins showed significant differences between serum samples of LD and LC 
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in the MRM analysis (P < 0.05). All but one candidate marker (CLUS) were 

observed to be down-regulated in LC compared to LD. 
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Figure 2-1. Schematic diagram of overall workflow 
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Table 2-2. Specifications of total target biomarker candidates 

UniProtKB  Name Peptide sequence Description 

P04003  C4BPA   QSSSYSFFK C4b-binding protein alpha chain  

P02647  APOA1   THLAPYSDELR Apolipoprotein A-I  

P00736  C1R  MDVFSQNMFCAGHPSLK Complement C1r subcomponent  

P02765 AHSG  EHAVEGDCDFQLLK Alpha-2-HS-glycoprotein  

P51884  LUM   NNQIDHIDEK Lumican  

P33151  CADH5   ELDSTGTPTGK Cadherin-5  

P19827  ITIH1   LDAQASFLPK Inter-alpha-trypsin inhibitor heavy chain H1  

P10909  CLUS   ASSIIDELFQDR Clusterin  

P05543  THBG   FSISATYDLGATLLK Thyroxine-binding globulin  
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Q86UE4  LYRIC   TLPPATSTEPSVILSK Protein LYRIC  

O00501  CLD5   EFYDPSVPVSQK Claudin-5  

P02748  C9   RPWNVASLIYETK,  Complement component 9  

P80108  GPLD1   TLLLVGSPTWK, Phosphatidylinositol-glycan-specific phospholipase D  

P27169  PON1   YVYIAELLAHK Serum paraoxonase 1  

P29622 SERPINA4  GDATVFFILPNQGK Kallistatin  
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Figure 2-2. Specifications of LNVENPK derived from b-galactosidase as 

internal standard 
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(a) Schematic flow of relative quantification. (b) Peaks obtained by spiking 

increased amount of LNVENPK. (c) Standard curve analysis to demonstrate 

linearity of LNVENPK. 
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Figure 2-3. Relative quantitation on crude sera of a training set 

(a) - (o) Quantification results of each biomarker candidates in sera of non-

cancer lung disease patients (N=30) and lung cancer patients (N=30). All of 

relative quantitation value was normalized by peak area of spiked LNVENPK 

peptide which derived from b-galactosidase. 
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SID-MRM development for selected biomarker candidate 

To quantify biomarker candidate proteins using MRM methods in clinical 

samples, the accuracy of the peptide quantification must be measured first. To 

confirm the precise quantitative accuracy of the MRM performance, the stable 

isotope dilution (SID) technique was used. Stable isotope-labeled standard 

(SIS)-peptides were tested at several peptide concentrations to determine the 

optimal endogenous detection ranges for each target (Gillette and Carr, 2013a). 

SIS peptides were synthesized with the stable isotope-labeled 13C and 15N 

incorporated at the C-terminal lysine or arginine residue for the selected 8 

protein candidates. Then, the SIS-peptides were measured by MRM at a 50 

femtomole per microliter concentration to determine whether the peptides are 

detectable in nLC-QqQ-MS. The peptides corresponding to the selected 8 

proteins C4BPA, C1R, AHGS, ITIH1, CLUS, SERPINA4, THBG and PON1 

are QSSSYSFFK, MDVFSQNMFCAGHPSLK, EHAVEGDCDFQLLK, 

LDAQASFLPK, ASSIIDELFQDR, GDATVFFILPNQGK, 

FSISATYDLGATLLK and YVYIAELLAHK, respectively. To establish 

quantification methods for these peptides, I performed collision energy 

optimization for selection of well-detected charge states and transitions to be 

measured (Figure 2-4 and Table 2-3). QSSSYSFFK (C4BPA), 

MDVFSQNMFCAGHPSLK (C1R), and FSISATYDLGATLLK (THBG) 
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showed poor reproducibility in liquid chromatography, and thus, these proteins 

were excluded from further analysis. 

Standard curves for the trypsin-digested crude sera were constructed for the 

five SIS-peptides (Figure 2-5). The sum of the total ion area corresponded to 

the known quantities for each peptide. All analyses were performed in triplicate. 

All standard curves showed good linearity (0.93 < R2 < 0.99) when the SIS-

peptides were spiked in crude sera. 
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Figure 2-4. Representative extracted ion chromatogram (EIC) in the 

tryptic digested crude sera were constructed for five SIS-peptides 

(a)-(e) EIC show sets of transitions and retention time of each target peptides 

in LD and LC crude sera. 
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Table 2-3. Selected transitions of five biomarker candidates for SID-MRM  

Protein 
Type Peptide sequence 

Product Ion 
(m/z) Ion Name CE (eV) Retention 

Time (min) 
Peptide molecular mass 
(Da) 

Precursor 
Ion (m/z) 

AHSG Light EHAVEGDCDFQLLK  147.1 y1+ 15.2 

  8.8 1659.8 
            

554.3 
373.3 y3+ 15.2 

        648.4 y5+ 15.2 

        763.4 y6+ 15.2 

  Heavy EHAVEGDCDFQLLK * 155.1 y1+ 15.2 

  8.8 1667.8 556.9 381.3 y3+ 15.2 

        656.4 y5+ 15.2 

        771.4 y6+ 15.2 

ITIH1 Light LDAQASFLPK    244.2 y2+ 17.9 

  8.8 1088.6 545.3 662.4 y6+ 17.9 

        861.5 y8+ 17.9 

        976.5 y9+ 17.9 
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  Heavy LDAQASFLPK *   252.2 y2+ 17.9 

  8.8 1096.6 549.3 670.4 y6+ 17.9 

        869.5 y8+ 17.9 

        984.5 y9+ 17.9 

CLUS Light ASSIIDELFQDR    418.2 y3+ 22.6 

  12.8 1392.7 697.4 565.3 y4+ 22.6 

        922.4 y7+ 22.6 

        1035.5 y8+ 22.6 

  Heavy ASSIIDELFQDR*   428.2 y3+ 22.6 

  12.8 1402.7 702.4 575.3 y4+ 22.6 

        932.4 y7+ 22.6 

        1045.5 y8+ 22.6 

SERPINA4 Light GDATVFFILPNQGK 543.3 y5+ 24.4 

  11.7 1505.8 753.9 769.5 y7+ 24.4 

        916.5 y8+ 24.4 

        1063.6 y9+ 24.4 

  Heavy GDATVFFILPNQGK* 551.3 y5+ 24.4 

  11.7 1513.8 757.9 777.5 y7+ 24.4 
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  R*; 13C(6)15N(2) labeled argine, K*; 13C(6) 15N(4) labeled lysin 

        924.5 y8+ 24.4 

        1071.6 y9+ 24.4 

PON1 Light YVYIAELLAHK   468.3 y4+ 11.1 

  11.1 1319.7 440.6 781.5 y7+ 11.1 

        529.3 y9++ 11.1 

        578.8 y10++ 11.1 

  Heavy YVYIAELLAHK*   476.3 y4+ 11.1 

  11.1 1327.7 443.3 789.5 y7+ 11.1 

        533.3 y9++ 11.1 

        582.8 y10++ 11.1 
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Figure 2-5. Standard curves in the tryptic digested crude sera were 

constructed for five SIS-peptides 

(a)-(e) Standard curve generated by spiking serially increasing amount of stable 

isotope-labeled synthetic (SIS)-peptide. Each analysis conducted in triplicate. 
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SID-MRM Analysis of Selected Targets in Crude Serum  

Using developed SID-MRM methods, seven targets were validated in sera 

from 99 non-cancerous lung disease patients (LD) and 99 lung cancer patients 

(LC). The results showed that only one target protein (SERPINA4) showed 

statistically significant changes between LD and LC (Figure 2-6). SERPINA4 

was significantly lower (P < 0.001) in the sera of lung cancer patients than in 

lung disease patients. However, other target proteins did not show any 

significant differences between the two groups. To calculate the differential 

diagnostic power, ROC curves were generated for each protein . SERPINA4 

had the highest area-under-curve (AUC) values of 0.836, respectively (Figure 

2-6 d).  
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Figure 2-6. SID-MRM validation of selected targets in crude sera 

SID-MRM analysis showed that (d) SERPINA4 was significantly lower in lung 

cancer patients (LC; n=99) compared to lung disease patients group (LD; n=99) 

(P<0.05). The other proteins, (a) – (c) and (e) had no statistical difference 

between two groups. 
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Modeling for Meta-marker Generation 

To improve the diagnostic power, I made combinations of the candidate 

results using a logistic regression model. SID-MRM results from 30 samples 

from each group were used as a training set, and the other 69 data samples for 

each group were used as the test set. The quantitative data of individual 

biomarkers had AUC-value differences between the training set and the test set 

below 0.1 for all targets (Figure 2-7). 

The SERPINA4 result was significant and had high AUC values (Figure 3). 

Therefore, I combined the quantitative protein data and patient clinical 

information with the SERPINA4-results to assess any potential increase in 

diagnostic ability. I included statistical interactions for variables with no 

significance as single markers to generate the best fitting model. The estimated 

logistic regression statistic values for each variable revealed age, PON1, and 

ITIH1 have significant interactions (Table 2-4). 
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Figure 2-7. ROC curve analysis of selected targets in crude sera of training 

and validation set 

(a)-(e) ROC curve is made of using SID-MRM analysis data. Training set (left 

panel; blue lined graph) is consisted of lung cancer patients’ sera (LC; n=30) 

compared to lung disease patients’ (LD; n=30). In validation set (right panel; 

red lined graph) represent sera of lung cancer patients (LC; n=69) compared to 

lung disease patients (LD; n=69). 
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Table 2-4. Estimated Logistic Regression Statistic Values in Training set 

  Score Sig. 

SERPINA4 12.597 0.0004 

Age 2.468 0.116 

PON1 0.567 0.452 

CLUS 6.048 0.014 

AHSG 6.971 0.008 

ITIH1 1.736 0.188 

C1R 0.179 0.672 

Smoking 3.293 0.070 

Sex 1.148 0.284 

SERPINA4 by Age 5.786 0.016 

SERPINA4 by PON1 3.988 0.046 

SERPINA4 by CLUS 2.723 0.099 

SERPINA4 by AHSG 0.460 0.498 

SERPINA4 by ITIH1 3.858 0.050 

SERPINA4 by C1R 2.836 0.092 

SERPINA4 by Smoking 0.349 0.555 

SERPINA4 by SEX 0.107 0.744 

Abbreviations used: Sig, significance 
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 This strategy produced two types of models. The first model included PON1 

(PON1, SERPINA4, age, SERPINA4*PON1, and SERPINA4*age) (Table 2-

5). The second model included ITIH1 (ITIH1, SERPINA4, age, 

SERPINA4*ITIH1, and SERPINA4*ITIH1) (Table 2-6). However, the ITIH1 

model showed a poor fit in the logistic regression (Table 2-7, 8, 9). Thus, I 

subsequently excluded the ITIH1 model.  

Then, the equation was tested by using a validation data set to determine if 

the PON1 model is reliable. The results showed the model correctly fit the data 

for both the training set and the validation set (Figure 2-8). In addition, the 

resulting logistic regression model distinguish tuberculosis and stage1 NSCLC 

patients with AUC value of 0.881 (Figure 2-10). 
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Table 2-5. Logistic Regression Analysis for PON1, SERPINA4, and age 

included Modeling in Training set 

  
Beta Std. 

error Wald Sig. Odd ratio 95% CI for odd ratio 
Lower Upper 

SERPINA4 -4.760 19.275 0.061 0.805 8.569.E-03 3.359.E-19 2.186.E+14 

Age 0.155 0.143 1.178 0.278 1.168.E+00 8.826.E-01 1.544.E+00 

PON1 47.400 18.004 6.932 0.008 3.849.E+20 1.823.E+05 8.129.E+35 

SERPINA4 

by Age 
-0.220 0.270 0.659 0.417 8.029.E-01 4.726.E-01 1.364.E+00 

SERPINA4 

by PON1 
-19.302 28.175 0.469 0.493 4.141.E-09 4.307.E-33 3.981.E+15 

Constant -11.202 10.235 1.198 0.274 1.365.E-05     

Abbreviations used: SE, standard error; Sig., significance; CI, confidence 

interval 
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Table 2-6. Logistic Regression Analysis for ITIH1 included Modeling in Training set 

  Beta Std. 

error 

Wald Sig. Odd ratio 95% CI for odd ratio 

Lower Upper 

SERPINA4 10.889 16.071 0.459 0.498 1.866.E-05 3.901.E-19 8.926.E+08 

AGE 0.045 0.109 0.170 0.680 1.046.E+00 8.450.E-01 1.294.E+00 

ITIH1 10.858 7.098 2.340 0.126 5.195.E+04 4.717.E-02 5.721.E+10 

AGE by 

SERPINA4 

0.037 0.222 0.028 0.868 1.038.E+00 6.713.E-01 1.604.E+00 

ITIH1 by 

SERPINA4 

-5.063 13.063 0.150 0.698 6.326.E-03 4.811.E-14 8.318.E+08 

Constant -3.807 7.938 0.230 0.632 2.222.E-02   

Abbreviations used: SE, standard error; Sig., significance; CI, confidence interval  
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Table 2-7. Model Summary 

Model 
-2 Log 

likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

PON1_model 40.145 0.512 0.683 

ITIH1_model 54.302a 0.382 0.509 

 

 

Table 2-8. Omnibus Tests of Model Coefficients 

Model Chi-square df Sig. 

PON1_model 43.033 5 0.000000036 

ITIH1_model 28.875 5 0.000024531 

 

 

Table 2-9. Hosmer and Lemeshow Test 

Model Chi-square df Sig. 

PON1_model 2.234 8 0.972984584 

ITIH1_model 11.230 8 0.188990469 
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Figure 2-8. Differential diagnostic capability of biomarker combinations 

in both the training set and validation set  

The model built based on SERPINA4, PON1 and Age in the training set (a) and 

the combination was applied to validation set (b). 
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Figure 2-9. Differential diagnostic capability of biomarker combination 

between tuberculosis and NSCLC by stage 

(a) The box plot indicates logit of TB and all stages of NSCLC. (b) The marker 

combination that generated from logistic regression distinguished TB and stage 

1-4 of NSCLC with AUC value of 0.899, 0.882, 0.912, and 0.947, respectively. 
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Figure 2-10. The ROC curves and AUCs for logistic regression and multi 

layer perceptron  

(a) To maximize robustness of models, validation set, which has larger size of 

samples, was used to train both of models. (b) Comparison between logistic 

regression and multi layer perceptron showed different AUCs that of 0.916 

and 0.827, respectively. Total 198 samples was used for ROC analysis. 

AUC: 0.827AUC: 0.916

Multi Layer PerceptronLogistic Regression

Validation set (LD=69, LC=69)

Model training

Evaluation

Machine learning
(neural network)

Regression model

a

b

Logistic Regression
Multi Layer Perceptron
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DISCUSSION 

 

 

  Diagnosis of lung cancer mainly relies on imaging technologies such as 

radiography, CT, and PET scans. Radiography is convenient but has low 

sensitivity. CT is commonly used as a lung cancer diagnostic method; however, 

it is not an ideal method due to radiation exposure and cost. PET is the most 

sensitive of the three methods, but it is also the most expensive. Biopsies, such 

as fine needle aspiration (FNA), are the most traditional and reliable method; 

however, biopsies are a highly invasive procedure. With the primary use of 

imaging diagnostics, many lung cancer patients are conflated with patients with 

lung-associated symptoms. Many of the lung-associated symptoms, especially 

tuberculosis, pneumonia and lung nodules which are selected for this study, 

interfere with the diagnosis of lung cancer in imaging-based diagnosis. In this 

study, seven biomarker candidates were selected and validated as differential 

diagnostic biomarkers by MRM analysis, and the biomarker combination of 

SERPINA4, PON1 and age was shown to form the optimal differential 

diagnostic meta-marker. 
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  This study was designed for the validation of each protein marker candidates 

and development of meta-marker model for the differential diagnosis of lung 

cancer (LC) from other lung diseases (LD). Therefore, sample set was made up 

non-cancerous lung disease and lung cancer patients without healthy population. 

To verify the meta-marker generated is statistically reliable, LD group and LC 

group are designed to be composed of equal numbers.  

  Along with the development of high-throughput technologies, many studies 

have reported biomarker candidates. However, validating the candidates in 

large scale samples is still considered to be a hurdle for biomarker development. 

Large-scale clinical validation is highly difficult due to the number of targets 

and samples.  

  Traditional immunoassay-based quantitative methods are suitable for single 

biomarker validation, making it inappropriate to multiplex marker validation. 

MS-based assay is sufficiently cost-effective than immunoassay when the 

analysis is performed to multiplex biomarkers. Even with current price of stable 

isotope labeled internal standard and MS machine, it makes MRM assay costs 

highly competitive in comparison to current cost in the clinical immunoassays 

operated by clinical hospital laboratory (Diamandis, 2009, Percy et al., 2014, 

Kato et al., 2011, Carr and Anderson, 2008). 
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Nano-flow MRM, an MS-based quantitative proteomics technology, 

provides simultaneous validation with high sensitivity with a little amount of 

sample, however, compared to standard-flow MRM unstable reproducibility 

should be optimized (Addona et al., 2009, Keshishian et al., 2009, Kuzyk et al., 

2009, Gillette and Carr, 2013a). Therefore, SIS-peptide as an internal standard 

should be spiked for accurate quantitative analysis. Considering cost 

effectiveness, relative quantification using global standards (in this study, the 

LNVENPK synthetic peptide derived from b-galactosidase was used) is 

possible, which provides high productivity in multi-target screens. 

When protein quantitative analysis using mass spectrometer were performed, 

selection of unique peptide derived from a protein is important. Especially, 

hydrophobic and/or high reactivity amino acid composition of peptide is 

influential factor to liquid chromatography. For example, three peptides derived 

from C4BPA, C1R and THBP are excluded because they are composed at least 

30% hydrophobic amino acid and/or methionine, a highly oxidative residue.  

To closely reflect clinical environment, minimal sample preparation, without 

abundant serum protein depletion or pre-fractionation, is a valid approach, if 

detectable range of nano-flow MRM is considered. The normal concentrations 

of AHSG (72 µg/mL), ITIH1 (10.42 µg/mL), CLUS (152.36 µg/mL), 

SERPINA4 (22.1 µg/mL), and PON1 (59.3 µg/mL) are reported in human 

blood (Chambers et al., 2013, Chao et al., 1996, Kujiraoka et al., 2000). Also, 
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when Agilent 6490 mass spectrometer coupled with standard-flow ESI was 

used to quantify the proteins in human crude plasma samples, lower limit of 

quantitation (LLOQ) is reported to be 751 ng/mL. Considering Agilent 6490 

coupled with nano-flow ESI was used in this study, direct detection of target 

peptide/protein by nLC-QqQ-MS is appropriate (Wilm and Mann, 1996). 

Despite vast numbers of biomarker studies in past two decades, there remains 

no approved valid differential diagnostic biomarker for lung cancers 

(Diamandis, 2010, Konforte and Diamandis, 2013). Currently, there is no 

reliable blood biomarker for differential diagnosis of lung cancer from other 

lung diseases. Previous studies have focused on single biomarkers. However, 

there are known technological limitations associated with identifying 

biomarkers within a complex biological system such as cancer because there 

are multiple differentially expressed proteins. The limitation of a single protein 

biomarker could be overcome by combining multiple marker panels to form a 

meta-marker with improved diagnostic value via weighting on significant 

marker, considering interaction, and compensate quantitation errors. Statistical 

models including logistic regression and machine learning enable the selection 

of meta-markers that show improved diagnostic power (Leichtle et al., 2013). 

In this study, logistic regression show better distinguish ability than multi layer 

perceptron that is representative neural network algorithm (Figure 2-10). 
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Logistic regression has been used in clinical statistics to estimate causes of 

disease and in analyses of combinations of multi-marker panels (Xiao et al., 

2013, Zhang et al., 2013). Logit, which derives from logistic regression as a 

representative value, is defined as the log-value of (probability/1-probability). 

In this study, positive logit values imply a diagnosis of cancer and negative logit 

values imply non-cancerous lung disease. The meta-marker presented in this 

study is a combination result based on this logistic model, which functions well 

in distinguishing lung cancer patients from non-cancerous lung disease patients. 

Currently, low-dose CT is used and reported to be effective for lung cancer 

screening. Considering high-false positive rates of that method (23.3%) , 

however, meta-marker developed in this study show better false positive rate 

(2/69) (Team, 2011).  

The results demonstrated that only the significant variables are needed for 

the marker panel.  However, a superficial relationship combination could miss 

complex biological interactions. These interactions may explain biological 

phenomena more accurately. In this study, the quantitative data from five 

proteins and the patient clinical information were used to produce a high quality 

model. Through these considerations, the biomarker candidates lacking 

significant results (PON1, age) as single markers were found to have significant 

positive effects on the meta-marker function. The logistic model maximizes the 

cooperative effect using optimum weighting to elucidate the value of each 
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variable. In summary a meta-marker by the PON1, SERPINA4, and age 

combination is the most potent differential meta-marker with a suitable number 

of proteins (Aviram and Rosenblat, 2005). 

Serpin peptidase inhibitor, clade A, member 4 (SERPINA4) is known as a 

serine protease inhibitor and heparin-binding protein. SERPINA4 regulates 

angiogenesis, inflammatory reactions, and blood pressure (Zhu et al., 2007, 

Wang et al., 2005, Chen et al., 1997, Chao et al., 1997). SERPINA4 inhibits 

vascular endothelial growth factor (VEGF) or basic fibroblast growth factor 

(bFGF)-induced angiogenesis and tumor growth (Miao et al., 2002, Miao et al., 

2003). Because of its anti-tumor effect via anti-inflammatory and anti-

angiogenic activity, SERPINA4 has been studied as a potential therapeutic in 

laboratory trials (Shiau et al., 2010, Zhu et al., 2007, Wang et al., 2005, Chen 

et al., 1997). At this point, the results indicating a down-regulation of 

SERPINA4 in lung cancer patient serum compared to other lung diseases are 

in accordance with previously reported studies.  

Serum paraoxonase 1 (PON1) is mainly expressed in the liver and is secreted 

into the blood. PON1 is hydrolytic enzyme that processes organophosphate 

substrates and is associated with high density lipid (HDL (Aviram et al., 1998). 

It has been suggested that PON1 protects cells against lipid oxidation, but the 

antioxidant mechanism remains unknown (Aviram and Rosenblat, 2005). In the 

Ahn’s previous study, PON1 was found in decreased levels in the sera of small 
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cell lung cancer (SCLC); reversely, the degree of PON1 fucosylation was 

increased (Ahn et al., 2014b). The down-regulation of PON1 in cancer is also 

reported with endometrial, ovarian, pancreatic, and other lung cancers (Arioz 

et al., 2009, Camuzcuoglu et al., 2009, Elkiran et al., 2007, Akcay et al., 2003). 

This study showed that the non-cancerous lung disease patients had further 

decreased levels of PON1 compared to lung cancer patients. It is also reported 

that  PON1 activity was significantly lower in pulmonary tuberculosis than 

normal individuals (Naderi et al., 2011). Larger-scale validation with a normal 

group included or antioxidant-related target validation may help explain why 

PON1 appears at even lower levels in the lung disease group in comparison 

with the lung cancer group.  

In conclusion, this study presents meta-markers for the differential diagnosis 

of lung cancer and non-cancerous lung diseases. These meta-markers were 

determined by calculated values obtained from logistic regression models under 

consideration of statistical interaction. The meta-markers are combinations of 

data about not only protein levels as measured by MRM but also clinical 

information, and have the potential to enhance the differential diagnostic power 

between lung cancers and other lung diseases.  

 

  



127 

 

CONCLUSION 

 

 

  In this study, I attempted to identify the best meta-marker by the combination 

of the MRM quantitative values from a panel of proteins. Theese results showed 

that a meta-marker combination of SERPINA4, PON1 and age improved 

sensitivity and specificity when used together as a biomarker for the differential 

diagnosis between lung cancers and non-cancerous lung diseases, even PON1 

did not show significance as a single bio signature. The results thus indicate 

that the combination of several potential biomarkers, determined via modeling 

under consideration of statistical interaction, would likely provide better 

diagnostic specificity and sensitivity than a single biomarker for the differential 

diagnosis between lung cancer and lung disease patients.  
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This chapter was published as:  

Kim YI, Ahn JM, Sung HJ, Na SS, Hwang J, Kim Y, Cho JY. (2016)  

Meta-markers for the differential diagnosis of lung cancer and lung disease.  

J Proteomics. 148:36-43. 
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GENERAL CONCLUSION 

 

 

Personalized medicine in oncology has taken great strides, with predictive 

biomarkers guiding both therapy and monitoring of disease progression or 

remission (Ong et al., 2012). Recent advances in -omics technologies have led 

to the emergence of personalized medicine for complex diseases. Taken 

together, MS-based proteomics has been evolved to more sensitive, accurate, 

efficient, and diverse applications. Furthermore, the field of proteomics 

continues to develop currently. In this context, to break through the complete 

human proteome, the C-HPP consortium has been encouraged to apply various 

new technologies of each participant, and this approach has resulted in 40% of 

missing proteins (3,325 proteins) being claimed from 2012 to 2018.  

In these studies, I also tried to apply various state-of-the-art technologies to 

tissues or blood from lung cancer patients. In the proteome discovery phase 

including known and novel proteins, total RNA-seq was allowed to build a 

personal transcriptome database, followed by proteogenomic analysis. This 

advanced approach suggests the example of personalized medicine based on 

cross-omics profiles.  
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In addition, using MRM technology, which is a suitable platform to verify 

protein marker candidates, I developed a lung cancer differential diagnostic 

marker panel. The combined marker shows better diagnostic specificity and 

sensitivity than a single biomarker. Statistical modeling needs as many reliable 

data sets as possible; therefore, MRM, which easily enables the multiplexing 

assay, is well suited for combination rather than immunoassay. I anticipate that 

this combined blood protein signature might provide a complementary strategy 

to the established image-based lung cancer diagnosis to differentiate other lung 

diseases. 

Considering that this series of proteome/proteogenome studies is utilizes 

state-of-the-art omics technology that spans the discovery phase to verification 

phase, this dissertation might provide insight into establishing an effective 

pipeline for protein-based lung cancer biomarker development.  
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국문초록 

프로테오지노믹스 기법을 이용한  

폐암 바이오마커 연구 

 

 

김 용 인 

서울대학교 대학원 

수의학과 수의생명과학 전공 

지도교수 조 제 열 

 

 

  정밀의료 패러다임의 등장 이후, 질환의 진단 및 치료를 위해서 

바이오마커에 대한 수요는 높아지고있다. 가설기반연구는 

전통적으로 당연하게 사용되오던 연구수행체계이지만, 바이오마커 

발굴에서 필연적으로 마주치게되는 광범위한 스크리닝 작업에서는 

효율성의 한계를 드러낸다. 오믹스기술의 등장과 함께 질환연구의 

패러다임은 증거기반 대규모 타겟발굴방식으로 변화하고 있다. 
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단백질은 생체 기능조절에 직접적으로 관여하는 물질이기 때문에 

바이오마커로 활용할 수 있는 가장 이상적인 물질로 여겨진다. 

질량분석기를 이용한 단백체분석은 단백질을 직접 정성 및 정량할 

수 있을 뿐만 아니라 매우 생산성이 높아 질환 바이오마커 발굴에 

유용하다. 이 논문에서는 질량분석기를 이용하여 폐암 바이오마커의 

발굴을 위한 고도화된 분석기법인 프로테오지노믹스 기법의 적용과, 

스크리닝된 바이오마커후보 단백질의 정량검증 및 폐암 감별진단 

조합마커의 생성연구에 대하여 알아본다. 

 

  CHAPTER I 에서는 인간염색체기반 단백체프로젝트 (C-HPP)의 

일환으로 수행된 염색체 9 번에 대한 단백체연구가 포함되어있다.  

미확인 단백질과 유전단백체에서 발견되지 않았던 시그니처를 

밝혀내기 위해 LC-MS/MS 분석과 RNA-seq 차세대염기분석기법을 

적용하여 샘암종 폐암환자 5 명의 정상-종양조직을 분석하였다. 

염색체중심-인간단백체프로젝트의 2013 년 리포트에서는 neXtProt 

인간단백체 데이터베이스를 기준으로 염색체 9 번에서 170 개의 

미확인 단백질이 있는 것으로 알려졌으며, 본 논문의 연구가 진행된 

2015 년에는 133 개가 계속 미확인상태로 남아있었다. 본 논문의 

단백체분석에서는 19 개의 미확인 단백질을 동정할 수 있었으며, 그 

중에서 염색체 9 번에 해당하는 단백질은 SPATA31A4 한 개 였다. 

RNA-seq 분석으로는 샘종폐암조직 5 개에서 공통적으로  

검출되면서 정상조직에서는 검출되지 않는 nonsynonymous SNP 
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5 개 (CDH17, HIST1H1T, SAPCD2, ZNF695) 그리고 synonymous SNP 

3 개를 발굴할 수 있었다.  

프로테오지노믹 분석을 위해서 각 시료별 RNA-seq 데이터를 

가공하여 맞춤형 데이터베이스를 구축하였다. 이렇게 생성된 

시료맞춤형 데이터베이스를 단백체 질량분석데이터 검색에 

활용하여 5 개 유전자(LTF, HDLBP, TF, HBD, HLA-DRB5)에 해당하는 

7 개의 돌연변이를 검출하였다. 두 개의 돌연변이는 정상조직에서는 

검출되지 않고 암조직에서만 검출되었다. 또한, 이 결과에서는 

정상-암조직 모두에서 위유전자 (EEF1A1P5) 펩티드를 검출할 수 

있었다. 

 

  CHAPTER II 에서는 다중반응검지법 (MRM) 을 이용한 단백질 

바이오마커 검증과 조합마커 구성에 대한 연구를 서술하였다. 

폐암과 다른 폐질환은 감별이 어렵기 때문에 폐암은 오진단 위험이 

큰 질병이다. 따라서 혈청기반의 폐암감별진단 바이오마커개발의 

필요성은 널리 인정되고있다. 이 단원에서는 폐암환자와 

대조군폐질환 환자 198 명의 혈청시료를 활용하여 일곱개의 

폐암바이오마커 후보단백질을 나노유속 액체크로마토그래피-

다중반응검지법으로 정량하였다.  

후보단백질을 개별로 분석하였을 때에는 SERPINA4 만이 

통계적으로 유의성있게 혈중농도가 감소하는 것으로 나타났다. 
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다중반응검지법 전체데이터를 임상정보와 함께 로지스틱회귀모델에 

적용하여 하나의 조합마커로 만들 수 있었다. 이 과정에서 

개별마커로는 통계적인 유의성이 두드러지지 않지만 간섭효과를 

만들어낼 수 있는 변수를 고려하여 모델링을 진행하였다. 

최종적으로 SERPINA4, PON1, 나이를 조합하였을 때 가장 최적의 

조합마커가 생성되었다. 이 조합마커는 AUC 0.915 의 감별진단 

성능을 보여주었으며, 모델을 만드는데 사용되었던 시료와는 별개의 

검증군에서도 성능은 유지되었다. 이와 같이 통계모델을 이용하여 

생성한 조합마커는 개별 분자마커를 이용했을 경우보다 개선된 

폐암 감별진단능력을 보여줄 수 있음을 제시한다. 

 

주요어: 폐암, 액체크로마토그래피-탠덤질량분석기; 

프로테오지노믹스; 단백체학; 다중반응검지법 

학번: 2013-21536 
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