7,105 research outputs found

    High-contrast spectroscopy of SCR J1845-6357 B

    Full text link
    Spectral characterization of sub-stellar companions is essential to understand their composition and formation processes. However, the large contrast ratio of the brightness of each object to that of its parent star limits our ability to extract a clean spectrum, free from any significant contribution from the star. During the development of the long slit spectroscopy (LSS) mode of IRDIS, the dual-band imager and spectrograph of SPHERE, we proposed a data analysis method to estimate and remove the contributions of the stellar spectrum. This method has never been tested on real data because of the lack of instrumentation capable of combining adaptive optics (AO), coronagraphy, and LSS. Nonetheless, a similar attenuation of the star can be obtained using a particular observing configuration. Test data were acquired using the AO-assisted spectrograph VLT/NACO. We obtained new J- and H-band spectra of SCR J1845-6357 B, a T6 companion to a nearby (3.85\pm0.02 pc) M8 star. This system is a well-suited benchmark as it is relatively wide (~1.0") with a modest contrast ratio (~4 mag), and a previously published JHK spectrum is available for reference. We demonstrate that (1) our method is efficient at estimating and removing the stellar contribution, (2) it allows to properly recover the spectral shape of the companion, and (3) it is essential to obtain an unbiased estimation of physical parameters. We also show that the slit configuration associated with this method allows us to use long exposure times with high throughput producing high signal-to-noise ratio data. However, the signal of the companion gets over-subtracted, particularly in our J-band data, compelling us to use a fake companion spectrum to estimate and compensate for the loss of flux. Finally, we report a new astrometric measurement of the position of the companion (sep = 0.817", PA = 227.92 deg).Comment: 11 pages, 8 figures, 4 tables. Accepted for publication in A&

    Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain

    Full text link
    In this paper, we show that we can apply probabilistic spatiotemporal macroblock filtering (PSMF) and partial decoding processes to effectively detect and track multiple objects in real time in H.264|AVC bitstreams with stationary background. Our contribution is that our method cannot only show fast processing time but also handle multiple moving objects that are articulated, changing in size or internally have monotonous color, even though they contain a chaotic set of non-homogeneous motion vectors inside. In addition, our partial decoding process for H.264|AVC bitstreams enables to improve the accuracy of object trajectories and overcome long occlusion by using extracted color information.Comment: SPIE Real-Time Image and Video Processing Conference 200

    Towards real-time body pose estimation for presenters in meeting environments

    Get PDF
    This paper describes a computer vision-based approach to body pose estimation.\ud The algorithm can be executed in real-time and processes low resolution,\ud monocular image sequences. A silhouette is extracted and matched against a\ud projection of a 16 DOF human body model. In addition, skin color is used to\ud locate hands and head. No detailed human body model is needed. We evaluate the\ud approach both quantitatively using synthetic image sequences and qualitatively\ud on video test data of short presentations. The algorithm is developed with the\ud aim of using it in the context of a meeting room where the poses of a presenter\ud have to be estimated. The results can be applied in the domain of virtual\ud environments
    • …
    corecore