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Abstract— Tracking the real world coordinate of a fast moving 
object against a complex background is very challenging. When 
designing a multi-view system for this purpose, one key 
consideration is the arrangement of the cameras such that the 
object can be constantly and accurately tracked. This paper 
discusses a novel cameras arrangement, which can provide 
redundancy for fault tolerance, yet do not require installing more 
cameras nor relying aerial views of the scene. Using a table tennis 
match as example, experiment results show that the multi-view 
system with this cameras arrangement has a promising potential 
for tracking a table tennis ball in a real match scene. 
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I. INTRODUCTION

For many computer vision applications, accurately detecting 
and tracking the real world coordinate of an object is crucially 
important. Conventionally, stereo-camera sets are employed for 
this purpose. A stereo camera set consists of two identical 
cameras separated by a small horizontal distance along the same 
X-axis. It captures two images of the object at a slightly different 
horizontal positions simultaneously. As a result, the object 
appears at a different spatial position on each view of the 
cameras. This difference, known as disparity, can be used to 
determine the three-dimensional (3D) real world position of the 
object using triangulation [1]. While this approach is well-
established, there are drawbacks and limitations. First of all, it 
requires two cameras to cover one perspective and hence the 
number of cameras required to cover multi-perspective will be 
twice the number of perspectives. Secondly, the calculation of 
the object’s real world coordinate is only possible when the 
object appears on both views of the stereo-camera set. However, 
if the object appears near the far left or right edges of the camera 
views, it may not be covered by both views. Furthermore, if one 
of the camera views of the object is blocked by an obstacle, 
calculation of the object’s real world coordinate is also not 
possible. Finally, the accuracy of the calculated real world 
coordinate of the object often deteriorated as the object is 
situated further away from the stereo-camera set. This is due to 
the fact that the object appears smaller in the views when it is far 
away from the cameras. Hence the calculation of disparity is 
more error prone and the error can propagate to the calculation 
of the real world coordinate. 

These drawbacks and limitations provide a motivation for 
developing a more robust multi-view tracking system, which 

requires fewer number of cameras to work and enables the 
calculations of the object’s real world coordinate in multiple 
ways. It is also aimed to make this system inexpensive and 
portable. Using a table tennis rally captured in a real match 
scene as an example to demonstrate the ability of the new multi-
view tracking system, this paper will discuss the arrangement 
of the multi-camera set up and compensation of the measuring 
errors. The reason for choosing a table tennis ball as the object 
to be tracked is that it travels fast in a table tennis match, its 
view can be blocked by the players and the background of a 
match scene is complex. Tracking a table tennis in a real match 
scene is very challenging. 
The remainder of the paper is organized as follows: Section II 
reviews the literature on research works involving a multi-view 
tracking system for table tennis balls, while Section III 
describes the proposed multi-view tracking system. Section IV 
presents the experimental set up, results and discussion, while 
Section 5 makes some concluding comments. 

II. LITERATURE REVIEW 
As a table tennis ball was used as the object to be tracked in 

this study, the literature review was focused on recent research 
works based on tracking table tennis balls. In 2009, [2] discussed 
the design of a high speed tracking system using distributed 
parallel processing architecture. Their system employed two 
high speed cameras, which were mounted at two corners of the 
ceiling to obtain aerial views of the ball and the table. The ball 
was detected using a combination of background subtraction, 
pixel thresholding and the growth-of-sampled-points method, 
which aimed to recover incorrectly removed pixel lost during 
background subtraction. The image position of the ball from 
both camera views then sent to a powerful PC for determining 
its real world 3D coordinate using a standard camera model with 
intrinsic and extrinsic parameters. The location of the ball was 
tracked in the each frame with an aid of a landing point 
prediction model, which assumed the trajectory of the ball is a 
straight line in the X-Y plane and parabola in X-Z plane. The 
system could detect the ball and worked out its real world 
coordinate in about 8ms and the error of detection is less than 
4cm. Despite the good result, the main drawback of this system 
is that it relied on successful detection of the ball in both views 
to determine its real world coordinate, i.e., it could not work out 
the coordinate of ball if it was not detected in one of the view. 



Furthermore, the system worked only on aerial view of the 
scene, which had an advantage of viewing the ball against a 
simple uniform color background but made the system not 
portable. The setup was also in a controlled laboratory 
environment, which is not as complex as a real match scene. 

In 2012, [3] proposed a table tennis ball tracking system 
aimed to help robots to play table tennis. Their system made use 
of four high speed cameras, of which a pair were mounted on the 
ceiling above both side of the table. Their system employed a 
color based thresholding and features extraction method to 
detect the ball on each of the four views. Similar to [2], the real 
would coordinate of the ball was determined using the image 
positions of the ball in both views of each pair of cameras. As 
the two pairs of cameras are opposite facing, the view of the ball 
is likely to be captured by one of the pairs. This system also 
employed a trajectory prediction model. It used an aerodynamic 
model to estimate the ball trajectory when it was in mid-air and 
a bouncing model when the ball bounced on the table. As a 
result, the average Euclidean error reduced to less than 2cm, 
while the detection time is 8ms per frame despite high 
specification computer was used. The main weakness of this 
system was its reliance on aerial view of the scene to work, 
which made it not portable. 

The weakness of reliance on successful detecting the ball in 
both views simultaneously was addressed by [4]. Their work 
was built on [2] but aimed to help robot to play table tennis. 
Their system still employed background subtraction to detect the 
ball, but it improved the establishment of the background by 
using 15 frames. It also used an improved Single Gaussian 
model to estimate the rough position of the ball based on its 
speed. They developed a trajectory model based on a n-order 
polynomial and estimated the image position of the undetected 
ball from a number of successful detection in previous frames. 
As a result, if a ball was not detected from a view, its image 
position could be estimated and used along with the detected 
image position of another view to determine the ball’s real world 
coordinate. 

In 2015, [5] proposed a multi-view tracking system that 
employed 4 high speed cameras, which were divided into two 
pairs and were mounted on tripods at a height of 1.4 meter. They 
had experimented with two cameras arrangements: 1) a pair of 
cameras were placed on each side (the long side only) of the 
table (opposite facing); 2) both pairs were placed on the same 
side of the table but each pair only monitored half of the table 
(side-by-side). The test videos were captured at a real match 
scene. The system detected the ball using a combination of 
background subtraction and adaptive color thresholding method. 
The image positions of the ball from two views of a pair of 
cameras were used to calculate the real world coordinate. The 
trajectory prediction was made using a second-order motion 
model, which estimates the current velocity and acceleration 
from ball coordinates of previous frames. Their results found 
that the opposite facing arrangement could handle the occlusion 
problem better as the ball was likely to be captured by one of the 
opposite facing pairs of cameras. However, the depth resolution 
of this arrangement was lower since each pair of cameras had to 
monitor the whole table and hence it achieved lower detection 
rate and higher detection error. In contrast, the side-by-side 
arrangement, which had higher depth resolution, achieved 

higher detection rate and lower detection error but could not 
detect the ball when it is occluded. It relied on the trajectory 
prediction model to estimate the ball location when it was not 
detected. 

Based on the work of [5], this paper proposed a new multi-
view cameras arrangement, which was aimed to reduce 
detection error and improved robustness without using more 
cameras. The details of the configuration will be discussed in 
Section III. 

III. MULTI-VIEW CAMERAS CONFIGURATION

Tracking a table tennis ball in a real match scene is very 
challenging. It is because the ball is small, moving fast and its 
view can be occluded. The image of ball can become distorted 
or dark if the video is captured with inappropriate aperture size 
and shutter speed, of which the ranges of these parameters are 
limited by the specification of the cameras. Environmental 
factors such as uneven illumination, confusing background 
objects, spectators’ movement and reflective table surface can 
also affect the ball being successfully detected. Fig. 1 shows 
some example images of the ball at these challenging detection 
situations. 

Blurry ball due to it being 
captured at a low shutter 
speed 

The ball is partially 
occluded by the player’s 
hand 

Uneven illumination caused 
the bottom part of the ball 
darker than the top 

The ball “merges” with the 
background, which has the 
same color as the ball 

Reflection of the ball 
appears on the table Multiple moving objects 

(ball and spectators) 
Fig. 1. Example images of the ball at challenging detection situations 

To cope with these challenging detection situations, the 
multi-view system should provide redundancy so that when one 



camera fails to detect the ball, another one that has a different 
perspective can detect the ball. Furthermore, table tennis 
tournaments usually take place at multi-purpose hall, where 
installing aerial-view cameras is often disallowed.  Without 
using more cameras and obtaining aerial view, a novel multi-
view cameras arrangement is proposed, as illustrated in Fig. 2. 
The system consists of four high speed cameras distributed 
evenly along both sides (long-side) of the table. Each camera 
only needs to monitor two third of the table, so that they can be 
placed closer to the table to get a better view.  Each camera has 
an opposite facing partner and a side partner, e.g. Cam 2 and 
Cam 3 are opposite and side partners of Cam 1 respectively. The 
opposite facing cameras can work together to tackle the 
occlusion problem. The side pair can monitor the whole length 
of the table together, with the views overlapped at the middle, 
where the net is. 

Fig. 2. Multi-view cameras configuration 

To derive the 3D real world coordinate of the ball from 2D 
image positions of it, this arrangement enables two options. 
When the ball appears at a location where one pair of opposite 
facing cameras can see it, the real world coordinate of the ball 
can be calculated using the image positions of the ball detected 
by this pair of cameras. Figure 3 shows the aerial view of an 
opposite facing cameras pair, which allows the X- and Z- 
coordinates to be calculated. 

Fig. 3. Aerial view of the opposite facing camera pair 

Let the principal point of camera 1 (C1) be the origin. The 
X- and Z- coordinates can be calculated using Equ. (1) – (4). 
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The Y- coordinate cannot be seen in the aerial view, so a side 
view of the camera configuration (Y against Z axes) was 
drawn and is shown in Fig. 4.  

Fig. 4. Side view of the opposite facing camera pair 

The Y- coordinate can be calculated using Equ. (5) – (8). 
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However, if the ball cannot be detected by one of the cameras 
in the pair, the other camera in the pair can attempt to work with 
its side partner to derive the real world coordinate using the 
geometry calculation, as shown in Fig 5 (aerial view). Based on 
similar triangles, the Z- coordinates can be calculated using Equ. 
(9) – (10). 

Legends: 
P: ball’s position in real world  
T: distance between two cameras 
X: X coordinate of the ball 
Z1: Z coordinate of the ball 
f: Focal length of the cameras 
w: width of the screen 
x1: screen position of the ball on c1 
x2: screen position of the ball on c2 

Legends: 
Y: Y coordinate of the ball 
H: height of the screen 
y1: screen position of the ball on c1 
y2: screen position of the ball on c2 



Fig. 5. Aerial view of the side-by-side camera pair 
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The X- coordinate can be calculated using Equ. (11) – (12). 
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The Y- coordinate can be calculated by looking at side view 
(Y against Z axis) of the side-by-side pair of cameras, as shown 
in Fig. 6, and using Equ. (13) and (14). 

Fig. 6. Side view of the side-by-side camera pair 
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IV. EXPERIMENTAL SETUP AND RESULTS

To evaluate the accuracy of the system, a set of reference 
points, where their real world coordinates are known, were used 
as ground-truth for comparison. This ground truth were 
constructed by carefully placing an upright double sided 
checkerboard at various marked locations on the table during 
filming, as shown in Fig. 7. The checkerboard had 4 rows and 5 
columns of identical sized black squares distributed evenly upon 
a white board, hence the position of each corner was known. The 
distance between the checkerboard and the principal point of 
Camera 1(used as the origin) was carefully measured at each 
marked location. Therefore the real world coordinates of all the 
corners of the checkerboard can be calculated. Apart from the 
checkerboard corners, the table corners and the tips of the net 
poles at both sides were also used to composite the ground truth. 
In total, there were 288 reference points in the ground truth. 

Fig. 7. A upright double-sided checkerboard was used for creating reference 
points. 

An initial test was conducted by manually identifying the 
image positions of several reference points in the images 
captured by the opposite facing cameras pair and calculated their 
real world coordinate using Equ. (1) to (8). The preliminary 
result found that the average Euclidean distance between the 
coordinates of the measured reference points and those 
calculated by the system is 4.8cm. The Euclidean distances 
varied non-linearly with respect to the distance between the 
reference points and the origin. This discrepancy was mainly due 
to the misalignment between the opposite facing and side-by-
side cameras, measuring error and inaccurate image positions of 
the reference points. As each camera can has six degrees of 
freedom (X-, Y-, Z- translation, pitch, roll and yaw), it is very 
difficult to align them perfectly. The resolution of the image 
produced by these high speed camera is low (512 x 384 pixels), 
obtained accurate image position of the reference points are also 
difficult. To reduce this discrepancy, an error model was built, 
which takes the calculated coordinate as an input and produces 
an estimated error vector (E) for that particular coordinate, as 
shown in Equ. (15). By subtracting the error vector from the 
calculated coordinate, it will bring it closer to its true coordinate. 

E(x, y, z) = F(x,y,z)i, G(x,y,z)j, H(x,y,z)k ( 15 )

where E(x, y, z) is the 3-D error vector, F(x,y,z), G(x,y,z), 
H(x,y,z) are functions determining the magnitudes of the i, j, k
components respectively, and (x, y, z) is the calculated 
coordinate of a reference point. 



As the error appeared to be non-linear, F(x,y,z), G(x,y,z), 
H(x,y,z) were defined as quadratic surfaces, as shown in Equ. (16) 
– (18) where an, bn, cn, dn, en, fn, gn, hn, in and jn are coefficients 
of the surfaces, for n = 1, 2 and 3. 

F(x,y,z)=a1x2+b1y2+c1z2+d1xy+e1xz+f1yz+g1x+h1y+i1z+j1 ( 16 )

G(x,y,z)=a2x2+b2y2+c2z2+d2xy+e2xz+f2yz+g2x+h2y+i2z+j2  ( 17 )

H(x,y,z)=a3x2+b3y2+c3z2+d3xy+e3xz+f3yz+g3x+h3y+i3z+j3  ( 18 )

To find the coefficients for the quadratic surfaces, the 
Multivariate Polynomial Regression [6] was employed. To 
prevent overfitting, a small subset of 32 reference points were 
randomly selected from ground truth as training data, another 
45 “unseen” points were chosen for validating. Fig. 8(a) shows 
the 45 uncompensated calculated (red) and expected (blue) 
coordinates of the reference points, while Fig. 8(b) shows the 
corrected coordinates of the reference points after error 
compensation. It is evident the calculated and expected 
positions are much closer. When the model was tested on the 
full date set, the average Euclidean distance is only 0.1cm, 
comparing to 4.8cm obtained at the initial test. 

(a) Uncompensated expected and calculated reference points 

(b) Corrected expected and calculated reference points 
Fig. 8. Expected and calculated 3D coordinates of the reference points

V. CONCLUSION AND FUTURE WORK

This paper presented a novel multi-view system that can be 
used to track a table tennis ball in a real match scene, which has 
complicated background and challenging ball detection 
condition. The system does not rely on an aerial view of the 

scene to work. This means fixing cameras to the ceiling is not 
needed, hence the system are more portable. With this novel 
cameras arrangement, fewer cameras are required to cover a 
large area, yet detection redundancy is provided. 

Despite the difficulty in perfectly align the cameras, the 
developed error model effectively compensated the calculation 
errors, of which the original average Euclidean distance was 
4.8cm but was reduced to 0.1cm after compensation. 

However, the proposed system also has weaknesses. For the 
system to work as an automatic ball tracking system, the 
detected image position of the ball from each camera needs to 
be collated to derive the real world coordinate of the ball. This 
means the cameras needs to be able to communicate with each 
other or with a central server. Furthermore, as each camera only 
monitors two third of the table, it needs to work with its side 
partner effectively to monitor the whole table. While this 
cameras arrangement has many benefit, one main weakness is 
that when the ball is at or near the vertical plane that joins the 
principal points of the two opposite facing cameras, they will not 
be able to derive the real world coordinate of the ball. It is 
because when θ1 in Equ (1) is zero, Z will be infinitive. When 
this occurs, the real world coordinate of the ball can be derived 
using the side-by-side camera pair. 

To address the abovementioned weakness, a multi-agent 
system (MAS) is being developed to control and manage the 
data flow. A MAS consists of a number of inter-connected 
intelligent agents, which can jointly achieve a goal. This 
characteristic makes it very suitable for this application. For 
example, each camera can be controlled by an agent, which can 
detect the ball and send the detected ball location to another 
agent which can decide how best to derive the ball’s real world 
coordinate and check whether it follows the predicted trajectory. 
If the detected ball location does not make sense, this agent can 
also feedback where the expected ball location to the camera 
agent and ask it to detect again at or near the expected ball 
location. The workload of the MAS can also be distributed to a 
network of computers such that the overall performance and 
reliability can be improved. 
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