7 research outputs found

    The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms

    Get PDF

    A theoretical and empirical study on unbiased boundary-extended crossover for real-valued representation

    Get PDF
    Copyright © 2012 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences Vol. 183 Issue 1 (2012), DOI: 10.1016/j.ins.2011.07.013We present a new crossover operator for real-coded genetic algorithms employing a novel methodology to remove the inherent bias of pre-existing crossover operators. This is done by transforming the topology of the hyper-rectangular real space by gluing opposite boundaries and designing a boundary extension method for making the fitness function smooth at the glued boundary. We show the advantages of the proposed crossover by comparing its performance with those of existing ones on test functions that are commonly used in the literature, and a nonlinear regression on a real-world dataset

    Automated design optimisation and simulation of stitched antennas for textile devices

    Get PDF
    This thesis describes a novel approach for designing 7-segment and 5-angle pocket and collar planar antennas (for operation at 900 MHz). The motivation for this work originates from the problem of security of children in rural Nigeria where there is risk of abduction. There is a strong potential benefit to be gained from hidden wireless tracking devices (and hence antennas) that can protect their security. An evolutionary method based on a genetic algorithm was used in conjunction with electromagnetic simulation. This method determines the segment length and angle between segments through several generations. The simulation of the antenna was implemented using heuristic crossover with non-uniform mutation. Antennas obtained from the algorithm were fabricated and measured to validate the proposed method.This first part of this research has been limited to linear wire antennas because of the wide range and flexibility of this class of antennas. Linear wire antennas are used for the design of high or low gain, broad or narrow band antennas. Wire antennas are easy and inexpensive to build. All the optimised linear wire antenna samples exhibit similar performances, most of the power is radiated within the GSM900 frequency band. The reflection coefficient (S11) is generally better than -10dB. The method of moment (MoM-NEC2) and FIT (CST Studio Suite 2015) solvers were used for this design. MATLAB is used to as an interface to control computational electromagnetic solvers for antenna designs and analysis. The genetic algorithm procedures were written in MATLAB. The second part of the work focuses on meshed ground planes for applications at 900 MHz global system for mobile communications (GSM), 2.45 GHz industrial, scientific, and medical (ISM) band and 5 GHz wearable wireless local area networks (WLAN) frequencies. Square ground planes were developed and designed using linear equations in MATLAB. The ground plane was stitched using embroidery machines. To examine the effect of meshing on the antenna performance and to normalise the meshed antenna to a reference, solid patch antenna was designed, fabricated on an FR4 substrate. A finite grid of resistors was created for numerical simulation in MATLAB. The resistance from the centre to any node of a finite grid of resistors are evaluated using nodal analysis. The probability that a node connects to each node in the grid was computed. The circuit model has been validated against the experimental model by measurement of the meshed ground plane. A set of measurement were collected from a meshed and compared with the numerical values, they show good agreement.</div

    MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION: MODIFICATIONS AND APPLICATIONS TO CHEMICAL PROCESSES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore