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1. Introduction 
 

Multi-objective optimization (MO) is a highly demanding research topic because many real-
world optimization problems consist of contradictory criteria or objectives. Considering 
these competing objectives concurrently, a multi-objective optimization problem (MOP) can 
be formulated as finding the best possible solutions that satisfy these objectives under 
different tradeoff situations. A family of solutions in the feasible solution space forms a 
Pareto-optimal front, which describes the tradeoff among several contradictory objectives of 
an MOP. Generally, there are two goals in finding the Pareto-optimal front of a MOP: 1) to 
converge solutions as near as possible to the Pareto-optimal front; and 2) to distribute 
solutions as diverse as possible over the obtained non-dominated front. These two goals 
cause enormous search space in MOPs and let deterministic algorithms feel difficult to 
obtain the Pareto-optimal solutions. Therefore, satisfying these two goals simultaneously is 
a principal challenge for any algorithm to deal with MOPs (Dias & Vasconcelos, 2002). 
In recent years, several evolutionary algorithms (EAs) have been proposed to solve MOPs. 
For example, the strength Pareto evolutionary algorithm (SPEA) (Zitzler et al., 2000) and the 
revised non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2002) are two most 
famous algorithms. Several extensions of genetic algorithms (GAs) for dealing with MOPs 
are also proposed, such as the niche Pareto genetic algorithm (NPGA) (Horn et al., 1994), the 
chaos-genetic algorithm (CGA) (Qi et al., 2006), and the real jumping gene genetic algorithm 
(RJGGA) (Ripon et al., 2007).  
However, most existing GAs only evaluate each chromosome by its fitness value regardless 
of the schema structure, which is a gene pattern defined by fixing the values of specific gene 
loci within a chromosome. The schemata theorem proved by Goldberg in 1989 is a central 
result of GA’s theory in which a larger of effective genomes implies a more efficient of 
searching ability for a GA (Goldberg, 1989). 
Inspired by the outstanding literature of Kalyanmoy Deb, this study proposes an evaluative 
crossover operator to incorporate with the original NSGA-II. The proposed evaluative 
version of NSGA-II, named E-NSGA-II, can further enhance the advantages of the fast non-
dominated sorting and the diversity preservation of the NSGA-II for improving the quality 
of the Pareto-optimal solutions in MOPs. The proposed evaluative crossover imitates the 
gene-therapy process at the forefront of medicine and therefore integrates a new gene-
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evaluation method with a gene-therapy approach in the traditional uniform crossover 
scheme. The gene-evaluation method evaluates the merit of different genes between two 
mating parents by mutually exchanging these therapeutic genes one-by-one and observing 
the fitness variances. And then, the proposed evaluative crossover adopts a gene-therapy 
approach to cure the mating parents mutually with respect to their gene contribution to 
retain superior genomes in the evolutionary population.  
The particular advantage of E-NSGA-II is that the gene-evaluation method can implicitly 
generate effective genome without explicitly analyzing the solution space by classical local 
search techniques. The performance of the proposed algorithm is experimented on nine 
unconstrained benchmark MOPs. The experiment results show that the E-NSGA-II not only 
can converge the nondominated solutions to the Pareto-optimal front but also can enhance 
the solution diversity to spread the achieved extent for all test MOPs.  
The rest of this chapter is organized as follows. Section 2 introduces the genetic operators of 
the proposed E-NSGA-II. Section 3 describes numerical implementation and parameter 
setting. Section 4 reports the computational experiments on unconstrained MOPs and 
discusses the characteristics of E-NSGA-II. Finally, this chapter concludes with a summary 
in Section 5. 

 
2. Algorithm Description 
 

The NSGA proposed by Srinivas and Deb (1994) is one of the first EAs for MOPs (Srinivas & 
Deb, 1994). The main idea of the NSGA is the ranking process executed before the selection 
operation. In 2002, Deb et al. proposed a revised version, named NSGA-II, by introducing 
fast non-dominated sorting and diversity preservation policies (Deb et al., 2002). Three 
features of NSGA-II are summarized as follows: 
1) Computational complexity: NSGA-II uses a fast non-dominated sorting approach to 

substitute for the original sorting algorithm of NSGA in order to reduce its computational 
complexity from O(MP3) to O(MP2), where M is the number of objectives and P is the 
population size. This feature makes NSGA-II more efficient than NSGA for large 
population cases. 

2) Elitism preservation: Replacement-with-elitism methods can monotonously enhance the 
solution quality and speed up the performance of GAs significantly (Ghomsheh et al., 
2007). NSGA-II adopts (μ+λ)-evolution strategy to keep elitism solutions and prevent the 
loss of good solutions once they are found. Successive population is produced by 
selecting μ better solutions from μ parents and λ children. 

3) Parameter reduction: Traditional sharing approach is a diversity ensuring mechanism 
that can get a wide variety of equivalent solutions in a population. However, a sharing 
parameter should be specified to set the sharing extent desired in a problem. Therefore, 
NSGA-II defines a density-estimation metric and applies the crowded-comparison 
operator with less required parameters to keep diversity between solutions.  

 
In this study, the proposed E-NSGA-II stems from a concept different from traditional 
NSGA-II, particularly in terms of the gene-evaluation method. That is, the E-NSGA-II 
inherits the advantages of the NSGA-II and emphasizes the development of a new crossover 
operator and a modified replacement policy (Lin & Chuang, 2007).  

 

 

2.1 Generation of Initial Population 
A real coding representation is efficiently applied to solve numerical MOPs. Each test MOP 
is structured in the same manner and consists of M objective functions (Deb, 1999): 
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 . (2) 
 
Each decision variable is treated as a gene and encoded by a floating-point number. Each 
chromosome representing a feasible solution is encoded as a vector nT

nxxxx  ]    [ 21  , 
where xi denotes the value of the ith gene and n is the number of design variables in an 
MOP. Because the lower bound T

nllll ]    [ 21 

  and the upper bound T

nuuuu ]    [ 21 
  define 

the feasible solution space, the domain of each xi is denoted as interval [li, ui].  
The main components of the E-NSGA-II are chromosome encoding, fitness function, 
selection, recombination and replacement. An initial population with P chromosomes is 
randomly generated within the predefined feasible region. At each generation, E-NSGA-II 
applies the fast non-dominated sorting of NSGA-II to identify non-dominated solutions and 
construct the non-dominated front. And then, E-NSGA-II executes the rank comparison in 
selection operation to decide successive population by elitism strategy as the diversity 
preservation in NSGA-II (Deb et al., 2002). Therefore, the following sections only describe 
the details of the evaluative crossover operator and the diverse replacement. 

 
2.2 Evaluative Crossover 
For evaluation purpose, this study applies the crowding distance as an evaluation of 
chromosome’s quality in the evaluative crossover. The crowding distance proposed in 
NSGA-II is used to estimate the density quantity of a particular solution in the population 
by calculating the average distance between other surrounding solutions with respect to 
each objective (Deb et al., 2002). After two parents have been selected from population, let 
the parent with larger crowding distance be named as the better parent (

bx
 ) and the other 

one is the worse parent (
wx
 ). Their crossover child is denoted as y


.  

The proposed evaluative crossover imitates the gene-therapy process at the forefront of 
medicine, which inserts genes into an individual's cells to treat a disease by replacing a 
defective mutant allele by a functional one. Therefore, the evaluative crossover integrates a 
gene-evaluation method with a gene-therapy approach in the traditional uniform crossover 
scheme. By randomly generating a therapeutic mask with the same length as chromosomes, 
each parity bit in the therapeutic mask indicates whether the gene locus should be cured or 
not. For each gene locus, a random number in the interval [0, 1] is generated and compared 
to a pre-defined crossover rate pc. If the random number is larger than the crossover rate, the 
parity bit in the therapeutic mask is assigned as 0 and no crossover occurs at this locus 
(iGc). Otherwise, the parity bit in the therapeutic mask is assigned as 1 and the child’s gene 
is generated by the gene-therapy approach (iGc).  
Firstly, the gene-evaluation method mutually exchanges two parity genes between two 
mating parents and then compares their fitness variance as a measurement of these genes’ 
merit. The exclusive features of the gene-evaluation method include that 1) the contribution 
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3) Parameter reduction: Traditional sharing approach is a diversity ensuring mechanism 
that can get a wide variety of equivalent solutions in a population. However, a sharing 
parameter should be specified to set the sharing extent desired in a problem. Therefore, 
NSGA-II defines a density-estimation metric and applies the crowded-comparison 
operator with less required parameters to keep diversity between solutions.  

 
In this study, the proposed E-NSGA-II stems from a concept different from traditional 
NSGA-II, particularly in terms of the gene-evaluation method. That is, the E-NSGA-II 
inherits the advantages of the NSGA-II and emphasizes the development of a new crossover 
operator and a modified replacement policy (Lin & Chuang, 2007).  
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is structured in the same manner and consists of M objective functions (Deb, 1999): 
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the details of the evaluative crossover operator and the diverse replacement. 
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chromosome’s quality in the evaluative crossover. The crowding distance proposed in 
NSGA-II is used to estimate the density quantity of a particular solution in the population 
by calculating the average distance between other surrounding solutions with respect to 
each objective (Deb et al., 2002). After two parents have been selected from population, let 
the parent with larger crowding distance be named as the better parent (
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 ). Their crossover child is denoted as y
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The proposed evaluative crossover imitates the gene-therapy process at the forefront of 
medicine, which inserts genes into an individual's cells to treat a disease by replacing a 
defective mutant allele by a functional one. Therefore, the evaluative crossover integrates a 
gene-evaluation method with a gene-therapy approach in the traditional uniform crossover 
scheme. By randomly generating a therapeutic mask with the same length as chromosomes, 
each parity bit in the therapeutic mask indicates whether the gene locus should be cured or 
not. For each gene locus, a random number in the interval [0, 1] is generated and compared 
to a pre-defined crossover rate pc. If the random number is larger than the crossover rate, the 
parity bit in the therapeutic mask is assigned as 0 and no crossover occurs at this locus 
(iGc). Otherwise, the parity bit in the therapeutic mask is assigned as 1 and the child’s gene 
is generated by the gene-therapy approach (iGc).  
Firstly, the gene-evaluation method mutually exchanges two parity genes between two 
mating parents and then compares their fitness variance as a measurement of these genes’ 
merit. The exclusive features of the gene-evaluation method include that 1) the contribution 
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of each gene is evaluated individually; and 2) the gene merit is estimated by the 
improvement of their density quantity during the gene-swap process (Lin & He, 2007).  
Secondly, one temporary chromosome is generated for crossover locus i, denoted as 

 Tbnibibbi xxxxt ,,,,,, )1()1(1 


 wix . This temporary chromosome clones all alleles in the better 

parent and then replaces the selected gene of the better parent (xbi) with the one of the worse 
parent (xwi) in the same locus. The contribution of the gene xwi is denoted as dwi and 
approximated by the Euclidean distance between 

it
  and 

wx
  by Equation (3). For comparison 

purpose, the Euclidean distance between 
bx
  and 

wx
  calculating by Equation (4) is the 

contribution of the gene xbi and denoted as dbi. Therefore, comparing dbi with dwi can reveal 
the contributions of xbi and xwi with respect to the genetic material of the better parent. 
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Finally, the gene-therapy approach can cure some defective genes in the better parent (i.e. xbi) 
according to the genetic material of the other parent (i.e. xwi) and then produce a child gene 
(i.e. yi) for the evolutionary process. If the parity bit in the therapeutic mask is 0 (e.g. iGc), 
the offspring directly inherits the parity gene from the better parent, i.e. the gene in the 
better parent (xbj) is equal to that in the child (i.e. yj = xbj) at the same locus. On the other 
hand, if the parity bit in the therapeutic mask is 1 (e.g. iGc), the therapy gene of the child at 
the same locus (i.e. yj) is arithmetically combined from the parity genes of the mated parents 
(i.e. xbj and xwj) according to their gene contributions. Each gene in the crossover child can be 
reproduced by Equation (5) in which coef is a random number in interval [0.5, 1.0]. 
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Example: In Fig. 1, the better parent with larger crowding distance (Cub_len = 0.8) is P1 and 
the worse parent (Cub_len = 0.6) is P2. The therapy gene is the 2nd gene in chromosomes. 
The temporary chromosome T clones all of genes in P1 except for the 2nd gene, which 
copies from x22 in P2. We assume that the Euclidean distance (d12) between P1 and P2 is 0.5 
and the distance (d22) between P1 and T is 0.7, which are used to estimate the gene 
contribution of x12 and x22, respectively. Because d22 is larger than d12, the 2nd gene in P2 (x22) 
is better than that in P1 (x12). Therefore, the child’s gene (xy2) inherits more genetic material 
from x22 than x12. The pseudo code of the evaluative crossover is described in Table 1.  

 
2.3 Polynomial Mutation 
Mutation operator is applied to enlarge the population diversity to escape from local optima 
and therefore enhance the exploration ability. E-NSGA-II inherits the polynomial mutation 
used by NSGA-II and operates as Equation (6) and (7) (Deb & Goyal, 1996).  

 

 
Fig. 1. An illustration of the gene-therapy approach 
 

/* The Evaluative Crossover Operator */ 
1:    Let    xoverPoint is a set of random selected gene loci; 
2:        p1 and p2 denote parent chromosomes; 
3:        child denote child chromosome; 
4:        rand is a random value in [0~1]; 
5:        coef is a random value in [0.5~1.0]; 
6:        cubLength() is a density estimation function; 
7:        dist() is an Euclidean distance calculator; 
8:    If cubLength(p1) is better than cubLength(p2) 
9:        winner = p1; 
10:       loser = p2; 
11:   Else 
12:       winner = p2; 
13:       loser = p1; 
14:   End If 
15:   copy chromosome(winner) to chromosome(child); 
16:   For i = 1 to chromosomeLength do 
17:       generate a random number rand; 
18:       If rand < crossover rate 
19:           copy chromosome(winner) to chromosome(tempChromosome); 
20:           tempChrimisime(i) = loser(i); 
21:           If dist(tempChromosome, loser) >= dist(winner, loser) 
22:               child(i) = winner(i) × coef + loser(i) × (1 - coef); 
23:           Else 
24:               child(i) = winner(i) × (1 - coef) + loser(i) × coef; 
25:           End If 
26:       End If 
27:   End For 

Table 1. The pseudo code of the evaluative crossover operator 
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In Equation (6), )(u
ix and )(L

ix  are the upper and lower bounds of the mutation parameter. 
According to Deb’s research, the shape of the probability distribution is directly controlled 
by an external parameter ηm and the distribution is not dynamically changed with 
generations (Deb, 2001). Therefore, parameter ηm is also fixed in this study. 

 
2.4 Diverse Replacement 
E-NSGA-II modifies the replacement strategy proposed by Ghomsheh et al. in 2007 to keep 
diversity and generate successive population (Ghomsheh et al., 2007). The replacement 
criteria relying on the fast non-dominated sorting and diversity metric can keep those better 
diversity individuals and provide larger search space for crossover and mutation operators.  
In this study, a competitive population is generated by combining the parent population 
and the offspring population. In the competitive population, if the number of individuals 
with rank=1 is less than the population size, the successive population is firstly filled with 
the best non-dominated solutions and then selects the highest diversity solutions from the 
remaining individuals with rank>1 until the pre-specified population size is achieved. On 
the other hand, the successive population is sequentially filled with the best diversity 
solution from individuals with rank=1 until the size of the successive population is equal to 
the population size. According to these replacement criteria, the successive population can 
be generated. The pseudo code of replacement procedure is described in Table 2.  

 
3. Numerical Implementation 
 

For each test MOP, E-NSGA-II performs 10 runs with different seeds to observe the 
consistency of the outcome. The mean value of the measures reveals the average 
evolutionary performance of E-NSGA-II and represents the optimization results in 
comparison with other algorisms. The variance of the best solutions in 10 runs indicates the 
consistency of an algorithm. E-NSGA-II is implemented by MATLAB.  
 
3.1 Performance Measures 
Different performance measures for evaluating efficiency have been suggested in literature 
(Okabe et al., 2003). For comparison purpose, this study applies two metrics: 1) the 
convergence metric (Υ): approximating the average distance to the Pareto-optimal front; and 
2) the diversity metric (Δ): measuring the extent of spread achieved among the obtained 
solutions (Deb, 2001). 
For the convergence metric (Υ), a smaller metric value implies a better convergence toward 
the Pareto-optimal front. This study uses 500 uniformly spaced solutions to approximate the 
true Pareto-optimal. To measure the distance between the obtained non-dominated front (Q) 
and the set of Pareto-optimal solutions (P*), this study computes the minimum Euclidean 
distance of each solution from 500 chosen points on the Pareto-optimal front by Equation (8). 
The average of these distances is used as the convergence metric as Equation (9).  
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/* The Diverse Replacement Operator */ 
1:    Let R = 0.1; 
2:           E = 0.01; 
3:    If members of rank1 < PopulationSize 
4:        Put all individuals with rank=1 into Offspring; 
5:        Put all individuals with rank>1 into unmarkedPool; 
6:        Calculate all distance between individuals in unmarkedPool; 
7:        Record the minimal distance as minDistance of each individual; 
8:        While Offspring < PopulationSize do 
9:             Select one individual in unmarkedPool; 
10:           If minDistance > R 
11:               Fill this individual into Offspring; 
12:               Remove this individual from unmarkedPool; 
13:           Else 
14:               Move this individual into markedPool; 
15:           End if 
16:           If unmarkedPool is empty 
17:               R = R – E; 
18:               Move all individuals from markedPool to unmarkedPool; 
19:           End if 
20:       End while 
21:   Else 
22:       Put all individuals with rank=1 into unmarkedPool; 
23:       Calculate all distance between individuals in unmarkedPool; 
24:       Record the minimal distance as minDistance of each individual; 
25:       While Offspring < PopulationSize do 
26:            Select one individual in unmarkedPool; 
27:           If minDistance > R 
28:               Fill this individual into Offspring; 
29:               Remove this individual from unmarkedPool; 
30:           Else 
31:               Move this individual into markedPool; 
32:           End if 
33:           If unmarkedPool is empty 
34:               R = R – E; 
35:               Move all individuals from markedPool to unmarkedPool; 
36:           End if 
37:       End while 
38:   End if 

Table 2. The pseudo code of the diverse replacement operator 
 
In Equation (8), di is the Euclidean distance between the solution iQ and the nearest 
member of P*. Indicator k denotes the kth member in P*. Notation M is the number of 
objectives and )*(k

mf  is the mth objective function value of kth member in P*. Indicator i in 
Equation (9) is the obtained non-dominated solution from E-NSGA-II. 
For Diversity metric (Δ), the value of Δ would be close to zero if the non-dominated 
solutions of the obtained front widely and uniformly spread out. The diversity metric (Δ) 
measures the extent of spread achieved among the obtained non-dominated solutions and is 
calculated by Equation (10).  
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/* The Diverse Replacement Operator */ 
1:    Let R = 0.1; 
2:           E = 0.01; 
3:    If members of rank1 < PopulationSize 
4:        Put all individuals with rank=1 into Offspring; 
5:        Put all individuals with rank>1 into unmarkedPool; 
6:        Calculate all distance between individuals in unmarkedPool; 
7:        Record the minimal distance as minDistance of each individual; 
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28:               Fill this individual into Offspring; 
29:               Remove this individual from unmarkedPool; 
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32:           End if 
33:           If unmarkedPool is empty 
34:               R = R – E; 
35:               Move all individuals from markedPool to unmarkedPool; 
36:           End if 
37:       End while 
38:   End if 

Table 2. The pseudo code of the diverse replacement operator 
 
In Equation (8), di is the Euclidean distance between the solution iQ and the nearest 
member of P*. Indicator k denotes the kth member in P*. Notation M is the number of 
objectives and )*(k

mf  is the mth objective function value of kth member in P*. Indicator i in 
Equation (9) is the obtained non-dominated solution from E-NSGA-II. 
For Diversity metric (Δ), the value of Δ would be close to zero if the non-dominated 
solutions of the obtained front widely and uniformly spread out. The diversity metric (Δ) 
measures the extent of spread achieved among the obtained non-dominated solutions and is 
calculated by Equation (10).  
 

www.intechopen.com



Modeling, Simulation and Optimization – Focus on Applications92

 

0

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60 70 80 90 100

Crossover percentage

C
on

ve
rg

en
ce

 m
et

ric

mean var.

 

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

Crossover percentage
D

iv
er

sit
y 

m
et

ric

mean var.

 
 (a) Convergence metric (b) Diversity metric 
Fig. 2. Effect comparison among ten crossover percentages on problem ZDT1 
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The Euclidean distances between the extreme solutions of the Pareto front (P*) is df. The 
distances between the boundary solutions of the obtained nondominated set (Q) is dl, and 
the distances between the consecutive solutions in the obtained non-dominated set is di. 
Notation d  is the average of di. 
 
3.2 Parameter Setting 
To discover the best configuration for E-NSGA-II, some comprehensive investigations for 
parameter setting are performed on a benchmark problem. Especially, the performance of 
the evaluative crossover is influenced by three parameters: 1) crossover percentage; 2) 
crossover rate; and 3) therapeutic coefficient. The experimental results are averaged in 10 
runs and evaluated by the convergence metric and the diversity metric. Problem ZDT1 is 
selected to analyze the effect of different parameters with a reasonable set of values in these 
experiments. The test function ZDT1 proposed by Zitzler et al. has a convex Pareto-optimal 
front and two objective functions without any constraint. The number of decision variables 
is 30 and the feasible region of each variable is in interval [0, 1].  
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1) Effect of Crossover Percentage 
The crossover percentage decides how many successive individuals are produced by 
crossover operator. For example, 80% crossover percentage means that the crossover 
operator produces 80% offspring and the other 20% are produced by mutation operator. 
Especially, 100% crossover percentage means that all offspring are firstly recombined by 
crossover operator and then flipped one or more genes by mutation operator. 
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Fig. 3. Effect comparison among ten crossover rates on problem ZDT1  
 
To analyze the best percentage of crossover children in each generation, ten crossover 
percentages (from 10% to 100%) were tested on problem ZDT1. The mean and variance of 
the convergence and diversity metrics are depicted in Fig. 2(a) and Fig. 2(b), respectively.  
In Fig. 2(a), a larger crossover percentage implies a worse convergence situation when the 
crossover percentage is assigned from 10% to 90%. However, the best convergence is 
obtained when the crossover percentage is 100%. For diversity metric, Fig. 2(b) shows that 
the diversity metric is slightly declined from 10% to 70% and then rises until 90%. In 
particular, the best diversity metric is also obtained when the crossover percentage is 100%. 
Therefore, all individuals in this study are firstly recombined by the evaluative crossover 
and then mutated by the polynomial mutation.  
 
2) Effect of Crossover Rate 
In the gene-evaluation method, a smaller crossover rate implies a lower computational effort 
because only the selected loci in the therapeutic mask need to be evaluated individually. To 
realize the effects of different crossover rates (pc), six simulations with crossover rates from 
1% to 90% are conducted on problem ZDT1 to discover the best crossover rate. 
The convergence and diversity metrics of experimental results are depicted in Fig. 3(a) and 
3(b), respectively. In Fig. 3(a), the convergence metric remains stable between pc=1% and 
pc=10%. Obviously, a larger crossover rate implies a worse convergence situation on 
problem ZDT1 while pc is larger than 10%. The diversity metric in Fig. 3(b) is monotonically 
decreased from pc=1% to pc=10% and then slightly increased until pc=90%. Considering the 
convergence and diversity metrics, the crossover rate applied in this study is 10%. 
 
3) Effect of Therapeutic Coefficient 
In the gene-therapy approach, each therapeutic gene of crossover child arithmetically 
combines two parity genes at the same locus of the mating parents. To test the effects of 
different therapeutic coefficient (coef), seven fixed coefficients and four variable ones for 
Equation (5) are tested on problem ZDT1. The mean and variance of the experimental 
results for seven fixed coefficients (from 0.01 to 1.0) are depicted in Fig. 4. The convergence 
metric depicted in Fig. 4(a) remains stable between 0.01 and 0.5. As the value of coef is larger 
than 0.5, the convergence situation is dramatically increased until coef=1. When the value of 
coef increases from 0.01, the diversity metric in Fig. 4(b) is decreased and levels off between 
coef=0.5 and coef=0.9. And then, the diversity metric increases at coef=1.0. 
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The Euclidean distances between the extreme solutions of the Pareto front (P*) is df. The 
distances between the boundary solutions of the obtained nondominated set (Q) is dl, and 
the distances between the consecutive solutions in the obtained non-dominated set is di. 
Notation d  is the average of di. 
 
3.2 Parameter Setting 
To discover the best configuration for E-NSGA-II, some comprehensive investigations for 
parameter setting are performed on a benchmark problem. Especially, the performance of 
the evaluative crossover is influenced by three parameters: 1) crossover percentage; 2) 
crossover rate; and 3) therapeutic coefficient. The experimental results are averaged in 10 
runs and evaluated by the convergence metric and the diversity metric. Problem ZDT1 is 
selected to analyze the effect of different parameters with a reasonable set of values in these 
experiments. The test function ZDT1 proposed by Zitzler et al. has a convex Pareto-optimal 
front and two objective functions without any constraint. The number of decision variables 
is 30 and the feasible region of each variable is in interval [0, 1].  
 

 )(),()(      Minimize 211 xfxfxT 
  (ZDT1) 

111 )(                             where xxf   (11) 
 ))(/1)()( 12 xgxxgxf 
  (12) 

)1/()(91)(
2

  
nxxg n

i i
 . (13) 

 
1) Effect of Crossover Percentage 
The crossover percentage decides how many successive individuals are produced by 
crossover operator. For example, 80% crossover percentage means that the crossover 
operator produces 80% offspring and the other 20% are produced by mutation operator. 
Especially, 100% crossover percentage means that all offspring are firstly recombined by 
crossover operator and then flipped one or more genes by mutation operator. 
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Fig. 3. Effect comparison among ten crossover rates on problem ZDT1  
 
To analyze the best percentage of crossover children in each generation, ten crossover 
percentages (from 10% to 100%) were tested on problem ZDT1. The mean and variance of 
the convergence and diversity metrics are depicted in Fig. 2(a) and Fig. 2(b), respectively.  
In Fig. 2(a), a larger crossover percentage implies a worse convergence situation when the 
crossover percentage is assigned from 10% to 90%. However, the best convergence is 
obtained when the crossover percentage is 100%. For diversity metric, Fig. 2(b) shows that 
the diversity metric is slightly declined from 10% to 70% and then rises until 90%. In 
particular, the best diversity metric is also obtained when the crossover percentage is 100%. 
Therefore, all individuals in this study are firstly recombined by the evaluative crossover 
and then mutated by the polynomial mutation.  
 
2) Effect of Crossover Rate 
In the gene-evaluation method, a smaller crossover rate implies a lower computational effort 
because only the selected loci in the therapeutic mask need to be evaluated individually. To 
realize the effects of different crossover rates (pc), six simulations with crossover rates from 
1% to 90% are conducted on problem ZDT1 to discover the best crossover rate. 
The convergence and diversity metrics of experimental results are depicted in Fig. 3(a) and 
3(b), respectively. In Fig. 3(a), the convergence metric remains stable between pc=1% and 
pc=10%. Obviously, a larger crossover rate implies a worse convergence situation on 
problem ZDT1 while pc is larger than 10%. The diversity metric in Fig. 3(b) is monotonically 
decreased from pc=1% to pc=10% and then slightly increased until pc=90%. Considering the 
convergence and diversity metrics, the crossover rate applied in this study is 10%. 
 
3) Effect of Therapeutic Coefficient 
In the gene-therapy approach, each therapeutic gene of crossover child arithmetically 
combines two parity genes at the same locus of the mating parents. To test the effects of 
different therapeutic coefficient (coef), seven fixed coefficients and four variable ones for 
Equation (5) are tested on problem ZDT1. The mean and variance of the experimental 
results for seven fixed coefficients (from 0.01 to 1.0) are depicted in Fig. 4. The convergence 
metric depicted in Fig. 4(a) remains stable between 0.01 and 0.5. As the value of coef is larger 
than 0.5, the convergence situation is dramatically increased until coef=1. When the value of 
coef increases from 0.01, the diversity metric in Fig. 4(b) is decreased and levels off between 
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Fig. 4. Effect comparison among fixed therapeutic coefficients on problem ZDT1 
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Fig. 5. Effect comparison among variable therapeutic coefficients on problem ZDT1 
 

E-NSGA-II Algorithm Setting 
Population size 100 
Maximum generation 1000 
Simulation times 10 
Percentage of offspring reproduction from crossover operator 100% 
Percentage of offspring reproduction from mutation operator 100% 

E-NSGA-II Crossover Operator 
Crossover rate 0.1 
Coefficient of arithmetical combination Random [0.5,1] 

E-NSGA-II Mutation Operator 
Mutation rate 1/ length of variable 
Mutation scope Rank *20 

Table 3. Parameter setting of E-NSGA-II  
 
Fig. 5 depicts the experimental results of four variable type of therapeutic coefficients, which 
consist of 1) random value in interval [0.5, 1]; 2) random value in interval [0, 1]; 3) 
monotonically increasing value (from 0 to 1); and 4) monotonically decreasing value (from 1 
to 0). Obviously, the random coefficient in interval [0.5, 1] achieves the best diversity metric 
in Fig. 5(b) although its convergence result in Fig. 5(a) is slightly worse than others about 
0.0002. Considering the tradeoff between the convergence and diversity metrics, this study 
suggests the random value in interval [0.5, 1] as the therapeutic coefficient in this study. 

 

Table 4. Unconstrained test MOPs (All objectives are minimization functions) 

 
3.3 Configuration of the E-NSGA-II 
After these comprehensive experiments, the configuration and parameter setting of the 
proposed evaluative crossover are determined. Other parameters used in this study are the 
same as those in the original NSGA-II (Deb et al., 2002). The configuration of E-NSGA-II is 
summarized in Table 3 and used in the following section for performance comparison. 

 
4. Computational Experiments 
 

4.1 Test Problems 
Nine test problems for MOPs are used in these experiments to systematically evaluate the 
performance of E-NSGA-II. These unconstrained benchmark problems suggested by Zitzler 
et al. cover a broad range of functionality characteristics with two objective functions 
(Zitzler et al., 2000). In this study, the test MOPs are denoted as SCH, FON, POL, KUR, 
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. Table 4 describes the problem identifier, the number 
of variables, the feasible regions of decision variables, the function formulations, and the 
nature of the Pareto-optimal front for each problem (Deb et al., 2002). 
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Fig. 4. Effect comparison among fixed therapeutic coefficients on problem ZDT1 
 

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016

0.5~1 0~1 Increasing Decreasing

Coefficient

C
on

ve
rg

en
ce

 m
et

ric

mean var.

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5~1 0~1 Increasing Decreasing
Coefficient

D
iv

er
sit

y 
m

et
ric

mean var.

 
 (a) Convergence metric (b) Diversity metric 
Fig. 5. Effect comparison among variable therapeutic coefficients on problem ZDT1 
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0.0002. Considering the tradeoff between the convergence and diversity metrics, this study 
suggests the random value in interval [0.5, 1] as the therapeutic coefficient in this study. 
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of variables, the feasible regions of decision variables, the function formulations, and the 
nature of the Pareto-optimal front for each problem (Deb et al., 2002). 
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4.2 Existing Algorithms for Comparison 
Several existing algorithms are applied for the entire test MOPs in literature. This study 
compares the results of five well-known algorithms with the proposed E-NSGA-II on nine 
test problems. These existing algorithms are: 
1) NSGA-II (revised non-dominated sorting genetic algorithm) (Deb et al., 2002): By using 

the fast non-dominated sorting and diversity preservation, NSGA-II identifies non-
dominated solutions in the population and then executing the rank comparison in 
selection operation to decide successor population by elitism strategy. 

2) n-NSGA-II (niching-NSGA-II) (Ghomsheh et al., 2007): n-NSGA-II modifies the elitism 
strategy of the NSGA-II according to the diversity value of each candidate individual. 
The purpose of this algorithm is to guarantee a better spread among the solutions.  

3) SPEA (strength Pareto evolutionary algorithm) (Zitzler & Thiele, 1999): By combining 
several features of previous multiobjective EAs in a unique manner, SPEA differs from 
several multi-criteria EAs in the kind of fitness assignment and the niching technique. 

4) PAES (Pareto-archived evolution strategy) (Knowles & Corne, 1999): PAES is a (1 + l) 
evolution strategy that comprises three parts: the candidate solution generator, the 
candidate solution acceptance function, and the Nondominated-Solutions archive. 
PAES represents the simplest approach to a multiobjective local search procedure. 

5) MOTS (multi-objective Tabu search) (Jaeggi et al., 2004): Based on Tabu search, MOTS 
uses functional decomposition to perform parallel objective function evaluations at the 
H&J local search and the diversification search and becomes a parallel multi-objective 
continuous Tabu search algorithm.  

 
4.3 Comparison Results among Algorithms 
Simulation results of the proposed E-NSGA-II on nine test problems are compared with five 
multi-objective optimizers, which are NSGA-II, n-NSGA-II, SPEA, PAES and MOTS. Table 5 
and Table 6 depict the convergence metric Υ and the diversity metric Δ of the experimental 
results obtained using these six algorithms, respectively. The mean and variance of 
simulation results in 10 independent experiments are depicted in the first row and the 
second row of each algorithm in Table 5 and Table 6. The mean of the metrics reveals the 
average evolutionary performance and represents the optimization results in comparison 
with other algorisms. The variance of the metrics indicates the consistency of an algorithm.  
Table 5 shows that using the proposed evaluative crossover can further improve the 
convergence quality of NSGA-II on almost all problems except on problem POL. E-NSGA-II 
performs as good as n-NSGA-II to converge in six MOPs and outperforms n-NSGA-II in 
FON, POL and ZDT6. Furthermore, E-NSGA-II significantly overcomes SPEA, PAES and 
MOTS in eight problems but slightly loses on problem POL. In all cases with E-NSGA-II, the 
variance of convergence metric in ten runs is also small except in POL. That is, E-NSGA-II is 
great and consistent as n-NSGA-II and outperforms NSGA-II, SPEA, PAES and MOTS on 
the convergence capability.  
In Table 6, E-NSGA-II outperforms all other algorithms dramatically on the mean of the 
diversity metric in almost all test problems except in POL and KUR with NSGA-II. That is, 
E-NSGA-II is a brilliant algorithm for MOPs to ensure a better spread among solutions and 
provide a good diversity although it slightly loses on the mean of convergence metric in two 
problems with NSGA-II. That is, E-NSGA-II can find a better spread of solutions than other 
algorithms on almost all test problems.  

 

Algorithm   SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

E-NSGA-II Mean 0.0033 0.0011 0.1143 0.0165 0.0013 0.0010 0.0046 0.0011 0.0042 
Variance 0.0002 0.0001 0.1008 0.0031 0.0001 0.0001 0.0003 0.0001 0.0002 

n-NSGA-II Mean 0.0032 0.0023 0.2375 0.0161 0.0011 0.0008 0.0042 0.0011 0.0139 
Variance 0.0002 0.0002 0.0428 0.0034 0.0001 0.0001 0.0003 0.0002 0.0018 

NSGA-II Mean 0.0034 0.0019 0.0156 0.0290 0.0335 0.0724 0.1145 0.5131 0.2966 
Variance 0.0000 0.0000 0.0000 0.0000 0.0048 0.0317 0.0079 0.1185 0.0131 

SPEA Mean 0.0034 0.1257 0.0378 0.0456 0.0018 0.0013 0.0475 7.3403 0.2211 
Variance 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 6.5725 0.0005 

PAES 
Mean 0.0013 0.1513 0.0309 0.0573 0.0821 0.1263 0.0239 0.8548 0.0855 

Variance 0.0000 0.0009 0.0004 0.0119 0.0087 0.0369 0.0000 0.5272 0.0067 

MOTS Mean 0.0032 0.0008 0.0158 0.0276 0.0414 0.0664 0.0154 22.689 0.3758 
Variance 0.0000 0.0000 0.0005 0.0047 0.0008 0.0016 0.0010 10.966 0.1745 

Table 5. Mean (first rows) and variance (second rows) of the convergence metric  
 

Algorithm   SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

E-NSGA-II Mean 0.2069 0.1629 0.9197 0.5771 0.1251 0.1311 0.5833 0.2001 0.1177 
Variance 0.0115 0.0125 0.0393 0.0377 0.0013 0.0093 0.0242 0.0201 0.0098 

n-NSGA-II Mean 0.3822 0.3590 0.9531 0.5004 0.4225 0.4238 0.6827 0.4623 0.4056 
Variance 0.0409 0.0270 0.0703 0.0404 0.0218 0.0368 0.0208 0.0371 0.0376 

NSGA-II Mean 0.4779 0.3781 0.4522 0.4115 0.3903 0.4308 0.7385 0.7026 0.6680 
Variance 0.0035 0.0006 0.0029 0.0010 0.0019 0.0047 0.0197 0.0646 0.0099 

SPEA Mean 1.0211 0.7924 0.9727 0.8530 0.7845 0.7551 0.6729 0.7985 0.8494 
Variance 0.0044 0.0055 0.0085 0.0026 0.0044 0.0045 0.0036 0.0146 0.0027 

PAES Mean 1.0633 1.1625 1.0200 1.0798 1.2298 1.1659 0.7899 0.8705 1.1531 
Variance 0.0029 0.0089 0.0000 0.0138 0.0048 0.0077 0.0017 0.1014 0.0039 

MOTS Mean 0.3789 1.1298 1.5933 1.1166 0.7714 0.8135 0.8234 1.0044 0.3722 
Variance 0.0251 0.0344 0.0120 0.1437 0.0789 0.0360 0.0225 0.0047 0.2648 

Table 6. Mean (first rows) and variance (second rows) of the diversity metric  

 
4.4 Algorithm Analysis 
According to the research by Huband et al. in 2006, each test problem can be characterized 
by four factors (Huband et al., 2006): 1) uni-modal/multi-modal, 2) convex/non-convex, 3) 
connected/disconnected, and 4) bias/non-bias. The modality of a test problem can 
determine the exploration ability of an algorithm for finding global optima. The geometric 
shape of the Pareto-optimal front can measure the selection and ranking ability of 
algorithms. The bias factor directly influences the convergence speed toward the Pareto-
optimal front of algorithms. If the test problem has several disconnected Pareto-optimal sets, 
algorithms will feel difficult to find all regions of the Pareto optimal front. The characters of 
nine test problems are depicted in Table 7 and analyzed in the follows. 
 
1) Multi-modal Problems 
A multimodal function possesses numerous local optima that could trap an algorithm into 
its local optima and fail to find global optima. In general, solving multimodal problems is 
more difficult than unimodal ones. In this study, problem POL, KUR, ZDT3, ZDT4 and 
ZDT6 contain mutimodal objective functions.  
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4.2 Existing Algorithms for Comparison 
Several existing algorithms are applied for the entire test MOPs in literature. This study 
compares the results of five well-known algorithms with the proposed E-NSGA-II on nine 
test problems. These existing algorithms are: 
1) NSGA-II (revised non-dominated sorting genetic algorithm) (Deb et al., 2002): By using 

the fast non-dominated sorting and diversity preservation, NSGA-II identifies non-
dominated solutions in the population and then executing the rank comparison in 
selection operation to decide successor population by elitism strategy. 

2) n-NSGA-II (niching-NSGA-II) (Ghomsheh et al., 2007): n-NSGA-II modifies the elitism 
strategy of the NSGA-II according to the diversity value of each candidate individual. 
The purpose of this algorithm is to guarantee a better spread among the solutions.  

3) SPEA (strength Pareto evolutionary algorithm) (Zitzler & Thiele, 1999): By combining 
several features of previous multiobjective EAs in a unique manner, SPEA differs from 
several multi-criteria EAs in the kind of fitness assignment and the niching technique. 

4) PAES (Pareto-archived evolution strategy) (Knowles & Corne, 1999): PAES is a (1 + l) 
evolution strategy that comprises three parts: the candidate solution generator, the 
candidate solution acceptance function, and the Nondominated-Solutions archive. 
PAES represents the simplest approach to a multiobjective local search procedure. 

5) MOTS (multi-objective Tabu search) (Jaeggi et al., 2004): Based on Tabu search, MOTS 
uses functional decomposition to perform parallel objective function evaluations at the 
H&J local search and the diversification search and becomes a parallel multi-objective 
continuous Tabu search algorithm.  

 
4.3 Comparison Results among Algorithms 
Simulation results of the proposed E-NSGA-II on nine test problems are compared with five 
multi-objective optimizers, which are NSGA-II, n-NSGA-II, SPEA, PAES and MOTS. Table 5 
and Table 6 depict the convergence metric Υ and the diversity metric Δ of the experimental 
results obtained using these six algorithms, respectively. The mean and variance of 
simulation results in 10 independent experiments are depicted in the first row and the 
second row of each algorithm in Table 5 and Table 6. The mean of the metrics reveals the 
average evolutionary performance and represents the optimization results in comparison 
with other algorisms. The variance of the metrics indicates the consistency of an algorithm.  
Table 5 shows that using the proposed evaluative crossover can further improve the 
convergence quality of NSGA-II on almost all problems except on problem POL. E-NSGA-II 
performs as good as n-NSGA-II to converge in six MOPs and outperforms n-NSGA-II in 
FON, POL and ZDT6. Furthermore, E-NSGA-II significantly overcomes SPEA, PAES and 
MOTS in eight problems but slightly loses on problem POL. In all cases with E-NSGA-II, the 
variance of convergence metric in ten runs is also small except in POL. That is, E-NSGA-II is 
great and consistent as n-NSGA-II and outperforms NSGA-II, SPEA, PAES and MOTS on 
the convergence capability.  
In Table 6, E-NSGA-II outperforms all other algorithms dramatically on the mean of the 
diversity metric in almost all test problems except in POL and KUR with NSGA-II. That is, 
E-NSGA-II is a brilliant algorithm for MOPs to ensure a better spread among solutions and 
provide a good diversity although it slightly loses on the mean of convergence metric in two 
problems with NSGA-II. That is, E-NSGA-II can find a better spread of solutions than other 
algorithms on almost all test problems.  

 

Algorithm   SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

E-NSGA-II Mean 0.0033 0.0011 0.1143 0.0165 0.0013 0.0010 0.0046 0.0011 0.0042 
Variance 0.0002 0.0001 0.1008 0.0031 0.0001 0.0001 0.0003 0.0001 0.0002 

n-NSGA-II Mean 0.0032 0.0023 0.2375 0.0161 0.0011 0.0008 0.0042 0.0011 0.0139 
Variance 0.0002 0.0002 0.0428 0.0034 0.0001 0.0001 0.0003 0.0002 0.0018 

NSGA-II Mean 0.0034 0.0019 0.0156 0.0290 0.0335 0.0724 0.1145 0.5131 0.2966 
Variance 0.0000 0.0000 0.0000 0.0000 0.0048 0.0317 0.0079 0.1185 0.0131 

SPEA Mean 0.0034 0.1257 0.0378 0.0456 0.0018 0.0013 0.0475 7.3403 0.2211 
Variance 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 6.5725 0.0005 

PAES 
Mean 0.0013 0.1513 0.0309 0.0573 0.0821 0.1263 0.0239 0.8548 0.0855 

Variance 0.0000 0.0009 0.0004 0.0119 0.0087 0.0369 0.0000 0.5272 0.0067 

MOTS Mean 0.0032 0.0008 0.0158 0.0276 0.0414 0.0664 0.0154 22.689 0.3758 
Variance 0.0000 0.0000 0.0005 0.0047 0.0008 0.0016 0.0010 10.966 0.1745 

Table 5. Mean (first rows) and variance (second rows) of the convergence metric  
 

Algorithm   SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

E-NSGA-II Mean 0.2069 0.1629 0.9197 0.5771 0.1251 0.1311 0.5833 0.2001 0.1177 
Variance 0.0115 0.0125 0.0393 0.0377 0.0013 0.0093 0.0242 0.0201 0.0098 

n-NSGA-II Mean 0.3822 0.3590 0.9531 0.5004 0.4225 0.4238 0.6827 0.4623 0.4056 
Variance 0.0409 0.0270 0.0703 0.0404 0.0218 0.0368 0.0208 0.0371 0.0376 

NSGA-II Mean 0.4779 0.3781 0.4522 0.4115 0.3903 0.4308 0.7385 0.7026 0.6680 
Variance 0.0035 0.0006 0.0029 0.0010 0.0019 0.0047 0.0197 0.0646 0.0099 

SPEA Mean 1.0211 0.7924 0.9727 0.8530 0.7845 0.7551 0.6729 0.7985 0.8494 
Variance 0.0044 0.0055 0.0085 0.0026 0.0044 0.0045 0.0036 0.0146 0.0027 

PAES Mean 1.0633 1.1625 1.0200 1.0798 1.2298 1.1659 0.7899 0.8705 1.1531 
Variance 0.0029 0.0089 0.0000 0.0138 0.0048 0.0077 0.0017 0.1014 0.0039 

MOTS Mean 0.3789 1.1298 1.5933 1.1166 0.7714 0.8135 0.8234 1.0044 0.3722 
Variance 0.0251 0.0344 0.0120 0.1437 0.0789 0.0360 0.0225 0.0047 0.2648 

Table 6. Mean (first rows) and variance (second rows) of the diversity metric  

 
4.4 Algorithm Analysis 
According to the research by Huband et al. in 2006, each test problem can be characterized 
by four factors (Huband et al., 2006): 1) uni-modal/multi-modal, 2) convex/non-convex, 3) 
connected/disconnected, and 4) bias/non-bias. The modality of a test problem can 
determine the exploration ability of an algorithm for finding global optima. The geometric 
shape of the Pareto-optimal front can measure the selection and ranking ability of 
algorithms. The bias factor directly influences the convergence speed toward the Pareto-
optimal front of algorithms. If the test problem has several disconnected Pareto-optimal sets, 
algorithms will feel difficult to find all regions of the Pareto optimal front. The characters of 
nine test problems are depicted in Table 7 and analyzed in the follows. 
 
1) Multi-modal Problems 
A multimodal function possesses numerous local optima that could trap an algorithm into 
its local optima and fail to find global optima. In general, solving multimodal problems is 
more difficult than unimodal ones. In this study, problem POL, KUR, ZDT3, ZDT4 and 
ZDT6 contain mutimodal objective functions.  
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Problem Objective Modality Convexity Bias Connectivity 

SCH f1 Uni-modal Convex Non-bias Connected f2 Uni-modal 

FON f1 Uni-modal Non-convex Non-bias Connected f2 Uni-modal 

POL f1 Multi-modal Non-convex Non-bias Disconnected f2 Uni-modal 

KUR f1 Uni-modal Non-convex Non-bias Disconnected f2 Multi-modal 

ZDT1 f1 Uni-modal Convex Non-bias Connected f2 Uni-modal 

ZDT2 f1 Uni-modal Non-convex Non-bias Connected f2 Uni-modal 

ZDT3 f1 Uni-modal Convex Non-bias Disconnected f2 Multi-modal 

ZDT4 f1 Uni-modal Non-convex Non-bias Connected f2 Multi-modal 

ZDT6 f1 Multi-modal Non-convex Bias Connected f2 Multi-modal 
Table 7. Characters of nine test problems 
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 (a) Convergence metric  (b) Diversity metric 
Fig. 6. Comparison between E-NSGA-II and existing algorithms on multimodal problems 
 
In Fig. 6(a), the proposed E-NSGA-II can converge in these five multimodal problems as 
better as n-NSGA-II. Nevertheless, E-NSGA-II overcomes considerably NSGA-II, SPEA, 
PAES and MOTS on KUR, ZDT3, ZDT4 and ZDT6. In Fig. 6(b), E-NSGA-II outperforms all 
other algorithms on the mean of the diversity metric in almost all test problems except in 
POL and KUR with NSGA-II. 
 
2) Convex Problems 
Convex Pareto optimal fronts can cause difficulty for algorithms to rank solutions by the 
number of their dominated solutions because solutions around the middle of the convex 
Pareto front have great chance to dominate more solutions (Deb, 1999). Problem SCH, ZDT1 
and ZDT3 belong to convex problems. The convergence metric Υ and the diversity metric Δ 
of the experimental results obtained using these six algorithms are depicted in Fig. 7(a) and 
Fig. 7(b), respectively. 
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Fig. 7. Comparison between E-NSGA-II and existing algorithms on convex problems 
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 (a) Convergence metric (b) Diversity metric 
Fig. 8. Comparison between E-NSGA-II and existing algorithms on bias problem 
 
Although dealing with the convex problems is difficult, the proposed E-NSGA-II performs 
the best convergence metric in Fig. 7(a) and the best diversity metric in Fig. 7(b) on all 
convex problems than other five algorithms. That is, the evaluative crossover can further 
improve the ranking performance of NSGA-II for convex problems. 
 
3) Bias Problem 
A bias problem may directly influences the convergence speed toward the Pareto-optimal 
front of algorithms. A better exploitation ability of an algorithm is useful to be able to 
identify the presence of bias in a test problem. In this study, only problem ZDT6 belongs to 
the bias problem. In Fig. 8(a) and Fig. 8(b), the convergence metric (Υ) and the diversity 
metric (Δ) show that E-NSGA-II with the proposed evaluative crossover is the best 
evolutionary algorithm among these six algorithms for handling the bias problem ZDT6. 
 
4) Disconnected Problems 
In this study, problem POL, KUR and ZDT3 have disconnected Pareto-optimal fronts, which 
will increase the likelihood that an algorithm will fail to find all regions of the Pareto 
optimal front. For KUR and ZDT3 in Fig. 9(a), the proposed E-NSGA-II can converge on the 
Pareto-optimal front and achieve a better convergence metric than other algorithms. 
Furthermore, E-NSGA-II also can spread solutions around and outperform other four 
algorithms (except for NSGA-II on POL and KUR) on the diversity metric in Fig. 9(b).  

www.intechopen.com



A New Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization 99

 

Problem Objective Modality Convexity Bias Connectivity 

SCH f1 Uni-modal Convex Non-bias Connected f2 Uni-modal 

FON f1 Uni-modal Non-convex Non-bias Connected f2 Uni-modal 

POL f1 Multi-modal Non-convex Non-bias Disconnected f2 Uni-modal 

KUR f1 Uni-modal Non-convex Non-bias Disconnected f2 Multi-modal 

ZDT1 f1 Uni-modal Convex Non-bias Connected f2 Uni-modal 

ZDT2 f1 Uni-modal Non-convex Non-bias Connected f2 Uni-modal 

ZDT3 f1 Uni-modal Convex Non-bias Disconnected f2 Multi-modal 

ZDT4 f1 Uni-modal Non-convex Non-bias Connected f2 Multi-modal 

ZDT6 f1 Multi-modal Non-convex Bias Connected f2 Multi-modal 
Table 7. Characters of nine test problems 
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Fig. 6. Comparison between E-NSGA-II and existing algorithms on multimodal problems 
 
In Fig. 6(a), the proposed E-NSGA-II can converge in these five multimodal problems as 
better as n-NSGA-II. Nevertheless, E-NSGA-II overcomes considerably NSGA-II, SPEA, 
PAES and MOTS on KUR, ZDT3, ZDT4 and ZDT6. In Fig. 6(b), E-NSGA-II outperforms all 
other algorithms on the mean of the diversity metric in almost all test problems except in 
POL and KUR with NSGA-II. 
 
2) Convex Problems 
Convex Pareto optimal fronts can cause difficulty for algorithms to rank solutions by the 
number of their dominated solutions because solutions around the middle of the convex 
Pareto front have great chance to dominate more solutions (Deb, 1999). Problem SCH, ZDT1 
and ZDT3 belong to convex problems. The convergence metric Υ and the diversity metric Δ 
of the experimental results obtained using these six algorithms are depicted in Fig. 7(a) and 
Fig. 7(b), respectively. 
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Fig. 7. Comparison between E-NSGA-II and existing algorithms on convex problems 
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Fig. 8. Comparison between E-NSGA-II and existing algorithms on bias problem 
 
Although dealing with the convex problems is difficult, the proposed E-NSGA-II performs 
the best convergence metric in Fig. 7(a) and the best diversity metric in Fig. 7(b) on all 
convex problems than other five algorithms. That is, the evaluative crossover can further 
improve the ranking performance of NSGA-II for convex problems. 
 
3) Bias Problem 
A bias problem may directly influences the convergence speed toward the Pareto-optimal 
front of algorithms. A better exploitation ability of an algorithm is useful to be able to 
identify the presence of bias in a test problem. In this study, only problem ZDT6 belongs to 
the bias problem. In Fig. 8(a) and Fig. 8(b), the convergence metric (Υ) and the diversity 
metric (Δ) show that E-NSGA-II with the proposed evaluative crossover is the best 
evolutionary algorithm among these six algorithms for handling the bias problem ZDT6. 
 
4) Disconnected Problems 
In this study, problem POL, KUR and ZDT3 have disconnected Pareto-optimal fronts, which 
will increase the likelihood that an algorithm will fail to find all regions of the Pareto 
optimal front. For KUR and ZDT3 in Fig. 9(a), the proposed E-NSGA-II can converge on the 
Pareto-optimal front and achieve a better convergence metric than other algorithms. 
Furthermore, E-NSGA-II also can spread solutions around and outperform other four 
algorithms (except for NSGA-II on POL and KUR) on the diversity metric in Fig. 9(b).  
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Fig. 9. Comparison between E-NSGA-II and existing algorithms on disconnected problems 
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Fig. 10. Nondominated solutions with E-NSGA-II on three disconnected test problems 
 
For three disconnected problems, Fig. 10 shows all nondominated solutions obtained by 
using E-NSGA-II and the Pareto-optimal region. In their Pareto-optimal front, problem POL, 
KUR and ZDT3 have two, three and five regions of discontinuous curves, respectively. Fig. 
10 demonstrates the ability of E-NSGA-II to converge the true Pareto-optimal front and 
spread diverse solutions in the front. Fig. 11 depict the Pareto-optimal front and non-
dominated solutions obtained by E-NSGA-II for the other six test problems where solid line  
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Fig. 11. Nondominated solutions with E-NSGA-II on six test problems 
 
represents the Pareto-optimal front and the hollow circles represent the obtained non-
dominated solutions with E-NSGA-II. Obviously, the solutions obtained by E-NSGA-II are 
very close to Pareto-optimal front and the spreading diversity is also excellent. Therefore, 
the E-NSGA-II is an effective GAs for solving MOPs and achieving excellent diversity metric. 
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using E-NSGA-II and the Pareto-optimal region. In their Pareto-optimal front, problem POL, 
KUR and ZDT3 have two, three and five regions of discontinuous curves, respectively. Fig. 
10 demonstrates the ability of E-NSGA-II to converge the true Pareto-optimal front and 
spread diverse solutions in the front. Fig. 11 depict the Pareto-optimal front and non-
dominated solutions obtained by E-NSGA-II for the other six test problems where solid line  
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represents the Pareto-optimal front and the hollow circles represent the obtained non-
dominated solutions with E-NSGA-II. Obviously, the solutions obtained by E-NSGA-II are 
very close to Pareto-optimal front and the spreading diversity is also excellent. Therefore, 
the E-NSGA-II is an effective GAs for solving MOPs and achieving excellent diversity metric. 
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5. Conclusion 
 

This study imitates the gene-therapy process at the forefront of medicine and proposes an 
innovative evaluative crossover operator. The evaluative crossover integrates a gene-
evaluation method with a gene-therapy approach in the traditional NSGA-II for finding 
uniformly distributed Pareto-optimal front of multi-objective optimization problems. To 
further enhance the advantages of fast non-dominate sorting and diversity preservation in 
NSGA-II, the proposed gene-evaluation method partially evaluates the merit of different 
crossover genes by substituting them in better parent and then calculating the fitness 
variances. The gene-therapy approach incorporates with the evaluative crossover to cure the 
mating parents mutually with respect to their gene contribution in order to retain superior 
genomes in the evolutionary population.  
Some comprehensive investigations for parameter setting are performed on a benchmark 
problem. Especially, three parameters of the evaluative crossover with a reasonable set of 
values are analyzed to realize their evolutionary effect. The experimental results show that a 
100% crossover percentage with 10% crossover rate and a random therapeutic coefficient 
can achieve the best performance for E-NSGA-II. 
The proposed algorithm is tested on nine unconstrained multi-objective optimization 
problems. The experimental results are compared with five existing algorithms. The results 
show that the proposed E-NSGA-II is able to converge the Pareto-optimal front of all test 
problems, even though other algorithms experiences difficulties in approaching the global 
optima on some functions. E-NSGA-II can also achieve better diversity qualities than others. 
The results of algorithm analysis also reveal that the proposed evaluative crossover can 
intuitively evaluate gene contributions that can guide E-NSGA-II to perform an efficient 
search by dynamically shifting emphasis to significant genome in the feasible space without 
abdicating any portion of the candidate schemata. Although the convergence metric on the 
disconnected problem POL is slightly worse than four algorithms, E-NSGA-II outperforms 
almost all other algorithms on the mean of the convergence metric in other test problems. 
For the diversity metric, E-NSGA-II also performs better than all other algorithms 
dramatically in all test problems except for NSGA-II on POL and KUR. 
In the future, the proposed E-NSGA-II should further develop the properties of a simple yet 
efficient evaluative crossover operator, a revised mutation operator and a parameter-less 
approach to deal with a wide spectrum of real world multi-objective problems.  
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