599 research outputs found

    An adaptive ensemble learner function via bagging and rank aggregation with applications to high dimensional data.

    Get PDF
    An ensemble consists of a set of individual predictors whose predictions are combined. Generally, different classification and regression models tend to work well for different types of data and also, it is usually not know which algorithm will be optimal in any given application. In this thesis an ensemble regression function is presented which is adapted from Datta et al. 2010. The ensemble function is constructed by combining bagging and rank aggregation that is capable of changing its performance depending on the type of data that is being used. In the classification approach, the results can be optimized with respect to performance measures such as accuracy, sensitivity, specificity and area under the curve (AUC) whereas in the regression approach, it can be optimized with respect to measures such as mean square error and mean absolute error. The ensemble classifier and ensemble regressor performs at the level of the best individual classifier or regression model. For complex high-dimensional datasets, it may be advisable to combine a number of classification algorithms or regression algorithms rather than using one specific algorithm

    Genomic analysis of macrophage gene signatures during idiopathic pulmonary fibrosis development

    Get PDF
    Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, irreversible lung disease. After diagnosis, the interstitial condition commonly presents 3-5 years of life expectancy if untreated. Despite the limited capacity of recapitulating IPF, animal models have been useful for identifying related pathways relevant for drug discovery and diagnostic tools development. Using these techniques, several immune-related mechanisms have been implicated to IPF. For instance, subpopulations of macrophages and monocytes-derived cells are recognized as centrally active in pulmonary immunological processes. One of the most used technologies is high-throughput gene expression analysis, which has been available for almost two decades now. The “omics” revolution has presented major impacts on macrophage and pulmonary fibrosis research. The present study aims to investigate macrophage dynamics within the context of IPF at the transcriptomic level. Using publicly available gene-expression data, we applied modern data science approaches to (1) understand longitudinal profiles within IPF models; (2) investigate correlation between macrophage genomic dynamics and IPF development; and (3) apply longitudinal profiles uncovered through multivariate data analysis to the development of new sets of predictors able to classify IPF and control samples accordingly. Principal Component Analysis and Hierarchical Clustering showed that our pipeline was able to construct a complex set of biomarker candidates that together outperformed gene expression alone in separating treatment groups in an IPF animal model dataset. We further assessed the predictive performance of our candidates on publicly available gene expression data from IPF patients. Once again, the constructed biomarker candidates were significantly differentiated between IPF and control samples. The data presented in this work strongly suggest that longitudinal data analysis holds major unappreciated potentials for translational medicine research

    Biology-guided algorithms:Improved cardiovascular risk prediction and biomarker discovery

    Get PDF
    Medical research has seen a stark increase in the amount of available data. The sheer volume and complexity of measured variables challenge the use of traditional statistical methods and are beyond the ability of any human to comprehend. Solving this problem demands powerful models capable of capturing the variable interactions and how those are non-linearly related to the condition under study. In this thesis, we first use Machine Learning (ML) methods to achieve better cardiovascular risk prediction/disease biomarker identification and then describe novel bio-inspired algorithms to solve some of the challenges. On the clinical side, we demonstrate how combining targeted plasma proteomics with ML models outperforms traditional clinical risk factors in predicting first-time acute myocardial infarction as well as recurrent atherosclerotic cardiovascular disease. We then shed some light on the pathophysiological pathways involved in heart failure development using a multi-domain ML model. To improve prediction, we develop a novel graph kernel that incorporates protein-protein interaction information, and suggest a manifold mixing algorithm to increase inter-domain information flow in multi-domain models. Finally, we address global model interpretability to uncover the most important variables governing the prediction. Permutation importance is an intuitive and scalable method commonly used in practice, but it is biased in the presence of covariates. We propose a novel framework to disentangle the shared information between covariates, making permutation importance competitive against methodologies where all marginal contributions of a feature are considered, such as SHAP

    Insights and Perspectives in Rheumatology

    Get PDF
    This book offers a range of perspectives on pathogenesis, clinical features and treatment of different rheumatic diseases, with a particular focus on some of the interesting aspects of Sjögren's syndrome. It contains detailed and thorough reviews by international experts, with a diverse range of academic backgrounds. It will also serve as a useful source of information for anyone with a passive interest in rheumatology, from the genetic and molecular level, through to the psychological impact of pain and disability

    Learning positive-negative rule-based fuzzy associative classifiers with a good trade-off between complexity and accuracy

    Get PDF
    Nowadays, the call for transparency in Artificial Intelligence models is growing due to the need to understand how decisions derived from the methods are made when they ultimately affect human life and health. Fuzzy Rule-Based Classification Systems have been used successfully as they are models that are easily understood by models themselves. However, complex search spaces hinder the learning process, and in most cases, lead to problems of complexity (coverage and specificity). This problem directly affects the intention to use them to enable the user to analyze and understand the model. Because of this, we propose a fuzzy associative classification method to learn classifiers with an improved trade-off between accuracy and complexity. This method learns the most appropriate granularity of each variable to generate a set of simple fuzzy association rules with a reduced number of associations that consider positive and negative dependencies to be able to classify an instance depending on the presence or absence of certain items. The proposal also chooses the most interesting rules based on several interesting measures and finally performs a genetic rule selection and adjustment to reach the most suitable context of the selected rule set. The quality of our proposal has been analyzed using 23 real-world datasets, comparing them with other proposals by applying statistical analysis. Moreover, the study carried out on a real biomedical research problem of childhood obesity shows the improved trade-off between the accuracy and complexity of the models generated by our proposal.Funding for open access charge: Universidad de Granada / CBUA.ERDF and the Regional Government of Andalusia/Ministry of Economic Transformation, Industry, Knowledge and Universities (grant numbers P18-RT-2248 and B-CTS-536-UGR20)ERDF and Health Institute Carlos III/Spanish Ministry of Science, Innovation and Universities (grant number PI20/00711)Spanish Ministry of Science and Innovation (grant number PID2019-107793GB-I00

    ENDOMET database – A means to identify novel diagnostic and prognostic tools for endometriosis

    Get PDF
    Endometriosis is a common benign hormone reliant inflammatory gynecological disease that affects fertile aged women and has a considerable economic impact on healthcare systems. Symptoms include intense menstrual pain, persistent pelvic pain, and infertility. It is defined by the existence of endometrium-like tissue developing in ectopic locations outside the uterine cavity and inflammation in the peritoneal cavity. Endometriosis presents with multifactorial etiology, and despite extensive research the etiology is still poorly understood. Diagnostic delay from the onset of the disease to when a conclusive diagnosis is reached is between 7–12 years. There is no known cure, although symptoms can be improved with hormonal medications (which often have multiple side effects and prevent pregnancy), or through surgery which carries its own risk. Current non-invasive tools for diagnosis are not sufficiently dependable, and a definite diagnosis is achieved through laparoscopy or laparotomy. This study was based on two prospective cohorts: The ENDOMET study, including 137 endometriosis patients scheduled for surgery and 62 healthy women, and PROENDO that included 138 endometriosis patients and 33 healthy women. Our long-term goal with the current study was to support the discovery of innovative new tools for efficient diagnosis of endometriosis as well as tools to further understand the etiology and pathogenesis of the disease. We set about achieving this goal by creating a database, EndometDB, based on a relational data model, implemented with PostgreSQL programming language. The database allows e.g., for the exploration of global genome-wide expression patterns in the peritoneum, endometrium, and in endometriosis lesions of endometriosis patients as well as in the peritoneum and endometrium of healthy control women of reproductive age. The data collected in the EndometDB was also used for the development and validation of a symptom and biomarker-based predictive model designed for risk evaluation and early prediction of endometriosis without invasive diagnostic methods. Using the data in the EndometDB we discovered that compared with the eutopic endometrium, the WNT- signaling pathway is one of the molecular pathways that undergo strong changes in endometriosis. We then evaluated the potential role for secreted frizzled-related protein 2 (SFRP-2, a WNT-signaling pathway modulator), in improving endometriosis lesion border detection. The SFRP-2 expression visualizes the lesion better than previously used markers and can be used to better define lesion size and that the surgical excision of the lesions is complete.ENDOMET tietokanta – Keino tunnistaa uusi diagnostinen ja ennustava työkalu endometrioosille Endometrioosi on yleinen hyvänlaatuinen, hormoneista riippuvainen tulehduksellinen lisääntymisikäisten naisten gynekologinen sairaus, joka kuormittaa terveydenhuoltojärjestelmää merkittävästi. Endometrioositaudin oireita ovat mm. voimakas kuukautiskipu, jatkuva lantion alueen kipu ja hedelmättömyys. Sairaus määritellään kohdun limakalvon kaltaisen kudoksen esiintymisenä kohdun ulkopuolella sekä siihen liittyvänä vatsakalvon tulehduksena. Endometrioosin etiologia on monitahoinen, ja laajasta tutkimuksesta huolimatta edelleen huonosti tunnettu. Kesto taudin puhkeamisesta lopullisen diagnoosin saamiseen on usein jopa 7–12 vuotta. Sairauteen ei tunneta parannuskeinoa, mutta oireita voidaan lievittää esimerkiksi hormonaalisilla lääkkeillä (joilla on usein monia sivuvaikutuksia ja jotka estävät raskauden) tai leikkauksella, johon liittyy omat tunnetut riskit. Nykyiset ei-invasiiviset diagnoosityökalut eivät ole riittävän luotettavia sairauden tunnistamiseen, ja varma endometrioosin diagnoosi saavutetaan laparoskopian tai laparotomian avulla. Tämä tutkimus perustui kahteen prospektiiviseen kohorttiin: ENDOMET-tutkimuk-seen, johon osallistui 137 endometrioosipotilasta ja 62 terveellistä naista, sekä PROENDO-tutkimukseen, johon osallistui 138 endometrioosipotilasta ja 33 terveellistä naista. Tässä tutkimuksessa pitkän aikavälin tavoitteemme oli löytää uusia työkalujen endometrioosin diagnosointiin, sekä ymmärtää endometrioosin etiologiaa ja patogeneesiä. Ensimmäisessä vaiheessa loimme EndometDB –tietokannan PostgreSQL-ohjelmointi-kielellä. Tämän osittain avoimeen käyttöön vapautetun tietokannan avulla voidaan tutkia genomin, esimerkiksi kaikkien tunnettujen geenien ilmentymistä peritoneumissa, endo-metriumissa ja endometrioosipotilaiden endometrioosileesioissa EndometDB-tietokantaan kerättyjä tietoja käytettiin oireiden ja biomarkkeripohjaisen ennustemallin kehittämiseen ja validointiin. Malli tuottaa riskinarvioinnin endometrioositaudin varhaiseen ennustamiseen ilman laparoskopiaa. Käyttäen EndometDB-tietokannan tietoja havaitsimme, että endo-metrioositautikudoksessa tapahtui voimakkaita geeni-ilmentymisen muutoksia erityisesti geeneissä, jotka liittyvät WNT-signalointireitin säätelyyn. Keskeisin löydös oli, että SFRP-2 proteiinin ilmentyminen oli huomattavasti koholla endometrioosikudoksessa ja SFRP-2 proteiinin immunohistokemiallinen värjäys erottaa endometrioosin tautikudoksen terveestä kudoksesta aiempia merkkiaineita paremmin. Löydetyllä menetelmällä voidaan siten selvittää tautikudoksen laajuus ja tarvittaessa osoittaa, että leikkauksella on kyetty poistamaan koko sairas kudos
    • …
    corecore