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Abstract

Nowadays, the call for transparency in Artificial Intelligence models is growing due to the need to understand how decisions 
derived from the methods are made when they ultimately affect human life and health. Fuzzy Rule-Based Classification Systems 
have been used successfully as they are models that are easily understood by models themselves. However, complex search spaces 
hinder the learning process, and in most cases, lead to problems of complexity (coverage and specificity). This problem directly 
affects the intention to use them to enable the user to analyze and understand the model. Because of this, we propose a fuzzy 
associative classification method to learn classifiers with an improved trade-off between accuracy and complexity. This method 
learns the most appropriate granularity of each variable to generate a set of simple fuzzy association rules with a reduced number 
of associations that consider positive and negative dependencies to be able to classify an instance depending on the presence or 
absence of certain items. The proposal also chooses the most interesting rules based on several interesting measures and finally 
performs a genetic rule selection and adjustment to reach the most suitable context of the selected rule set. The quality of our 
proposal has been analyzed using 23 real-world datasets, comparing them with other proposals by applying statistical analysis. 
Moreover, the study carried out on a real biomedical research problem of childhood obesity shows the improved trade-off between 
the accuracy and complexity of the models generated by our proposal.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

In recent years, the application of Artificial Intelligence (AI) has experienced a growing interest in a large number 
of industry and research applications. Much of this interest is due to the high predictive capacity of models derived 
from different Machine Learning (ML) techniques, such as Deep Learning, in critical contexts [1]. Otherwise, most of 
these accurate models are very non-transparent, i.e., they still suffer from unreliable interpretability and explainability 
as it is not clear what information from the input data leads them to their decisions. This is known as the black 
box problem [2]. Nowadays, the call for transparency is growing among various AI stakeholders due to the need to 
understand how the decisions derived from methods are taken when they ultimately affect human life and health, as 
in for example medicine, law or defense, security and finance, among others. These models should be considered 
decision support systems and, as such, should be endowed with elements that allow their fairness, accountability, 
transparency and ethics to be taken into account [3,4]. This new trend gives rise to what it is known as eXplainable 
Artificial Intelligence (XAI) [5,6], which recommends the use of transparent models that are understandable in their 
own right [7], and/or post-hoc explainability techniques that aim to provide explanations of how a complex model 
produces its predictions for any given input [8].

Fuzzy Rule Based Classification Systems (FRBCSs) have been successfully used in many real-world applications, 
such as medical diagnosis [9] and environmental investment [10], among others. They are transparent models that can 
be understood in their own right, without the need to resort to explanatory techniques to understand them. Their natural 
relationship to human behavior makes them ideal for understanding and explaining complex systems. In addition, the 
use of fuzzy logic as a data handling tool provides some important advantages. In terms of semantics, the use of 
linguistic labels in the fuzzy model structure is a natural representation of knowledge that enables direct human 
interaction. From a learning perspective, translating the input features into fuzzy variables with fuzzy membership 
functions allow avoiding the use of unnatural limits in the partitions of the variable domain and yields smoothed 
descriptive models that adapt well to data with a certain degree of uncertainty [11].

One particular case of FRBCSs are fuzzy associative classifiers (FACs), in which use is made of association discov-
ery techniques to obtain interesting and simple rules from large datasets that allow the end-user to easily understand 
and interpret the results [12]. These classifiers are built in two stages: first, discover the fuzzy association rules inher-
ent in a database; second, select a small set of relevant rules to build a classifier. This approach yields efficient and 
accurate classifiers due to the ability of association rule mining methods to find all possible relationships that exist 
between input data during the rule generation process, generating all the hidden rules that may not have been detected 
by other classification algorithms [13].

However, these methods often generate a large number of rules (coverage) together with a large number of an-
tecedents/consequents in the rules (specificity). An increase in the coverage and specificity of the model often means 
an improvement in its accuracy but compromises the interpretability of the model [14]. This problem directly affects 
the intention of using these models to enable the user to analyze and understand the model, since the transparency 
of the model decreases as its complexity increases, making it essential to find a good trade-off between accuracy and 
transparency [5]. In addition, most methods generate rules that only represent positive relationships between the an-
tecedent and the consequent, without taking into account the negative relationships that may be present in them. Rules 
such as ¬A → C, can also be interesting to build classifiers by relating the membership of class C to the absence 
of A. The use of fuzzy negated itemsets in the rule extraction process expands the type of relationships that can be 
represented, allowing interesting relationships to be represented with fewer rules than with the classical representa-
tion. [15,16].

One straightforward way to combine accuracy and transparency in a natural way to obtain XAI models is by 
means of the positive synergy between FRBCSs and Evolutionary Algorithms, known as Evolutionary Fuzzy Systems 
(EFSs). These search and optimization methods have been broadly and successfully used to learn and tune fuzzy 
systems [17]. In this sense, EFSs can preserve the original essence of the comprehensibility of fuzzy systems and 
enhance their predictive capability by being able to consider the transparency, comprehensibility and understandability 
of the model in the learning process [18,14]. For instance, in [19,20], the authors proposed an evolutionary learning 
of accurate and interpretable FACs for traditional and monotonic classification, in which the granularity is provided a 
priori and the rules follow a classic structure. However, the given granularity may have a critical influence on the final 
mining results and may result in a high number of rules. On the other hand, in [21], the authors designed a genetic 
programming algorithm to be as parallel as possible to efficiently buil associative classifiers in Big Data without 
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affecting their accuracy and interpretability. However, the models obtained have similar accuracy and complexity to 
those obtained in [19,20].

In this paper, we propose a new FAC method based on positive and negative rules, called PN-FAC, to carry out 
an evolutionary learning of classifiers with an improved trade-off between complexity and accuracy. To do so, our 
method consists of 3 stages: 1) genetic learning of the most suitable granularity for each fuzzy partition; 2) mining 
process of Positive and Negative Fuzzy Rules (PNFRs) by constraining the number of items included in them and rule 
pre-screening to obtain simple and interesting rules; 3) genetic rule selection and adjustment of the labels of the rules, 
considering the known positive synergy of both approaches to learn the most suitable context of the selected rule set. 
These stages focus the search process on potentially interesting and useful information for the model, obtaining a 
reduced set of simple rules with good precision.

The suitability of our proposal has been evaluated by means of two experimental studies. On one hand, we exper-
imentally test our proposal on 23 real-world datasets with a number of variables ranging from 2 to 90, a number of 
examples ranging from 106 to 19020, and a number of classes from 2 to 15. We have compared the predictive capacity 
and complexity of the models obtained by our proposal with 3 associative classification methods as well as with 4 
traditional ones, making use of nonparametric statistical tests to analyze the results obtained [22]. On the other hand, 
we analyze the transparency of our proposal in a real problem related to childhood obesity. Overweight and obesity 
in children are important risk factors for a number of chronic cardiometabolic alterations during adulthood such as 
hypertension, insulin resistance (IR), among others, which finally lead to the development of Metabolic Syndrome 
(MS), considerably increasing population morbimortality. To address this problem effectively, there is an urgent need 
to implement early-life predictive and understandable models that are capable of anticipate the appearance of MS, 
when there is still time for clinical intervention. We have used our proposal for the construction of a predictive model 
for pubertal MS in children with obesity making use of information from the prepubertal stage of children (ages 4-
12), which consists of: anthropometry, biochemistry cardiometabolic and inflammatory biomarkers. The results and 
the model obtained have been analyzed by a real expert.

This contribution is organized as follows. Section 2 provides some relevant concepts of FRBCSs and positive 
and negative FACs. The different stages of our proposal to obtain accurate and transparent classifiers are detailed in 
Section 3. Section 4 evaluates the results obtained from the 23 real data sets and analyzes the model obtained from 
the available information to predict MS in a cohort of children with obesity. Finally, Section 5 summarizes some 
concluding remarks.

2. Preliminaries

Firstly, some basic concepts about FRBCS are introduced in this section. Then, some definitions of positive and 
negative association rules and several quality measures for classification problems are briefly introduced.

2.1. Fuzzy rule based classification systems

In a classification problem with D examples ed = (ed1, ..., edm, yd), where edi is the i-th input variable value 
(i = 1, 2, ..., m) and yd is the class label (yd ∈ {C1, . . . , CS}) of the d-th example, the objective is to learn a model 
that can accurately classify previously unknown examples. To this end, FRBCSs make use of a fuzzy rule set, called 
Rule Base (RB), with the following structure:

Rule Rj : If e1 is Aj1 and . . . and em is Ajm then Class = yj with RWj

where Rj is the j -th rule, e = (e1, ..., em) is an m-dimensional vector which represents the example values, Aji is 
a fuzzy set defined over the domain of the i-th input variable, yj is the class label of the j -th rule, and RWj is the 
rule weight. Due to their significant influence on FRBCS performance, several rule weight specifications are available 
in the literature [23,24]. We have used the fuzzy confidence or Certainty Factor (CF), which is the most common 
specification. This specification is defined as [25]:

RWj = CFj =
∑

ed∈Class yj
μAj

(ed)∑D
μ (e )
d=1 Aj d
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Fig. 1. A simple example of a fuzzy associative rule involving negated items.

where μAj
(ed) = T (μAj1(ed1), . . . , μAjm

(edm))) is the matching degree of the example ed with the antecedent of 
Rj . In order to classify a new example ed = (ed1, ..., edm), we have used the fuzzy reasoning method called additive 
combination [25]. This method calculates a confidence degree (CD) for each class label and classifies the example 
ed with the label with the maximum degree. The CD of a class label Ck (k = 1, 2, ..., S) is calculated by adding the 
product of the matching degree and the weight of each rule in the RB with class label Ck:

CDCk
(ed) =

∑
Rjyj =Ck

∈RB

μAj
(ed) · RWj

The performance of classifiers is usually evaluated using the accuracy ratio. However, accuracy is not the most 
appropriate measure when there are significant differences in the proportion of examples belonging to each class of 
the problem, known as imbalanced datasets, because it does not distinguish between the number of correctly classified 
examples from the different classes. Thus, the predominance of the most frequent class (known as the negative class) 
may mask poor classification performance in the infrequent class (known as the positive class). To alleviate this 
problem, several researchers have proposed other measures that can be used to evaluate classification performance 
in the presence of class imbalance [26]. In this work, we have also used the Kappa [27] and G-mean [28] measures 
account for class imbalance of the classes in the analysis of the experimentation carried out. These measures are 
defined as follows in a classification problem with two classes (positive and negative):

Kappa = Acco − Acce

1 − Acce

(1)

G − mean =
√

T P

T P + FN

T N

T N + FP
(2)

where Acce is the expected accuracy ratio, Acco is the obtained accuracy ratio, TP and TN indicate the correctly 
classified examples of the positive and negative classes, and FN and FP indicate the misclassified examples of the 
positive and negative classes. These measures have been calculated following a macro approach on multiclass datasets.

2.2. Positive and negative fuzzy association rules for classification

Fuzzy association rules are expressions of type A → B which express frequent dependencies that exist between 
fuzzy items (pairs {variable, label}) in a high-confidence dataset [29,30]. These rules can be used as classification 
rules if in the consequent part they contain only one of the class labels Ck (k = 1, 2, ..., S) of the problem, so many 
approaches have made use of association discovery techniques to utilize their abilities for classification [12].

Most of the mining methods focus on discovering positive dependencies between fuzzy items in the dataset, how-
ever, negative dependencies can also be of interest as they relate the absence of fuzzy items to the class label they 
belong to. Negative rules, such as ¬A → Ck , not only consider the fuzzy items included in the positive rules but may 
also include negated fuzzy items (couples {variable, ¬label}) in the antecedent of the rules. Fig. 1 shows a simple 
example of a negated rule and the membership function of the negated item involved in the rule.

As with fuzzy association rules, the measures commonly used to assess fuzzy associative classification rules are 
support and confidence. They are based on the support of a fuzzy itemset FI , which is calculated as follows:

Support (F I) =
∑

ed∈D μFI (ed)
(3)
| D |

4
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Fig. 2. Workflow of PN-FAC.

where μI (ed) is the matching degree of the example ed with the fuzzy itemset FI , and | D | is the quantity of training 
examples. Thus, given a rule A → Ck , the support and confidence are calculated as follows:

Support (A → Ck) = Support (ACk) (4)

Conf idence(A → Ck) = Support (ACk)

Support (A)
(5)

Classical methods try to discover fuzzy itemsets whose support is greater than a minimum support threshold 
(minsup), known as frequent fuzzy itemsets, and then generate rules whose confidence is greater than a minimum 
confidence threshold (minconf ). Nevertheless, a number of studies have highlighted various problems associated 
with these measures of rule assessment [31]. As result, several researchers have proposed other measures to assess 
their potential interest to the user [32]. In this work, the wWRAcc measure [33] has been extended to choose the most 
interesting rule subset from the extracted rule set.

3. Positive and negative fuzzy associative classifier: PN-FAC

We present our proposal for performing an evolutionary learning of FAC with a good trade-off between accuracy 
and complexity. In the following, we will explain each of the stages of which it is composed in detail. Fig. 2 shows a 
workflow for the proposed method.

3.1. Genetic learning of the granularity

Since the given granularity significantly influences the FRBCS performance, we perform granularity learning by 
considering strongly equidistributed fuzzy partitioning with triangular membership functions (MFs). This learning is 
carried out using the CHC genetic algorithm [34], which is a good choice for problems with complex search spaces 
as it offers a good balance between exploitation and exploration in the search process. To encourage convergence 
in the search process, CHC uses a population-based selection mechanism that picks out the P best individuals from 
the current population and their offspring at each iteration to take part in the next population. To introduce diversity 
in the search, rather than a mutation operator this algorithm considers an incest prevention mechanism and a restart 
process. Two individuals are crossed only if they are different to a degree above a predefined threshold value L, which 
is decremented each time a new individual is not included in the next population. On the other hand, the population is 
restarted when L becomes zero. Fig. 3 shows a workflow of the evolutionary model of the CHC algorithm.

Population chromosomes are vectors of integer values that encode the number of labels for each of the m input 
variables of the problem (c1, . . . , cm). Each gene takes values in the set {2, . . . , 7} and, additionally, it may take the 
value 0 to indicate that the corresponding variable is not used. In order to provide diversity, the initial population 
consists of two different subsets of individuals. In the first subset, each chromosome has the same number of labels 
for all the variables and contains one chromosome for each of the values in the set {2, . . . , 7}. In the second one, the 
rest of the population is initialized randomly. In order to encourage the selection of interesting variables and to avoid 
5
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Fig. 3. Workflow of the evolutionary model of the CHC algorithm.

the generation of a large number of rules in the extraction process, in problems with more than 5 input variables the 
number of used variables is randomly reduced to 5 for half of the individuals of the second subset (ci = 0 with i
selected at random).

To evaluate each chromosome, the encoded granularity for each variable is used to generate the uniform fuzzy 
partitions from which a RB is generated by using the same rule mining process as in the next stage. The classification 
accuracy of the generated RB will be considered the fitness value of the chromosome.

The offspring population is generated by applying the HUX crossover operator [35], which randomly exchanges 
half of the genes that are different in the parents. This operator maximizes the distance to the parents, encouraging 
exploration in the search process. Note that this operator will only be applied if half of the hamming distance between 
the parents is greater than threshold L.

To move away from local optima, the restarting process reinitializes the population when the threshold L becomes 
zero. In this case, the best chromosome is maintained in the population and the rest of the individuals are initialized 
as in the second subset of the initial population. The value of L will also be reset.

3.2. Fuzzy rule mining process and prescreening

Once we have the equidistributed strong fuzzy partitions derived from the granularity learned for each variable 
in the previous phase, positive and negative association rules are extracted by extending the frequent fuzzy itemset 
extraction method proposed in [19] to also consider negated fuzzy items in the search process. This method uses a 
search tree to explore all fuzzy itemsets that are frequent for each class. All variables assume the order of appearance 
in the dataset and all fuzzy 1-itemsets corresponding to each variable along with their respective negated fuzzy 1-
itemsets are placed in the first level of the tree according to their order. The children of a fuzzy 1-itemset node of a 
variable are the 2-itemsets that are obtained by combining it with the fuzzy 1-itemsets of the variables that are larger 
in the predefined order, and so on.

If the n-itemset of a node is not frequent, it will no longer be combined because any itemset generated from it will 
also be infrequent. Note that the minsup is adjusted to the frequency of examples that the class has in the training set. 
In the same way, if an itemset produces a classification rule with a confidence higher than the maximum confidence 
required by the user, it is not necessary to continue combining it because it has reached the required quality. The tree 
depth is also limited to three in order to avoid generating very specific itemsets that provide complex rules. These 
properties, together with the variables removed in the previous phase (ci = 0), make it possible to substantially reduce 
the number of nodes generated during the search. Once the frequent fuzzy itemsets have been extracted, positive 
and negative classification rules can be generated with higher confidence than minconf by setting the itemset in the 
antecedent part of the rule and the corresponding class in the consequent. This process is repeated with each of the 
problem’s classes.

However, this method may provide a large number of rules and may find many misleading rules due to the draw-
backs of support and confidence measures. Therefore, we have selected the most interesting subset of rules following 
an example weighting scheme. In this scheme, each example has an associated weight which is used to calculate the 
6
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evaluation criteria of the rules. This weight is reduced each time we select a rule that covers it (w(ed, nr) = 1
nr+1 , 

where nr represents the number of selected rules covering it), encouraging the selection of rules that cover examples 
with higher weights. The weight becomes zero when more than T selected rules cover the example. At each iteration, 
we sort the unselected rules according to their value for the evaluation criterion, select the best rule, and adjust the 
weights of the covered examples. This process is repeated until all the examples have a weight of zero.

We have used the wWRAcc measure as an evaluation criterion to select the fuzzy rules [33,19]. This measure is 
defined as follows:

wWRAcc(A → Ck) = n′′(A · Ck)

n′(Ck)
· (n

′′(A · Ck)

n′′(A)
− n(Ck)

| D | ) (6)

where | D | is the number of training examples, n′′(A) is the sum of the products of the matching degree of the 
examples with the antecedent of the rule multiplied by their weights, n′′(A · Ck) is the sum of the products of the 
matching degree of the examples with the rule multiplied by their weights, n′(Ck) is the sum of the example weights 
of the class Ck and n′(Ck) is the number of examples of the class Ck . However, this measure could potentially value 
rules with low and high confidence equally. In this measure, the first term refers to the proportion of uncovered 
examples of class Ck covered by the rule, and the second term refers to the difference between the confidence of the 
rule and the confidence of the default rule of class Ck . Let us consider two rules, R1 and R2, which cover a proportion 
of uncovered examples of class Ck of 0.7 and 0.4 (both have a good coverage score) and have a confidence score of 
0.65 and 0.9 respectively, and the default rule has a confidence score of 0.2. In this case, the R1 rule has a higher value 
for the wWRACC measure (0.31) than the R2 rule (0.28), so R1 (with a confidence score of 0.65) would be selected 
before R2 (with a confidence score of 0.9).

In this work, we have modified this measure to obtain a weighted average of both terms in order to encourage the 
confidence of the rule against its support, avoiding the selection of low quality rules. The new measure is defined as 
follows:

wWRAcc′(A → Ck) = (1 − λ)
n′′(A · Ck)

n′(Ck)
+ λ(

n′′(A · Ck)

n′′(A)
− n(Ck)

| D | ) (7)

where lambda allows the expert to determine the trade-off between support and confidence in the rule prescreening 
process (where lambda = 0.7 represents a good performance).

3.3. Genetic rule selection and tuning of the labels of the rules

From the interesting rules selected in the previous phase, we selected a reduced subset of rules and tune the context 
of their MFs in order to improve classification accuracy. To this end, we have made use of the evolutionary method 
proposed in [36], which also employs the CHC genetic algorithm (more information on the CHC evolutionary model 
can be found in Subsection 3.1) to perform the selection and lateral tuning of the rule labels based on the representation 
of the linguistic 2-tuples. This representation reduces the search space by using a single parameter (α) to represent a 
small offset of the labels between their 2 lateral labels in the initial fuzzy partition, maintaining their original shapes 
and making the rule selection within the same process easier to handle. This parameter takes values in the interval 
[-0.5, 0.5), where -0.5 represents the lateral offset of the MF associated to the label up to half the distance between the 
MF core of the label and the MF core of the label to its left (offsets are to the right with positive values). Fig. 4 shows 
an example of a rule based on the representation of linguistic 2-tuples.

In our proposal, the domain of the α parameter has been reduced to the interval [−0.25, 0.25) to obtain small 
label offsets, avoiding a significant loss of label interpretability. In addition, from these offsets we can calculate the 
equivalent MFs and generate a FRBCS based on classical Mamdani rules.

To learn these offsets and select the rules, each chromosome in the population is composed of two vectors. On the 
one hand, there is a binary vector to encode the selected rules, where a value of 1 indicates that the rule is selected and 
0 that it is not. On the other hand, there is a real vector to encode the offset of each of the labels involved in each rule, 
taking values in the interval [−0.25, 0.25). To provide diversity to the search, half of the chromosomes are initialized 
with all the selected rules and the randomly generated offsets, and in the rest of the population both offsets and rules 
are randomly selected. A chromosome with all selected rules and all offsets at 0 will also be included in the initial 
population to consider the initial set of rules in the search process.
7
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Fig. 4. Example of fuzzy rule based on the representation of lingüistic 2-tuples.

Each chromosome is evaluated considering its classification ratio penalized by the number of selected rules. There-
fore, the following function is maximized:

Fitness = Hits

D
− δ · PNFARsinitial

PNFARsinitial − PNFARs + 1.0
, (8)

where Hits is the number of correctly classified examples, D is the number of examples, PNFARsinitial is the 
number of rules in the initial set of rules, PNFARs is the number of rules selected, and delta is a weight predefined 
by the expert that allows them to determine the trade-off between the accuracy and complexity of the PNFAC.

We have used a different crossover operator for each vector of the chromosome. In the binary vector, we have used 
the HUX operator to generate two offspring by exchanging half of the genes that are different in the parents. In the 
real vector, the Parent Centric BLX (PCBLX) operator [37] was used to generate two offspring in which each gene 
is randomly selected within a small interval centered on each gene of each parent. Combining the results obtained 
from both operators we can generate four offspring, but only the best two will be considered to be part of the next 
population.

To avoid premature convergence, the incest prevention mechanism will only allow parents to cross over if their 
hamming distance divided by 2 is greater than the threshold L (initially predefined by the expert), which will be 
decremented each time the next generation does not include a new offspring. When L becomes zero, the population 
will be reinitialized, making sure that the best solution in the population is still the most accurate. Half of the popula-
tion will be reset based on the best solution, selecting the same rules and generating offsets that are similar to those of 
the best solution, and in the rest of the population both rules and offsets are randomly generated.

4. Experimentation

The performance of our proposal has been analyzed by carrying out a double experimental study:

• We have analyzed the predictive capacity and complexity of the models obtained by our proposal with respect 
to other methods in the literature by comparing the results obtained for several measures on 23 real problems 
(subsection 4.1).

• We have studied the transparency of the model obtained by PN-FAC for a real biomedical research problem 
related to childhood obesity, studying the relationships identified from the prepubertal stage information to predict 
pubertal MS in children with obesity in a longitudinal cohort (Subsection 4.2).

4.1. Accuracy and complexity analysis with respect to other methods.

In this study, 23 problems were used with a number of variables ranging from 2 to 90, a number of examples 
ranging from 106 to 19,020, and a number of classes ranging from 2 to 15. Table 1 summarizes their main properties, 
indicating the number of input variables (#Var), the number of examples (#Exams), and the number of classes 
(Classes). Note that the Cleveland, Crx, and Wisconsin datasets include examples with missing values, which have 
8
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Table 1
Number of variables, examples and classes of datasets used in the experimental study.

Name #Var #Exams Classes Name #Var #Exams Classes

Appendicitis 7 106 2 Pen-based 16 10,992 10
Banana 2 5,300 2 Phoneme 5 5,404 2
Bupa 6 345 2 Pima 8 768 2
Cleveland 13 297 5 Sonar 60 208 2
Crx 15 653 2 Spectfheart 44 267 2
Ecoli 7 336 8 Texture 40 5,500 11
German 20 1,000 2 Twonorm 20 7,400 2
Heart 13 270 2 Vehicle 18 846 4
Iris 4 150 3 Vowel 13 990 11
Newthyroid 5 215 3 Wine 13 178 3
Magic 10 19,020 2 Wisconsin 9 683 2
MovementLibras 90 360 15

Table 2
Parameters considered for the comparison.

Algorithms Parameters

Method Parameters

CMAR Minconf = 0.5, Minsup = 0.01, Diff erenceT hreshold = 20%, δ = 4
CPAR min_gain = 0.7, δ = 0.05, k = 5, α = 0.66
FARC-HD Minsup = 0.05, Maxconf = 0.8, Depthmax = 3, kt = 2,

Pop = 50, Evaluations = 15,000, BIT SGENE = 30, δ = 0.15

C4.5 Pruned = yes, Conf idence = 0.25, InstancesP erLeaf = 2
SLAVE2 Pop = 100, I terchange = 500, Pc = 0.6, Pm = 0.01, κ1 = 0, κ2 = 1,

Opor = 0.1, Opand = 0.1, Pgen = 0.1, Prot = 0.1, α = 0.15
SGERD Q = heuristics

FURIA n_f olds = 3, optimizations = 2

PN-FAC Minsup = 0.05, Maxconf = 0.8, T = 2, Pop = 50,
Eval.G = 750, Eval.ST . = 10,000, BIT SGENE = 30, δ = 0.15

been removed for this study. All these datasets can be downloaded from the KEEL-Dataset public repository1 [38]. 
In this study we have used a cross-validation mechanism with 5 stratified folds. Each method has been run 3 times on 
each fold, and therefore has been run 15 times on each dataset.

Our proposal has been compared with 7 different methods from the literature that are available in the KEEL soft-
ware tool [39]: 3 associative classification methods (CMAR [40], CPAR [41], and FARC-HD [19]) and 4 traditional 
rule-based classification methods (C4.5Rules [42], SLAVE2 [43], SGERD [44], and FURIA [45]). The parameters 
used for each method are shown in Table 2. The parameters of our proposal have been experimentally adjusted so that 
they can be recommended for use in future work. The rest of the method parameters have been selected following the 
recommendations indicated by their authors when they were published, which are the default parameters in KEEL. 
The CMAR and CPAR methods cannot be executed on datasets with continuous variables, so the Entropy method [46]
has been previously applied to discretize them. For the fuzzy methods, the initial linguistic partition is composed of 5 
fuzzy labels with uniformly distributed triangular MFs, with the exception of the method SGERD that uses uniform 
fuzzy partitions with different granularities (with 2, 3, 4 and 5 labels respectively).

To analyze the accuracy of our proposal, the tables of results show the mean results (the standard deviation is shown 
in parentheses) of the means obtained from the 15 runs performed by each method on each dataset, including the values 
for the measures of accuracy, G-mean and Kappa in order to consider possible imbalances between the classes in the 
datasets (see Subsection 2.1). The mean results obtained on each dataset can be found on the web page associated 
with the paper at https://sci2s .ugr.es /PN -FAC. To perform the statistical analysis of the results, the Friedman test was 
used to refute the equality hypothesis among the results obtained, thus obtaining a ranking of the methods for each 

1 https://sci2s .ugr.es /keel /datasets .php.
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Table 3
Average results obtained by traditional classification methods on the measures Acc, G-mean, and 
Kappa.

Methods

Measures C4.5Rules SLAVE2 SGERD FURIA PN-FAC

Acc (σ ) 0.793 (0.12) 0.798 (0.12) 0.708 (0.15) 0.829 (0.11) 0.833 (0.11)
G-mean (σ ) 0.769 (0.17) 0.747 (0.17) 0.577 (0.21) 0.780 (0.19) 0.822 (0.14)
Kappa (σ ) 0.611 (0.23) 0.594 (0.26) 0.459 (0.24) 0.654 (0.24) 0.690 (0.23)

Table 4
Statistical test results for traditional classification methods on the measures Acc, G-mean, and 
Kappa. Friedman rank and adjusted p-values for Holm’s test.

Ranking Ranking Ranking Apv Apv Apv
Method Acc G-mean Kappa Acc G-mean Kappa

C4.5Rules 3.4 3.1 3.2 0.001 0.003 0.002
SLAVE2 3.1 3.1 3.3 0.007 0.003 <0.001
SGERD 4.6 4.8 4.7 <0.001 <0.001 <0.001
FURIA 2.1 2.4 2.2 0.608 0.093 0.208
PN-FAC 1.8 1.6 1.6 - - -

Table 5
Average results obtained by classical rule-based associative classification methods 
on the measures Acc, G-mean, and Kappa.

Methods

Measures CMAR CPAR FARC-HD PN-FAC

Acc (σ ) 0.754 (0.18) 0.78 (0.16) 0.832 (0.12) 0.833 (0.11)
G-mean (σ ) 0.664 (0.23) 0.661 (0.20) 0.801 (0.17) 0.822 (0.14)
Kappa (σ ) 0.570 (0.25) 0.595 (0.25) 0.679 (0.24) 0.691 (0.22)

measure. Once the equality hypothesis was rejected, the Holm test was used to perform the multiple comparisons [47]. 
For each comparison, we have calculated the adjusted p-value (Apv) for which the equality hypothesis is rejected.

Table 3 shows the results obtained by the traditional classification methods, where σ is the standard deviation, Acc

is the mean value obtained for the accuracy measure, Gmean is the mean value obtained for the Gmean measure and 
Kappa is the mean value obtained for the Kappa measure. The statistical analysis is shown in Table 4, including 
the Friedman ranking for each measure and the Apv for comparisons between the method with the best Friedman 
ranking and the other methods. PN-FAC obtains the best Friedman ranking in all measures and the Apvs are less than 
0.1 in all comparisons except for Acc and Kappa in the comparison with FURIA, rejecting the equality hypothesis 
with greater than 90% confidence. Although statistically there are no significant differences with FURIA for the Acc 
measure, we can see how the G-Mean and Kappa measures show a better performance of our proposal when taking 
into account the balancing of the classes in the problems. These results highlight the good performance of our proposal 
when compared to these methods.

The results of the comparison of our proposal with the associative classification methods are shown in Tables 5
and 6 (these tables follow a similar structure to Tables 3 and 4). As in the previous comparisons, PN-FAC obtains the 
best Friedman ranking in all measures and the Apvs obtained are less than or equal to 0.05 except for Acc and G-
mean in the comparison with FARC-HD, rejecting the equality hypothesis with greater than 95% confidence. Again, 
our proposal shows no statistical differences with FARC-HD for the Acc and G-mean measures, but for the Kappa 
measure also show better performance again when class balancing is taken into account.

In order to compare the complexity of the models obtained with our proposal, we have analyzed the number of 
rules and the number of variables included in the antecedent of the rules generated by our proposal with respect to 
those obtained by the methods that have shown better performance in the accuracy analysis (FURIA and FARC-HD). 
10



C. Biedma-Rdguez, M.J. Gacto, A. Anguita-Ruiz et al. Fuzzy Sets and Systems 465 (2023) 108511
Table 6
Statistical test results for classical rule-based associative classification methods on the mea-
sures Acc, G-mean, and Kappa. Friedman rank and adjusted p-values for Holm’s test.

Ranking Ranking Ranking APV APV APV
Method Acc G-mean Kappa Acc G-mean Kappa

CMAR 3.0 3.2 3.2 0.018 <0.001 <0.001
CPAR 2.8 3.5 3.1 0.033 <0.001 <0.001
FARC-HD 2.3 1.9 2.4 0.253 0.120 0.050
PN-FAC 1.9 1.4 1.5 - - -

Table 7
Complexity of the methods with the best accuracy in the study on the 23 
datasets: average number of rules, average number of variables involved, prod-
uct between the mean number of rules and variables included.

Methods

Measures FURIA FARC-HD PN-FAC

#Rules (σ ) 28.33 (31.28) 39.95 (37.45) 28.91 (33.02)
#VarInc (σ ) 5.01 (1.57) 2.36 (0.55) 2.57 (0.47)
Complex (σ ) 170.67 (238.31) 105.60 (104.88) 82.78 (100.28)

Table 8
Statistical test results for the Complex measure. 
Friedman rank and adjusted p-values for the 
Holm’s test.

Ranking APV
Method Complex Complex

FURIA 2.3 0.010
FARC-HD 2.2 0.012
PN-FAC 1.4 -

To evaluate the complexity of the models obtained, we have used the product of the number of rules obtained and the 
number of variables involved in the rules as a measure of complexity (Complex).

Table 7 shows the mean values of the averages obtained from the 15 runs performed by each method on each dataset, 
where #Rules is the mean number of rules included in the model, #VarInc is the mean number of variables included 
in the rules generated, and Complex is the complexity measure. Table 8 shows the results of the statistical analysis 
on the complex measure, which has been normalized by dividing it by the value of the measure of the most complex 
model generated. At first glance, we can observe how PN-FAC and FARC-HD are able to obtain models involving 
rules with few variables in the antecedent but PN-FAC is able to generate simpler models, including on average 25% 
fewer rules. On the other hand, PN-FAC and FURIA generate models involving a similar number of rules, but FURIA 
generates more complex rules that include on average twice as many variables as the rules generated by PN-FAC. 
Statistical results show that our proposal obtains the best Friedman ranking with Apv lower than 0.05, rejecting the 
equality hypothesis with a confidence higher than 95%.

In order to determine how much the MFs have changed from the originals by tuning their context and to detect 
possible inconsistent rules in the model, we have made use of the interpretability measures GM3M and Rule Mean 
Index (RMI) [48] to analyze the models obtained by PN-FAC and FARC-HD. Note that FURIA has no analyzed due 
to the fact that it is an approximate method that generates a specific label for each variable of each rule without using 
an initial uniform partition of reference with which we can determine when the MFs have been modified.

Table 9 shows the mean values obtained by the FARC-HD and PN-FAC methods for the RMI and GM3M inter-
pretability measures. Analyzing the results shown in Table 9, we can see how the models obtained by FARC-HD 
and PN-FAC reach high average values for the GM3M measure so that only small offsets are performed on the MFs, 
avoiding a significant loss of interpretability of the original label. On the other hand, the values for RMI show how 
11
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Table 9
Results obtained for GM3M and RMI inter-
pretability measures for the FARC-HD and PN-
FAC methods.

Methods

Measures FARC-HD PN-FAC

RMI (σ ) 0.59 (0.20) 0.63 (0.23)
GM3M (σ ) 0.82 (0.02) 0.81 (0.01)

these small offsets enable a proper adjustment of the context of the MFs associated with the labels, improving the 
consistency of the rules generated with respect to FARC-HD.

4.2. Analysis of the biological relevance of the model obtained to predict insuline resistance in children with 
prepubertal obesity.

To analyze the transparency of the method in the biomedical domain, we present an study showcase in a 
multi-center cohort of Spanish children with obesity. Particularly, we used data derived from the project “Puberty 
and metabolic risk in obese children - Epigenetic alterations and pathophysiological and diagnostic implications” 
(PUBMEP). This project is a longitudinal study based on the follow-up of a cohort of Spanish children who previ-
ously participated in the GENOBOX study [49,50]. The main objective of the project was to unveil the molecular 
mechanisms behind the appearance of obesity and cardiometabolic complications from the early stages of life. In 
the PUBMEP study, prepubertal boys and girls initially enrolled in the GENOBOX study who had already initiated 
puberty at the time of the PUBMEP study start were invited to participate. During the PUBMEP study (2012–2018), 
children remained under regular medical monitoring by the same paediatricians. MS is a dysfunctional situation that 
frequently appears in obese patients affecting cardiometabolic parameters such as blood pressure, lipid and glucose 
metabolism, increasing the risk of cardiovascular disease and preceding the development of type 2 Diabetes. The early 
life identification of children with obesity at risk for this condition, as well as the understanding of the external factors 
and biological mechanisms behind it, is key to implementing preventive interventions and developing new therapies. 
By applying our method to this dataset, we aimed to predict the presence or absence of MS in these children.

A total of 374 subjects were contacted in the PUBMEP study, of which 49 were not located, 36 could not par-
ticipate because they had changed their place of residence or met any of the exclusion criteria, and 97 declined the 
invitation. Finally, 192 children were accepted to participate and were included in the analyzes. This dataset presents 
the typical challenges of biological databases, including a longitudinal design, high-dimensionality, high-correlation 
between features and strong variability between subjects. The dataset was composed of 58 variables including an-
thropometric and clinical measurements (such as body mass index, waist circumference (WC) measurements, systolic 
and diastolic blood pressure (SBP and DBP) measurements, or city of origin), biochemical analyzes (mainly lipid 
and glucose metabolism biomarkers such as glucose, insulin-resistance index (HOMA-IR), triglycerides (TG) and 
cholesterol fasting blood levels, or sexual hormone concentrations), proteomic data (plasma adipokines, inflamma-
tion, and cardiovascular risk biomarkers), and physical activity (measured through accelerometry; ActiGraph GT3X+ 
accelerometers), all of them, parameters related to the metabolic health status of the children. These data were avail-
able both at the prepubertal stage (T0), and at the pubertal stage (T1), although in our showcase only input data from 
the prepubertal stage (T0) were employed.

The class to predict in our use case was the MS status of the children (healthy or unhealthy), which was defined at 
the pubertal stage (T1) according to the next criteria; WC ≥ 90th percentile Ferrandez growth-chart [51], SBP or DBP 
≥ 90th percentile [52,53], TG ≥ 90th percentile [54], HDL-cholesterol ≤ 10th percentile [54], and HOMA-IR above 
3.38 in pubertal boys and 3.905 in pubertal girls [55]. A child was classified as unhealthy if presenting altered WC 
plus two other altered metabolic compounds among the remaining four. Among the 192 subjects, we had 163 healthy 
and 29 unhealthy children.

Before applying our method, missing data imputation was performed using the missforest approach as described 
elsewhere [56]. The experimental set-up followed in our use case involved using prepubertal data (T0) for the 58 input 
variables to predict the MS status of the children at the pubertal stage (T1), which was measured 5 years later. From 
the application of our proposal, a predictive model was generated with a good ability to identify both healthy and 
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unhealthy classes (Acc: 0.97, G-mean: 0.92, Kappa: 0.88). With only 15 rules and a mean of 2.8 variables involved 
in the antecedent of the rules, this model constituted a concise and easily interpretable simplification of the complex 
scenario of MS and obesity that we were facing.

The method selected important input prepubertal (T0) variables as predictors of the MS status at the pubertal stage 
(T1), including anthropometric measurements (Hip-Circumference or BMI Z-Score), environmental data (the city 
of origin) or biochemical biomarkers (lipid profile biomarkers such as TG and glucose metabolism biomarkers as 
HOMA-IR and glucose plasmatic levels), which participate in the definition of the MS class and it has been demon-
strated that one of the highest risk factors for presenting MS at the pubertal stage is to have presented obesity and 
MS during early childhood [57]. Interestingly, the method also highlighted other important biomarkers of inflamma-
tion and cardiovascular disturbances (including pro-inflammatory cytokines (TNF-a, adiponectin) or coagulation and 
adhesion molecules (aPAI or sICAM)). This finding is interesting since inflammation is one of the main mediators 
between obesity and metabolic disease; the inability of adipose tissue to expand properly provokes the infiltration 
of inflammatory cells into the tissue and implies the release of pro-inflammatory biomarkers into the bloodstream, 
favoring a systemic inflammatory status in the body and the development of insulin-resistance [58]. Furthermore, the 
model pointed to the dysregulation of hepatic enzymes like AST, preceding the development of MS. This makes sense 
given the known association between NAFLD (non-alcoholic fatty liver disease) and metabolic disturbances.

Although the model is composed of 15 rules, a clear separation is made with the first rule, which affects 65% of the 
population (support: 0.65 and CF: 0.91). This rule establishes that children with low-to-medium hip-circumference 
values (54 to 93.4 cms) at the prepubertal stage probably will be healthy at the pubertal stage. This is in line with 
the well-known role of abdominal (visceral) obesity as a predominant risk factor for MS [59]. The rest of the rules 
refer to specific situations (with low support) typical of MS, referred to inflammatory and cardiovascular biomarkers 
(high lipid profiles, insulin resistance, or inflammation). This reflects the high heterogeneity that is gathered under the 
umbrella of MS definition, and how the course of events leading to its appearance can be different in every patient. 
The fuzzy partitions defined for each variable and the rules generated can be found on the web page associated with 
the paper at https://sci2s .ugr.es /PN -FAC.

5. Conclusions

In this paper, we propose a new method based on three stages to obtain associative classifiers consisting of a few 
simple positive and negative fuzzy rules with good classification accuracy. For this purpose, we carried out three 
stages: first, we performed an evolutionary learning of the most appropriate granularity for each variable to define 
an uniform fuzzy partition with triangular MFs over its domain; second, we applied an extraction process to obtain 
interesting positive and negative rules involving a low number of variables for each class; and third, we made use of 
an evolutionary method to select a reduced subset of rules and tune the context of their MFs.

The results obtained from the experimental analysis on 23 datasets show how our proposal allows us to obtain 
classifiers with a good performance for different quality measures, obtaining statistically similar or better results than 
the rest of the analyzed methods. The obtained classifiers consist on average of a reduced sets of rules that involve few 
variables. In addition, their MFs only present small lateral offsets that allow an easy understanding of the rules from 
an expert’s point of view, providing classifiers with a good trade-off between complexity and accuracy.

The suitability of our proposal has been evaluated by means of two experimental studies. On one hand, we exper-
imentally test our proposal on 23 real-world datasets with a number of variables ranging from 2 to 90, a number of 
examples ranging from 106 to 19020, and a number of classes from 2 to 15.

The classifier obtained on a real-life longitudinal biomedical dataset presents a good predictive ability considering 
the high difficulty behind giving 5-year forecasts in humans. At the time, it favors a proper interpretation of how 
decisions are taken, opening a horizon for its application in the biomedical field not only with predictive/classification 
intentions but also for the discovery-understanding of the molecular alterations leading to disease.

Finally, the learning of the most appropriate granularity for each variable, the generation of simple rules involving 
few variables using a rule representation that allow to represent certain interesting relationships with fewer rules than 
with the classical representation, and the selection of interesting rules based on the measure wWRAcc′, allow to 
considerably reduce the search space and to handle datasets with different dimensionality (variables, examples and 
classes). Moreover, this proposal could be extended to handle large scale datasets (Big Data) following the framework 
based on the MapReduce paradigm and using Apache Spark proposed in [60], in which different MapReduce phases 
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are used to obtain the rules from different splits of data applying any algorithm to discover association rules (such as 
Fuzzy FP-growth [61]) and to evaluate them using all the splits of the entire input dataset.
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