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ABSTRACT 

AN ADAPTIVE ENSEMBLE LEARNER FUNCTION VIA BAGGING AND RANK 

AGGREGATION WITH APPLICATIONS TO HIGH DIMENSIONAL DATA 

Jasmit SureshKumar Shah 

August, 8th 2011 

An ensemble consists of a set of individual predictors whose predictions are 

combined. Generally, different classification and regression models tend to work well for 

different types of data and also, it is usually not know which algorithm will be optimal in 

any given application. In this thesis an ensemble regression function is presented which is 

adapted from Datta et al. 2010. The ensemble function is constructed by combining 

bagging and rank aggregation that is capable of changing its performance depending on 

the type of data that is being used. In the classification approach, the results can be 

optimized with respect to performance measures such as accuracy, sensitivity, specificity 

and area under the curve (AUC) whereas in the regression approach, it can be optimized 

with respect to measures such as mean square error and mean absolute error. The 

ensemble classifier and ensemble regressor performs at the level of the best individual 

classifier or regression model. For complex high-dimensional datasets, it may be 

advisable to combine a number of classification algorithms or regression algorithms 

rather than using one specific algorithm. 
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CHAPTER! 

ENSEMBLE PREDICTION MODELS FOR IDGH DIMENSIONAL DATA 

INTRODUCTION 

Ensemble is a method of combining a finite number of different types of 

predictors that are trained for the same purpose. Ensemble learning is one of the 

techniques that have been increasingly used to combine multiple algorithms to give better 

accuracy in making predictions. In the context of statistical problems, prediction methods 

fall into two categories: classification and regression (Indurkhyn and Sholom, 2001). For 

classification, the predicted output is a discrete number, a class, and performance is 

typically measured in terms of error rates. Whereas for regression, the predicted output is 

a continuous variable, and performance is typically measured in terms of distance, for 

example mean squared error or absolute distance (Indurkhyn and Sholom, 2001). 

Ensemble of classifiers represents one of main research aspect in applied statistics 

and machine learning. The most popular ensemble methods are bagging, boosting and 

random forests. Mostly the classification of the ensemble is obtained by means of 

majority voting, where an unlabeled observation is assigned to the class with the highest 

votes among the individual classifiers' predictions. To explain the success of ensemble 

methods two main theories are considered (Valentini and Dietterich, 2004). The first 

theory considers the ensembles in the framework of large main classifiers showing that 
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ensembles enlarge the margins, improving the generalization capabilities of learning 

algorithms (Valentini and Dietterich, 2004; Mason el aI, 2000; Schapire et aI, 1998). The 

second theory is based on the classical bias-variance decomposition of the error and it 

shows that the ensembles can decrease variance and bias (Valentini and Dietterich, 2004; 

Geman et aI, 1992; Breiman et aI, 1996; Kong et aI, 1995). An ensemble method works 

most of time as the desired target function may not be implementable with individual 

models, but may be approximated by averaging. Here, the literature in general with the 

context of ensemble methods is reviewed. The main aim is that the ensemble as a whole 

will outperform any of the individual models for the given learning task. In this thesis the 

overall ensemble predictive model is created using the idea of bagging and rank 

aggregation. Out-of-bag samples playa very important role in the computation of the 

performance measures which are then aggregated over through the rank aggregation 

method to obtain the locally best regression model or the classification model. 

LITERATURE REVIEW 

The concept of boosting was introduced by Schapire (1990). This is a widely used 

ensemble method which was originally designed for classification problems but can also 

be extended to regression problems. Hansen and Salamon (1990) showed the advantages 

of bringing ensembles of similar neural networks. Perrone and Cooper (1993) presented a 

general framework for ensemble methods of better regression estimates. Breiman (1996) 

introduced the concept of bagging. Bagging is a name that was derived from bootstrap 

aggregation. This is a randomized algorithm based on the concept of bootstrapping. 

Bootstrapping is a sampling procedure that generates the random samples from the study 
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sample with replacement. Bagging works mostly because as it takes the average of the 

multiple models, the variance is reduced. Freund and Schapire (1996) introduced 

AdaBoost. Boosting is where the final prediction is a combination of the predictions of 

multiple models. Larkey and Croft (1997) analyzed based on three different classifiers, 

K-nearest-neighbor, relevance feedback, and Bayesian independence classifiers. They 

concluded that the combination of the different classifiers produced better results than 

any single classifier. Ho (1998) showed the random subspace method for constructing 

decision forests. The method was shown to perform really well with larger data sets with 

huge feature variables. Opitz and Maclin (1999) compared bagging, AdaBoost and 

arching. They concluded that bagging is almost always more accurate than any single 

classifier and it is much less accurate than boosting. They also mentioned that the 

performance of boosting methods depends on the characteristics of the data set in use and 

further of their results suggested that boosting ensembles may over fit noisy data sets and 

thus decrease the performance. Dietterich (2000) compared three methods for 

constructing ensemble classifiers using randomization, bagging and boosting. The results 

show that boosting gives the best results in most cases. Randomization and bagging give 

similar results and also they suggest that randomizing is slightly better than bagging in 

low noise settings. Skuruchina and Duin (2002) compared bagging, boosting and the 

random subspace method to linear discriminant analysis (LDA). They concluded that all 

three methods may be useful in LDA but suggested that the efficiency is affected by the 

training sample size and the choice of classifiers. They finally concluded that bagging 

was useful in LDA for weak classifiers, boosting was useful in LDA only for the 

classifiers that perform bad on the large training samples and the random subspace 
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method was useful in LDA for weak: and linear classifiers obtained on small training 

samples. Valentini and Masulli (2002) presented an overview of ensemble learning, 

showing the main areas of research and why ensemble methods are able to outperform 

the single classifiers used within the ensemble. Topchy, Jain, and Punch (2004) 

considered combining weak: clustering algorithms. They analyzed combination accuracy 

as a function of parameters, which control the power and resolution of component 

partitions. Chandra and Yao (2006) used a co-evolutionary framework to evolve new 

evolutionary ensemble learning algorithms. The framework treats diversity and accuracy 

as evolutionary pressures which are exerted at multiple levels of abstraction. Reyzin and 

Schapire (2006) stated that it is useful to consider boosting algorithms that maximize the 

average margin rather than the minimum one. Zhang and Zhang (2008) proposed a local 

boosting algorithm. The algorithm is based on the boosting by the resampling method. 

Their experimental results show that the local boosting algorithm performs better in most 

of the cases. 
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CHAPTER 2 

ENSEMBLE CLASSIFIERS FOR LUNG CANCER CELL LINES 

INTRODUCTION 

Lung cancer is one ofthe most frequent causes of cancer deaths in North 

America. There are two main types of lung cancer, which are referred to as primary lung 

cancer which are non small cell lung cancer (NSCLC) and small cell lung cancer 

(SCLC). The classification of these two types of cancer is reproducible in approximately 

90% of cases but the distinction between the two groups can be problematic when limited 

diagnostic material is available (e.g., from a fine needle aspirate) (Marchevsky et aI, 

2004). Molecular markers specific for the cancer types are more helpful and those based 

on DNA are more beneficial as they allow signal amplification by polymerase chain 

reaction (PCR) (Sozzi, 2001). A very promising alteration of DNA that is frequently 

found in cancer is DNA methylation (Marchevsky et aI, 2004; Virmani et aI, 2002). DNA 

methylation is an epigenetic event that affects cell function by altering gene expression 

and refers to the addition of a methyl group, to the 5-carbon of cytosine in a CpG 

dinucleotide. The CpG island is a short stretch of DNA in which the frequency of the CG 

sequence is higher than other regions and that "C" and "G" are connected by a 

phosphodiester bond. CpG dinucleotides are distributed unevenly across the human 

genome. CpG islands rarely exceed 5,000 base pairs and are often associated with 

functional elements. In particular, CpG islands overlap with the promoter regions of 50% 
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to 60% of human genes, including most housekeeping genes. CpG islands are usually 

found in the promoter regions of the genes and are usually not methylated in normal cells. 

The non-methylated state of promoter CpG islands is associated with transcriptional 

activity. The hypermethylated promoters lack the transcriptional activity that may 

account for gene inactivation both in normal physiological and disease states, remarkably 

the inactivation of the tumor suppressor genes in cancers (Yu et aI, 2002). 

The main aim of classification problems is to assign individuals to one of the 

identified classes based on their measurements. Usually in classification problems the 

datasets are divided into training and testing sets where the training sets are used to build 

the classifier which is then validated by the test sets. Another important aspect that 

characterizes classification of high-dimensional data is the need to obtain important 

variables. Variable importance involves in the identification of a subset of variables that 

are used to express the classification model. The main reason why variable selection is 

important is that removing the variables with less variability across observations gives 

better predictive accuracy. Classification algorithms can be used to process high 

dimensional data such as the cancer data to distinguish their disease subtypes. Class 

prediction is a method where the model learns from a set of individuals whose class 

subtypes are known in a training set which then creates a prediction rule to classify new 

individuals whose class types are not known in a test set. The class prediction method 

usually consists of three steps: selection of predictors; fitting the prediction model to 

create the classification rule; and performance assessment. The last step mainly assesses 

the performance of the prediction models. Accuracy, sensitivity, specificity, area under 

the ROC curve, positive predictive value, and negative predictive value are some of the 
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primary criteria used in the assessment of the performance of a classification algorithm. 

Accuracy is the total number of correct classifications out of the total number of 

observations. The sensitivity is the proportion ofthe number of correct positive 

classifications out of the number of positives. The specificity is the proportion of the 

number of correct negative classifications out of the number of negatives. The area under 

the curve is one of the main characteristic of a receiver operating characteristic or simply 

and ROC Curve. ROC Curve is a graphical plot of the sensitivity vs. 1 - specificity. 

However, due to complex and high dimensional data, it is difficult to use any 

single classification model that is reasonably flexible to keep the important variables, and 

yet feasible to fit. Since no single algorithm performs optimally for all the types of data, 

an ensemble classifier consisting of commonly used good individual classification 

algorithms is used which would adaptively change its performance depending on the type 

of data to that of the best performing individual classifier. Here we see how different 

classification methods might be applied to lung cancer diagnosis based on DNA 

methylation profiles, using the obtained methylation data from 87 lung cancer cell lines 

as a model system. We compare the utility of support vector machines (SVM), random 

forests (RF), linear discriminant analysis (LDA), Lasso Penalized Logistic Regression 

(PLR), Recursive partitioning (Rpart) and ensemble classifier (Datta et aI, 2010) as 

classification tools of DNA methylation profiles, in an effort to develop models that can 

classify SCLC and NSCLC. For high-dimensional data, variable importance becomes a 

challenge as most classical methodologies fail to cope with high dimensionality, and so 

we then look at the variables important in classifying the data from the best classifier. 
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This chapter is organized as follows. In the Materials and Methods section, we 

describe the dataset used for the analysis and introduce some common classification 

algorithms. The Results section presents the data example (lung cancer) and the 

performance measures for the dataset. It is then followed by discussion and conclusion. 

MATERIALS AND METHODS 

DNA methylation is an epigenetic event that affects cell function by altering gene 

expression and refers to the addition of a methyl group, to the 5-carbon of cytosine in a 

CpG dinucleotide. The CpG island is a short stretch of DNA in which the frequency of 

the CG sequence is higher than other regions and that "C" and "G" are connected by a 

phosphodiester bond. CpG dinucleotides are distributed unevenly across the human 

genome. CpG islands rarely exceed 5,000 base pairs and are often associated with 

functional elements. In particular, CpG islands overlap with the promoter regions of 50% 

to 60% of human genes, including most housekeeping genes. MethyLight, a quantitative 

real-time PCR Technique is used for the measurement of DNA Methylation (Eads et aI, 

2000). The technology measures the frequency of molecules in which a series of CpG 

sites (usually ~8 sites) in a given CpG region are methylated. A data set consists of DNA 

measurements on a sample of N subjects at F CpG regions (features). The outcome is 

displayed in a N x F matrix where each row denotes a subject and each column a feature. 

DNA methylation profiles are collected from 87 lung cancer cell lines. The primary 

analysis of the data is described in a paper by Virmani et al. (2002). Cell lines were 

initiated by Gazdar et al. (1996) at the National Cancer Institute and Hamon Cancer 

Center. Three sets of primers and probes, designed for bisulfate- converted DNA, were 
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used concurrently: a methylation- specific set for the gene of interest and two reference 

sets to normalize for input DNA (Virmani et aI, 2002). We want to demonstrate whether 

DNA methylation profiles could distinguish between two subtypes oflung cancer, non­

small cell (NSCLC) and small cell (SCLC). The analysis is limited to a subset of seven 

CpG regions that showed the best discrimination between SCLC and NSCLC (Virmani 

et.al, 2002). It was established that each of the seven CpG regions was predictive oflung 

cancer subtypes. We want to study the classification performance of several classification 

algorithms including the ensemble classifier (Datta et aI, 2010) in this experimental data. 

We also want to find the relative importance of the features (CpG Islands) in order to best 

classify the samples into two cancer subtypes. 

SUPPORT VECTOR MACInNES 

Support Vector Machines (SVM) were introduced as a machine learning method 

by Cortes and Vapnik (1995) and has since attracted a high degree of interest in machine 

learning community. It applies the simple linear method to the data but in a high 

dimensional feature space non-linearly related to the input space. If given a two-class 

training set, SVMs assigns its data in a higher dimensional space and attempts to specify 

a maximum-margin separating hyperplane between the data oftwo classes. This 

hyperplane is ideal in the sense that it generalizes well to unobserved data. The training 

input of SVMs involves of data that are vectors of real numbers. Given a set of training 

samples {(XiI Yi)} with the data Xi contained in the d dimensional Euclidean space of a 

set of real numbers and the corresponding class type Yi in {-I, + I}. In SVMs, the 

hyperplane classifies all the training samples correctly. In a two dimensional space this 
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hyperplane is a line whereas in a three dimensional space this hyperplane could be a 

plane. The hyperplane is constructed with the largest possible margin: 

fex) = wx + b 

To separate the two classes wx + b = a is needed to be found, where w is the weight 

vector in the feature space while b is the bias. Figure 2.1 shows a hyperplane that 

seperates the two classes and it shows the distance between the hyperplane and its nearest 

vectors. 

A • "Margm plane B • " • " Op1Hnal hyperplar)e • " •• ." " / Margm plane •• ." / • • " • • / / • • " / 

.", • /. .,., • / . •• III· •• III • • / " • • • / " • • " / • ./~ " • . ~/ ". •• / . • • / . " " " ./ .. " ." .. " .. •• • " .. • • • Marg1f~ / • " . 
Figure 2.1: Separating hyperplane of the Support Vector Machine that maximizes the 
margin between two sets of perfectly separable objects, represented as circles and 
squares. (A) Optimal hyperplane that perfectly separates the two classes of objects. (B) 
Optimal soft margin hyperplane which tolerates some points (unfilled square and circle) 
on the "wrong" side of the appropriate margin plane. Reproduced by kind permission of 
the authors., Jorissen, R. N.; Gilson, M. K. Virtual Screening of Molecular Databases 
Using a Support Vector Machine. J Chem. In! Model. 2005,45,549-561 

To ensure that all the training samples are classified correctly, the following equation 

must hold for the nearest samples and thus the hyperplane can be computed. 

wx+b= ~ +1ifYi=+1 
:::; -1 if Yi = -1 
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SVMs are excellent examples of supervised learning that tries to maximize the 

generalization by maximizing the margin and also supports nonlinear separation using 

advanced kernels, by which SVMs try to avoid overfitting and underfitting (Yu et aI, 

2003; Burges, 1998; Vapnik, 1998). 

RANDOM FORESTS 

The Random Forest algorithm was proposed by Leo Breiman in 1999 (Breiman, 

2001). It is an extension of the CART (1983) to a group of trees. CART, known as 

Classification and Regression Trees was developed by Breiman and his colleagues 

(Breiman et aI, 1983). In CART the root node contains all observations and every node is 

divided into two further nodes depending on a true-false answer to a question, until the 

same node is homogeneous with the cases. CART is easy to use and interpret and the 

classification accuracy is low. Random Forest as compared to CART gives higher 

classification accuracy. Random Forests uses 63% of the samples to construct each tree 

and the remainder 37% samples comprise out-of-bag samples (O-O-B) which are used to 

evaluate the performance of each tree. A large number of trees are produced by the 

random forest and together these trees vote for the most popular class. When each tree is 

grown, the model randomizes the search for the best split in each leaf. The model tries to 

find good trees through a randomized search, and then averages the predictions across the 

good trees. Suppose M trees are constructed, and the prediction of tree i at the feature 

vector x is gi(X), then the random forest prediction is: 

(gl(X) + gz(x) + ... + gm(x))/m. Usually with decision trees, the predicted class 

labels can be obtained by choosing the class with the largest prediction score. Two types 
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of randomization methods are used for growing a random forest. One is the bootstrap 

method, where sampling with replacement is repeated over and over again to produce 

many trees. This is known as bagging which was proposed by Breiman (1996). The 

second method is randomized tree growing. In randomized tree growing, each leaf of 

each tree is grown using a subset of all the variables chosen at random, and the best split 

among these variables is chosen. Each tree generates predictions; the average is taken 

overall these trees. 

The two randomized methods give two tuning parameters to decide an appropriate 

model: One is the number of bootstrap samples to be drawn and the other is the number 

of variables to be used in each tree. The number of variables to be used in each tree can 

be optimized by out-of-bag (O-O-B) performance. Usually 37% of the data is used as the 

O-O-B observation and are not used for training the model and so the O-O-B observation 

can be used to validate the training model by getting an estimate of error rate for each of 

the tree. 

LINEAR DISCRIMINANT ANALYSIS 

Discriminant analysis was first developed by R. A. Fisher in 1936 which is a 

multivariate method of classification. It is similar to regression analysis except that the 

dependent variable is categorical. In discriminant analysis, the objective is to predict class 

of the individual observations based on the predictor variables. LDA usually tries to find 

linear combinations of predictor variables that separate the groups of observations, and 

these combinations are known as discriminant functions. Suppose K different groups are 

given, each is assumed to have a multivariate normal distribution with mean vectors 
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Ilkand a common covariance matrix I. The idea in LDA is to classify observations Xi to 

the group k. 

Generally the prior probability can be estimated using the proportion of the 

number of observations in each group to the total number of observations. Instead of 

maximizing the likelihood, the posterior probability is maximized. In the case, when the 

assumption of the covariance matrix common in all groups is not satisfied, an individual 

covariance matrix for each group is used, thus leading to Quadratic Discriminant 

Analysis. Discriminant functions are found based on the assumptions of homogeneity of 

covariance between groups and multi-normality in each group. The discriminant 

functions in a binary case are built linearly as follows: 

If d1 ex) > d2 ex), the observation is assigned to group one, otherwise the observation is 

assigned to group two. 

LOGISTIC REGRESSION 

Logistic regression provides a good method for classification by modeling the 

probability of membership of a class with transforms of linear combinations of 

explanatory variables. It is a well known method used for determining the relation 

between the feature and the response variables. When the response variable is binary, 
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logistic regression models are similar to multiple linear regression methods. The simple 

logistic model has the form 

rr e a+pX 
logitCY) = In (1 _ rr) = a + pXrr = PCY = OutcomelX = x) = 1 + ea+px 

Given two classes in a dataset, we are interested in modeling the probabilities of the two 

classes using a linear function of variable x. 

p 

[ 
P CY = 11 x) 1 ~ 

log (1- PCY = 1Ix)) = Po + ~PjXi 

When the number of features is larger than the number of samples, feature selection is 

performed to reduce the dimensionality of the dataset. Another way is to use a penalized 

logistic regression (PLR) where a penalty is imposed on the log likelihood function 

corresponding to the general logistic regression. The penalized log likelihood function 

may be written as follows 

Where A is the regularization parameter controlling the amount of shrinkage and] C.) is a 

penalty function on the parameter p. 

ENSEMBLE CLASSIFIER VIA BAGGING AND RANK AGGREGATION 

This classification method was originally proposed by Datta et aI, 2010, which is 

a combination of bagging and rank aggregation in a single procedure. Bagging reduces 

the variance and improves the accuracy of weak classifiers. Weak classifiers are defined 

as classifiers whose final predictions change drastically with little changes to training 

data (Datta et aI, 2010). For every bootstrap sample (sampling with replacement) several 
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classifiers are trained and a classifier with the best performance on out-of-bag samples 

are kept for predicting the testing data. The weighted rank aggregation is used for multi­

objective optimization, where more than one performance measure is required. Each 

performance measure ranks the algorithm according to the performance and the ordered 

lists of algorithms are then aggregated to produce a single list which ranks algorithms 

according to the performance. The algorithm below is a step- by- step procedure on how 

the ensemble classifier is built. Assuming we have a training data consisting of n samples 

with the vector form {XCnxp), YCnXl)}. 

1. Initialization. Set the number of bootstrap samples to draw. Let j = 1, select M 

classification methods along with K different performance measures to be optimized. 

2. Sampling. Draw a bootstrap sample of the same size from the training samples using 

simple random sampling with replacement so that we can obtain {X], Y]}. Sampling is 

repeated until the samples from all the classes are present in the training set. Some 

samples will be repeated more than once while others will be left out of the bootstrap 

sample, and such samples are called out-of-bag (O-O-B) samples. 

3. Classification. Using the bootstrap samples, M classifiers are trained. 

4. Performance assessment. The M models fitted in the classification step are used to 

predict the classes of the O-O-B samples. Since we know the true classes of the samples, 

K different performance measures can be computed. Each measure will rank the 

classification algorithm according to the performance of the algorithm under the 

particular measure, producing K ordered list of size M, Lv ... , L K • 
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5. Rank Aggregation. Once we obtain the ordered lists from the performance measures, 

they are rank aggregated using the weighted rank aggregation procedure which 

determines the best classification algorithm. 

Steps 2-5 are repeated many times say N times. 

6. Predictions. Using the N best individual models, built on the training data for each 

bootstrap sample, N class predictions for each sample is made. 

Given a new sample X(pXl), let Y1 , ... , YN denote N class predictions from the N 

classifiers. The final classification is based on the most frequent class in the N predicted 

class labels. Figure 2.2 shows the flowchart of both building the ensemble classifier as 

well as using it to predict new samples. 
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Step 1: Initialization 

Step 2: Sampling 

Step 3: Classification 
(M algorithms) 

Training Data 

Step 4: Performance 
Assessment (K measures) 

Testing Data 

Step 5: Rank 
Aggregation 

Prediction 

N predictions 
from N classifiers 
in the ensemble 

Majority voting 

Classify new 
sample 

Classification model: 
Ensemble consisting 
of N individual classifiers 

[Al ::' A\l)' ... J Ak(M)J 

Repeat Steps 2-5 
N times 

Figure 2.2. A schematic flowchart for the classification problem. Reproduced by kind 
permission of the author, Datta et al. An adaptive optimal ensemble classifier via bagging 
and rank aggregation with applications to high dimensional data.2010: BMC 
Bioinformatics; 11 :427. 

V~LE~ORTANCE 

Classifying high-dimensional data is a difficult problem due to the large number 

of variables involved. Variable importance therefore becomes a challenge due to high 

dimensionality. With reducing the dimensions of the data allows the performing measures 

to give better classification of the data. In Random Forests, Breiman proposed a 

permutation-based variable importance measure (Breiman, 2001). To access the 

importance of a certain variable, Breiman proposes to permute the variable values in the 
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out of bag samples randomly, and then to classify the out-of-bag samples with one 

permuted variable. We are using rank aggregation for feature selection. The mathematical 

problem of rank aggregation was first proposed by Dwork et aI, 2001. For variable 

selection using rank aggregation please refer to Datta et aI, 2010. 

RESULTS AND DISCUSSION 

The data consists of 87 samples, 41 SCLC and 46 NSCLC cell lines samples. 

Four individual classification algorithms were selected with the number of bootstrap 

samples equal to 101. An external cross validation was implemented and the scores are 

listed in the table below. The samples were divided into training and testing data sets 

each consisting of 46 and 41 samples respectively. 100 different training and testing data 

sets were created from the 87 samples randomly. SVM and the ensemble classifier give 

the best accuracy measure whereas SVM and random forest gives the best AUC measure. 

Accuracy Sensitivity Specificity AUC 

Random Forest 0.6538 0.6682 0.7647 0.8233 

SVM 0.8063 0.7778 0.8325 0.8399 

LDA 0.7307 0.7670 0.7447 0.7624 

PLR 0.6538 0.7256 0.7216 0.7196 

Ensemble 0.8125 0.7977 0.8824 0.8089 

Table 2.1: Averages of cross validation for the cancer data. The number of bootstrap 

samples was N = 101. 
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From the above table, it shows Random Forest, SVM and the Ensemble Classifier; 

perform better in classifying the data. The Ensemble classifies in the best for accuracy, 

sensitivity, specificity. In AUC it is close to the SVM which is the best performing 

individual classifier. The list below shows the order of the variables from most important 

to least important: APC, ESR1, CALCA, MTHFR, MYOD1, PTGS2, MGMTMI. 

CONCLUSION 

Classifying high-dimensional data is a difficult problem due to the large number 

of variables involved. Variable importance therefore becomes a challenge due to high 

dimensionality. With reducing the dimensions of the data allows the performing measures 

to give better classification of the data. For the data considered here, the performance 

measures considered (accuracy, sensitivity, specificity), the ensemble and the random 

forest classifier perform the best compared to the other methods. For generating the 

bootstrap samples simple random sampling was used. Some bootstrap samples do not 

include all the classes. We have used some common classification methods and also 

dimension reduction techniques. Also, the performance measures used are the common 

ones and there are other measures such as the Brier score (Brier, 1950) or the Kappa 

statistic (Galton, 1892) that are available. 
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CHAPTER 3 

ENSEMBLE REGRESSION FOR mGH DIMENSIONAL DATA 

INTRODUCTION 

Cancer is a main public health problem in most parts of the world. Lung cancer 

represents the main cause of cancer-related deaths in Western countries. The overall 5-

year survival rate is 16% and has been the same rate over many decades. The main reason 

for the cancer to be a leading cause is due to the discovery at the advanced stages. Most 

patients at the early stage discovery are treated primarily by surgery but 30-60% will 

develop and die of metastasis recurrence. 

Lung cancer is further classified according to the histological criteria. The four 

main subtypes of lung cancer are: small cell lung cancer (SCLC), squamous cell 

carcinoma (SC), adenocarcinoma (AC), large cell carcinoma (LC). The last three 

subtypes are categorized as non-small cell lung cancer (NSCLC), and accounts for about 

85% of all the lung cancers. Accurate classification and diagnosis of the cancer is very 

crucial for the selection of the appropriate medical therapies. 

Proteomics is likely to playa key role in cancer biomarker discovery. Despite, a 

lot of attempts in searching for biomarkers using various methods no biomarker with 

100% diagnostic accuracy have been established for any cancer type (Karp ova et aI, 

2010). Due to the heterogeneous nature ofthe cancer, existence of such biomarkers is not 

easy. Most efforts are therefore concentrated on searching for panels of differentially 
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expressed proteins/peptides instead of individual biomarkers and building of diagnostic 

methods based on numerous features (Karpova et aI, 2010; Skates et aI2004). Although it 

has become feasible to rapidly analyze proteins from crude cell extracts using mass 

spectrometry, sample complexity complicates these studies (Gamez-Pazo et aI, 2009). 

Thus, for effective proteome analysis it is important to enrich samples for the analytes of 

interest (Hanash, 2003). Despite the fact that one-third of the proteins in eukaryotic cells 

are assumed to be phosphorylated at some point in their life cycle, only a low percentage 

of the intracellular proteins is phosphorylated at any given time (Cohen, 2002; 

Makrantoni et aI, 2005). Thus, a purification or enrichment step that isolates 

phosphorylated species would reduce complexity and increase sensitivity (Oda et al). 

Mass spectrometry for proteomics consists of many different platforms and is 

used to profile the serum peptidome. Magnetic bead-assisted serum peptide capture 

coupled to matrix assisted laser desorption! ionization time-of-tlight MS (MALDI-TOF­

MS) is a serum peptide profiling strategy gaining in popularity compared to surface 

enhanced laser desorption/ ionization (SELDI)-based platforms due to superior resolution 

of MALDI instruments, the possibility to obtain structural (MS/MS) information of 

signature peptides and superior binding capacity of the magnetic beads compared to a flat 

SELDI chip surface (Voortman et ai, 2009; Jimenez et ai, 2007). MALDI-TOF has been 

widely used in cancer investigation. A typical dataset from a Mass Spectrometer consists 

of hundreds of spectra; each spectrum contains of thousands of intensity measurements 

representing an unknown mm1ber of protein peaks which are the key features of interest. 

In either SELDI- TOF or MALDI-TOF, we obtain from a biological sample a 

calibrated output which is a mass spectrum characterized by several peaks, which relate 
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to individual proteins or protein fragments (polypeptides) present in the sample. The 

heights of the peaks represent the intensities of ions in the sample for a specific mass to 

charge ratio (m/z) value. The heights along with the m/z values characterize the 

fingerprint of the sample. Therefore, detecting location and amplitude of common peaks 

from a set of spectra is a way to recognize specific biomarkers that can be used to 

characterize patients and to compare the groups of the patients. A huge amount of data is 

produced to be analyzed and create a need for a rapid and efficient method for comparing 

multiple MS spectra. Raw spectra acquired by TOF mass-spectrometers are usually a 

mixture of a real signal, noise of different characteristics and a varying baseline. 

Statistically, a likely model for a given mass spectrometry (MS) spectrum is to denote it 

schematically by the equation: 

y (7) = B (7) + NS (7) + E (7) 

Where Y (;) is the observed intensity of the spectrum at mass to charge ratio m/z, 

B (;) is the baseline representing a relatively smooth artifact commonly seen in mass 

spectrometry data, S (;) is the true signal of interest consisting ofa sum of possible 

overlapping peaks, N is a normalization factor to adjust for possibly differing amounts of 

protein in each sample, and E (;) is an additive white noise with variance a; arising 

from the measurement process (Antoniadis et aI, 2010). Pre-processing of the mixed data 

is therefore important to extract S (;) which is the signal of interest. Incorrect 

preprocessing methods can result in data sets that show substantial biases and make it 

difficult to reach significant conclusions. The main preprocessing steps used are baseline 
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correction and denoising of the data. The software used was proposed by Ndukum et al 

(2011). Baseline subtraction uses an algorithm to eliminate the baseline slope and offset 

from a spectrum by interactively calculating the best-fit straight line through a set of 

estimated baseline points (Ndukum et aI, 2011). 

However, due to complex and high dimensional data, it is difficult to use any 

single regression model that is reasonably flexible to keep the important features, and yet 

feasible to fit. Since no single algorithm performs optimally for all the types of data, an 

ensemble regressor consisting of commonly used good individual regression algorithms 

is used which would adaptively change its performance depending on the type of data to 

that of the best performing individual regressor. Here we want to predict the survival 

times of patients from proteomic profiles using MALDI- TOF Mass Spectrometry data. 

The outcome of interest is progression free survival at the end of treatment. The formula 

IS gIven as: 

logli = Xd] + Ei 

where li are the survival times of the patients and Xi are the intensities of the proteomic 

features. We see how different regression methods might be applied to lung cancer 

diagnosis based on proteomic features. We compare the utility of least absolute shrinkage 

and selection operator (LASSO), partial least squares (PLS), sparse partial least squares 

(SPLS), principal component regression (peR), and the ensemble regressor adapted from 

the ensemble classifier (Datta et aI, 2010). The ensemble regressor model is created in a 

highly adaptive manner, which is a nonlinear predictive model that is multi-objective in 

nature which optimizes the prediction power for a number of features. In a prediction 

analysis, we are interested in fitting different models to capture the relationship between 
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independent variables X and a dependent variable Y, and then using the models to make 

predictions on an independent dataset. Prediction analysis mainly focuses on prediction 

errors and these are error measures in the estimated period. Examples of such error 

measures can be mean squared error, mean absolute error, mean 

absolute percentage error, and mean percentage error. The Mean Squared Error (MSE) is 

a measure of how close a fitted line is to the data points. For every data point, you take 

the distance vertically from the point to the corresponding y value on the curve fit (the 

error), and square the value. Then you add up all those values for all data points, and 

divide by the number of points. The squaring is done so negative values do not cancel 

positive values. The smaller the Mean Squared Error, the closer the fit is to the data. The 

Mean Absolute Error is a quantity used to measure how close predictions are to the 

eventual outcomes. It is an average of the absolute errors ei = Iii - yd , where Ii is the 

prediction and Yi the true value. 

MATERIAL AND METHODS 

We utilize the data set reported in Voortman et al (2009). The MALDI-TOF-MS 

dataset of serum samples of 27 patients with advanced non-small cell lung cancer 

(NSCLC) were treated with first line chemotherapy, consisting of ciplastin and 

gemcitabine, as well as bortezomib. The efficacy of ciplastin-gemcitabine alone is 

limited, a partial tumor response being attained in about one third ofNSCLC patients 

with a median progression free survival of four to five months (Voortman et aI, 2009; 

Smit et aI, 2003). Serum spectra of these 27 patients are available at three different time 

points: pre-treatment (preTX), after two cycles of treatment (post-2), and at the end of 

treatment (EOT). For each patient, there is an associated progression free survival time 
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recorded in days (PFS). There is no censoring available in the data and the range of 

observed survival time is from 27 days to 601 days. We want to study the regression 

performance of several multivariate regression models including the ensemble regression 

function in this experimental data. 

We compare the utility of Least Absolute Shrinkage and Selection Operator 

(LASSO), Partial Least Squares (PLS), Sparse Partial Least Squares (SPLS) and 

Principal Component Regression (PCR). With the above models we develop an ensemble 

model that comprises of all the models taken individual and compare the prediction 

results of the ensemble model to the individual models. 

LASSO 

Shrinkage methods are attractive in modeling and predictive learning because 

they allow continuous shrinkage with small generalization error, and they are usually 

easy to solve in practice. LASSO, proposed by Tibshirani (1996), is a variable selection 

technique which allows shrinkage of the coefficients while setting some of the 

coefficients to zero. The LASSO tries to find a model which minimizes the residual sum 

of squares subject to a constraint that the sum ofthe absolute values of the coefficient for 

each variable is less than a constant, say c. Suppose that a linear regression model is 

given in the form below: 

p 

y = Po + L PjXj + £ I 

j=l 
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where Xj is the jth variable, Y is the response vector, f30 is the intercept, f3j is the 

coefficient ofthe jth variable, p is the total number of variables taken, and E is the 

random errors vector that are assumed to be independently identically distributed (i.i.d.) 

with a normal distribution with mean zero and variance 0'2. The LASSO estimate of 

P = (Po, Pv ... ,pp ) is given by the following formula: 

where c ;::: 0 is a tuning parameter that controls the shrinkage applied to the estimates. 

The constraint also allows the removal of the variables from the model by setting their 

coefficients to zero. The value of c ranges from zero to 

p 

tmax = LIP/I, 
j=l 

~ 0 
Where f3j is the ordinary least squares estimate of f3j. The optimal choice of c is solved 

by the normalized parameter s = t/tmax , which ranges from zero to one. 

PARTlALLEASTSQUARE 

Partial Least Squares (PLS) regression was introduced by Wold (1966), and has 

been used as an alternative approach to the Ordinary Least Squares (OLS) regression. As 

PLS utilizes the dimension reduction principle, it can handle a large number of variables 

(p) with a small sample size (n). PLS has a modeling aspect that relates the modeling to 

two data sets, X , matrix of the variables/ covariates and Y, vector of responses. At the 
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basics of PLS regression is a dimension reduction technique that functions under the 

assumption of a basic latent decomposition of the response matrix (Y E R nxq)and the 

predictor matrix(X E R nxp): 

Y = TQT + F, 

x = TpT + E, 

where T E R nxK is a matrix that produces K linear combinations; PER pxK and 

Q E R qxK are the matrices of the coefficients and E E Rnxp and FER nxq are the 

matrices of the random errors. For specification of the latent component matrix T such 

that T = WX, PLS requires finding the columns of W = (wv W2, ... , WK) from successive 

optimazion problems. 

Several iterative procedures have been proposed to solve nonlinear optimization 

problems such as PLS Mode A, PLS-SB, NIP ALS and SIMPLS algorithms that vary by 

the deflation theme required for the orthogonally of the derived components. PLS Mode 

A algorithm (Kong et aI, 1995) targets to model existing relationships between variables 

rather than to model for prediction. PLS-SB calculates all eigenvectors at once, and the 

score vectors obtained by this method are not necessarily orthogonal. The commonly 

used methods, NIP ALS and SIMPLS, involve two steps may be called graduation 

( deri ving components) and prediction. 

The NIPALS algorithm (Jemal et aI, 2007) was established as an alternative to 

principal component algorithms. NIP ALS employs sequential simple linear regressions 

instead of singular value decomposition to calculate principal components. PLS 
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algorithm can be considered as carrying out two simultaneous NIP ALS principal 

component analyses, one for X and one for Y, while interchanging the results from X for 

analysis of Y and to solve the following maximization problem 

under the orthogonality constraint of derived components, where s = 1 and Y = Y for 

univariate model. Since both X and Y are used in the calculation of the components, 

PLS is presented as a member of the bilinear class of methods and the bilinear model can 

be written as: 

Y = TQT + F, 

X = TpT + E, 

It is assumed that the score matrix T is a good predictor for Y and a linear, inner 

relationship between the score matrices T and U exists, i.e. U = T B + H where B is a 

k x k diagonal matrix and H is a matrix of errors. The mixed relation then becomes: 

Y = UQ' + F = eTB + H)Q' + F = TA' + F*, 

where A' = BQ'is a matrix of regression coefficients and F* = HQ' + F is matrix of 

errors. 

SIMPLS algorithm (Schiller et aI, 2002) is an alternative to NIPALS algorithm 

that targets to derive PLS components directly in terms of the original data which results 

in faster computation with less memory requirements. SIMPLS reduces the cross­

covariance matrix, Sxy ex:: X'Y , whereas NIP ALS reduces the original data matrix X to 
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obtain orthogonal components. 

SPARSE PARTIAL LEAST SQUARES 

With recent advancement in biotechnology such as high throughput sequencing, 

regression based modeling of high dimensional data has never been that important. Two 

most important problems that arise within the regression problems is the selection of the 

important variables and covariates being highly correlated with the data sample size 

much smaller than the variables. Sparse Partial Least Squares is based upon the PLS. It is 

a new technique that combines and generalizes the strength of principal component 

analysis and multiple regression. 

Suppose there exist a latent component Tnxk such that 

x = TpT +E , 

Y = TQT + F 

where Xnxpis a predictor variable and Ynxq is the response variable, PpXk and Qqxk are 

the coefficient matrix, Enxp and Fnxq are the errors. From the X and Y equations, we 

suppose there exists a director matrix W such that T = W X, the usual way for finding the 

latent components T is by finding the direction columns of a director matrix W = 

(wv W2, ... , Wk) by solving many optimization problems. If the response variable Y is 

univariate, then the kth direction vector Wk can be obtained by solving the constrained 

optimization problem 
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for j = 1, ... , k - 1, where L xx represents the covariance of X. 

When the response Y is multivariate, SIMPLS or NIPALS can be used to find the 

direction vectors. SIMPLS was proposed by de long ( de long, 1993) which directly uses 

the univariate PLS formula. The SIMPLS formula is as below: 

for j = 1, ... , k - 1, where CT xy represents the covariance of X and Y. The other formula 

ofNIPALS was proposed by Wold (1966) but the specific formula of the direction vector 

was not given and later on Tar Braak and de long (ter Braak and De long, 1998) gave the 

following formula and proved that the direction vector obtained by the formula are 

exactly what solved by using the NIP ALS algorithm. 

for j = 1, ... , k - 1, where Ip is a p x p identity matrix and Wk--\ is a unique Moore­

Penrose inverse of Wk - 1 . 

For different response Y, the corresponding latent components T can be obtained, 

and the coefficient matrix Q can be estimated by solving minQ IIY - TQ T I12. Once the 

latent components and the coefficient estimators QT are obtained, the final model's 

parameters can be estimated via P = WKQT and the final model is Y = PX. A threshold 

for P was proposed by Huang et al (2004) via adding sparse constraint to the procedure 
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of finding Q. Chun and Keles proposed sparse partial least square by imposing the 

sparsity constraint in the process of dimension reduction. In SPLS dimension reduction 

and variable selection is performed at the same time and is equivalent to solving the 

following constrained problem; 

where M = XTyyTX. In the equation above c is a surrogate of the original direction 

vector w. 

PRINCIPAL COMPONENT REGRESSION 

Principal component analysis (PCA) is a multivariate technique in which a 

number of correlated variables are handled through a linear transformation into a set of 

uncorrelated variables. This method is primarily a data analyzing technique that obtains 

linear transformations of a group of correlated variables such that certain optimal 

conditions are met (Jackson, 1991). The most important of these conditions is that the 

transformed variables are uncorrelated. Correlation of variables is essentially an 

indication of the strength and direction of a linear relationship between two variables 

(Weisberg, 1980) and it must be considered if redundant data is to be acknowledged and 

excluded. 

PCR is a two-step process, which first uses PCA then applies a multivariate linear 

regression (MLR) procedure. This second step regresses the newly acquired data with the 

response variable. The objective of principal components analysis is to find a linear 

transformation of a set of n variables of X into a new set denoted by H, where the new 
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set has certain necessary properties. These properties, which provide the rationale for 

using the H rather than the original X are: (i) the elements of Hare uncorrelated with 

each other in the sample; and (ii) each element of H, progressing from HI to Hz etc., 

accounts for as much of the combined variance of the X as possible, steady with being 

orthogonal to the preceding H. The new variables correspond to the principal axes of the 

ellipsoid formed by the scatter of sample points in the n dimensional space having the 

elements of X as a basis. The principal components transformation is thus a rotation from 

the original x coordinate system to the system defined by the principal axes of this 

ellipsoid. PCA is a useful method to solve problems including exploratory data analysis, 

classification, pattern recognition, and noise reduction, for example. It is used whenever 

uncorrelated linear combinations of variables are wanted which reduces the dimensions 

of a set of variables by reconstructing them into uncorrelated combinations. It combines 

the variables that explain for the largest part of the variance to form the first principal 

component. The second principal component explains for the next largest amount of 

variance, and so on, until the complete sample set variance is combined into smaller 

uncorrelated component categories. Each successive component explains portions of the 

variance in the total sample and all of the components are uncorrelated with each other. 

Consider a data matrix X having N rows and M columns. Let XvXz, ... ,XM be the 

variables. PCA is the fundamental technique for dimension reduction based on the 

principle of singular value decomposition of the data matrix. PCA relates to the second 

statistical moment of X, which is proportional to XX' and it partitions X into two matrices 

Hand C. Each attribute can be expressed as a linear combination, 
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where H = (t/Jv t/J2"'" t/JN) is an N x N matrix of basis vectors and Cj is a N x 1 

column vector of weights related to jth variable. For the defined N x M data matrix 

x = (XV X2, ... ,XM)' the observation model can be written in the form, 

X HxC 

where C (Cv C2 , .•• , CM) is a N x M matrix of weights. 

Another important point in the use of model is the choice of the basis vectors t/Jn. 

Many different ways to select these basis vectors exist, of which one is the principal 

component regression. In PCR, the basis vectors are selected to be the eigenvectors Vn of 

either the data covariance or correlation matrix. The correlation matrix can be estimated 

as, 

1 
R = - x X X X', 

M 

The eigenvectors and the eigenvalues can be solved from the eigen decomposition. The 

eigenvectors of the correlation matrix are orthonormal, and therefore, the ordinary least-

squares solution for the parameters C becomes, 

C
A 

H' x X PC 

and the attribute estimates could be computed from, 
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Matrix H contains the eigenvectors of R ordered by their eigenvalues with the largest 

first and in the descending order. The first column of H gives the direction that minimizes 

the orthogonal distances from the samples to their projection onto this vector. 

ENSEMBLE REGRESSOR VIA BAGGING AND RANK AGGREGATION 

This regression method is adapted from the classification method that was 

originally proposed by Datta et al (2010), which is a combination of bagging and rank 

aggregation in a single procedure. Bagging reduces the variance and improves the 

accuracy of weak classifiers. For every bootstrap sample (sampling with replacement) 

several regression algorithms are trained and a regressor with the best performance on 

out-of-bag samples are kept for predicting the testing data. The weighted rank 

aggregation is used for multi-objective optimization, where more than one performance 

measure is required. Each performance measure ranks the algorithm according to the 

performance and the ordered lists of algorithms are then aggregated to produce a single 

list which ranks algorithms according to the performance. The algorithm below is a step­

by- step procedure on how the ensemble regressor is built. Assuming we have a training 

data consisting ofn samples with the vector form{XCnxp)'YCnxl)}. 

1. Initialization. Set the number of bootstrap samples to draw. Let j = 1, select M 

regression methods along with K different performance measures to be predicted. 

2. Sampling. Draw a bootstrap sample of the same size from the training samples using 

simple random sampling with replacement so that we can obtain {X/,Yj}. Sampling is 

repeated until the samples from all the classes are present in the training set. Some 
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samples will be repeated more than once while others will be left out of the bootstrap 

sample, and such samples are called out-of-bag (O-O-B) samples. 

3. Prediction. Using the M regression algorithms, fit models to predict each of the K 

outcomes based on the bootstrap samples .. 

4. Performance assessment. The M models fitted in the prediction step are used to 

predict the classes of the OOB samples. Since we know the survival times of the samples, 

K different performance measures can be computed. Each measure will rank the 

regressiom algorithm according to the performance of the algorithm under the particular 

measure, producing K ordered list of size M, Lv ""LK' 

5. Rank Aggregation. Once we obtain the ordered lists from the performance measures, 

they are rank aggregated using the weighted rank aggregation procedure which 

determines the best regression algorithm. 

Steps 2-5 are repeated many times say N times. 

Predictions of a new sample. Predict N values of each of the features for a new 

combination using the N prediction models obtained before and average the answers to 

get the final predictions. Figure 3.1 shows the flowchart of both building the ensemble 

regressor function as well as using it to predict new samples. 
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A21 All A31 ... I AM 
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Figure 3.1. A schematic flowchart for the regression problem, provided by Somnath 
Datta. 

PREPROCESSING OF THE DATA 

The data was first preprocessed using the pkDACLASS package proposed by 

Ndukurn et al (2011). Basic preprocessing of the raw data involves baseline correction, 

denoising and binning. Baseline subtraction uses an algorithm to eliminate the baseline 

slope and offset from a spectrum by interactively calculating the best-fit straight line 

through a set of estimated baseline points (Ndukum et al). The baseline correction relies 

on a method that has been applied in PROcess package. The baseline is deducted by 

setting the bandwidth of "approx" method, in the routine bslnoff, to be 25% (Ndukurn et 
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aI, 2010). For denoising, a cutoff point h is chosen such that the features selected match 

to real peptide peak. The principle is based on keeping features with intensities greater 

than a certain threshold h. The threshold should be large enough to eliminate initial noisy 

region but small enough to keep any peak that could match to real observable proteins or 

peptides. The graphs below show the how the mass spectrometry raw data looks like 

before and after the baseline correction and denoising. 
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Figure 3.2 : Graph showing the raw MS Data 
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Figure 3.2: Graph showing after Baseline correction. 
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Figure 3.4: Graph showing after denoising. 
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RESULTS AND DISCUSSION 

The data consists of 25 samples, and all 25 spectra are standardized and denoised 

by the use of the package pkDACLASS (Ndukum et aI, 2010). As mentioned above five 

methods of model fiting PCR, PLS, SPLS, LASSO and Ensemble is used for each of the 

feature set. The algorithms were selected with the number of bootstrap samples equal to 

101. The performance of each method is compared by computing the average MSEP and 

MAE of one hundred training and testing datasets. The ensemble gives the lowest MSEP 

and MAE and is similar to SPLS which is the best individual algorithm. The results of the 

average of 100 training and testing datasets are shown in the table below. The samples 

were divided into training and testing data each consisting of 14 and 11 samples 

respectively. 100 different training and testing datasets were randomly created. 

MSEP MAE 

PCR 0.56938 0.52794 

PLS 0.56279 0.55865 

SPLS 0.54552 0.50027 

LASSO 0.61878 0.57916 

ENSEMBLE 0.53467 0.50027 

Table 3.1 : Average of Performance measures from 100 training and testing datasets. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE RESEARCH 

CONCLUSIONS 

For complex high dimensional datasets resulting high throughput experiments, it 

may be wise to consider many different classification algorithms combined with 

dimension reduction techniques rather than a single standard algorithm. Different 

algorithms with different performance measures give different results from one dataset to 

another. The algorithm proposed by Datta et al (2010) borrows elements from bagging 

and rank aggregation to create an ensemble classifier optimized with respect to several 

objective performance functions. The ensemble classifier is capable of adaptively 

adjusting its performance depending on the data, reaching the performance levels of the 

best performing individual classifier without knowing which one it is. In chapter two, a 

similar approach is carried out in the regression context. Here the dataset used is a Mass 

Spectrometry data and similar to classification methods, different regression models give 

different results. In the regression approach bagging and rank aggregation is used to 

create the ensemble regressor and the results show that the ensemble regressor is capable 

of adaptively adjusting its performance depending on the data, reaching the performance 

levels of the best performing individual regression model. For illustration purposed, the 

common classification algorithms and dimension reduction techniques and regression 

algorithms are used in this thesis. The procedure is implemented in R using available 
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classification and regression routines to build the ensemble classifier and ensemble 

regressor. 

FUTURE RESEARCH 

In Chapter 3, it was investigated how Mass Spectrometry data can be used to do 

prediction analysis using the regression models. An interesting direction in this sense 

would be to study the effects of the covariates and also test the effect of regression. 

Furthermore the analysis can be extended to survival prediction with the use of right 

censoring. The data used is continuous data but categorical data can also be used in this 

context. For the performance measures, mode or median estimation and prediction errors 

can be used instead of mean which both of them seem to be consistent with majority 

voting. Simulations in the context of regression analysis can also be done. 
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APPENDIX 

ReODE 

ensembleRegressor <- function(x, y, M=10, ... ){ 
rownames(x) <- NULL # to suppress the warning message about duplicate rownames 
fit.individual=TRUE 
algorithms = c("pls","spls", "lasso", "pcr") 
validation = c("MSEP","MAE") 
weighted = TRUE 
distance ="Spearman" 
mse.pred <- function (a, b) { mean((a-b)"'2)} 
mae.pred <- function (a, b) { mean(abs(a-b))} 
nalg <- length(algorithms) 
nvm <- length(validation) 
fittedModels <- listO 
n <- length(y) 
for(k in 1 :M){ 

s <- sample(n, replace = TRUE) 
fs <- 1 :ncol(x) 
training <- x[ s, fs] 
testing <- x[-unique(s), fs] 
trainY <- y[s] 

######################################################################## 
############## train all algorithms on the subset ############################## 
######## algorithms=c("pls", "spls", "lasso", "pcr", "eIasticnet") 
####################### 
####################################################################### 
Res <-listO 
for(j in 1 :nalg) { 

Res[Dl] <- switch(algorithmsDl, 
"pIs" = plsr(y ~ . , data = data.frame(y = train Y, x = training),validation = "none", 

method = "oscorespls"), 
"spls" = spls(x, y, K = 14, eta = 0.1, scale.x= FALSE, scale.y=FALSE, 

trace=F ALSE), 
"lasso"= lars(x y type = "lasso" use Gram = FALSE normalize = FALSE) , , , . , , 
"pcr" = pcr(y~. , data = data.frame(y= trainY, x = training),validation = "none")) 

attr(Res[Dl], "algorithm") <- algorithmsDl 

} # Train Part For Loop 
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# predict using fitted models 
predicted <- listO 
forG in 1 :nalg) { 

switch( algorithmsO], 
"pIs" = {predicted[O]] <- predict(Res[O]], testing, type = "response")}, 
"spls" = {predicted[On <- predict(Res[O]], testing, type = "fit")}, 
"lasso" = {predicted[O]] <- predict(Res[O]], testing)$fit}, 
"pcr" = {predicted[O]] <- predict(Res[O]], testing, type = "response")} 

) 
} # Prediction part for loop 

# compute validation measures 
scores <- matrix(O, nalg, nvm) 
rownames(scores) <- algorithms 

colnames(scores) <- validation 
truth <- y[-unique(s)] 
for(i in 1 :nalg) 
forG in 1 :nvm) 

scores[i,j] <- switch(validationO], 
"MSEP" = mse.pred(predicted[[i]], truth), 
"MAE" = mae.pred(predicted[[i]], truth) 
) 
convertS cores <- function(scores){ 
scores <- t( scores) 
ranks <- matrix(O, nrow(scores), ncol(scores)) 

weights <- ranks 
for(i in 1 :nrow(scores)){ 

ms <- sort(scores[i,], decr=F ALSE, ind=TRUE) 
ranks[i,] <- colnames( scores)[ ms$ix] 
weights[i,] <- ms$x 

} 
list(ranks = ranks, weights = weights) 
} 
# perform rank aggregation 
convScores <- convertScores(scores) 
if(nvm > 1 && nalg <= 6) 
fittedModels[[k]] <- Res[[which(algorithms == RankAggreg(convScores$ranks, 

nalg, convScores$weights, distance=distance, 
verbose= F ALSE)$top.list[ 1])]] 
else 
fittedModels[[k]] <- Res[[which.min(scores[,l])]] 
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} # End of for Loop Iteration l:M 

# how many times each algorithms was the best? 
bestAlg <- unlist(sapply(fittedModels, FUN = function(x) attr(x, "algorithm"))) 
res <- list(models = fittedModels, M = M, 
bestAlg = bestAlg, convScores=convScores) 
class(res) <- "ensemble" 
res 
} 

predictEns <- function(EnsObject, newdata, y=NULL){ 
mse.pred <- function (a, b) { mean((a-b)A2)} 
mae.pred <- function (a, b) { mean(abs(a-b))} 
M <- EnsObject$M 

"pIs" 
"spls" 
"lasso" 
"pcr" 
) 
} 

n <- nrow(newdata) 
predicted <- matrix(O, n, M) 
for(i in 1 :M){ 
testing <- newdata 
switch(attr(EnsObject$models[[i]], "algorithm"), 
= predicted[,i] <- predict(EnsObject$models[[i]], testing, type = "response"), 
= predicted[,i] <- predict(EnsObject$models[[i]], testing, type = "fit"), 
= predicted[,i] <- predict(EnsObject$models[[i]], testing)$fit, 
= predicted[,i] <- predict(EnsObject$models[[i]], testing, type = "response") 

res <-listO 
if(!is.null(y)){ # compute validation measures 

valM <- c("MSEP", "MAE") 
MAE <- mae.pred(predicted, y) 
MSEP <- mse.pred(predicted, y) 
ensemblePerformance <- matrix(c(MSEP, MAE),1,2) 
colnames( ensemblePerformance) <- valM 
rownames( ensemblePerformance) <- "ensemble" 
} 
res <- list(pred=predicted, ensemblePerf=ensemblePerformance) 
class(res) <- "predictEnsemble" 
res 
} 
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