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1
Introduction

1.1 General Introduction

Cardiovascular disease (CVD) is the number one cause of death globally
(WHO). Identification of cardiovascular risk remains a major challenge both in
primary and secondary event prevention causing immense burden in Western
societies. Despite well known causal risk factors such as blood apolipoprotein-
B-containing lipoproteins, high blood pressure, cigarette smoking, and
Diabetes Mellitus Members: et al. (2022), the clinically used algorithms
such as the Framingham risk score, pooled cohort equations and Systemic
Coronary Risk Evaluation (SCORE) suffer from limited event prediction
accuracy Fernández-Friera et al. (2017). Presumably, this limitation stems
from the narrow pathophysiological view these risk factors offer, while CVD
risk is the result of complex interactions between comorbidities and exogeneous
risk factors Hoogeveen et al. (2018). Targeted proteomics provide a promising
risk prediction alternative since they capture a snapshot of the current
individual physiology reflecting the genetic background but also lifestyle and
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2 CHAPTER 1. INTRODUCTION

metabolic pathways Williams et al. (2019). Unlike traditional statistical
methods which help understand relationships between a limited number of
variables, the use of high-throughput technology such as proteomics requires
the use of more flexible and scalable multivariate methods that Machine
Learning (ML) offers.
To further improve the prediction, combining proteomics with other classes
of biomarkers such as genomics, transcriptomics and phenotypic markers
provides a systems overview of the disease progression thereby encompassing
a larger set of etiologies and population generalization. Despite the critical
role better prediction accuracy plays on mitigating the impact of CVD,
there are several ways in which ML can advance Medical/Biological research.
In this thesis, we will present novel biology-guided algorithms to tackle
domain knowledge integration, multi-domain learning and unbiased feature
importance.

1.2 Machine Learning Preliminaries

Notation

We denote matrices, 1-dimensional arrays, and scalars/functions with capital
bold, bold, and regular text, respectively (e.g. X, x, α/f). Given a dataset
XM×N , we will denote the set of all random variables by X , its individual
random variables by capital regular text with a subscript and the values using
lowercase (e.g. Xi and xi), while the joint density/mass will be represented
as p(x). We will refer to the input random variables as features or variables
interchangeably. The indicator function will be denoted by I(·) and its
argument will be expressed as a boolean evaluation such as I(x = y) mapping
to 1 if x = y and to 0 otherwise.

1.2.1 Supervised Learning

In supervised tasks, a dataset XM×N consisting of M measurements for N
different variables like glucose, blood pressure and so on is used to predict an
outcome of interest y such as diabetes. The goal of the model is to reduce the
empirical risk given by :

L(X,y, fθ) ≡
1

M

M∑
i=1

l (fθ(xi), yi) , (1.1)
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where fθ is a model parameterized by θ = [θ1, ..., θk] and l is a loss function
designed to measure how different the prediction of the model and the output
yi is. Note that the model is merely trying to approximate the true mapping
function from the input random variables to the output ftrue : X → Y. When
the outcome variable is a continuous variable, then this task is called regression
and when it is discrete it is called classification. Common choices for loss
functions include (ommiting the function arguments for compactness):

� Mean squared error (Regression): l = (fθ(xi)− yi)2

� Mean absolute error (Regression): l = |fθ(xi)− yi|

� Accuracy (Classification): l = I (fθ(xi) = yi)

� Cross-entropy (Classification): l = −yilog fθ(xi)+(1−yi)log (1− fθ(xi))

1.2.2 Parameter optimization

The model parameters are optimized by minimizing equation 1.1:

θ∗ = argminθ L(X,y, fθ), (1.2)

producing a single parameter estimate and the prediction for a new example
xnew is then given by fθ∗(xnew). In contrast, Bayesian methods estimate the
parameters’ uncertainty by performing inference over the parameters’ posterior
distribution using the Bayes rule:

p(θ|X, f) = p(X|θ, f)p(θ|f)∫
p(X|θ, f)p(θ|f)dθ

, (1.3)

and the uncertainty can be incorporated into the prediction by marginalizing
out the parameters:

p(xnew|X) =

∫
θ

p(xnew,θ|X)dθ =

∫
θ

p(xnew|θ,X)p(θ|X)dθ, (1.4)

which assuming future observations are conditionally independent given
θ becomes:

∫
θ
p(xnew|θ)p(θ|X)dθ. This is known as posterior predictive

distribution. Since the denominator in equation 1.3 is generally intractable,
one usually resorts to asymptotically correct sampling methods like MCMC,
or approximations methods like variational inference. Although knowing
the uncertainty around the parameters’ estimation is desirable, inference
is typically very computationally expensive which in practice becomes
prohibitive for larger datasets.
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Bias-variance trade-off

Suppose the true function mapping the input variables to the outcome can
be described as yi = ftrue(xi) + ϵ, with ϵ representing noise with zero mean
and variance σ2. Since ftrue is deterministic, E∼D[ftrue(x)] = ftrue(x). The
expected model mean squared error is given by:

E∼D
[
(y − fθ(x))2

]
= E∼D

[
(ftrue(x) + ϵ− fθ(x))2

]
= (ftrue(x)− E∼D[fθ(x)])︸ ︷︷ ︸

Bias

+σ2 + V ar(fθ(x))︸ ︷︷ ︸
Variance

. (1.5)

This is an important result in Machine Learning, called the Bias-Variance
trade-off. Equation 1.5 expresses supervised learning as a balance between
two sources of error: inadequate assumptions of the model (bias) and
sensitivity to small perturbations in the input, meaning the model may be
modelling random noise in the training data (variance). Variance is especially
problematic in the presence of many uninformative features as is the case in
biological datasets.
To mitigate the model variance, it is common to apply regularization
techniques for example by adding a penalization term to the objective
function 1.2:

f∗ = argminf L(X,y, fθ) + λR(f), (1.6)

where R(f) is typically a function of model complexity (for example the
number of features the model uses for prediction) and λ controls the extent
of this penalization. In Bayesian methods, this regularization can be imposed
using narrow priors in eq. 1.3.
Another way of reducing variance which we will make extensive use of in this
thesis is by using ensemble methods. In ensemble methods like random forests
Breiman (2001), several models are trained on random subsets of the data and
their individual predictions are aggregated to form a final prediction. Similarly,
in gradient boosting several ”weak” (i.e. low bias) models hθ are combined to

make a final prediction: fγ,θ =
∑K

i=1 γihi(x), but these are trained sequentially
by performing gradient descent on the objective function 1.1 reducing both bias
and variance.

1.2.3 Model evaluation

After estimating the optimal model parameter using equation 1.1, the model
should be tested on an independent dataset to prevent ”data leakage”, that
is, preventing fictitiously inflating the models’ performance by measuring
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how well it performs on data it has ”seen” before. Thus, to estimate the
model’s true performance using the dataset at hand, consider a splitter
function to divide the dataset into a training, validation and testing set

si(X) =
{
π

(i)
train,π

(i)
val,π

(i)
test

}
, i ∈ {1, ..,K}, where π are permutations of the

set {1, 2, ...,M} and for all i:

p
(
X

π
(i)
train

,X
π

(i)
val

,X
π

(i)
test

)
= p

(
X

π
(i)
train

)
p
(
X

π
(i)
val

)
p
(
X

π
(i)
test

)
(1.7)

π
(i)
train ∩ π

(i)
val = π

(i)
train ∩ π

(i)
test = π

(i)
val ∩ π

(i)
test = ∅. (1.8)

Using the splitter function si(X), the model performance estimator is then
commonly chosen as:

P̂(X ,Y, fθ) ≡
1

K

K∑
i=1

P
(
X

π
(i)
test
,y

π
(i)
test
, f

(i)
θ∗ , l

)
, (1.9)

where f
(i)
θ∗ is the model trained on

{
X

π
(i)
train

,y
π

(i)
train

}
and optimized on{

X
π

(i)
val

,y
π

(i)
val

}
using the loss function l, and P is a performance metric not

necessarily equal to l. This process is called cross-validation and measures
how well the model will generalize to an independent dataset.
When data is assumed to be independent and identically distributed (i.i.d.),
then splitting the data indices into different non-overlapping ”blocks” is
sufficient to satisfy 1.7. However, suppose this assumption is not met because
measurements for the same patient are taken at different time points, then
the splitter function si(X) should be chosen such that it does not place the
same patient in different sets.

1.2.4 Kernel methods

There is a class of algorithms whose output can be cast as a function of the
inner product with instances in the data: fθ(xi) = gθ(

{
xT
j xi

}
) with xj ∈ D.

The inner product here can be seen as a measure of similarity between xj

and xi, but it may be the case that two points are very similar in the input
space X despite having a large difference in the output space (or belonging to
different classes): yj ̸= yi, x

T
j xi ≤ δ. A powerful extension is to use a map

ϕ : X → X ′ to project the data into a higher dimensional space where the data
dissimilarity becomes more clear, that is, to use fθ(xi) = gθ

({
ϕ(xj)

Tϕ(xi)
})

with xj ∈ D.
We can define a function designed to measure the similarity between two points
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called a kernel k(xj ,xi), and if this function is positive definite, then the map
ϕ exists and the kernel is given by k(xj ,xi) = ϕ(xj)

Tϕ(xi). The significance
of this result is that a kernel can be specified to measure similarity in a higher
dimensional space, and the points are projected to this space without the
need to explicitly compute the projection. In the case of the gaussian kernel:

k(xj ,xi) = e
(xi−xj)

2

2σ2 , it can be shown that the data is mapped into an infinite
dimensional space.

1.3 Thesis Outline

1.3.1 Part I: Applied Machine Learning in Clinical
Research

In the first part of this thesis, we demonstrate how Machine Learning can be
used to improve CVD prediction compared to the clinically used algorithms.
In chapter 2, we use tree-based gradient boosting techniques trained on
targeted proteomics to predict primary events which resulted in improved
accuracy compared to the clinical risk model. We then extend these results to
a secondary prevention setting in chapter 3. Finally, in chapter 4 we adopt a
systems biology approach to heart failure prediction by using a model trained
on clinical phenotypic markers, proteomics, transcriptomics and genetic data
and explore the implied biological pathophysiology.
Over the course of these projects, we considered other ways in which we
could use ML to advance medical research. This endeavor resulted in novel
algorithms which we discuss in part II of this thesis.

1.3.2 Part II: Novel Machine Learning Algorithms for
Clinical Research

Domain Knowledge Integration

Following the extensive use of proteomics in the clinical projects, we
decided to develop a way to incorporate domain knowledge on protein-protein
interactions to further improve prediction. Because medical data is often short
on individual samples and large in random variables M << N , introducing
prior knowledge into the learning pipeline to constrain the learning problem
can be beneficial for many classes of algorithms. Thus, in chapter 5 we
present a novel graph kernel (see section 1.2.4) to incorporate protein-protein
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interactions and demonstrate its superior performance compared to the same
algorithm trained on the dataset alone.

Multi-Domain learning

In chapters 2 and 3 we show the added benefit of using targeted plasma
proteomics for event prediction, while in chapter 4 we show further
improvement by taking a multi-domain approach. To circumvent the issues
raised by different domain statistical properties, we used an approach called
stacking Wolpert (1992). In the stacking framework, the data is first passed
to a layer of independent models whose predictions are then used to train a
meta-model that learns how to optimally combine the first layer’s predictions.
This model can itself be a stacking model and so the final prediction becomes:
f(x) = p

(
y|gL1 (x), ..., gLWL

(x),θL+1
)
, where gLWL

is the model at the final
layer L, WL is the number of models in this layer and each intermediate
layer model is defined as gki (x) = p

(
y|gk−11 (·), ..., gk−1Wk

(·),θk
i

)
, k ∈ [1, L]. In a

multi-domain setting, one can pass each domain dataset to a different model
in the base layer: g0i (x) = p

(
y|xi,θ0

i

)
, so that the width of the first layer W0

is equal to the number of domains M .
Viewing biological systems as stacked layers of connected information is more
likely to produce fruitful models though, and thus we would like to use all the
modalities while considering their interactions. In chapter 6, we describe a
method that uses the topology of each domains’ data to induce deformations
in the other related modalities, effectively tying the different layers together.

Feature importance

One of the core goals in medical research is to identify the main drivers
of a particular disease. Traditionally, the isolated influence of each
variable on the input was inspected via the coefficients of linear regression
f(x) =

∑N
i=1 α + βi · xi. In this scenario, it is easy to interpret the influence

of each random variable since ∂f(x)
∂xi

= βi and thus one unit change in xi
causes a change of magnitude βi in the output. One of the hardest challenges
in applying ML methods in biological data is the number of high order
non-linear interactions between the features, that is, the outcome cannot
be decomposed into functions of individual features as in Y =

∑N
i=1 fi(Xi)

but rather depends on multi-feature functions like Y =
∑|C|

i=1 fi(Xci) with
C = {c1, ..., c|C|} and ci ⊂ {1, ..., N}. This warrants the use of sophisticated
models, which generally comes at the expense of model transparency. In
chapters 2 and 3 we used tree-based models which implicitly compute feature
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importance by determining the optimal features to split the data. However,
in chapter 4 we make use of a stacked model which obscures how much the
model relies on each feature. To address this problem, global or local post-hoc
methods like permutation importance Breiman (2001) or LIME Ribeiro,
Singh, and Guestrin (2016) can be employed. Local methods address the
problem of explaining what the model is doing for a particular instance while
global methods try to estimate which are the most important variables for the
model prediction. In chapter 5, we describe an extension of LIME to explain
local model behavior in higher dimensional spaces.
Despite the intuitiveness and wide application of permutation importance, it
produces biased results when the variables are highly correlated. In chapter 7
we describe how permuting correlated features together can correct this issue,
but it is an incomplete solution since biological systems are characterized
by interactions between more than two variables. Recent extensions to
the popular importance method SHAP Štrumbelj and Kononenko (2014);
Covert, Lundberg, and Lee (2020) take into account all interactions but
they are very computationally expensive and they are still not completely
bias free. In chapter 8, we describe a truly unbiased, model-agnostic, global
feature importance method which considers all feature interactions with a
fast computing time.



Part I

Applied Machine Learning
in Clinical Research

9





2
Improved cardiovascular

risk prediction using
targeted plasma

proteomics in primary
prevention

Renate M Hoogeveen*, João P Belo Pereira*, Nick S Nurmohamed,
Veronica Zampoleri, Michiel J Bom, Andrea Baragetti, S Matthijs Boekholdt,

Paul Knaapen, Kay-Tee Khaw, Nicholas J Wareham, Albert K Groen,
Alberico L Catapano, Wolfgang Koenig, Evgeni Levin, Erik S G Stroes

*Both authors contributed equally to this work

European Heart Journal, Volume 41, Issue 41, 1 November 2020, Pages
3998–4007, https://doi.org/10.1093/eurheartj/ehaa648

11



12 CHAPTER 2. PRIMARY PREVENTION

2.1 Abstract

Aims

In the era of personalized medicine, it is of utmost importance to be able
to identify subjects at the highest cardiovascular (CV) risk. To date, single
biomarkers have failed to markedly improve the estimation of CV risk. Using
novel technology, simultaneous assessment of large numbers of biomarkers
may hold promise to improve prediction. In the present study, we compared
a protein-based risk model with a model using traditional risk factors in
predicting CV events in the primary prevention setting of the European
Prospective Investigation (EPIC)-Norfolk study, followed by validation in the
Progressione della Lesione Intimale Carotidea (PLIC) cohort.

Methods and results

Using the proximity extension assay, 368 proteins were measured in a nested
case–control sample of 822 individuals from the EPIC-Norfolk prospective
cohort study and 702 individuals from the PLIC cohort. Using tree-based
ensemble and boosting methods, we constructed a protein-based prediction
model, an optimized clinical risk model, and a model combining both. In
the derivation cohort (EPIC-Norfolk), we defined a panel of 50 proteins,
which outperformed the clinical risk model in the prediction of myocardial
infarction [area under the curve (AUC) 0.754 vs 0.730; p < 0.001] during a
median follow-up of 20 years. The clinically more relevant prediction of events
occurring within 3 years showed an AUC of 0.732 using the clinical risk model
and an AUC of 0.803 for the protein model (p < 0.001). The predictive value
of the protein panel was confirmed to be superior to the clinical risk model in
the validation cohort (AUC 0.705 vs 0.609; p < 0.001).

Conclusion

In a primary prevention setting, a proteome-based model outperforms a model
comprising clinical risk factors in predicting the risk of CV events. Validation
in a large prospective primary prevention cohort is required to address the
value for future clinical implementation in CV prevention.
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2.2 Introduction

Identification of asymptomatic people at the greatest cardiovascular (CV)
risk remains a major challenge in primary prevention.Yusuf et al. (2014);
Fernández-Friera et al. (2017) Clinically used risk algorithms, including the
Framingham risk score, pooled cohort equations, and Systemic Coronary
Risk Evaluation (SCORE) system, are based on traditional risk factors
for CV disease and predict future events with limited accuracy.Piepoli
et al. (2016); Goff et al. (2014) Accordingly, a substantial proportion of
the general population at risk remains unidentified until their first clinical
event.Fernández-Friera et al. (2017) Despite adding individual plasma
biomarkers such as pro-brain natriuretic peptide (BNP), high sensitivity
troponins, and high sensitivity C-reactive protein (CRP) to clinical risk
engines, the overall improvement has been limited.Piepoli et al. (2016) This
may be explained by the fact that the vast majority of single markers are
selected based on specific pathophysiological concepts, which do not reflect
the true complexity of atherosclerosis. In fact, CV risk is the result of an
interplay between comorbidities (chronic inflammatory diseases, metabolic
derangements) and exogenous risk factors, propagated by a variety of
pathophysiological axes, comprising but not limited to lipids, coagulation,
and inflammation.Hoogeveen et al. (2018)

Simultaneous assessment of a large number of plasma proteins may hold
a promise to further refine risk assessment.Lindsey et al. (2015) To this
end, either discovery proteomics, aiming to identify new diagnostic markers
or therapeutic targets, or targeted proteomics, aimed at quantification of
proteins of specific interest, can be applied.Lindsey et al. (2015) Widespread
use of proteomics has been precluded by labour intensiveness, high costs,
and the complex clinical interpretation of the bulky results. More recently,
these limitations have largely been resolved. Technical advances now
allow for high-throughput proteomic analysis in a reproducible and cost-
effective manner.Assarsson et al. (2014) In parallel, advanced computational
modelling has facilitated the interpretation of large data sets for clinical
implementation.Deo (2015); Rajkomar, Dean, and Kohane (2019) Using these
innovations, a targeted protein panel was found to modestly improve the
prediction of incident atherosclerotic CV disease in primary prevention,Yin
et al. (2014) whereas Ganz et al.Ganz et al. (2016) substantiated that targeted
proteomics also outperformed refit Framingham in predicting recurrent
coronary events. In support, we recently identified two complementary
protein signatures predicting the presence of high-risk plaque and the absence
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of coronary atherosclerosis in subjects referred for the analysis of anginal
complaints,Danad et al. (2017) clearly outperforming the traditional risk
algorithm.Bom et al. (2019)

In the present study, we hypothesized that a protein-based risk model can
outperform prediction using traditional risk factors in the primary prevention
setting. Therefore, we tested the ability of a targeted proteomics panel
comprising 368 proteins, related to pathways and/or risk factors involved in
atherogenesis, to predict CV event risk in a nested case–control sample of the
European Prospective Investigation (EPIC)-Norfolk population study,Day
et al. (1999) using advanced machine learning techniques. The findings
were subsequently validated in the independent, external primary prevention
cohort [Progressione della Lesione Intimale Carotidea (PLIC)].Olmastroni
et al. (2019)

2.3 Methods

2.3.1 Study populations

The derivation cohort was a nested case–control sample derived from the
EPIC-Norfolk prospective population study, comprising 25633 individuals
recruited from general practices in the Norfolk area, UK.Day et al. (1999)
Study participants aged between 39 and 79 years were enrolled between 1993
and 1997. At baseline, patients completed general health questionnaires and
a panel of measurements was performed. During follow-up, all individuals
were flagged for mortality at the UK Office of National Statistics and vital
status was ascertained for the entire cohort. Data on all hospital contacts
throughout England and Wales were obtained using National Health Service
numbers through linkage with the East Norfolk Health Authority (ENCORE)
database. Hospital records and death certificates were coded by trained
nosologists and categorized according to the International Classification of
Disease 10th revision (ICD-10). The study protocol was approved by the
Norwich District Health Authority Ethical Committee. All individuals gave
written informed consent. For the current study, we selected 822 apparently
healthy individuals in a nested case–control sample from the EPIC-Norfolk
study. Apparently healthy individuals were defined as study participants
who did not report a history of CV disease. A total of 411 individuals who
developed an acute myocardial infarction (either hospitalization or death
with ICD code I21-22 coded as the underlying cause) between baseline and
follow-up through 2016 were selected together with 411 apparently healthy
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individuals who remained free of any CV disease during follow-up (Figure
2.1).Boekholdt et al. (2004); Saleheen et al. (2015)

Figure 2.1: Machine learning workflow of model construction and validation.
AHT med, antihypertensive medication; BMI, body mass index; CV,
cardiovascular; EPIC, European Prospective Investigation; HDL-C, high-
density lipoprotein cholesterol; PLIC, Progressione della Lesione Intimale
Carotidea; SBP, systolic blood pressure; TC, total cholesterol; TG,
triglycerides.

2.4 Introduction

The validation cohort was the PLIC cohort, a single-centre, observational,
cross-sectional, and prospective study of subjects enrolled on a voluntary
basis in 1998–2000 and followed for 11 years on average in the northern area
of Milan.Olmastroni et al. (2019) The 2606 Caucasian subjects who were
enrolled in the study underwent four periodic visits. Data about clinical,
pathological, familial, and pharmacological history and lifestyle habits were
collected based on medical records and self-reporting during these visits.
Blood samples were withdrawn, and subjects underwent carotid ultrasound
to assess the presence or absence of carotid vascular damage. The presence
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of documented stenosis or vascular damage on aorta and limb arteries was
included in the definition of subclinical atherosclerosis. For the validation
cohort, 702 subjects were selected, of whom 351 developed atherosclerosis,
comprising subclinical atherosclerosis and 44 subjects who suffered from a
CV event, and 351 gender-matched controls during follow-up (Figure 1).
Cardiovascular events were defined as a combined endpoint of coronary heart
disease (myocardial infarction, unstable angina, coronary revascularization,
silent ischaemia) and cerebrovascular disease (ischaemic stroke and transient
ischaemic attack). This study was approved by the ethics committee and was
performed in accordance with the Declaration of Helsinki. All participating
subjects signed informed consent.

2.4.1 Biochemical analyses

In EPIC-Norfolk, non-fasting blood was drawn at baseline from study
participants, from which total cholesterol, high-density lipoprotein (HDL)
cholesterol, and triglycerides were determined with the RA1000 analyser
(Bayer Diagnostics, Basingstoke, UK). The Friedewald formula was used for
the calculation of low-density lipoprotein (LDL) cholesterol levels.Friedewald,
Levy, and Fredrickson (1972) After blood withdrawal, ethylene diamine tetra
acetic acid (EDTA) samples were kept overnight at room temperature before
transporting to the EPIC-Norfolk laboratory for centrifugation. Hereafter,
the remaining plasma was stored at -80◦C for future analyses.

In the PLIC cohort, blood samples were collected after overnight fasting.
Samples were kept on ice after blood withdrawal and centrifuged within 1 h
at 3000 rounds per minute for 12min (Eppendorf 5810R centrifuge). Plasma
samples were subsequently stored in 200 µL aliquots at -80◦C. Since multiple
aliquots were stored, multiple freeze/thaw cycles were prevented. Total
cholesterol, HDL cholesterol, triglyceride and glucose levels were determined
in serum samples with the Cobas Mira Plus Analyser (Horiba, ABX, France).
Again, the Friedewald formula was used for the calculation of LDL cholesterol
levels.Friedewald, Levy, and Fredrickson (1972)

In 2019, we selected cases and controls from both cohorts, whereupon
aliquots were thawed and plasma was transferred, on ice, to 96-well plates.
The 96-well plates were shipped to Olink proteomics AB (Uppsala, Sweden)
on dry ice for analysis using the proximity extension assay technology. Levels
of 368 proteins were measured from the CV II, CV III, Cardiometabolic, and
Inflammation panels. These panels were selected for their known associations
with CV disease. Cases and controls were randomly distributed across plates
and assays were performed in a blinded fashion. Data are Normalized Protein
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eXpression values. Using an internal extension control and an interpolate
control, data quality is controlled and normalized. All assay validation data
are available on the manufacturer’s website (www.olink.com).

2.4.2 Statistical analysis

Data are presented as mean ± standard deviation for normally distributed
variables or median with inter-quartile range for skewed data. Categorical
variables are expressed as absolute number and percentages. Independent
sample t-tests and Mann–Whitney U tests were used where appropriate. Two-
sided p-values ≤ 0.05 were considered statistically significant. Data were
analysed using R version 3.5.1 (R Foundation, Vienna, Austria).

2.4.3 Model construction

A combination of stacking generalization framework,Wolpert (1992); Caruana
et al. (2004) tree-based ensemble methods, and multiple gradient boosting
classifiersChen and Guestrin (2016) was used to best discriminate between
cases and controls. Using these techniques, explained in detail below,
different models were constructed. First, a clinical risk model was built. The
clinical risk model included parameters of different validated risk scores, the
Framingham Risk Score, pooled cohort equations, and SCORE. Parameters
included in the clinical risk model were age, gender, body mass index,
systolic blood pressure, smoking status, and presence of diabetes, the use of
antihypertensive medication, total cholesterol levels, HDL cholesterol levels,
and triglyceride levels. Second, a protein-based model was constructed using
the measured plasma proteins only. A third model was formed by stacking
the clinical risk parameters with the protein parameters. The proteins and
clinical parameters were allowed to compete in the formation of this model.
All three models were validated in the validation cohort without adjustments.

Next, considering the long-term follow-up of subjects and the fact that
proteins are subject to change due to lifestyle and medical interventions, we
assessed the optimal time point of prediction of acute myocardial infarction in
the derivation cohort using Markov-Chain Monte Carlo techniques. For this
optimal time point of prediction, similar to the long-term modelling, a clinical
risk model, protein model, and a combined model were formed. Specifically
for this time point, we calculated the net reclassification improvement (NRI)
as described by Pencina et al.Pencina, D’Agostino, and Steyerberg (2011) for
case–control studies. Theretofore, we used the acute myocardial infarction
prevalence of the total EPIC-Norfolk cohort in the same period.

www.olink.com


18 CHAPTER 2. PRIMARY PREVENTION

In addition, we constructed survival models for both the protein model and
the clinical risk model in the derivation cohort, to compare model performance
across all possible time points. This time-to-event analysis was performed
using identical machine learning techniques as the binary models, with the
implementation of a survival loss function. Inverse probability of censoring
weighting was used to cope with the right-censored data.Vock et al. (2016)
Using these survival models, time-dependent area under the curves (AUCs)
were calculated with a 2-year interval starting from 3 years up to the median
follow-up of 20 years.

2.4.4 Machine learning techniques

All binary models were constructed using the same machine learning
techniques (Figure 1). First, to avoid overfitting of the models, the derivation
data set was split into two sets: a training set of 80% and a test set of 20%.
The model was not exposed to data from the 20% test set; this was only used
for the performance measurements. Ten percentage of the 80% training set
was used for model refinement before the model performance was tested in the
test set. In construction of the models and identification of the most reliable
biomarker signature in our datasets (both proteomics and clinical), we used
stability selection with extreme gradient boosting. Gradient boosting is a
statistical learning technique, which produces a non-linear model in the form
of an ensemble of weak prediction tree-based models. It builds the model
in a stage-wise fashion, and it generalizes them by allowing optimization
of an arbitrary differentiable loss function. The extreme gradient boosting
classification algorithm optimizes a cost function by iteratively choosing
a weak hypothesis that points in the negative gradient direction.Caruana
et al. (2004); Chen and Guestrin (2016) Using a fivefold cross-validation by
random reshuffling of the training set, overfitting was avoided. For increased
confidence, this procedure was repeated multiple times on a completely
reshuffled dataset. Furthermore, the method was coupled with a rigorous
stability selection procedure to ensure the reliability and robustness of
the obtained parameters.Meinshausen and Bühlmann (2010) Finally, we
applied a permutation (randomization test) to evaluate statistical validity of
the results,Marques et al. (2010) since standard univariate significance tests
cannot be applied to the used models due to the large number of features. The
permutation test comprised 1000 reruns of the model, every time randomly
permuting the output variable (presence/absence of the event). By evaluating
the distribution of all the results obtained in these simulations and comparing
it to the true outcomes, we computed statistical significance associated with
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the joint panel of the selected markers. We also reported importance scores for
each of the proteins that demonstrate preferences of model when constructing
non-linear prediction function based on the selected biomarkers. Python
version 3.7 (www.python.org), with packages Numpy, Scipy, and Scikits-learn,
was used for machine learning models and visualizations.

2.5 Results

2.5.1 Study populations

Baseline characteristics of individuals from the derivation and validation
cohort are provided in Table A.1. In short, cases in the derivation cohort
were more likely to have traditional risk factors for CV disease (older,
more likely male, smokers and had higher blood pressure and cholesterol
levels). In the validation cohort, cases were more likely to be older, to
smoke, and have high blood pressure. In all participants, 368 preselected
proteins were measured; proteins were excluded if ≥ 90% of the values
were below lower limit of detection. Due to the latter and overlap
between the panels, the final analysis included 333 unique proteins (we
refer the reader to the Supplementary material, Table S1 found online in
https://doi.org/10.1093/eurheartj/ehaa648).

2.5.2 Prediction of acute myocardial infarction

Prediction of myocardial infarction using a machine learning model consisting
of 50 plasma proteins over a median follow-up of 20 years resulted in an
receiver operating characteristic (ROC) AUC of 0.754 ± 0.011 (permutation
test p = 0.0099; Figures 2.2 and 2.3A and Table 2.1). In comparison, the use of
the clinical risk model resulted in an ROC AUC of 0.730 ± 0.015 (permutation
test p = 0.0099). Combining the protein panel with clinical risk model
resulted in an ROC AUC of 0.764 ± 0.015 (permutation test p = 0.0099).
The biomarker model was superior to the clinical risk model (p < 0.001).
The combined protein and clinical risk model showed a small incremental
AUC of 0.01 in comparison with the protein model alone. Using Markov-
Chain Monte Carlo techniques, the optimal time point for prediction was
found at 1132 days (∼3 years), which included 66 acute myocardial infarctions
and all 411 non-myocardial infarction controls. Of the 50 proteins that were
selected for the ∼3 years prediction model, 33 overlapped with the original
20 years model (Supplementary material online, Figure A.1). Focusing on the

www.python.org
https://doi.org/10.1093/eurheartj/ehaa648
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events occurring within ∼3 years after baseline blood withdrawal, the ROC
AUC increased to 0.803 ± 0.093 (permutation test p = 0.0145; Figure 3B), as
opposed to 0.732 ± 0.164 (permutation test p = 0.0099) using the clinical risk
model. The combination of the protein and clinical risk parameters resulted
in an ROC AUC of 0.808 ± 0.085 (permutation test p = 0.0178). Now, the
biomarker model was superior to the clinical risk model with an incremental
AUC of 0.07 (p = 0.025) but not to the combination of the protein and
clinical risk model (p = 0.721). For the short-term prediction, the NRI of
the protein model in comparison to the clinical risk model was 6.6%. In the
survival analysis, the protein model resulted in a mean time-dependent AUC
of 0.717 ± 0.027, which was superior across all time points compared to the
clinical risk model mean AUC of 0.653 ± 0.031 (p < 0.001; Supplementary
material online, Figure A.2).

Figure 2.2: Importance plot of proteins. Relative importance of 50 proteins
predictive in derivation cohort.
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Figure 2.3: Receiver operating characteristics of prediction models. (A)
Prediction of events with protein, clinical risk, and combined model in
derivation cohort. (B) Short-term prediction (<3 years) of events with protein,
clinical risk, and combined model in derivation cohort. (C) Prediction of events
with protein, clinical risk, and combined model in validation cohort. AUC, area
under the curve; ROC, receiver operating characteristic.

Derivation cohort Derivation (<3 years) Validation cohort

Protein model 0.754± 0.011 0.803± 0.093 0.705± 0.071
Clinical risk model 0.730± 0.015 0.732± 0.164 0.609± 0.057
Combined model 0.764± 0.015 0.808± 0.085 0.692± 0.090

Table 2.1: Average receiver operating characteristics area under the curve of
the prediction models.

2.5.3 Validation of the predictive value

We validated the discriminatory ability of the 50 proteins from the derivation
cohort in the validation cohort. First, we investigated the ability of the
proteins to predict subclinical atherosclerosis. The prediction was relatively
poor with an ROC AUC of 0.648 ± 0.056 (permutation test p = 0.0297;
Supplementary material online, Figure A.3). When validating the proteins
in the 44 participants who suffered from CV events vs. the 351 participants
with no signs of atherosclerosis, the protein model resulted in an ROC AUC
of 0.705 ± 0.071 (permutation test p = 0.0099; Figure 3C), compared to the
clinical risk model ROC AUC 0.609 ± 0.057 (permutation test p = 0.0700;
Table 2.1). The protein model was significantly better than the clinical risk
model in the validation cohort (p < 0.001). The combined protein and
clinical risk model resulted in an ROC AUC of 0.692 ± 0.090 (permutation test
p = 0.0099), which was not better than the protein model alone (p = 0.618).
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Figure 2.4: Take-home figure: Derivation and validation of a plasma
proteomic model improves cardiovascular risk prediction in a primary
prevention setting, demonstrating the potential of a proteomics panel to
further refine risk assessment. CV, cardiovascular; NPX, Normalized Protein
eXpression; PEA, proximity extension assay.

2.6 Discussion

Using targeted proteomics, we show that a panel of 50 proteins outperforms the
clinical risk model in predicting the risk of myocardial infarction (< 3 years)
in a primary prevention setting with an AUC increase in the ROC curve of
0.07. Improvement in predicting CV events during the entire (median) 20-year
follow-up period was significant, albeit modest. In an external independent
validation cohort, the predictive value of the protein panel for CV events was
confirmed and superior to the clinical risk model (incremental AUC 0.10).
Survival analysis showed superiority of the protein model to the clinical risk
model at all tested time points (p < 0.001). Collectively, these data show
that a novel proteomic panel offers a significant improvement in CV risk
discrimination compared to a clinical risk model based on traditional risk
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factors (Figure 2.4)

2.6.1 Protein-based risk prediction outperforms traditional
risk factors

We substantiate the predictive value of a panel comprising 50 proteins for
a first MI with an ROC AUC of 0.754 ± 0.011, using targeted proteomics.
Although outperforming the prediction by the clinical risk model (p < 0.001),
the AUC increase of 0.02 is very modest. Interestingly, the prediction of
earlier MI (within 3 years after baseline blood sampling) using the plasma
protein panel performed better, with an incremental ROC of 0.07. Where
genetic prediction models are advocated to predict lifelong risk, the ability
of our protein model particularly in shorter-term risk prediction most likely
highlights the property of plasma proteomics to reflect a more proximate
timeframe. Confronted with continuous changes in lifestyle as well as medical
interventions during the course of a life, repeated proteome-based risk
estimation as a ‘liquid health check’ may help to further improve lifetime risk
estimation.Williams et al. (2019) The prediction of predominantly short-term
MI substantiates our previous findings that proteomics also predicts the
presence of high-risk plaques in patients, which are closely associated with an
increased risk for ensuing MI.Nerlekar et al. (2018) Previous cohort studies
have also reported benefit of proteins in risk prediction. The Framingham
Heart Study investigators evaluated a panel of 85 plasma proteins in relation
to CV events in primary care setting.Ho et al. (2018) Using a multi-marker
analysis, they reported eight biomarkers predictive for incident CVD, which
on top of clinical parameters achieved an ROC of 0.758. These data are in
line with data reported for the prediction of recurrent coronary events, where
a panel of 9 out of 1130 proteins modestly improved risk prediction (AUC
0.70) compared to the clinical risk algorithm (AUC 0.64).Ganz et al. (2016)

2.6.2 Proteins predictive of cardiovascular events

Based on previous findings,Bom et al. (2019) we used targeted proteomics
using proteins relating to cardiometabolic disease, CV disease, and
inflammation/immune responses. The majority of proteins in our model
were related to immune system response; particularly proteins involved in
chemotaxis, migration, apoptosis, and angiogenesis. Most of the proteins
found to predict early vs. all events overlapped (33/50). Several proteins
merit further attention considering their marked contribution to the final
model. Growth Differentiation Factor 15 (GDF-15) was the protein with the
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largest contribution. In chronic diseases, GDF-15 produced by leukocytes has
been shown to enhance inflammation.Kempf et al. (2011) Other prominent
candidates involve the N-terminal pro-B-type natriuretic peptides and
BNP, which are established markers for heart failure and predictors of CV
events.Wang et al. (2006) There is also a preponderance of inflammatory
proteins, comprising metalloproteinase-12 (MMP-12), TRAIL receptor 2 and
interleukin-6. These proteins, involved in matrix degradation, apoptosis and
inflammation induction, reflect major pathways contributing to atherosclerotic
lesion formation and destabilization. Interestingly, there is clear overlap in
proteins and pathways when comparing our data to previous CVD-proteomic
studies. Thus, GDF-15 was also identified as a predictive candidate in previous
studies.Bom et al. (2019); Ho et al. (2018); Lind et al. (2015) Similarly, the
relevance of plasma MMP12Ganz et al. (2016); Bom et al. (2019); Stenemo
et al. (2018); Nowak et al. (2018) and various chemo/cytokinesHo et al.
(2018); Lind et al. (2015); Nowak et al. (2018) underscore consistency between
these studies.

2.6.3 Validation in the Progressione della Lesione
Intimale Carotidea cohort

Validation of our findings was performed in the primary prevention PLIC
cohort, in which both repetitive non-invasive measures for atherosclerosis and
CV events were collected during an 11-year follow-up.Olmastroni et al. (2018)
The 50-protein model from the derivation cohort showed reasonable prediction
of CV events with an ROC AUC of 0.705 ± 0.071, with an incremental AUC
of 0.10 compared to the clinical risk model in the PLIC cohort (ROC AUC of
0.609 ± 0.057). We also assessed the value of the proteomic model to predict
the presence of subclinical atherosclerotic lesions assessed using ultrasound,
revealing an ROC AUC of 0.648 ± 0.056. The failure of plasma proteomics
to accurately predict the presence of subclinical atherosclerosis is in line with
the findings in the derivation cohort, where the protein signature performed
better for early/mid-term CV events than for long-term events.

2.6.4 Clinical perspective

In previous studies, adding single plasma markers to clinical risk algorithms
resulted in only a modest improvements of risk prediction.Force et al.
(2018); Mortensen et al. (2018) Here, we report a marked improvement in
CVD risk prediction using a targeted proteomics approach. The hurdles
for using proteomic panels in clinical practice have been largely removed
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with the advent of affordable high-throughput technology requiring only
minimal amounts of plasma. More importantly, machine learning technology
further facilitates the use of complex, massive data (such as proteomics) in
clinical decision making.Deo (2015); Rajkomar, Dean, and Kohane (2019)
The need for better discrimination of subjects at highest CV event risk
is underscored by the advent of expensive medication in CVD preventive
therapy beyond generic statins, among which PCSK9-antibodies,Schwartz
et al. (2018); Sabatine et al. (2017) low-dose Xa inhibition,Eikelboom et al.
(2017) SGLT2 inhibitors,Perkovic et al. (2019); Wiviott et al. (2019) and
GLP1 agonists.Husain et al. (2019); Marso et al. (2016) Whereas a high-risk
proteomic panel holds a promise to help identify higher-risk subjects, it is
tempting to speculate that pathway analysis of the proteomic signature may
also allow for the guidance of what medication to use in specific patient
categories.Lindsey et al. (2015) This concept is underscored by the CANTOS
study, where predominantly CRP responders demonstrated CV benefit of
interleukin 1 beta-antibody administration.Ridker et al. (2017a) However,
this concept needs further validation with special emphasis on relationships
between biomarkers and protein network analysis.Lindsey et al. (2015);
Johnson et al. (2018) Hypothetically, the development of a targeted-proteomic
based risk score might enable a more patient-tailored approach for the primary
prevention of CV events.

2.6.5 Strengths and limitations

The combination of proteomics with machine learning technology is highly
promising.Deo (2015); Rajkomar, Dean, and Kohane (2019) Machine learning
technology can process data that surpasses the capacity of traditional statistics
and the human brain to comprehend.Rajkomar, Dean, and Kohane (2019) One
of the most important differences is that our predictive machine learning model
is based on multiple proteins in a panel, which collectively leads to a reliable
prediction. Using machine learning, non-linear relationships and interactions
among proteins are taken into account, in contrast to univariate models that
only address up- and/or down-regulation of individual proteins. In the current
analyses, we refitted the clinical risk factors from the Framingham risk score
and SCORE to best fit our cohort data, aiming to improve the performance
of traditional risk factors. By applying analogous machine learning methods
for the traditional risk factors, the observed superiority of our protein model
over the clinical risk model is distinct.

Several potential limitations deserve closer attention. First, the cohorts
used in this study were collected over a decade ago. Over the years, risk



26 CHAPTER 2. PRIMARY PREVENTION

factor management has improved, plaque characteristics have altered, and
patient characteristics have changed.van Lammeren et al. (2014) Second, our
validation cohort had a limited number of CVD events. However, validation of
our protein model on these events was reasonable and the model outperformed
the clinical risk model in the validation cohort, in an even stronger manner
than in the derivation cohort. Third, we used targeted rather than untargeted
proteomics in our study. Proteins were preselected as potential biomarkers for
CV disease, since clinical verification, rather than protein discovery was the
goal in our study. Despite analysing a broad range of proteins, we may have
missed other predictors of CV event risk due to the use of targeted proteomics
only. As a result, we may have underestimated the true potential of proteomics
in CV risk estimation. Fourth, in contrary to other primary prevention risk
scores such as the Pooled Cohort Equation,Goff et al. (2014) our constructed
models do not predict lifetime risk, which could be useful in primary prevention
patients characterized by a relatively low short-term CV risk, such as in
subjects below 50 years of age. However, in the present study, we preferred
shorter-term prediction for several reasons. Most importantly, the mean age of
both our derivation and validation cohorts was well above the age of 50 years,
resulting in a higher short-term risk even in primary prevention. Furthermore,
diagnostic improvement in detecting high-risk patients is currently needed to
make decisions on initiating novel medication on top of routine regimens, and
for these decisions, relatively short-time horizons are routinely used. Fifth,
the samples in the derivation cohort were non-fasting, while the samples in the
validation cohort were collected after an overnight fast. Despite this difference,
the protein model performed comparable in the validation cohort. Finally, the
current analyses were performed in subjects primarily from European ancestry.
Hence, the predictive power remains to be validated in different ethnicities.

2.7 Conclusions

In primary prevention, proteome-based risk prediction significantly
outperforms prediction using clinical risk factors in predicting the risk
of acute myocardial infarction and CV events, especially in the first 3 years.
In the midst of novel, expensive drugs, prediction of individual CVD risk and
treatment benefit is increasingly important. Further large prospective studies
will have to determine the true value of proteome-based risk scores in primary
prevention.
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3.1 Abstract

Aims

Current risk scores do not accurately identify patients at highest risk of
recurrent atherosclerotic cardiovascular disease (ASCVD) in need of more
intensive therapeutic interventions. Advances in high-throughput plasma
proteomics, analysed with machine learning techniques, may offer new
opportunities to further improve risk stratification in these patients.

Methods and results

Targeted plasma proteomics was performed in two secondary prevention
cohorts: the Second Manifestations of ARTerial disease (SMART) cohort
(n=870) and the Athero-Express cohort (n=700). The primary outcome
was recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and
cardiovascular death). Machine learning techniques with extreme gradient
boosting were used to construct a protein model in the derivation cohort
(SMART), which was validated in the Athero-Express cohort and compared
with a clinical risk model. Pathway analysis was performed to identify
specific pathways in high and low C-reactive protein (CRP) patient subsets.
The protein model outperformed the clinical model in both the derivation
cohort [area under the curve (AUC): 0.810 vs. 0.750; p < 0.001] and
validation cohort (AUC: 0.801 vs. 0.765; p < 0.001), provided significant
net reclassification improvement (0.173 in validation cohort) and was well
calibrated. In contrast to a clear interleukin-6 signal in high CRP patients,
neutrophil-signalling-related proteins were associated with recurrent ASCVD
in low CRP patients.

Conclusion

A proteome-based risk model is superior to a clinical risk model in predicting
recurrent ASCVD events. Neutrophil-related pathways were found in low
CRP patients, implying the presence of a residual inflammatory risk beyond
traditional NLRP3 pathways. The observed net reclassification improvement
illustrates the potential of proteomics when incorporated in a tailored
therapeutic approach in secondary prevention patients.
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Key question

Does targeted plasma proteomics improve cardiovascular risk prediction
in secondary prevention patients? Are different pathways contributing to
cardiovascular risk in high and low C-reactive protein (CRP) patients?

Key finding

Cardiovascular risk prediction with targeted plasma proteomics outperformed
prediction with clinical risk factors resulting in major net reclassification
improvement. Neutrophil-signalling-related proteins were associated with
cardiovascular events in low CRP patients.

Take-home message

Routine implementation of a targeted protein panel in cardiovascular risk
prediction holds promise to improve risk stratification in secondary prevention.
The involvement of neutrophil-related pathways in low CRP patients indicates
residual inflammatory risk beyond NLRP3.

3.2 Introduction

The residual burden of atherosclerotic cardiovascular disease (ASCVD)
remains large, despite the use of guideline-based preventive medication.Jernberg
et al. (2015) The successful introduction of novel agents, comprising proprotein
convertase subtilisin-like/kexin type 9 inhibitors,Sabatine et al. (2017);
Schwartz et al. (2018) low-dose oral anticoagulants,Eikelboom et al. (2017)
sodium-glucose cotransporter 2 inhibitors,Zinman et al. (2015) glucagon-like
peptide-1 agonists,Marso et al. (2016); Husain et al. (2019) anti-inflammatory
agents,Nidorf et al. (2020); Ridker et al. (2017a) and icosapent ethyl,Bhatt
et al. (2019) offers an opportunity to further reduce the burden of recurrent
ASCVD risk. However, the expanding choice of novel agents has also
underscored the need to implement cost-effective therapeutic regimes, which
mandates more accurate identification of patients at highest risk in order
to solidify the highest absolute ASCVD benefit.Annemans et al. (2018)
Epidemiological surveys have demonstrated a highly variable residual risk in
patients with established ASCVD ranging from <5% to a more than 40%
10-year recurrence risk.Kaasenbrood et al. (2016) Clinical characteristics
included in traditional risk prediction scores poorly discriminated individual
recurrence of ASCVD,Jensen (2016) attested by the modest c-statistic of
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0.64 [95% confidence interval (CI) 0.63 − 0.65] of the Second Manifestations
of ARTerial disease (SMART) score in three independent secondary
prevention cohorts.Kaasenbrood et al. (2016) RidkerRidker (2016, 2018) has
argued to use C-reactive protein (CRP) as stratifying marker in order to
identify residual inflammatory risk; however, it remains a matter of debate
whether CRP reflects the entirety of inflammatory responses involved in
atherogenesis.Soehnlein and Libby (2021) Therefore, improved methods to
identify patients at highest recurrence risk are needed to help guide ASCVD
risk-based therapeutic decisions.
Protein-based risk scores hold a major promise to improve ASCVD risk
prediction, since proteins are not only influenced by the genetic background of
an individual, but can also reflect adverse changes due to lifestyle alterations
and specific pathways contributing to ASCVD risk.Williams et al. (2019);
Lindsey et al. (2015) Improvements in machine learning techniques could allow
clinical doctors to interpret the massive datasets emerging from proteomic
analyses in an outpatient setting, which cannot be analysed using traditional
statistical methods.Williams et al. (2019); Hoogeveen et al. (2020); Riley
et al. (2020) Previously, we showed that the use of a targeted proteomics
approach outperformed traditional ASCVD risk scores in a primary prevention
setting.Hoogeveen et al. (2020) However, given their high recurrence risk,
the most urgent need to identify highest-risk patients pertains to secondary
prevention patients.Annemans et al. (2018); Ray et al. (2021)
In the present study, we evaluated the predictive value of targeted proteomics
in a secondary prevention setting using advanced machine learning techniques.
To this end, we performed plasma proteomics in two large secondary prevention
cohorts. As a derivation cohort, we used a high-risk subset of secondary
prevention patients included in the SMART cohort, followed by validation of
these findings in an independent secondary prevention cohort; the Athero-
Express.Simons et al. (1999); Verhoeven et al. (2004) In an exploratory
analysis, inflammatory pathways were assessed by dividing patients into high
or low residual inflammatory risk profiles based on baseline CRP levels.

3.3 Methods

3.3.1 Selection of patients

The SMART cohort is an ongoing prospective single-centre cohort of the
University Medical Center Utrecht.Simons et al. (1999) Patients younger than
80 years were included from 1996 onwards, if they had clinically manifest
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atherosclerotic disease or marked risk factors for atherosclerosis. Previously,
a clinical risk model (SMART) was developed and validated to estimate the
absolute risk for recurrent ASCVD events.Dorresteijn et al. (2013) We selected
all subjects who entered the SMART cohort for myocardial infarction, stroke,
or transient ischaemic attack with a 10-year SMART risk score above 15%
and had blood samples available. A total of 870 participants were included as
a derivation cohort.
The Athero-Express study was initiated in 2002, and included patients
undergoing carotid and femoral endarterectomy for previous ischaemic
cerebral events or peripheral artery disease.Verhoeven et al. (2004) Patients
were followed up until 3 years after the endarterectomy. We included 700
subjects who underwent a carotid endarterectomy following a stroke or
transient ischaemic attack with plasma samples and complete follow-up data
available as validation cohort.

3.3.2 Proteomic analyses

For both cohorts, the procedures for blood withdrawal and storage have
been described previously.Simons et al. (1999); Verhoeven et al. (2004) In
short, plasma samples were collected fasting at baseline in the derivation
cohort, whereas samples were collected non-fasting on the preoperative day
in the validation cohort. In both cohorts, plasma samples were directly
centrifuged and stored at -80◦C for future analyses. For this study, frozen
plasma samples of selected subjects from both cohorts were collected from
storage and transferred to Olink proteomics AB (Utrecht, The Netherlands)
on dry ice for Proximity Extension Assay analysis. We measured levels of 276
proteins from the Cardiovascular II, Cardiovascular III, and Cardiometabolic
panels. These panels were selected based on known associations with ASCVD.
All samples with a quality control warning or with ≥40% of measurements
below the lower limit of detection (LOD) were excluded from the analysis;
separately per proteomic panel. In addition, proteins with ≥90% of samples
below the LOD were excluded from the model.

3.3.3 Statistical and machine learning methods

In both cohorts, we defined the primary outcome as the first recurrent
ASCVD event, comprising acute myocardial infarction, ischaemic stroke, and
cardiovascular death.
In the derivation cohort, we constructed three classification models: first,
measured proteins passing quality control (267 proteins) were used to
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construct a protein-based model with 50 proteins with the highest predictive
value. Second, to compare the protein model with current clinical practice, a
clinical risk model was constructed and optimized using the same approach as
the protein model, including parameters of different validated risk scores such
as SMART, Reynolds Risk Score, and Framingham Risk Score.Dorresteijn
et al. (2013); Ridker et al. (2008, 2007); Wang et al. (2006) The clinical
risk model comprised the following parameters: age, sex, body mass index,
systolic blood pressure, total cholesterol, HDL cholesterol, CRP, smoking
status, the presence of diabetes, the use of antihypertensive medication, and
family history of cardiovascular disease. A third combined model was formed
by stacking the clinical risk parameters with the protein parameters. For use
in the validation cohort, all three models were recalibrated to allow an equal
comparison and avoid miscalibration.Pencina et al. (2012)
All models were constructed using the same machine learning techniques. For
the training and evaluation of the models as well as identification of the most
reliable biomarker signature in our datasets (both proteomics and clinical),
we used stability selection with extreme gradient boosting to predict a binary
outcome (event/non-event).Caruana et al. (2004); Chen and Guestrin (2016)
The model hyperparameters were selected using a Randomized Grid Search
followed by classifier calibration using the Sigmoid method,Niculescu-Mizil
and Caruana (2005) both performed on the validation set. To prevent
overfitting, ‘leave one out cross-validation’ was employed on a random subset
with half the dimension of the original dataset. For increased confidence, this
process was repeated 20 times. This method was coupled with a rigorous
stability selection procedure to ensure the reliability and robustness of the
obtained parameters. Finally, a permutation test (randomization test) was
applied to evaluate the statistical validity of the results,Ojala and Garriga
(2010) since standard univariate significance tests cannot be applied to the
used models due to the non-linear combination of feature functions.
To further explore the inflammatory pathways involved, we performed
additional analyses by dividing the SMART cohort in a high CRP (>2
mg/L) and low CRP (≤2 mg/L) group. Patients with a suspected acute
inflammatory episode (CRP > 20 mg/L) were excluded. In both groups,
a model comprising 50 proteins was constructed to predict recurrent
ASCVD events. Protein-protein association networks were assessed and
graphically displayed using STRING v11 (string-db.org).Szklarczyk et al.
(2019) Normalized protein expression (NPX) values (relative quantification on
log2 scale) for interleukin-6 (IL-6) were compared between high and low CRP
groups. To identify high or low CRP-specific proteins, the top 10 proteins
from both groups were compared with the overall model.



3.4. RESULTS 35

Model performance was reported by means of discrimination, calibration,
and reclassification. Discrimination was assessed using the receiver operating
characteristic (ROC) curve with an area under the curve (AUC). Relative
protein importance was reported in a bar plot.Hastie, Tibshirani, and
Friedman (2009) Calibration plots were constructed to display calibration
performance. Reclassification performance was assessed using the category-
free net reclassification improvement (NRI> 0) and integrated discrimination
index (IDI).Pencina et al. (2012) 95% CI were reported using bootstrap
intervals for point estimates of performance metrics when asymptotic intervals
were not available.
Data are presented as mean± standard deviation for normally distributed
variables or median with interquartile range (IQR) for skewed data.
Categorical variables are expressed as absolute numbers and percentages.
Independent sample t-tests and Mann-Whitney U-tests were used where
appropriate. Two-sided p-values of ≤0.05 were considered statistically
significant. Data were analysed using Python version 3.7 (www.python.org)
and RStudio version 3.6.1 (R Foundation, Vienna, Austria).

3.4 Results

Patient characteristics of both the derivation and validation cohort are listed
in Table A.2. In the derivation cohort, 263 (30.2%) participants experienced
a recurrent ASCVD event during a median follow-up of 8.0 (4.6-12.2)
years. The primary recurrent event consisted of myocardial infarction in 48
(5.5%) patients, ischaemic stroke in 105 (12.1%) patients, and 110 (12.6%)
patients died of cardiovascular causes. In the validation cohort, 130 (18.6%)
participants experienced a recurrent ASCVD event during a median follow-up
of 3.0 (2.2-3.1) years. In this cohort, the primary recurrent ASCVD event was
a myocardial infarction in 39 (5.6%) patients, whereas 53 (7.5%) patients had
an ischaemic stroke and 38 (5.4%) patients died of cardiovascular causes. The
final proteomic analysis included 267 unique proteins after exclusion of nine
proteins with ≥90% of values below the LOD (see the online supplementary
material: section 3.7, Table 1).

3.4.1 Discriminatory value of proteomic risk model

In the derivation cohort, prediction of recurrent ASCVD events using the
protein model resulted in an ROC AUC of 0.810 (95% CI 0.797−0.823; Figure
3.1A and Table 3.1. The proteins with their relative importance are shown in
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Figure 3.2. In comparison, the clinical risk model resulted in an ROC AUC of
0.750 (95% CI 0.734−0.765; Figure 3.1A and Table 3.1). Combination of both
models led to an ROC AUC of 0.824 (95% CI 0.812− 0.835; Figure 3.1A and
Table 3.1). The protein model performed significantly better than the clinical
risk model (delta AUC 0.060, 95% CI 0.040− 0.083, p < 0.001), whereas the
combination of both models was only slightly superior to the protein model
alone (delta AUC 0.014, 95% CI 0.009− 0.019, p < 0.001).

Figure 3.1: Discriminatory value in the derivation and validation cohort.
Receiver operating characteristic curve of protein, clinical, and combined
model in the derivation cohort (A) and in the validation cohort (B). The 95%
confidence interval is shown between brackets. AUC, area under the curve.

After recalibration of all models, the discriminatory value was tested in
the validation cohort. Validation of the prediction of recurrent ASCVD events
using the protein model resulted in an ROC AUC of 0.801 (95% CI 0.785 −
0.817; Figure 3.1B and Table 2). In comparison, the clinical risk model resulted
in an ROC AUC of 0.765 (95% CI 0.743 − 0.784; Figure 3.1B and Table 2).
Combination of both models led to an ROC AUC of 0.792 (95% CI 0.771 −
0.811; Figure 3.1B and Table 2). In the validation cohort, the protein model
also outperformed the clinical risk model (delta AUC 0.036, 95% CI 0.020 −
0.051, p < 0.001), whereas a combination of both models was not superior
to the protein model alone (delta AUC −0.007, 95% CI −0.023 to 0.004, p =
0.996).
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Figure 3.2: Importance plot of the protein model. Importance plot of the
proteins in the protein model from the derivation cohort. The importance
refers to the extent to which a model relies on a given protein. Shown is the
relative importance of the 50 proteins in the model.

3.4.2 Calibration and reclassification of the proteomic
risk model

The calibration plots of the proteomic, clinical, and combined model for both
the derivation cohort and validation cohort (after recalibration) are shown in
Figure 3.3. The six models were well calibrated, although risk was slightly
underestimated in the highest-risk categories. We calculated the NRI and IDI
by comparing the protein model with the clinical risk model (Table 1). In
the derivation cohort, the NRI was 0.152 (95% CI 0.110− 0.196) and the IDI
was 0.098 (95% CI 0.073 − 0.122), compared with an NRI of 0.173 (95% CI
0.133 − 0.211) and an IDI of 0.085 (95% CI 0.068 − 0.101) in the validation
cohort.
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Clinical model Protein model Combined model
AUC
Derivation cohort 0.750(0.734− 0.765) 0.810(0.797− 0.823) 0.824(0.812− 0.835)
Validation cohort 0.765(0.743− 0.784) 0.801(0.785− 0.817) 0.792(0.771− 0.811)
NRI
Derivation cohort Reference 0.152(0.110− 0.196) 0.174(0.134− 0.218)
Validation cohort Reference 0.173(0.133− 0.211) 0.146(0.099− 0.188)
IDI
Derivation cohort Reference 0.098(0.073− 0.122) 0.116(0.094− 0.139)
Validation cohort Reference 0.085(0.068− 0.101) 0.070(0.049− 0.090)

Table 3.1: Summary statistics of performance: area under the curve (AUC),
net reclassification improvement (NRI), and integrated discrimination index
(IDI). 95% confidence interval is shown between parentheses.

3.4.3 Predictive value in high and low C-reactive protein
subsets

In clinical practice, CRP is used to identify patients with ‘residual
inflammatory risk’. To evaluate the impact of CRP on the performance
of the proteomic panel, we divided patients based on CRP levels in the
SMART cohort, resulting in 373 patients classified as low CRP (≤2 mg/L)
vs 463 patients classified as high CRP (>2 mg/L). Thirty-four patients with
a suspected acute inflammatory episode (CRP > 20 mg/L) were excluded
from the analysis. In the low CRP group, 27.3% of patients experienced
an ASCVD event during follow-up, compared with 32.0% of patients in
the high CRP group (p = 0.13). Interleukin-6 levels were much higher in
the high CRP group compared with the low CRP group [NPX (log2 scale)
13.50, IQR 10.24 − 18.45 vs. 8.63, IQR 6.71 − 11.27]. The overview of the
network pathway analysis in the high and low CRP group is depicted in the
online supplementary material (section 3.7), Figure 1. The high CRP group
showed a central role for IL-6, which was not present in the low CRP protein
model. Conversely, four different inflammatory proteins, which were neither
in the initial model nor in the high CRP group, were identified in the top 10
predicting proteins of the low CRP group (Table 3.2).
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Overall High CRP subset Low CRP subset
NT-proBNP NT-proBNP KIM1
KIM1 HAOX1 BNP
MMP-7 OPN ADM
GDF-15 KIM1 AMBP
HAOX1 PSGL-1 NID1
TGFBI GDF-15 TIMP4
ENG TIMD4 FABP2
BNP MMP-2 NT-proBNP
ADM CTSL1 VASN
U-PAR XCL1 TF

Table 3.2: Overview of the 10 most important proteins in the overall group
as well as in the high and low CRP groups. Marked bold are proteins not
in the overall 50-protein model. CRP, C-reactive protein; NT-proBNP, N-
terminal prohormone brain natriuretic peptide; KIM-1, kidney injury molecule
1; MMP-7, matrix metalloproteinase 7; GDF-15, growth/differentiation factor
15; HAOX1, hydroxyacid oxidase 1; TGFBI, transforming growth factor-β-
induced protein ig-h3; ENG, endoglin; BNP, brain natriuretic peptide; ADM,
adrenomedullin; U-PAR, urokinase plasminogen activator surface receptor;
OPN, osteopontin; PSGL-1, P-selectin glycoprotein ligand 1; TIMD4, T-
cell immunoglobulin and mucin domain-containing protein 4; MMP-2, matrix
metalloproteinase-2; CTSL1, cathepsin L1; XCL1, lymphotactin; AMBP, α1-
microglobulin-bikunin precursor; NID1, nidogen-1; TIMP4, metalloproteinase
inhibitor 4; FABP2, intestinal-type fatty acid-binding protein; VASN, vasorin;
TF, tissue factor.
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Figure 3.3: Calibration in the derivation and validation cohort. Calibration
plots for the protein (A), clinical (B), and combined (C) model in the derivation
cohort (SMART) and the protein (D), clinical (E), and combined (F) model
in the validation cohort (Athero-Express). Predicted event risk vs. observed
event rate per risk category quintiles.

3.5 Discussion

Using targeted proteomics in two cohorts comprising 1570 patients with
established arterial disease, we show that a panel of 50 proteins is superior
to a clinical risk model in predicting recurrent ASCVD events. In both the
derivation and the validation cohort, the proteomic model performed better
in terms of discrimination, was similarly well calibrated and provided a
significant NRI over the clinical risk model (Structured Graphical Abstract).
Collectively, these data confirm the potential of improved, proteome-supported
risk stratification in a secondary prevention setting.
Atherosclerotic cardiovascular disease risk prediction using clinical
characteristics performs relatively poor in terms of discrimination.Kaasenbrood
et al. (2016); Jensen (2016) We previously showed that a targeted proteomics
panel improves the prediction of ASCVD events in a primary prevention
setting.Hoogeveen et al. (2020) Ganz et al.Ganz et al. (2016) illustrated that
a nine-protein risk score also predicted recurrent ASCVD events in patients
with coronary heart disease with modest discrimination (C-statistic 0.70 in
validation). With improved proteomic and machine learning techniques, we
now show that the use of proteomics significantly outperforms clinical risk
prediction in two large secondary prevention cohorts (AUC of 0.801 in the
validation cohort, delta AUC 0.036). Whereas in the highest-risk groups the
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models tended to underestimate ASCVD recurrence risk, the protein, clinical,
and combined models were similarly and well calibrated.

3.5.1 Recurrent cardiovascular events: predictive
proteins

A targeted proteomics panel was used comprising proteins related to ASCVD,
metabolism, and inflammation. N-terminal pro-B-type natriuretic peptide
(NT-proBNP), an established marker for heart failure,Wang et al. (2006)
was the protein with the strongest predictive value. NT-proBNP was also
found among the top proteins predicting primary ASCVD events in an earlier
study.Hoogeveen et al. (2020) Kidney injury molecule-1 (KIM-1) was the
second most predicting protein, and has been associated with cardiorenal
syndrome.Figarska et al. (2018) The top three proteins were completed by
matrix metalloproteinase 7 (MMP-7), which was also found in the primary
prevention population.Hoogeveen et al. (2020) MMP-7 and its family of
matrix metalloproteinases, the main group of enzymes responsible for
degradation of the extracellular matrix, are associated with plaque instability,
through macrophage-related pathways.Abbas et al. (2014) Lastly, growth
differentiation factor 15 (GDF-15), as the top predictive protein in the earlier
primary prevention cohort,Hoogeveen et al. (2020) was the fourth most
predictive protein in this study. GDF-15 has been shown to play an important
role in leucocyte integrin activation after myocardial infarction.Kempf et al.
(2011) The other proteins in the panel were primarily related to immune
system involvement in atherosclerosis, including chemotaxis, migration,
apoptosis, and angiogenesis.Hoogeveen et al. (2020); Bom et al. (2019)

3.5.2 Residual inflammatory atherosclerotic cardiovascular
disease risk

With respect to the residual inflammatory ASCVD risk, attention
has primarily focused on the NLRP3 inflammasome with CRP as a
reliable downstream marker.Ridker (2018) In a recent sub-study from
low-dose colchicine for secondary prevention of cardiovascular disease
(LoDoCo2),Opstal et al. (2020) evaluating the impact of colchicine in
secondary prevention, we observed colchicine-induced changes in a panel of
37 inflammatory proteins; the majority of which were, however, unrelated
to CRP change. To evaluate the impact of CRP on the performance of a
proteomic panel containing multiple inflammatory proteins, we compared
the predictive value of our proteomic panel between patients with high
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(>2 mg/L) vs. low baseline (≤2 mg/L) CRP. As observed in the online
supplementary material (section 3.7), Figure 2, the central protein in the
high CRP group, linked to many other crucial proteins in the model, is IL-6
with much higher levels in the high CRP group compared with the low CRP
group, substantiating the involvement of the NLRP3-IL6 pathway leading to
CRP elevation. To further evaluate a potential role of inflammatory factors in
patients with low CRP, we compared the 10 most important proteins in both
high and low CRP groups with the overall 50 protein model. In contrast to
the top 10 proteins in the high CRP protein model, which were all present in
the overall protein model, the top 10 proteins in the low CRP group comprised
four proteins not represented in the initial model nor in the high CRP model:
α1-microglobulin-bikunin precursor (AMBP), nidogen-1 (NID1; also known
as entactin), tissue factor (TF), and vasorin (VASN). All four proteins are
related to neutrophil signalling, implying a role for pro-inflammatory innate
immunity activation in the low CRP group independent from the NLRP3-IL6
inflammasome pathway.Opstal et al. (2020) Thus, α1-microglobulin, which is
a plasma and tissue protein derived from AMBP, has been shown to inhibit
oxidation of LDL through the inhibition of myeloperoxidase (MPO).Cederlund
et al. (2015) MPO, abundantly present in neutrophilic granules,Aratani (2018)
has been shown to oxidize LDL, aggravating atherogenesis.Delporte et al.
(2014) NID-1 (entactin) is a component of basement membranes stimulating
neutrophil adhesion and chemotaxis.Senior et al. (1992) Tissue factor has been
shown to contribute to thrombosis at the site of plaque rupture via release
from neutrophil extracellular traps and is critical in the formation of arterial
thrombosis.Stakos et al. (2015) Vasorin directly binds to and attenuates
signalling of transforming growth factor beta (TGFβ).Ikeda et al. (2004)
TGFβ, which can be produced by infiltrating cells such as neutrophils and
macrophages, has been shown to have both atherogenic and atheroprotective
properties.Toma and McCaffrey (2012); Grainger (2004) The preponderance
of these neutrophil-related proteins in the model best predicting recurrent
ASCVD risk in the low CRP group corresponds to our findings in LoDoCo2,
where proteins related to neutrophil-activation such as MPO were reduced
following colchicine treatment.Opstal et al. (2020) Collectively, these findings
imply a residual inflammatory risk also in secondary prevention patients with
low CRP, with preliminary evidence pointing to the potential involvement of
neutrophil-related pathways.
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3.5.3 Strengths and limitations

The use of samples of two large, well-defined secondary prevention cohorts
has supported a robust proteomic analysis. The use of state-of-the-art
machine learning technology allows the discovery of non-linear relationships
and interactions between proteins, which would not have been identified with
traditional statistical methodology.
Several limitations to our study merit discussion. First, by using targeted
proteomics, proteins not included in these panels which also predict recurrent
ASCVD events may have been missed. However, the goal of this study was
to evaluate the feasibility of a high-throughput, protein-based risk score for
clinical use, rather than novel protein discovery. Nevertheless, we cannot
exclude that the predictive value of a larger protein panel may be even better.
Second, the derivation and validation cohort had selective and different
enrolment criteria as well as different event risk distribution, which could
complicate extrapolation to other risk groups. In the derivation cohort
(SMART), patients were included following a myocardial infarction, ischaemic
stroke, or transient ischaemic attack, whereas the patients from the validation
cohort (Athero-Express) were included after carotid endarterectomy following
an ischaemic stroke or transient ischaemic attack. Remarkably, while included
after carotid endarterectomy, the relative proportion of patients with a
myocardial infarction was higher in the validation cohort compared with
the derivation cohort (30.0% vs. 18.3%). Despite these differences between
the cohorts, the protein model performance in the validation cohort was
comparable to the derivation cohort after recalibration, suggesting suitability
for use in different populations. Yet, both cohorts primarily consisted of
subjects from European ancestry, so extrapolation to other ethnicities remains
to be determined. Lastly, in the derivation cohort, samples were collected
after overnight fasting, in contrast to the validation cohort in which the
samples were collected non-fasting.

3.5.4 Clinical relevance

Single plasma risk markers have failed to robustly improve ASCVD risk
scores to date.Force et al. (2018); Mortensen et al. (2018) Using a panel of
50 proteins, we show a significant improvement in discrimination and clinical
value attested by the NRI and IDI in secondary prevention. The introduction
of expensive novel therapeutics combined with the large variation in ASCVD
recurrence risk in secondary prevention underscores the importance of reliable
ASCVD risk stratification, which is essential when adhering to the ‘highest
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risk—highest benefit’ principle determining cost-efficacy of expensive novel
medication.Annemans et al. (2018) Routine implementation of a dedicated
protein panel on top of clinical risk factors may therefore hold a promise to
improve therapeutic decisions in secondary prevention.
C-reactive protein has been validated as a reliable marker of residual
inflammatory risk,Ridker (2018) as well as a biomarker predicting therapeutic
benefit from anti-inflammatory therapies.Ridker et al. (2017a) Conversely,
colchicine treatment was recently reported to markedly reduce the residual
ASCVD event rate in post-acute coronary syndrome patients, not selected for
CRP elevation,Nidorf et al. (2020) whereas colchicine lowered CRP by only
10%.Opstal et al. (2020) In the present study, we observe a preponderance of
neutrophil-related proteins contributing to ASCVD risk prediction in patients
with low CRP, implying another potential source of residual inflammatory
risk independent of the IL6-CRP pathway.Ridker (2018) Collectively, these
data lend further support to target specific pathways identified by proteomic
analysis. The use of such a pathway-guided strategy instead of a single
biomarker approach warrants prospective trials for further validation.
Propelled by expanding proteomic and machine learning technologies, optimal
conditions for a high-throughput proteomic assay are approaching. As
opposed to clinical risk scores or risk assessment based on genetic candidate
genes,Kessler and Schunkert (2021) proteomic scores may more accurately
mirror changes in lifestyle.Williams et al. (2019); Lindsey et al. (2015) The
major NRI of ASCVD risk in secondary prevention heralds an important
further step towards a tailored therapeutic approach in secondary prevention
patients, aimed at introducing the use of effective novel medication in the
highest-risk patients in a cost-effective manner.Annemans et al. (2018)

3.6 Conclusions

We show that a panel of 50 proteins is superior to a clinical risk model in
predicting recurrent ASCVD events. In both the derivation and the validation
cohort, the proteomic model performed better in terms of discrimination and
provided significant NRI whereas calibration was comparable in comparison
to the clinical risk model. In addition, we found involvement of neutrophil-
related pathways in the subset of low CRP patients, indicating a residual
inflammatory ASCVD risk beyond the traditional NLRP3 pathways. Further,
large prospective studies will have to confirm the value of proteome-based risk
scores in secondary prevention before routine clinical implementation can be
advocated.
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3.7 Supplementary Material

We refer the reader to the online supplementary material at https://academic.
oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehac055/6525629
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Abstract

Background and Aims

We aimed to uncover pathophysiological pathways associated with prognosis
in patients with heart failure using a systems biology-based approach. This
approach models this complex disease by integrating clinical phenotypic
markers to proteomic, transcriptomic and genetic data.

Methods and Results

We collectively analyzed 54 clinical phenotype markers, 403 circulating
plasma proteins, 36,046 transcript expression levels in whole blood, and
6 million genomic markers in 2,516 patients with heart-failure, from the
Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure
study. Patients had a median age of 70 (25e-75e percentiles 61-78), 27%
were women and 657 (26%) died during a median follow-up of 21 (25e-75e
percentiles 15–27) months. We used machine learning methodology based on
stacked generalization framework and gradient boosting algorithms to predict
all-cause mortality. Results were validated in an independent cohort of 1,738
patients. Biological pathways were identified using enrichment analyses.
With this data a multitude of pathways can be extracted. We focussed on the
strongest clinical phenotype from our model: Renal (dys-)function, which was
a composite of history of renal disease, renal failure, and eGFR. Biological
pathways associated with a reduced eGFR were mostly related to cysteine-
type peptidase activity and regulation of endopeptidase activity. Key proteins
in these pathways are cysteine protease cathepsins. Key markers on pathways
associated with a reduced eGFR were (WFDC2 and TRAIL-R2/TNFRSF10B
[protein], TRAJ16 [transcriptomic], and LINC00210 [genomic]),

Conclusion

Using a multi-modal systems biology approach, we found that the strong
association between renal dysfunction and mortality in patients with heart
failure was linked to cysteine-type peptidase activity and regulation of
endopeptidase activity pathways.
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4.1 Introduction

The pathophysiology of heart failure is complex and involves multiple biological
pathways that play a role in disease progression. Understanding the complex
pathophysiology of heart failure might identify new treatment targetsShah
et al. (2015); Ahmad et al. (2016); Shah, Katz, and Deo (2014). Capturing the
entire breadth of heart failure pathophysiology requires integrating genetic,
transcriptomic, proteomics and phenotypic markers, using a systems biology
approachKitano (2002). System biology is in essence an approach to better
understand the complex system of the human body, from its genetic core
and proteins to the presentation into phenotypic characteristics and heart
failure outcomes. With recent advancements in bioinformaticsKitano (2002),
and high-throughput -omics data; integration and subsequent interpretation
of multiple high-dimensional -omic datasets is becoming key to revealing
novel biological insights. Previous efforts revealed putative markers related to
pathological lipid abundanceParker et al. (2019) and cancerYarden and Pines
(2012). Such a deep analysis of heart failure requires an enormous repository
of data with robust and reproducible observations that can also be validated
in an independent populationBayes-Genis et al. (2020). Here, we present
a systems biology approach based on integrating multiple high-dimensional
-omics modalities using advanced machine learningDeo (2015), with the aim
to identify and validate new pathways associated with prognosis in patients
with heart failure.

4.2 Methods

4.2.1 Patient population and study design

The Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure
(BIOSTAT-CHF) was designed to identify pathophysiological pathways
related to heart failure progression using a systems biology approach on
multi-omics data. The design and baseline characteristics of this study have
been previously reportedVoors et al. (2016). Briefly, BIOSTAT-CHF consists
of two independent (index and validation) cohorts. Inclusion criteria were
similar in both cohorts. The index cohort consisted of 2,516 patients with
worsening signs and/or symptoms of heart failure, included from 69 centers in
11 European countries during 2010–2014. The validation cohort consisted of a
comparable cohort of 1,738 patients from six centers in Scotland, UK. Patients
were enrolled as in- or out-patient, with a median follow-up in each cohort
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of 21 (25th and 75th percentiles 15-27]) months. The endpoint of interest
for the present study was 1-year all-cause mortality. The study complied
with the Declaration of Helsinki and was approved by the participating
centres’ medical ethics committees. All patients provided written informed
consent. BIOSTAT-CHF has a large repository of clinical phenotypic data
and data encompassing the central dogma: genomics, transcriptomics, and
proteomicsCobb (2017), which is needed to get a comprehensive picture of
the entire pathway.

4.2.2 Phenotypic (clinical) panel

We collected 54 clinical markers in BIOSTAT-CHF (supplementary data:
Phenotypic parameters). Phenotypic data consisted of demographic data
(e.g., age, sex, medical history, and co-morbidities) and data derived during
physical examination (e.g., body mass index, systolic and diastolic blood
pressure, and left ventricular ejection fraction [LVEF]). The estimated
glomerular filtration rate (eGFR) is calculated by the CKD-EPI formula: 141
* min(Scr/κ,1)α * max(Scr/κ, 1)-1.209 * 0.993Age * 1.018 [if female] * 1.159
[if black], where Scr is serum creatinine (mg/dL), κ is 0.7 for females and
0.9 for males, α is -0.329 for females and -0.411 for males, min indicates the
minimum of Scr/κ or 1, and max indicates the maximum of Scr/κ or 1.

4.2.3 Protein panel from peripheral blood

We measured 403 serum/plasma biomarkers (supplementary data: Protein
listings) from several pathophysiological domains, including markers of
inflammation, apoptosis, remodelling, myocyte stress/injury, angiogenesis,
endothelial function, and several markers of renal function. The protein
biomarker data used for this study have been described in recent
papersSantema et al. (2018); Tromp et al. (2018); Ouwerkerk et al. (2018).
In brief, the biomarkers included standard biochemical blood parameters
(e.g., hemoglobin, hematocrit, blood urea nitrogen, and heart failure-related
markers [NT-proBNP and BNP]). In addition, four biomarker panels
comprising each of 92 protein biomarkers provided by the Olink Bioscience
analysis service (Uppsala, Sweden) were measured. These respective panels
were Cardiovascular II (CVD II), CVD III, Immune response, and Oncology
II panels (https://www.olink.com). The proteins were profiled using Olink
Proseek® Multiplex Inflammatory 96x96 platform. The Proseek® kit
uses proximity extension assay technology, whereby oligonucleotide-labelled
antibody probe pairs bind to their respective targets. Quantification was
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achieved using a Fluidigm BioMark�real-time PCR platform. The platform
provides normalized protein expression (NPX, log2-normalised), rather than
an absolute quantification.

4.2.4 Transcriptomic panel

Whole blood transcriptomic profiles from 944 patients (626 survivors and 318
non-survivors who died from cardiovascular causes) from the index cohort were
obtained using the GeneChip® Human Transcriptomic Array® 2.0 (HTA 2.0)
developed by Affymetrix, Inc. (part of Thermo Fisher Scientific). Patients
were age- and sex-matched. Details on the protocols and methodology used to
assess and confirm the quality of the raw transcriptomic data, the processes
used to integrate signals from individual probes on the array to determine
the expression levels of each gene and to assess the quality of the summarized
RNA expression set data were previously published [Nath et.al 2021]. In total,
36,046 (17,924 protein-coding and 18,122 non-protein-coding) transcripts were
analyzed.

4.2.5 Genomic panel

Both cohorts were processed, genotyped, quality controlled and imputed
independently, using identical protocols. Genotyping of all patients
was performed using the Affymetrix Axiom Genome-Wide UKB WCSG
genotyping array. Sample level QC was performed for X chromosome
homozygosity (sex mismatch) and identity by descent estimates (relatedness
and duplicates). Before imputation, variants were removed if their call rate
was <95% for variants with minor allele frequency (MAF) ≥5%, or <99% for
variants with MAF <5%, or had a Hardy-Weinberg equilibrium p < 1× 10−6.
Imputation was performed using SHAPEIT2Delaneau, Zagury, and Marchini
(2013) and IMPUTE2Howie, Donnelly, and Marchini (2009) with the phase 3
release 1000G reference panelSudmant et al. (2015).

4.2.6 Statistical Analyses

We used machine learning methods, particularly gradient boosting (with
tailored loss functions), with stacked regularizationWolpert (1992). This
method can handle multiple data sources in a non-linear manner by learning
how to combine the predictions given by models trained on these different
data sources into a single coherent output. Furthermore, it is specifically
designed, in contrast to standard modern statistical methods (Supplementary
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data: Benefits of Machine Learning for Multi-omics Analysis), not only to
deal with high-dimensional -omics data, where the number of patients is
significantly smaller than the number of variables (n<<p), but also when
different data sources are collectively used to estimate the ‘core mechanism’
present in all data sources. In brief, we used a combination of stacking
generalization framework with multiple gradient boosting classifiers to
improve prediction accuracy. For each individual -omics panel, we built
separate level-0 models. These level-0 models were subsequently combined
to form the final, level-1, modelPereira et al. (2020). In this approach we
are able to use all available data present in each panel (e.g., all phenotype
data from all 2,516 patients in that panel to create the level-0 model of the
phenotype panel. The level-0 model of the transcriptomic data was estimated
using 944 patients). One of the challenges of using this methodology is tuning
the various models’ hyperparameters. Typically, each model is optimized
separately, leading to a local optimum. To achieve a global optimum, we
optimized all the models simultaneously using Bayesian OptimizationFrazier
(2018). To avoid over-fitting, we used stratified cross-validation over the
training partition. Furthermore, we evaluated the model’s quality separately
in the validation cohort. We conducted stability selection to ensure the
feature signatures’ reliability and robustnessMeinshausen and Bühlmann
(2010). The complete analysis was repeated multiple times (50x). Receiver-
Operating-Characteristics Area-Under-Curves (ROC-AUC) were computed
each time and averaged over the repeated analyses in both the index and
validation cohort. A permutation (randomization test)Marques et al. (2011)
was used to evaluate the results’ statistical validity. The validation cohort
model did not include the transcriptomic panel and its corresponding level-0
model. Nevertheless, our approach is able to validate the phenotype, protein
and genomic panels.

4.2.7 3D correlation plots

We used Python v. 3.8 (www.python.org), with packages Numpy, Scipy,
and Scikits-learn for implementing the stacking model and R (version 4.0,
R Foundation for Statistical Computing, Vienna, Austria, www.r-project.org)
for visualizations.

4.2.8 Pathway enrichment

In complex diseases, like heart failure, there are often a multitude of
pathways involved. In order to identify pathways related to mortality, we
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therefore performed an over-representation analysis of the most important
phenotypic marker and its most correlated parameters from the other (protein,
transcriptomic, and genomic) panels. We assessed over-representation with
ClueGOBindea et al. (2009) in Gene Ontology biological processes, KEGG,
and Reactome pathways using the hypergeometric test and the default
Bonferroni step down method for multiple testing corrections (family-wise
error rate). We used the whole annotation option as a reference set and
reported only biological processes with a corrected p-value < 0.05 as
significant. Data are presented as means ± standard deviations (SD) when
normally distributed, as medians (interquartile range) for skewed variables,
and as frequencies (percentage) for categorical variables. Differences between
patients who died and those who did not in the index and validation cohort
were tested using the Students’ independent t-test for continuous normally
distributed variables. Differences in variables with a skewed distribution were
tested using the Mann-Whitney U test. Categorical variables were tested
with Chi-Squared tests. We calculated correlations between (non-)normal
continuous, ordinal and binary ranked variables from and between the different
panels using Pearson’s product-moment correlation coefficient, Kendall rank
correlation coefficient, and Spearman’s rank correlation coefficient, where
appropriate. Our data consist of continuous, categorical, ordinal, and binary
variables. Correlations between the variables were statistically tested using
the Wilcoxon rank-sum testLaVange and Koch (2006).

4.3 Results

4.3.1 Clinical characteristics

Data was available from 2,516 patients in the phenotypic and protein panels,
944 in the transcriptomic and 2,470 in the genomic panels in the index cohort
(Figure 4.3A). The validation cohort had data available for 1,738 patients
in the phenotypic and protein panels and for 1,693 in the genomic panel
(Figure 4.3B). During a median follow-up of 21 (25th and 75th percentiles
11–32) and 21 (25th and 75th percentiles 15–27) months, 657 (26%) and
501 (32%) patients died in the index and validation cohorts, respectively.
Baseline characteristics of the patients who died and those who survived in
the index and validation cohorts are presented in Table 4.1. Patients who
died in the index cohort were older (73±11 vs 68±12 years; p < 0.001), had
a higher NYHA class (NYHA class III/IV 74% vs 58%; p < 0.001), and more
comorbidities. These differences were similar in the validation cohort (Table
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4.1).

4.3.2 Multi-omics mortality model

Our final mortality model achieved a significant ROC-AUC value of 0.81±0.02
in the stratified cross-validated part of the index cohort and 0.85 ± 0.03
in the validation cohort (Figure 4.4), both p < 0.001 in permutation tests
(Supplementary Figure 4.5A). The final level-1 model consisted of 60 markers
per panel with a total of 240 phenotypic, proteomic, transcriptomic and
genetic markers, all highly associated with mortality and closely related to
each other (Supplementary data: Biomarkers included in the final level-
1 model; Supplementary Figure 4.5B). The 15 markers most related to
mortality, from each panel incorporated in the final model, are presented in
Figure 4.1. Here, the relative importance of each marker in the model is
visualized for each panel, we also included the overall importance of each
individual marker. The direction of the association between each marker and
mortality is presented in the spider plot of Supplementary Figure 4.7. For the
phenotypic panel, history of renal disease, and renal disease (defined as an
estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2), were the
top most pronounced markers. For subsequent analyses we focused on the
most predictive phenotypic marker; renal dysfunction. Renal dysfunction was
defined by the combination of history of renal disease (#1 phenotype panel),
renal failure (eGFR<60; #2 phenotype panel), and eGFR (#4 phenotype
panel). Renal dysfunction functions as important landmark for further
analyses, because multiple pathways are involved in heart failure.

4.3.3 Correlation network and pathway overrepresentation
analysis of strongest phenotypic marker

Next, we constructed a correlation matrix of all proteomic, transcriptomic,
and genetic markers (Figure 4.2top; Figure 4.8 Figure 4.2center shows renal
dysfunction and its strongest associated markers in the protein panel followed
by markers from subsequent -omics panels to which these were most strongly
correlated. It must be kept in mind that all these markers are present in
our final model focussing on 1-year all-cause mortality. This means that
each of these separate markers has a relation with mortality. The mean
correlation between renal dysfunction and selected proteins was 0.72(±0.04;
all p < 0.001). WAP four-disulfide core domain protein 2 (WFDC2) and
TNF Receptor Superfamily Member 10b (TRAIL-R2/TNFRSF10B) had
the highest correlations (both r = 0.70, p < 0.0001). The mean correlation
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between the selected proteins and transcripts was 0.27 (±0.05, all p < 0.01).
IKZF3 had the highest correlation with WFDC2. (r = 0.35, p < 0.01).
Mean correlation coefficients between markers in transcriptomic and genomic
panels were lowest, but still apparent given a correlation of LINC00210
with T cell receptor alpha locus joining 20 (TRAJ20) (r = 0.53, p < 0.01).
Finally, we selected all markers that correlated maximally between each
panel, starting with renal dysfunction. This resulted in a list of 29 markers
(supplementary data Biomarkers included in the final level-1 model). Pathway
over-representation analysis of these markers yielded pathways related to
peptidase activity regulation (Table 4.2), or more specific cysteine-type
endopeptidase inhibitor activity. The proteins involved in these pathways are
presented in Figure 4.6. The proteins primarily involved in the cysteine-type
and endopeptidase inhibitor activity pathways were cystatin B (CSTB),
galectin-9 (LGALS9), TNFRSF10B, Vascular Endothelial Growth Factor
A (VEGFA), and WFDC2. A major group of proteins involved in the
cysteine-type and endopeptidase inhibitor activity pathways are cysteine
protease cathepsins, this included cystatins (e.g. CSTB) and cathepsins.

4.4 Discussion

Using a machine learning systems-biology approach, we identified an accurate
model to for 1-year mortality, by combining clinical, proteomic, transcriptomic,
and genomic markers across four different data modalities. With this many
data, a multitude of pathways could be discovered. This paper focusses
on the clinical phenotype with the strongest association to mortality; renal
dysfunction. Renal disfunction was chosen because 3 of the top 5 from the
phenotypes panel were related to renal dysfunction (#1 history of renal disease,
#2 renal failure, and #4 eGFR). We found several disease pathways that
might explain the strong association between renal dysfunction and mortality
in patients with heart failure. Numerous studies have already established the
association between renal dysfunction and mortality in patients with heart
failureDamman and Testani (2015); Damman et al. (2014). Importantly, eGFR
surpasses other prognostically relevant parameters in heart failure, such as New
York Heart Association Class and LVEF, in their strength of association with
morbidity and mortalityHillege et al. (2000); Heywood et al. (2007). This
strong and consistent association between heart failure and renal dysfunction
is often explained by the hemodynamic changes in heart failure leading to
impaired renal perfusion, where the kidney was considered a sensitive readout
of the severity of heart failure. However, the precise mechanisms underlying
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this strong interaction between renal failure and mortality in patients with
heart failure are incompletely understood. The strong relation between CKD
and heart failure is also seen in recent pharmacological treatment options that
are now available for both CKD and heart failureMembers: et al. (2022); Group
(2021). We know, from the FIGARO, FIDELIO and CREDENCE trials,
that treating CKD and DM may also reduce heart failure hospitalizationsPitt
et al. (2021); Perkovic et al. (2019); Bakris et al. (2020). Similarly, multiple
large heart failure trials (EMPEROR-Pooled, PARADIGM and PARAGON)
showed an improvement of both heart failure and renal outcomesZannad et al.
(2020); Damman et al. (2018); Seferovic et al. (2017).

4.4.1 Proteomics markers of heart failure progression

We revealed several pathways across multiple -omics panels linking renal
dysfunction to mortality. From the proteomic panel WFDC2 and TRAIL-R2
connected renal dysfunction to mortality. WFDC2 is a known marker for
progression of epithelial ovarian cancer and the expression was associated with
progressive renal interstitial fibrosis and renal tubular atrophyNakagawa et al.
(2015); Montagnana et al. (2011). It has also previously been identified as a
potential biomarker for prediction of both renal dysfunction and heart failure
severityYuan and Li (2017); de Boer et al. (2013). Levels of WFDC2 been
shown to be associated with age, gender, diabetes, smoking, NT-proBNP,
kidney function and HF fibrosis biomarkersPiek et al. (2017) TRAIL-R2 is
a cell surface receptor of the TNFRSF10B that binds TRAIL and mediates
apoptosis and is also associated with progression of renal dysfunctionCarlsson
et al. (2017); Rudnicki et al. (2016).

4.4.2 Transcriptomics markers of heart failure progression

From the transcriptomic panel, TRAJ family and SLAMF6 were the most
important markers linking renal dysfunction to mortality. These markers are
presented on cell-surfaces and are related to an increased immune response.
The TRAJ family are all part of the J region of the variable domain of T cell
receptor (TCR) beta chain that participates in the antigen recognitionLefranc
(2014). It appears that there is a potential relation between a reduction in
TCR diversity and worsening renal dysfunction stageCrawford et al. (2018);
Wong et al. (2017). SLAMF6 is expressed on Natural killer, T, and B
lymphocytes. Clustering of SLAMF6, specifically with the TCR, is needed
to augment T cell activationDragovich et al. (2019). TRAJ genes have
beneficial and protective qualitiesBrincks et al. (2015). The contribution
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of the genetic markers to the prediction model of all-cause mortality was
relatively low. Compared with some rare diseases that are caused by
single-locus mutationsFranz, Müller, and Katus (2001); Towbin and Bowles
(2002); Bleumink et al. (2004); Morita, Seidman, and Seidman (2005), the
genetic component of common polygenic diseases, like renal dysfunction and
heart failure, is thought to involve many genetic variantsBayes-Genis et al.
(2020); Igarashi and Somlo (2002); Haas et al. (2017). However, the best
genetic predictor of mortality, “rs2894240”, (ranked 39 overall) is a mutation
located between the Notch homologue protein 4 (NOTCH4) and TSBP1-AS1
genes. Both genes are associated with eGFR and kidney functionWuttke
et al. (2019); Hellwege et al. (2019).

4.4.3 Multi-level pathways of heart failure progression

The pathway over-representation analysis transcending the individual markers
revealed pathways primarily related to regulation of peptidase activity. All
individual markers were selected in our machine learning models for predicting
1-year all-cause mortality and correlated highly with renal dysfunction. The
over-representation analysis yielded 2 more detailed pathways that are part
of the peptidase activity pathway: The cysteine-type peptidase activity
and regulation of endopeptidase activity pathways. Cysteine-type peptidase
pathway is defined as the catalysis of the hydrolysis of peptide bonds in
a polypeptide chain by a mechanism in which the sulfhydryl group of a
cysteine residue at the active center acts as a nucleophile. The regulation
of endopeptidase activity pathways entails any process that modulates the
frequency, rate or extent of endopeptidase activity, the endohydrolysis of
peptide bonds within proteinsConsortium (2021); Ashburner et al. (2000).
Cysteine protease cathepsins are a group of important proteases that regulate
numerous physiological processes. They can be found in lysosomes and
endosomes are vital for protein breakdown and major histocompatibility
complex (MHC) class II-mediated immune responsesTurk, Turk, and Turk
(2001); Turk et al. (2012). Cystatin C is the best-studied member in the
cardiovascular system and is known to be associated with renal function and
HF-severity, independent of renal functionDamman et al. (2012); Verbree-
Willemsen et al. (2020); Chen, Tang, and Zhou (2019). Cathepsins have
many functions in the arterial wall and heart and there are various factors
known that regulate cathepsin expression in the cardiovascular system e.g.,
angiotensin II, vascular endothelial growth factor (VEGF) and fibroblast
growth factor 2 (FGF2)Liu et al. (2018); Cheng et al. (2012). There is
increasing evidence that cathepsins (i.e. Cat-B, -K, and -L)Nakagawa et al.
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(1998); Ohashi et al. (2003), contribute direct or indirect, by other chronic
inflammatory diseases, to cardiovascular diseases by regulating inflammatory
molecule production and immune cell activityOhashi et al. (2003); Santamaŕıa
et al. (1998); Joseph et al. (1988); Benavides et al. (2001); Sevenich et al.
(2010); Yamada et al. (2010); Ridker et al. (2017a,b); Markousis-Mavrogenis
et al. (2019). This systems biology approach furthermore taught us that the
strong relationship between renal dysfunction and mortality seems to be,
according to the strongest emerging proteins and transcriptomic markers,
for a large part explained by immune system activation. This provides us
with new information about mechanisms underlying the strong interaction
between renal failure and mortality in heart failure other than hemodynamic
pathways, which only partly explain its pathophysiologyRangaswami et al.
(2019). Our study shows that, without focusing on specific predetermined
targets, processes related to T-cell activation and T-cell receptor function seem
to be of relevance in explaining the relationship between renal dysfunction
and mortality in heart failure. This was also supported by our previous
publication where we focused on the transcriptomic markers [Nath et.al 2021]

4.5 Future perspectives

The role and opportunities of systems biology in unravelling underlying
pathology of complex diseases is attracting increasing attention in the field
of in cardiologyTrachana et al. (2018); Leopold and Loscalzo (2018); Weng
et al. (2017); Joshi et al. (2021). However, as far as we know, there has not
yet been a study using this advanced methodology in such a data-rich cohort.
Even outside the field of cardiology this data and the ability of validating
the results is quite uniqueReel et al. (2021). This comprehensive picture
of markers involved in the pathophysiological disease processes underlying
all-cause mortality and, more specifically, renal dysfunction in heart failure,
might provide potential future therapeutic intervention targets or markers to
monitor disease progression. We identified cathepsins as potential new targets
for the treatment of heart failure. There are many reports of important
roles of cathepsins in cardiovascular diseases, but also tumor progression, cell
death, and immune cell signalingTurk et al. (2012); Vasiljeva et al. (2007);
Brömme, Panwar, and Turan (2016); Olson and Joyce (2015); Qin and Shi
(2011); Kavčič, Pegan, and Turk (2017); Kramer, Turk, and Turk (2017). We
have studied the role of Cat-D in heart failure and found that higher levels of
circulating Cat-D were independently associated with all-cause mortality and
the composite of all-cause mortality and heart failure hospitalizationHoes et al.
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(2020). Cat-D was released by stem cells-derived cardiomyocytes following
cardiac stretch in correspondence with troponin T release. Silencing Cat-D
resulted in elevated levels of troponin T, especially following induced stress.
This suggest that intracellular Cat-D is essential for cardiomyocyte survival,
while circulating Cat-D are a measure for disease severity. In addition, the
current methodological framework is suitable to identify potential underlying
pathophysiologic processes of virtually any clinical phenotype or disease,
which offers many opportunities for future endeavours to better understand
clinical phenotypes or diseases. The advantages of our framework over other
approaches like multi-omics factor analysis, canonical correlation analysis, or
more classical bivariate protein-protein interactionsSamet (2006); Roweis and
Saul (2000); Witten, Tibshirani, and Hastie (2009); Hotelling (1936); WOLD
(1975); Argelaguet et al. (2018); Consortium (2013, 2015) is the ability to
use non-linear relationships, prevention of overfitting, and a rigorous stability
selection procedure.

4.5.1 Limitations

The transcriptomic panel consisted of 944 patients selected from the index
cohort and matched on age and sex[Nath et.al 2021]. This is an extensive
transcriptomic dataset, but unfortunately, data was measured in a pre-selected
group of patients from the index cohort and none from the validation cohort.
The selection of patients was not random, but skewed towards cardiovascular
mortality. Transcriptomic markers are therefore better suited to predict
cardiovascular mortality. This might explain the lower contribution of the
markers from the transcriptomic panel in our combined systems biology
model. The absence of this panel had no impact on the (level-0) model
development and validation of the other panels, because our methods are able
to handle changes in data-sources. Also, despite the rigorous selection process,
the effects of patient selection cannot be determined. Unfortunately, because
of the nature of this study, we are not able to draw causal conclusions on the
pathways we found. However, it is apparent that when developing the models
for predicting mortality so many markers from all panels are independently
selected that are associated with kidney function. We assume that, given
all these selected markers related to renal function, points us towards the
idea that renal dysfunction in heart failure patients is highly associated with
mortality. This association is reflected by the underlying pathways found in
this study.
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Index Validation
Alive Died p-value Alive Died p-value

N 1859 (74%) 657 (26%) 1214 (75%) 401 (25%)
Age (years) 68 (11.9) 73 (11.2) <0.0001 73 (10.5) 78 (9.7) <0.0001
Sex (Males) 1370 (74%) 476 (72%) 0.57 801 (66%) 270 (67%) 0.66
LVEF (%) 31 (9.8) 32 (12.5) 0.03 41 (13) 41 (13.3) 0.63
BMI (kg/m2) 28 (5.5) 27 (5.5) 0.001 29 (6.4) 28 (6.1) <0.0001
Ischemic heart disease 946 (51%) 412 (63%) <0.0001 776 (64%) 286 (71%) 0.008
H.F. hospitalization (<1y) 531 (29%) 263 (40%) <0.0001 301 (2%5) 130 (32%) 0.003
Myocardial Infarction 657 (35%) 306 (47%) <0.0001 575 (48%) 223 (56%) 0.006
DM 577 (31%) 242 (37%) 0.007 367 (30%) 155 (39%) 0.002
COPD 279 (15%) 157 (234%) <0.0001 191 (16) 104 (26%) <0.0001
History of renal disease 402 (22%) 294 (45%) <0.0001 491 (41%) 241 (61%) <0.0001
NYHA I 50 (2.76%) 6 (0.94%) <0.0001 15 (1) 1 (0) <0.0001
NYHA II 711 (39.28%) 157 (24.69%) 575 (47) 92 (23)
NYHA III 853 (47.13%) 375 (58.96%) 516 (43) 200 (50)
NYHA VI 196 (10.83%) 98 (15.41%) 108 (9) 107 (27)

Table 4.1: Baseline demographics index and validation cohort

GO Term P-value (Bonferroni corrected)
Tissue homeostasis 0.0013195
Epidermis development 0.0015873
Cell chemotaxis 0.0010968
Regulation of peptidase activity 0.0018942
Cysteine-type peptidase activity 0.0020925
Regulation of endopeptidase activity 0.0020606

Table 4.2: GO term significance

4.6 Conclusions

The present analysis involved multiple -omics modalities - genomics,
transcriptomics, proteomics, and clinical measurements - collected for one of
the largest data-rich cohorts of patients with heart failure. We found that
chronic kidney disease was the phenotype that had the strongest association
with mortality and was associated with pathways related to cysteine-type
peptidase activity and regulation of endopeptidase activity pathways. These
pathways, and Cat-D in particular, might become potential targets for
therapy to decrease mortality in patients with heart failure and chronic
kidney disease.
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Figure 4.1: Lollipop plot of the 15 most predictive variables of
mortality of each panel For every panel the top 15 markers are shown
in the lollipop plots including their overall ranking. The overall importance
ranking was calculated by scaling all relative importance to the importance of
each panel.

4.7 Tables and Figures

4.8 Supplementary Data

4.8.1 Benefits of Machine Learning for Multi-Omics
Analysis

Modern statistical methods allow building of powerful multivariable predictive
models. However, the standard application of these techniques may not be
sufficient for estimation of reliable biomarkers in the high-dimensional
data. To address this fundamental problem, we followed Stability Selection
approach proposed in the seminal paper by Nicolai Meinshausen and Peter
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Figure 4.2: Figure 2 – 3D Correlation plot of the most important
clinical markers and its associated markers from other panels. 3D
correlations plot based on our final model, starting with renal dysfunction
in the phenotypic panel. The protein biomarkers that correlate maximally
with renal dysfunction were selected in the protein panel. Subsequently,
the transcriptomic biomarkers that correlate maximally with the protein
biomarkers are selected. In turn, we selected genomic markers that correlate
maximally with these transcriptomic markers. The distance between markers
in a panel is based on multi-dimensional scaling of the distance matrix. A
distance matrix is calculated by 1-correlation of each panel.
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BühlmannMeinshausen and Bühlmann (2010) to ensure reliability of the
findings. We also used a specialized regularization strategy that makes
our methodology applicable to the high-dimensional regime. To avoid
over-fitting, we used a 10-fold stratified cross-validation over the training
partition of the data (80%) while the remaining 20% was used as the
testing dataset. For increased confidence, this procedure was repeated
multiple times on a completely reshuffled dataset and the average predictive
performance reported. For high-dimensional -omics data, application of
univariable significance-tests seldom lead to statistically significant results
after adjustment for multiple comparisons. These comparisons can easily
go into thousands due to large number of variables (phenotypic vs proteins
vs transcriptomic vs genes parameters). We applied permutation testing
which allowed us to evaluate significance of the “joint panel” of the identified
multi-omics markers. We therefore conducted hundreds of re-runs of the
model, every time randomly permuting the output variable/clinical heart
failure phenotype. This creates a “false” relationship among the multi-omics
profiles and outcomes. Performance of the model on large majority of these
simulation should be random (AUC 0.5). We evaluated the distribution of all
results obtained in these simulations and compared these to our true “joint
panel” model. We then computed the statistical significance associated with
the “joint panel” model. Our multi-omics machine learning approach provides
several advantages over classical techniques:

� Taking into account non-linear relationships

� Extensive prevention of overfitting in different stages (e.g. stratified
shuffle split cross-validation and 10-fold cross validation of final model)

� Rigorous Stability Selection procedure with improved prediction

� More reliable biomarkers compared to standard algorithms/univariable
methods

4.8.2 Correlation analysis

In our analysis, we have encountered both continuous and discrete data
types. Consequently, when investigating correlations among various -
omics modalities we: 1) continuous-continuous, 2) discrete-discrete and
3) continuous-discrete. For the first two we computed classical statistical
correlation coefficients, being Spearman’s rank coefficientCorder and Foreman
(2014) for continuous-continuous correlations and Kendall’s Tau for discrete-
discrete correlationsKendall (1938). For every continuous-discrete variable
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pair we trained a classification model. During the training of every model, the
parameters of the model were optimized using a random-search with 5-fold
cross-validation. The performance of the models was assessed by ROC AUC
scoreBradley (1997), which afterwards was transformed into a score ranging
from 0 to 1. Such score forms an absolute pseudo-correlation coefficient which
estimates how well the continuous variable can predict the discrete variable.

Figure 4.3: Venn diagram of the number of patients in each panel for
left: Index and right: validation cohort

Figure 4.4: ROC curve with confidence bands The ROC curves of all cross
validated curves are plot with a confidence band for the index and validation
cohorts.
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Figure 4.5: A) Permutation test and B) feature selection Top: The
distribution of ROC AUC values in blue are constructed by permutation in
200 re-runs of the level-1 model. Bottom: The red line is the true ROC AUC
of our final level-1 model.
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Figure 4.6: Enrichment network Cytoscape-ClueGo diagram presenting the
renal dysfunction related protein, transcriptomic and genomic markers in red
and their relation to the Gene ontology (GO) network. The node size of GO
terms represents the enrichment significance. Bonferroni corrected significant
terms are in bold.
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Figure 4.7: Radar charts For every panel the differences between the group
with fatal outcome (denoted as ‘Mortality YES’ in the figure) and the group
without fatal outcome (denoted as ‘Mortality NO’) are visualized in a radar
chart/spider plot. When a parameter is more frequent in patients who died red
is more prevalent or higher, and blue when the parameter is more prevalent
or higher in patients who survived.
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Figure 4.8: Correlation heatmap Correlation matrix between the top-60
markers in each of the phenotypic, protein, transcriptomic and genomic panels.
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5.1 Introduction

Learning from interconnected systems can be a particularly difficult task due
to the possibly non-linear interaction between the components Linde et al.
(2015); Bereau et al. (2018). In some cases, these interactions are known and
therefore constitute an important source of prior information Jonschkowski
(2015); Zhou et al. (2018). Although prior knowledge can be leveraged in a
variety of ways Yu, Simoff, and Jan (2010), most of the research involving
interactions, is focused on their discovery. One popular approach to deal with
feature interactions, is to cast the interaction network as a graph and then use
kernel methods based on graph properties, such as walk-lengths or subgraphs
Borgwardt and Kriegel (2005); Shervashidze et al. (2009); Kriege and Mutzel
(2012) or, more recently, graph deep convolutional methods Defferrard,
Bresson, and Vandergheynst (2016); Fout et al. (2017); Kipf and Welling
(2017). In this work however, we focus on the case in which the interactions
are feature specific and a universal property of the data instances, which make
the pattern search algorithms not suitable for this task. To our knowledge,
there is limited research involving this setting, although we suggest many
problems can be formulated in the same way (see Figure 5.1). To address this
knowledge gap, we present a novel method: Graph Space Embedding (GSE),
an approach related to the ’random-walk’ graph kernel Gärtner, Flach, and
Wrobel (2003); Kang, Tong, and Sun (2012) with an important difference: it
is not limited to the sum of all walks of a given length, but rather compares
similar edges in two different graphs, which results in better expressiveness.
Our empirical evaluation demonstrates that GSE leads to an improvement
in performance compared to other baseline algorithms when plasma protein
measurements and their interactions are used to predict ischaemia in patients
with Coronary Artery Disease (CAD) van Nunen et al. (2015); Zimmermann
et al. (2015). Moreover, the kernel can be computed in O(n2), where n is
the number of features, and its hyperparameters efficiently optimized via
maximization of the kernel matrix variation.

5.1.1 Main Contributions

1. Graph Space Embedding function that efficiently maps input into an
“interaction-based” space

2. Novel theoretical result on optimal regime for the GSE, namely feasibility
region for its parameters
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3. Even Decent Sampling Algorithm: a strategy to gain insight on which
interactions are responsible for the certain prediction

Figure 5.1: A traditional learning algorithm with no structural information
will take the feature values and learn to produce a prediction with complete
disregard for their interactions (top graph).

5.2 Approach

A remark on notation: we will use bold capital letters for matrices, bold
letters for arrays and lower case letters for scalars/functions/1-d variables (ex.
X,x, x).

5.2.1 Interaction Graphs

Any network can be represented by a graph G = {V,E}, where E is a set of
edges, V a set of vertices. Denote by A|V |×|V | (|V | is equal to the number
of features N) the adjacency matrix, where Ai,j represents the interaction
between feature i and j, and whose value is 0 if there is no interaction.

Let x
1×N

be an array with measurements of features 1 to N for a given
point in the data. In order to construct an instance-specific matrix, one can
weigh the interaction between each pair of features with a function of their
values’ product:

Gx(A) = φ(A) ◦ x⊤x, (5.1)
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where φ(A) is some function of the network interaction matrix A, and the
operator ◦ represents the Hadamard product, i.e. (A ◦B)i,j = (A)i,j(B)i,j .

5.2.2 Graph Kernel

Unlike the distance in euclidean geometry, which intuitively represents the
length of a line between two points, there is no such tangible metric for graphs.
Instead, one has to decide what is a reasonable evaluation for the difference
between two graphs in the context of the problem.

A popular approach Gärtner, Flach, and Wrobel (2003) is to compare
random walks on both graphs. The i, jth entry of the order k power of an
adjacency matrix A|V |×|V | : A

k = AA...A︸ ︷︷ ︸
k times

, corresponds to the number of walks

of length k from i to j. Any function that maps the data into a feature space
H: ϕ : X → H, k(x,y) =< ϕ(x), ϕ(y) > is a kernel function. Using the
original graph kernel formulation, it is possible to define a kernel that will
implicitly map the data into a space where the interactions are incorporated:

kn(G,G
′
) =

n∑
i,j=1

[γ]i,j
〈
[G]i, [G′]j

〉
F
, (5.2)

where G and G′ correspond to Gx(A) and Gx′(A) (see eq. 5.1); γi,j is a
function that ”controls” the mapping ϕ(·); and n is the maximum allowed
”random walks” length. If γ is decomposed into UΛUT , where U is a matrix
whose columns are the eigenvectors of γ, and Λ a diagonal matrix with its
eigenvalues at each diagonal entry, then equation 5.2 can be re-factored into:

kn(G,G
′
) =

|V |∑
k,l=1

n∑
i=1

ϕi,k,l(G)ϕi,k,l(G
′), (5.3)

where ϕi,k,l(G) =
∑n

j=1[
√
ΛUT ]i,jG

j . Consequently, different forms of the
function γ can be chosen, with different interpretations. For the case where
γi,j = θiθj , which yields:

kn(G,G
′) = ⟨

n∑
i=1

θi[G]i,
n∑

j=1

θj [G′]j⟩F

= ⟨
n∑

i=1

θi[G]i,

n∑
i=1

θi[G′]i⟩F ,
(5.4)
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the kernel entry can be interpreted as an inner product in a space where there is
a feature for every node pair {k, l}, which represents the weighted sum of paths
of length 1 to n from k to l (ϕk,l =

∑n
i=1 θ

iGi
k,l) Tsivtsivadze et al. (2011).

The kernel can then be used with a method that employs the kernel trick,
such as support vector machines, kernel PCA or kernel clustering. Another
interesting case is when we consider the weighted sum of paths of length 1 to
∞. This can be calculated using:

k∞(G,G
′
) = ⟨eβG, eβG

′
⟩F , (5.5)

since eβG = limn→+∞
∑n

i=0
βi

i! G
i, where β is a parameter.

5.2.3 Graph Space Embedding

Since we are dealing with a universal interaction matrix for every data point
and the interactions are feature specific, it makes sense to compare the same
set of edges for every pair of points. As a consequence, we can also avoid
solving time-consuming graph structure problems. With these two points in
mind, we combined the previous graph kernel methods and the radial basis
function (RBF) to develop a new kernel which we will henceforth refer to as
Graph Space Embedding (GSE). The radial basis function is defined as:

k(x,y) = e−
||x−y||2

σ2 = c e
2<x,y>

σ2 , (5.6)

where c = e−
||x||2

σ2 e−
||y||2

σ2 . The GSE uses the distance
〈√

γ[G],
√
γ[G′]

〉
F

in
the radial basis function:

k(G,G′) = c e
2<x,y>

σ2 = c

∞∑
n=0

(
2
〈√

γG,
√
γG′

〉
F

)n
σ2n n!︸ ︷︷ ︸
r w

(5.7)

If we then take the upper term of the fraction in r w to be
[
2
∑|E|

i=0 γGiG
′
i

]n
,

we can use the multinomial theorem to expand each term of the exponential
power series, and the expression for the kernel then becomes:

k(G,G
′
) = c

∞∑
n=0

(
2

ν

)n

︸ ︷︷ ︸
λ

∑
αn(·)

∏|E|
i=1[GiG

′
i]
αi∏|E|

i=1 Γ(αi + 1)︸ ︷︷ ︸
r e

, (5.8)
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where Γ is the gamma function, Gi ∈ E is the value of edge i in G and ν = σ2

γ .

Here, αn(·) represents a combination of |E| integers: (α1, α2, ..., α|E|), with∑|E|
i αn

i (·) = n, and the sum in r e is taken over all possible combinations of
αn(·). For instance, for n = 3 in a graph with |E| = 5, possible examples of
α3(·) include (0, 1, 1, 1, 0) or (0, 2, 1, 0, 0) (see Figure 5.2). We begin by noting

Figure 5.2: The GSE kernel implicitly compares all edge combinations between
G andG′. In this hypothetical graph, we show a sample of four α combinations
for n = 3. We denote by r e(α(i)) the value inside the sum r e (see eq. 5.8)
corresponding to the combination α(i). Note that while α(1) is a graph walk
and α(2) is not, r e(α(1)) = r e(α(2)). However, due to the repetitions in
α(3) and α(4), their value is shrunk in relation to the others. The higher the
number of repetitions, the more the value shrinks.

that since the sum in r e is taken over all combinations (l, k) ∈ V × V of size
n, the GSE then represents a mapping from the input space to a space where
all combinations of n = 0→∞ edges are compared between G and G

′
, walks

or otherwise (see fig 5.2). Notice that this is in contrast with the kernel of
equation 5.5, where the comparison is between a sum of all possible walks of
length n = 0→∞ from one node to another in the two graphs.

The GSE also allows repeated edges. However, if the data is normalized
so that µ(Gi) ≃ 0, σ(Gi) ≃ 1, then both the power in the numerator and the
denominator of r e will effectively dampen most combinations with repeated
edges, with a higher dampening factor for higher number of repetitions
and/or combinations. Even for outlier values, the gamma function will
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quickly dominate the numerator of r e. The λ factor serves the purpose of
shrinking the combinations with higher number of edges for ν > 2. Finally,
σ2 now serves a dual purpose: the usual one in RBF to control the influence
of points in relation to their distance (see equation 5.6), while at the same
time controlling how much combinations of increasing order are penalized.

5.2.4 ν Feasibility Region

As discussed in the above section, the hyperparameter ν controls the shrinking
of the contribution of higher order edge combinations. Intuitively, not all
values of ν will yield a proper kernel matrix since too large of a value will leave
out too many edge combinations while one too small will saturate the kernel
values. This motivates the search for a ν value feasible operation region, where
the kernel incorporates the necessary information for separability. Informally
speaking, the kernel entry k(G,G′) measures the similarity of G and G′.
In case too few/many edge combinations are considered, the variation of the
kernel values will be equal to 1. Therefore, we use the variation of the kernel
matrix σ2(K) as a proxy to detect if ν is within acceptable bounds. We shall
refer to the ability of the kernel to map the points in the data into separable
images ϕ(x) as kernel expressiveness.

To determine this region analytically, we find the νmax that yields the
largest kernel variation, and then use the loss function around this value to
determine in which direction the value ν should take for minimal loss.

Lemma 5.2.1. maxν σ2 (K(ν)) can be numerically estimated and is
guaranteed to converge with a learning rate α ≤ D

2(D−1)dmax
, where D is the

total number of inter graph combinations and dmax is the largest combination
distance.

Proof. The analytical expression for the variance is:

σ2 (K(ν)) = E[K(ν)2]− E[K(ν)]2︸ ︷︷ ︸
b

=

(
D − 1

D

) D∑
d=1

e−2νd − 1

D2

D2−D∑
i ̸=j

2e−ν(di+dj) ,

(5.9)

where we used the binomial theorem to expand b, and d = ||G −G′||2. To
guarantee the convergence of numerical methods the function derivative must
be Lipschitz continuous:

∥K′(ν)−K′(ν′)∥
∥ν − ν′∥

≤ L(K′) : ∀ ν, ν′, (5.10)
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by overloading the notation: K′(ν) = ∂σ2(K(ν))
∂ν to simplify the expression.

The left side of equation 5.10 becomes:

∥⊤ − Λ∥
∥ν − ν′∥

,

Λ = 2

(
D − 1

D2

)[ D∑
d=1

d(e−2νd − e−2ν
′d)

]
,

⊤ =
2

D2

D2−D∑
i ̸=j

(di + dj)
(
e−ν(di+dj) − e−ν

′(di+dj)
)
.

(5.11)

Since 0 ≤ e−β ≤ 1 : ∀β ∈ R, then:

∥⊤ − Λ∥ ≤ 2

(
D − 1

D

)
dmax. (5.12)

When ϵ = ν − ν′ → 0 :

e−cν − e−cν
′
=
ecν

′ − ecν

ec(ν+ν′)︸ ︷︷ ︸
δ

→ 0, : ν, ν′ > 0, (5.13)

and δ tends much faster to 0 then ϵ, since the denominator of δ is the
exponential of the sum of ν and ν′. Thus, the function k′(ν) is Lipschitz
continuous with constant equal to: L(K′(ν)) = 2

(
D−1
D

)
dmax .

We shall later demonstrate empirically that ν∗ = maxν σ2(K(ν)) improves
the class separability for our dataset.

5.2.5 Comparison with Standard Graph Kernels

The original formulation of the graph kernel by Gartner et. al (see eq. 5.2),
multiplies sums of random walks of length i from one edge to another (k → l)
by sums of random walks k → l from the other graph being compared of a
length not necessarily equal to i:

kn(G,G
′
) =

n∑
i,j=1

[γ]i,j

〈
[G]ikl, [G

′]jkl

〉
F

=

|V |∑
k,l=1

n∑
i=1

[G]ikl

n∑
j=1

[γ]i,j [G
′]jkl

. (5.14)
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The infinite length random walk formulation (see eq. 5.5) behaves in a
similar way. Our method though, always compares the same set of edges in
the two graphs.

Another important difference is the complexity of our method versus the
random-walk graph kernel. For anm×m kernel and n×n graph, the worst-case
complexity for a length k′ random walk kernel is O(m2k′n4) and O(m2k′n2)
for dense and sparse graphs, respectively Vishwanathan et al. (2010). The
GSE, on the other hand, is always O

(
m2n2

)
since the heaviest operation

is the Frobenius inner product in order to compute the distance between G
and G′. Moreover, once this distance is computed, evaluating the kernel for
different values of ν is O(1), which combined with the fact that the variance
of this kernel is Lipschitz continuous, allows for efficient searching of optimal
hyperparameters (see section 5.2.4).

5.2.6 Interpretability

How could we better understand what the GSE is doing, when it maps
points into an infinite-dimensional space? A successful recent development
in explaining black-box models is that of Local Interpretable Model-agnostic
Explanations (LIME) Ribeiro, Singh, and Guestrin (2016), where a model is
interpreted locally by making slight perturbations in the input and building
an interpretable model around the new predictions. We too shall monitor
our model’s response to changes in the input, but instead of making random
perturbations, we will perturb the input in the direction of maximum output
change.

Given an instance from the dataset x1×N , where N is the number of
features, and the function that will incorporate the feature connection network
Gx(A) (e.g. Gx(A) = A ◦ x⊤x), we will find the direction to which the
model is the most sensitive (positive and negative). Unlike optimization,
where the goal is to converge as fast as possible, here we are interested
in the intermediate steps of the descent. This is because we shall use
the set G = {Gx1

, Gx2
, ..., GxM

} and the black-box model’s predictions
f = {f(x1), f(x2), ..., f(xM )} to fit our interpretable model h(G) ∈ H
(where xi is a variation of the original sample x0, and H represents the space
of all possible interpretable functions h). This way, we will indirectly unveil
the interactions that our model is most sensitive to, and show how these
impact the predictions. To penalize complex models over simpler ones, we
will introduce a function Ω(h) that measures model complexity. To scale
the model complexity term appropriately, we can find a scalar θ so that the
expected value of Ω(h) is equal to a fraction ε of the expected value of the
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loss:

E[θΩ(h)] = εE[L]↔ θ =
εE[L]
E[Ω(h)]

. (5.15)

Lastly, for highly non-linear models, the larger the input space the more
complex the output explanations are likely to be, so we will weigh the sample
deviations the same as the original sample x0 using the model’s own similarity
measure k(Gxi

,Gx0
). Putting it all together:

ξ(x0) = min
h∈H
L
(
h, f, k(Gxi

,Gx0
)
)
+ θΩ(h). (5.16)

where L
(
h, f, k(Gxi ,Gx0)

)
is the loss of h when using Gxi to predict the

black-box model output f(xi), weighted by the kernel distance to the original
sample k(Gxi

,Gx0
).

Even Descent Sampling Method

In order to adequately cover the most sensitive regions, we need to take steps
with equidistant output values. Thus, we developed a novel adaptive method
to sample more in steeper regions and less in flatter ones. The intuition is that
we would like to approximate the function values in unexplored regions, so that
we choose an appropriate sampling step while considering the uncertainty of
the approximation. Due to the stochastic nature of the method, it is able to
escape local extremes. Consider the value of function f at a point x0 and its
first order Taylor approximation at an arbitrary point x:

f(x) ≈ f̂(x) = f(x0) +∇xf(x0)(x− x0). (5.17)

The larger the difference δ = x − x0, the less likely it is that the
approximation error f(x)− f̂(x) is small. Assume we would like to model the
random variable F , which takes the value of 1 if the approximation error is
small (δ = |f̂(x)− f(x)| ≈ 0), and 0 otherwise. We will model the probability
density function of F as being:

pF (f = 1|δ) = λe−λδ. (5.18)

Consider also the random variable T which takes the value of 1 if the
absolute difference in the output for a point x exceeds an arbitrary threshold
(|f(x) − f(x0)| > τ), and 0 otherwise. Assume there is zero probability this
event occurs for sufficiently small steps: δ < a(τ), for some value a(τ). Let us
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further assume that our confidence that |f(x) − f(x0)| > τ increases linearly
after the value δ = a(τ), until the maximum confidence level is reached at
δ = b. After some value δ = c, we decide not to make any further assumptions
about this event, so we attribute zero probability from that point on. This
can be modeled as:

pT (t = 1|δ) =


2
v
δ−a(τ)

u , a(τ) < δ ≤ b
2
v , b < δ ≤ c
0 , otherwise

, (5.19)

where v = 2c − a(τ) − b , u = b − a(τ) and T = 1, if |f(x) − f(x0| > τ and
0 otherwise. The distribution of interest is then pS = p(f = 1 ∩ t = 1|δ). To
simplify the calculations, we impose the uncertainty about our approximation
(expressed by F ) and the likelihood of a sufficiently large output difference
(expressed by T ) to be independent given δ: p(f = 1 ∩ t = 1|δ) = p(t =
1|δ)p(f = 1|δ), and since the goal is to sample steps from this distribution,
we will divide it by the normalization constant: Z = p(f = 1 ∩ t = 1) =∫ +∞
−∞ p(f = 1 ∩ t = 1|δ)dδ. See Figure 5.3 for an illustration of the method.

Figure 5.3: Illustration of the even descent sampling. f̂(x) approximates the
function f(x) and an estimation of how much δ = |x−x0| is required to achieve
|f(x) − f(x0)| ≤ τ , is computed. Then a sample of x is drawn according to
pS = p(f = 1 ∩ t = 1|δ)

There are a couple of properties that can be manipulated for a successful
sampling of the output space:
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Controlled Termination

To force the algorithm to terminate after a minimum number of samplesMmin

have been sampled, one can decrease the value of a(τ) with each iteration so
that it becomes increasingly more likely that a value of δ will be picked such
that |f(x) − f(x0)| < τ , terminating the routine. For this purpose, one can
compute the estimated threshold value τ0 that will keep the routine running.

|f̂(x)− f(x0)| ≥ τ ⇔
N∑
i=1

∇xf(x0)[i]δ[i] ≥ τ, (5.20)

where N is the number of features. This is an underdetermined equation, but
one possible trivial solution is to set:

δ[i] ≥ τ

N ′ ∇xf(x0)[i]
≡ τ0, (5.21)

where N ′ is the number of non-zero gradient values, then let a(τ) decay with
time so that it will reach this limit value after Mmin iterations:

a(τ)i = τ0

(
1 +

θa(Mmin − i)
Mmin

)
. (5.22)

Escaping Local Extrema

To make it more likely to escape local extrema, one possibility is to set the
cut-off value c larger when the norm of τ0 (eq. 5.21) is larger than its expected
value, and smaller otherwise:

c = b

(
cl +

E [||τ0||2]− ||τ0||2
E [||τ0||2] + ||τ0||2

)
, cl ∈ ]2,+∞[ . (5.23)

This formulation allows jumping out from zones where the gradient is
locally small, while taking smaller steps where the gradient is larger than
expected.

Termination When Too Far from Original Sample

Since we are trying to explain the model locally, the sampling should terminate
when the algorithm is exploring too far from the original sample. For that
purpose, one can set λ to increase with increasing distance d to the original

sample, pushing the probability density towards the left: λ(d) = e−
d
σ2 .

Putting all of the above design considerations together, you can find the
complete routine in algorithm 1.
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Algorithm 1 Even Descent algorithm

Input: f,x0,A
Parameter: τ, λ, θa, b, cl,Mmin

Output: X′, f

1: i← 0, fi ← f(x0), f ← [fi], converged ← False
2: E[||τ0||] = 0, X′ ← [x0]
3: while converged ̸= True do
4: i← i+ 1
5: ∇f ← ComputePartialDers(x0,A, f)
6: τ0 ← τ/|N ′ ∗ ∇f |
7: a, b, c← UpdatepS(i, θa,Mmin,E[||τ0||], cl)
8: E[||τ0||]← (E[||τ0||](i− 1) + ||τ0||)/i
9: δ ← EvenSample(λ, a, b, c)

10: xi ← xi ± δ ∗ ∇f
11: Append(f , f(xi)), Append(X′,xi)
12: if |fi − fi−1| < τ then
13: converged ← True
14: end if
15: end while
16: return X′, f

5.3 Experiments

5.3.1 Materials

For all our analysis, we used plasma protein levels of patients with suspected
coronary artery disease who were diagnosed for the presence of ischaemia Bom
et al. (2019). A total of 332 protein levels were measured using proximity
extension arrays Assarsson et al. (2014), and of the 196 patients, 108 were
diagnosed with ischaemia. The protein-protein interactions data is available for
download at StringDB Jensen, Kuhn et al. (2009). We implemented the GSE
and the random walk kernel in python and used sci-kit learn implementation
Pedregosa and et al. (2011) for the other algorithms in the comparison.

5.3.2 Ischaemia Classification Performance

We benchmarked the GSE performance and running time when predicting
ischaemia against the random-walk graph kernel, RBF, and random forests.
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Additionally, in order to test the hypothesis that the protein-interaction
information is improving the analysis, we also tested GSE using a constant
matrix full of ones as the interaction matrix. For this benchmark, we
performed a 10-cycle stratified shuffle cross-validation split on the normalized
protein data and recorded the average ROC area under the curve (AUC).
To speed up the analysis, we used a training set of 90 pre-selected proteins
using univariate feature selection with the F-statistic Hira and Gillies (2015).
The results are shown in table 5.1. The GSE outperformed all the other

Method AUC std AUC avg Run time avg(s)
GSE 0.055890 0.814141 7.63
RWGK 0.051704 0.808838 1720
RF 0.066036 0.764141 17.99
GSE* 0.082309 0.787879 6.59
RBF 0.095247 0.779293 1.16

Table 5.1: The GSE benchmark against random-walk graph kernel (RWGK),
random forests (RF), the GSE with constant interaction matrix (GSE*), and
radial basis function (RBF). For all kernels, SVM was used as the learning
algorithm.

compared methods, and the fact that the GSE with a constant matrix (GSE*)
had a lower performance increases our confidence that the prior interaction
knowledge is beneficial for the analysis. The GSE is also considerably faster
than the Random-Walk kernel, as expected. To test how both scale increasing
feature size, we compared the running time of both for different pre-selected
numbers of proteins. The results are depicted in Figure 5.4.

5.3.3 Performance for Different ν Values

Recall from section 5.2.4 that a feasible operating region for the ν values
in the GSE kernel was analytically determined. We wanted to investigate
how the loss function performs within this region, and whether it is possible
to draw conclusions regarding the GSE kernel behaviour with respect to the
interactions. To test this, the ν∗ = maxν σ

2[k(ν)] was found using a gradient
descent (ADAM Kingma and Ba (2015)) on the training set over 20 stratified
shuffle splits (same preprocessing as in 5.3.2). We then measured the ROC
AUC on the validation set using 12 multiples of ν∗. The results can be seen
in Figure 5.5. It is quite interesting that our proxy for measuring kernel
expressiveness turns out to be a convex function peaking at ν∗.
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Figure 5.4: Average running time of the GSE and the Random-walk graph
kernel (RWGK), per number of pre-selected features

Figure 5.5: Average ROC AUC on validation set using GSE with different
ν values over 20 stratified shuffle splits. Horizontal axis - Multiples of
maxν σ

2[k(ν)] here denoted by ν∗. The AUC as function of the ν values looks
convex and peaks exactly at ν∗
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Figure 5.6: Even Descent Sampling for a random patient in our dataset. This
analysis reveals our model ”predicts” this patient could be treated by lowering
protein ”TIMP4” and the interaction between ”REN” and ”LPL”.

5.3.4 Interpretability Test

To test how interpretable our model’s predictions are, first we trained the
model on a random subset of our data and used the trained model to predict
the rest of the data. Then we employed the method described in section 5.2.6
on a random patient in the test set, using decision trees as the interpretable
models h(G) ∈ H, and a linear weighted combination of max depth and min
samples per split as the complexity penalization term Ω(h). We then picked
the two most important features and made a 3d plot using an interpolation of
the prediction space. The result is depicted in Figure 5.6.

The Even Descent Sampling tests instances which are approximately
equidistant in the output values. For this patient, our model ’predicts’ its
ischaemia risk could be mitigated by lowering protein TIMP metallopeptidase
inhibitor 4 (”TIMP4”) and the interaction between lipoprotein lipase (”LPL”)
and renin (”REN”).

5.4 Conclusions

In this paper, we address the problem of analyzing interconnected systems
and leveraging the often-known information about how the components
interact. To tackle this task, we developed the Graph Space Embedding
algorithm and compared it to other established methods using a dataset of
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proteins and their interactions from a clinical cohort to predict ischaemia.
The GSE results outperformed the other algorithms in running time and
average AUC. Moreover, we presented an optimal regime for the GSE in
terms of a feasibility region for its parameters, which vastly decreases the
optimization time. Finally, we developed a new technique for interpreting
black-box models’ decisions, thus making it possible to inspect which features
and/or interactions are the most relevant.
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6.1 Introduction

Exponential increase in multi-modal data, stemming from different
instruments and measurements presents both an opportunity and a challenge.
With a larger sheer volume of information, there is potentially more we can
learn for a given process, but coherently combining different data sources with
the goal of improving analysis remains a challenging and underdeveloped task.
In the medical field for instance, multiple omics data such as proteins or lipids
encode somewhat related biological information. Therefore, one might expect
that health or disease state is reflected in both of these modalities, despite
their different format. Learning frameworks such as manifold alignment
Wang and Mahadevan (2011); Cui et al. (2014) and domain adaptation
Hajiramezanali et al. (2018); Kumar et al. (2018) may not be directly
applicable as they try to find a common latent manifold and learn to transfer
knowledge from a source to a target domain, respectively. Orthogonally to
existing methods, we present a way of ”mixing” information from multiple
domains, without imposing hard similarity between them. The motivation
is that for a given outcome, the ”core mechanism” (e.g. health or disease
state) is reflected in all of these modalities and so this commonality can
become more evident when the source domain (e.g. proteins) can accordingly
transform the local geometry of the target (e.g. lipids).

6.2 Approach

We use a stacked regularization setting Wolpert (1992) where each level-one
model is trained using ”mixed manifolds” of various data modalities. In the
next subsections we briefly discuss classical stacked regularization, domain
alignment, adaption, and finally propose our mixing algorithm. Regarding
notation, we will use capital bold, bold and no formatting for matrices, vectors
and scalars or functions, respectively (e.g. X,x, f/W ). We will also use
calligraphic font to denote spaces (e.g. X ).

6.2.1 Stacking

Let X be a dataset of N samples whose values are sampled from an input
space X = {X 1, X 2, ..., XM} where X 1 to XM are subspaces corresponding
to different ”sources” or ”views” 1→M which we will refer to as ”domains”.
Denote by y the output sampled from an output space Y. In a supervised
setting, the goal is to compute p

(
y|x1, ..., xM

)
, where xi are the coordinates
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of an instance from X in the domain X i. In stacked regularization, or stacking,
the input is passed to a first layer of W0 predictors g01(x), ..., g

0
W0

(x), with:

g0i (x) = p
(
y|x1, ... , xM , θ0

i

)
, (6.1)

where θ0
i are the hyperparameters of the ith model. For our task, we suggest

to pass one data source per model: g0i (x) = p
(
y|xi, θ0

i

)
, so that the width

of the first layer W0 is equal to the number of domains M . The output from
this layer is then passed to one or more layers of Wk models gk1 , ... , g

k
Wk

which
blend the outputs of the previous ones:

gki (x) = p
(
y|gk−11 (·), ... , gk−1Wk

(·)), θk
i

)
, k ∈ [1, L] , (6.2)

where L is the total number of blending layers and θk
i the hyperparameters

of ith model from the kth layer. The last blending layer is then passed to a
final model f that produces the output f(x) = p

(
y|gL1 (x), ... , gLWL

(x), θL+1
)
,

where θL+1 are the hyperparameters of f . You can visualize the stacked model
general architecture in figure 6.1. From a frequentist point of view, the goal
of stacking is then to find:

argmin
θ

L(y; f(X),θ) , (6.3)

where θ is the set of hyperparameter values from all of the stack models, y is
the output for all of the data, and L is the loss function when using f(x) to
predict y. For a fully Bayesian approach, one should compute the posterior
probability of each model by integrating out the hyperparameter values:

p
(
gki |Z

)
∝ p

(
Z|gki

)
p
(
gki
)
∝

p
(
gki
) ∫

p
(
Z|θk

i , g
k
i

)
p
(
θk
i |gki

)
dθk

i ,
(6.4)

where Z is the complete dataset (X,y).
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Figure 6.1: Our proposed stacked setting

Although this approach is attractive because it considers the uncertainty
of the model, it also incurs high computational cost for large θk

i .
Two important aspects are: a) optimizing each model independently does not
guarantee finding the global optimal stacked model and b) there is an implicit
assumption that each model gki can learn/handle data from different sources
(possibly with different formats) effectively.

6.2.2 Stacking Optimization

Finding an optimal stacked model can be done by optimizing each sub-model
individually or by jointly optimizing all the sub-models. Optimizing each
model individually has an important complexity advantage because the
number of possible θ combinations increases exponentially with the number
of parameters: k|θ|, where k is the number of values considered for each
parameter.

Lemma 6.2.1. For a given dataset X,y, stacked model f(x) and parameters
θ, the following relation is true: L (y, f(x),θ∗) ≤ L (y, f(x),θ′), where

θ∗ = argmin
θ

L (y, f(x),θ), θ′ = φL
k=1

(
φWk
i=0

(
argmin

θk
i

L
(
y, gki (x),θ

k
i

)))
,

and φL
j=1

(
argmin

θj

f(θj)

)
is a sequential composition of minimizations with

respect to index j: argmin
θj=L

(
argmin
θj=L−1

(
... argmin

θj=1

(f(θj))

))
.

Proof. Let µ be a measure on the measurable space (Θ,θ). Since θ is a disjoint
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set, its measure is just:

µ(θ) =

L+1∏
k=0

Wk∏
i=1

µ(θk
i ) (6.5)

Denote by {θk
i }∗ the set of values that satisfy argmin

θk
i

L
(
y, gki (x),θ

k
i

)
, and

{θk
i } the set of values θk

i can take. Since {θk
i }∗ ⊂ {θk

i }, then µ
(
{θk

i }∗
)
≤

µ
(
{θk

i }
)
, ∀ i, k, and so:

µ (θ′) =

L+1∏
k=0

Wk∏
i=1

µ
(
{θk

i }∗
)
≤

L+1∏
k=0

Wk∏
i=1

µ
(
{θk

i }
)

(6.6)

L (y, f(x),θ∗) is thus optimizing over a larger domain than L (y, f(x),θ′) is,
yielding L (y, f(x),θ∗) ≤ L (y, f(x),θ′)

There is a trade-off between complexity and performance when it comes
to optimizing the model. If performance is the goal, then the next step is
to decide what form is the optimization going to take. A grid-search would
quickly become unfeasible for models with multiple hyperparameters, so an
attractive solution is to instead use Bayesian optimization Acerbi and Ji
(2017).

6.2.3 Domain Alignment

Note that at this point there is no information sharing between the first layer’s
models. However, in many situations it may be desirable that some information
is shared across these models since they are build using different modalities of
the same sample set. The motivation is that even though the samples come
from different distributions, the generating processes should be similar and
thus they should lie in a similar low-dimensional manifold. This is the central
problem of Manifold Alignment Hun, D., and K. (2003). Our Manifold Mixing
is based on similar motivation, with crucial difference - we consider that each
domain has a contribution of its own, and therefore we will not enforce an
exact match between the manifolds but merely a transformation of the local
inter-sample geometry using all the domains, indirectly linking the stacked
first layer models together.
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6.2.4 Domain Adaptation

Given two domains X s and X t, that are different but related, the goal of
Domain Adaptation is that of learning to transfer knowledge acquired from
the source X s to the target X t. The most common setting is when there are
many labeled examples in the source, but not in the target, and therefore one
tries to learn an estimator h such that it minimizes the error on both the source
and target distribution prediction Ben-David et al. (2010). In our setting, the
source and target domains represent different modalities of the same sample.
For clarity, we will use source and target domain definitions as well, and use
the former to transform the latter.

6.2.5 Manifold Mixing

We would like to address the question: how to combine data from different
domains with a similar relation to the output? Our approach consists in
creating a map between each pair of domains X s → X t, while deforming
the local geometry of the two to become more similar. We drew inspiration
from LLE Roweis and Saul (2000) in that we will also use the neighbours
of a point to predict its position. In our case, we will use the neighbours of
this point in the other domains to predict its position in the original domain.
Consider a set of points S and two mappings taking the points in S to two
coordinate systems of domains X t and X s: φ : S → R|t|, ψ : S → R|s|, and
suppose the subsets Xt, Xs of the dataset X are measured in these coordinate
systems. Let us introduce an approximation Lt

s to the mapping φ ◦ ψ−1 :
R|s| → R|t| from the coordinates of domain X s to the coordinates of domain
X t: min

Lt
s

∑N
i=1 ||xt

i − Lt
sx

s
i ||2, with xt

i,x
s
i corresponding to the ith entry of Xt

and Xs, respectively. The optimal solution is then given by:

∂

∂Lt
s

N∑
i=1

||xt
i − Lt

sx
s
i ||2 = 0⇔

N∑
i=1

Lt
s (x

s
ix

s⊺
i ) =

N∑
i=1

xt
ix

s⊺
i

Lt
s (X

sXs⊺) = XtXs⊺ ⇔ Lt
s = XtXs⊺ (XsXs⊺)

−1
.

(6.7)

Denote by nt
i[j] the jth neighbour of instance xi in the domain X t. Let

the array of the points in X s which are the neighbours of instance xt
i in

the domain X t be: Ns←t
i =

[
xs
nt

i[1]
,xs

nt
i[2]
, . . . ,xs

nt
i[k]

]
. Our goal is to ’mix’

information from different manifolds. This is accomplished by projecting
the neighbours of xt

i from the source to the target domain and then finding
the linear combination of the points that best reconstructs xt

i in the original
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domain:
min
wi

∑
i

||xt
i − x̃t←s

i ||2 = min
wi

∑
i

||xt
i − Lt

sN
s←t
i wi||2, (6.8)

where x̃t←s
i is the reconstruction of xt

i using domain X s. We visualize how
substituting xi by x̃t←s

i might affect the target manifold in figure 6.2. After

Figure 6.2: Target manifold being deformed by the source manifold using the
manifold mixing method. The crosses are the neighbours of point xi (point in
red) in the target domain. These neighbours are mapped from the source to
the target domain and then used to locate xi. This causes the target manifold
to be locally deformed by the source manifold.

setting the derivative w.r.t. wi to zero, the optimal solution corresponds to:

wi =
((

Ñt←s
i

)⊺
Ñt←s

i

)−1 (
Ñt←s

i

)⊺
xt
i , (6.9)

where Ñt←s
i = Lt

sN
s←t, the neighbors of xi in Xt projected from their

coordinates in Xs back to the coordinates in Xt. We can now transform the
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Algorithm 2 Manifold Mixing Algorithm

Input: data X = [X1, . . . ,XM ], domain weights β
Output: transformed data X̃
for t = 1 to M do

nt ← NearestNeighbours(Xt, k)
X̃t ← βtX

t

for s in m ∈ [1,M ] \ t do
Lt
s ← XtXs⊺ (XsXs⊺)

−1

for xi = 1 to N do
Ns←t

i ← Xs[nt
i], Ñ

t←s
i ← Lt

sN
s←t
i

wi ←
((

Ñt←s
i

)⊺
Ñt←s

i

)−1 (
Ñt←s

i

)⊺
xt
i

X̃t
i += βsÑ

t←s
i wi

end for
end for

end for
X̃← [X̃1, , ..., , X̃M ]
return: X̃

original space X t into the space reconstructed from the other domains X̃ t by
computing for each instance the weighted mean of its reconstructions:

x̃t
i = βtx

t
i +
∑
s ̸=d

βsx̃
t←s
i , (6.10)

where βj can be seen as the prior of domain X j ’s relevance, and
∑

j βj = 1.
When evaluating a new point xnew, first the nearest neighbours from the
training set are found, and then the reconstruction is given by Ñs←t

i wnew.
The complexity of the algorithm is bounded by the matrix inversion of the
coordinate mapping in equation 6.7, and therefore the algorithm complexity
is O(d3), where d is the maximum number of features among all the domains.

6.3 Experimental Section

6.3.1 Methods

To test our method we used a recent clinical cohort Bom et al. (2019)
containing data on patients with cardiovascular disease. There are 440 subjects
in the dataset of which 56 suffered from an early cardiovascular event. For each
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patient, 359 protein levels and 9 clinical parameters are measured. We evaluate
performance our method (stacked regularization with manifold mixing) for
predicting a cardiovascular event. We compare proposed approach to that
of using a standard stacked model with joint Bayesian optimization of the
hyper-parameters, as well as with using random forest on the merged/ feature
concatenated datasets (protein levels and clinical parameters). For both our
method and the standard stacking, the architecture consisted of two larger
random forest models in the first layer and a smaller one in the output.

6.3.2 Data selection and preprocessing

We perform random shuffles with 90% train size and even class distribution in
the train/test set. We use remaining 10% to test the model. Since the dataset
is imbalanced (much larger number of negative than positive subjects), we took
a random sample from the negative class of size equal to the total number of
positive class subjects, prior to the split at each shuffle. The protein were
measured using a technology that uses standard panels for different proteins,
meaning some of the proteins might have no relation to the outcome at all. For
this reason, for each run we pre-selected 50 proteins using Univariate Feature
Selection on the training set. Then, we normalized the train and test data
independently, and measured the average ROC for each of the methods. We
perform 5-fold cross validation for optimal hyper-parameter estimation on the
train set for the random forests, and bayesian optimization for the stacked
models. Once that is accomplished, we retrain the model with the optimal
parameters on the complete training set and test on the remaining 10%. We
repeat the this procedure multiple times and report the average ROC-AUC
as well as the standard deviation. Described strategy is frequently referred
to as stability selection procedure Meinshausen and Bühlmann (2010) The
proteins were measured using OLINK technology that records expression levels
of proteins via targeted and customised analysis Bom et al. (2019).

6.3.3 Results

The results are presented in figure 6.3. Proposed approach (MM stacked)
outperformed both the regular stacked model and the random forests (RF)
using the merged data. Both stacked regularized techniques outperformed
standard RF.
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Figure 6.3: Average AUC for the three methods compared. The highest
performance is that of the Manifold Mixing stacked model (MM), and both
stacked models outperformed using Random Forests (RF) on the merged data

6.4 Conclusions and Future work

In this paper we propose the manifold mixing framework to improve the
analysis of multi-modal data stemming from different sources. In our
preliminary experiments, the obtained results support efficacy of our method.
We outperform both standard stacked regularization and the model built on
feature concatenated data. In the near future, we plan on performing further
tests with larger number of shuffles, and testing on different datasets and
heterogeneous domains. One pitfall of the current algorithm is the linearity
of the map between manifolds which might fail in highly curved regions. A
possible solution is to kernelize the method using graph kernels. Another
interesting direction is to subdivide the manifold into multiple subregions
based on the local curvature and create a mapping per subregion.
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Abstract

One of the most common pitfalls often found in high dimensional biological
data sets are correlations between the features. This may lead to statistical and
machine learning methodologies overvaluing or undervaluing these correlated
predictors, while the truly relevant ones are ignored. In this paper, we will
define a new method called pairwise permutation algorithm (PPA) with the
aim of mitigating the correlation bias in feature importance values. Firstly,
we provide a theoretical foundation, which builds upon previous work on
permutation importance. PPA is then applied to a toy data set, where we
demonstrate its ability to correct the correlation effect. We further test PPA
on a microbiome shotgun dataset, to show that the PPA is already able to
obtain biological relevant biomarkers.

7.1 Introduction

Measuring feature importance has often been plagued by high feature
correlations. One important drawback is the lack of a theoretical definition
for variable importance, in case variables are correlated Grömping (2009)
Gregorutti, Michel, and Saint-Pierre (2017), even in linear models Grömping
(2009). From a clinical perspective, correlated biomarkers are of high interest
because they both may play a role in a shared biological pathway identified
by the model and yet exhibit different behaviour in other circumstances.
The method proposed in this paper, which will be referred to as pairwise
permutation algorithm (PPA), allows us to calculate the importance of
features without having to rely on the previously mentioned selection
approaches. Highly correlated features, which have a similar relation with the
output value, should have close importance ranks since they explain the same
variability in the data. The pairwise permutation algorithm aims to provide
feature importance values while avoiding the use of aggressive pre-selection
techniques, since these techniques might remove relevant information from
the data. It also manages to retain model interpretability by generating
an importance value per feature, even when applied to black box models.
Moreover, when working with highly dimensional biological data sets, it is
simply not feasible to try and address each of the correlations in the data
individually.
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Notation

We will refer to a single instance of the data-set as instance or point
interchangeably throughout the paper. We denote matrices, 1-dimensional
arrays and scalars with capital bold and regular text, respectively (e.g.
X, x, α). Matrices’ columns and rows will be denoted by X[:, i] and X[j, :],

respectively. The expected loss of a function given by: 1
N

∑N
i=1 l [y, f(xi)] will

be denoted by El [f(X)].

7.2 Related Work

In this work, we focus on model-agnostic procedures which can be divided
into local and global methods. Local-based methods such as LIME (Local
Interpretable Model agnostic Explanations) and its variants Ribeiro, Singh,
and Guestrin (2016); Pereira et al. (2019) attempt to explain predictions on
single data points by perturbing it and building a simple, yet interpretable
model on the perturbed predictions. Similarly, SHAP (SHapley Additive
exPlanations)Lipovetsky and Conklin (2001), offers a local explanation based
on the additional prediction value each feature has when adding it to all
possible feature subsets. Unlike local-based methods, global methods are
concerned with determining the overall model behaviour and what features
it values for its prediction. For example, in clinical research, the goal is to
determine biomarkers that can identify a condition in the general population,
or potential targets for novel drug development. Therefore, in this setting,
we are mainly concerned with a more holistic view of feature importance
i.e. global. A notable example is that of permutation importance which
was first introduced by Breiman Breiman (2001) in random forests as a way
to understand the interaction of variables that is providing the predictive
accuracy. Suppose that for a certain feature i in data-set X, we randomly
permute the instances’ values, and denote the resultant data-set by Xπ

i .
Permutation importance is defined as the difference in the expected model
loss on the original dataset and the original one:

PI{i}(f) := El [f(X
π
i )]− El [f(X)] (7.1)

For random forests, there is already available work that analyzes the
behaviour of this permutation importance, including the cases when high
correlations are present. Gregorutti et al Gregorutti, Michel, and Saint-Pierre
(2017) provided a theoretical description of the effect of correlations on
the permutation importance, a phenomenon already observed by Tolos, i
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and Lengauer Gregorutti, Michel, and Saint-Pierre (2017) Strobl et al.
(2007). Furthermore, a feature selection procedure was introduced, which was
more efficient in selecting important, highly correlated variablesGregorutti,
Michel, and Saint-Pierre (2017). Strobl et al showed that the larger feature
importance values for correlated predictors in random forests were due to
the preference for such predictors in the early splits of the trees. A new
conditional permutation-based feature importance calculation was suggested,
in order to circumvent this inflation, as well as the depreciation for its
correlated predictor Strobl, Boulesteix, and et al (2008). Furthermore,
Hooker and Mentch proposed the ’permute and relearn’ approach Hooker and
Mentch (2019). Based on this approach we define the relearned permutation
importance as

PIπLj = El

[
fπj(Xt)

]
− El [f(Xt)] (7.2)

In which fπj is the model trained on the train datasetXπj, in which feature
j is permuted, f the model trained on the original train dataset X and Xt the
test dataset. One drawback of this approach was also mentioned in the context
of correlated features, as this resulted in the compensation effect, in which
the importance of the correlated features was reduced Hooker and Mentch
(2019). Local based methods, such as the ones introduced earlier, are focused
on the contribution of each feature towards individual predictions, whereas
permutation importance gives us a more broad estimation, since it is based
on the overall accuracy of the model. While the former approach provides a
higher degree of interpretability, the latter is usually more appropriate in a
research environment, in which the aim would be to discover new leads which
could help researchers to investigate the underlying biological mechanisms.

7.3 Pairwise Permutations Algorithm

7.3.1 Intuition

Features that are equally important for the output value should have similar
feature importance ranks, and these should not be affected by feature
correlation. In an attempt to prevent the compensation effect for correlated
features mentioned by Hooker and Mentch, we have chosen to permute all the
feature pairs and calculate the corresponding permutation importance of the
pair. A key assumption in our method is that the higher the correlations, the
larger should be the correction to that feature individual importance.
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7.3.2 Definition

In this section, we define Pairwise Permutation Importance (PPI) as the
weighted average of the permutation importance values, computed using the
’permute and relearn’ approach defined in Equation 7.2. The correlations
between the feature pairs will act as the weights. Let R be the correlations
matrix between all the features and Ri,j the correlation value between features
i and j. Let PIi,j define the relearn permutation importance (see Equation
7.2) when both the feature i and j have been permuted together, and PIi,i
the relearn permutation importance, when only feature i is permuted.

PPIi =
1

M∑
j=1

|Ri,j |︸ ︷︷ ︸
q

PIi,i + M∑
j=1
j ̸=i

|Ri,j | · PIi,j


︸ ︷︷ ︸

p

(7.3)

Note that when a feature has no correlations in the data, according to
the previous equation, the PPI will actually follow the relearn permutation
importance. Since for complex data sets with thousands of features
the computational time can become infeasible (O(N2)), one possible
simplification is to set a threshold and consider only the permutation pairs
with a correlation above it. We define this procedure in algorithm 7.3.3.

7.3.3 Expected Difference

It might be tempting to compute the expected loss of the model, perform the
permutation analysis and then compute the difference of the expected losses.
This is actually how Fisher et al. Fisher, Rudin, and Dominici (2018) defined
the permutation importance. However, we note that this procedure is sub-par
as we illustrate in the following theorem:

Theorem 7.3.1. For a given function f : RM → R, let X and x be a sample
and an instance from the domain of f , respectively, Xϵ

i be X with permuted
values for the r.v. Xi and x̃ an instance from Xϵ

i . Then, for any loss function
l [y, f(x)] and norm function || · || : RM → R it holds that:
E [∥l [y, f(x)]− l [y, f(x̃)]∥] ≥ ∥E [l [y, f(x)]]−E [l [y, f(x̃)]]∥

Proof. Consider the following convex function φ(x) = ∥x∥ for x = l [y, f(x)]−
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l [y, f(x̃)]. Then, by Jensen’s inequality:

E [φ(x)] ≥ φ (E [x])⇔E [∥l [y, f(x)]− l [y, f(x̃)]∥] ≥ ∥E [l [y, f(x)]− l [y, f(x̃)]]∥
= ∥E [l [y, f(x)]]−E [l [y, f(x̃)]]∥

This means that computing the expected value of the normed difference
of individual loss values is more robust to non-linear relationships between
the input variables then computing the difference of the normed expected loss
values.

Algorithm 3 Pairwise permutations algorithm

Input: X, Xt, ytest, El [f(Xt)], R, α
Return: v

1: for feature i in X do
2: p← 0, q ← 0 (equation 7.3)
3: for feature j in X do
4: if |Ri,j | > α then
5: Permute the feature pair (i, j) together in X
6: Retrain the model with the permuted input data Xπ

i,j

7: Calculate the model’s error, El

[
fπ,i,j(Xt)

]
, on the test data

8: Calculate PIi,j through the relearn formula El

[
fπ,i,j(Xt)

]
−

El [f(Xt)]
9: if i=j then

10: p← p+ PIi,i
11: else
12: p← p+ |Ri,j | · PIi,j
13: end if
14: q ← q + |Ri,j |
15: end if
16: end for
17: PPIi ← p/q
18: v.append(PPIi)
19: end for
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7.4 Simulations with toy dataset

To see how our new PPA would behave for correlated features, we generated a
toy dataset, based on the one used by Hooker and Mentch Hooker and Mentch
(2019). The data was created by assuming a linear regression model:

yi = xi1+xi2+xi3+xi4+xi5+0xi6+0.5xi7+0.8xi8+1.2xi9+1.5xi10. (7.4)

This was then turned into a classification model, by generating the binary
outcome y with the classification rule :

yi =

{
1, for yi + εi ≥ y
0, otherwise

, (7.5)

with ε ∼ N(0, 0.1). All features were generated from a multivariate normal
distribution N(0,Σ) with Σ equal to the identity matrix, except that
Σ12 = Σ21 = ρ = 0.9. All features were then transformed into a uniform
distribution, mimicking the data generation procedure of Hooker and Mentch
Hooker and Mentch (2019). In total, 1000 samples were generated.
In case the features are in the same scale, the coefficients in the linear
model can be seen as the conditional importance of the feature on all other
variables Strobl, Boulesteix, and et al (2008) Hooker and Mentch (2019).
Therefore, based on the magnitude of the coefficients, we can rank the features
on their importances, where features with the same coefficients should be
equally important, while a feature with a higher coefficient should get higher
importance than a feature with a lower coefficient. The order of the features
should not be affected by any correlations between the features.
Using XGBoost with the logistic loss function as the classification algorithm
Caruana et al. (2004); Chen and Guestrin (2016), we performed 50 stratified
shuffle splits (70%train/30%test) and measured the ROC AUC after adding a
noise feature to the dataset and standard scaling it. We found the XGBoost
optimal hyperparameters using a 5-fold cross validation grid search. To
compute the PPIs, a correlation threshold of 0.3 was used. Also, the single
Permutation Importance (SPI) for each feature was obtained based on the
’permute and relearn’ procedure, see Equation 7.2.

7.4.1 Results

The classification model obtained an average AUC of 0.97±0.01. As shown by
the average feature ranks in Figure 7.1(a), our new PPA is able to retrieve the
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(a) x1 and x2 with ρ = 0.9 (b) x1 and x2 with ρ = 0.9 (c) x1 and x6 with ρ = 0.9

Figure 7.1: Average rank ± standard error for each feature based on the
Pairwise Permutation Importance Algorithm for (a) and (c) and the Single
Permutation Importance Algorithm for (b).

right order of feature importances, in which x10 is clearly the most important
one, followed by x9. As expected, x6 and the random variable are identified
as the least important features. The results for the SPI are shown in Figure
7.1(b). It is clearly shown that the PPA outperforms this approach, as the
SPI decreased the importance of the correlated features x1 and x2 and was
not able to retrieve the right order of feature importances. This was also
observed for the random forest algorithm by Hooker and Mentch Hooker and
Mentch (2019). The toy dataset showed that in case two features have the same
coefficient in the linear model and are correlated, the PPA is able to retrieve
the right order for the feature importances. We also analysed the effect of a
correlation of ρ = 0.9 between x1 and x6, by changing the covariance matrix Σ
to Σ16 = Σ61 = 0.9 and setting the correlation between x1 and x2 to 0. This
represents a case in which an important feature is correlated to an irrelevant
feature. However, we saw in this case that the importance of x1 was decreased
by x6, while the importance of x6 was increased by x1, as shown in Figure
7.1(c). This could be expected as the grouped importance is shared equally
between both features, while in the case of features with different importances,
this might not be the right assumption. In this case, the PPA may not be the
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appropriate choice

7.5 Microbial biomarkers for Type 2 Diabetes
Mellitus

In this section we test the PPA on a real-world dataset, specifically microbiome
data. The goal is to obtain biologically relevant markers. Therefore, we
downloaded the Qin 2012 microbiome dataset from MLRepo Vangay,
Hillmann, and Knights (2019), Qin et al. (2012). This curated classification
dataset contained shotgun data for 124 samples, representing Chinese healthy
controls (n = 59) and Type 2 Diabetes Mellitus (T2D) patients (n = 65).
For full details of the preprocessing of the raw sequence reads for datasets
in MLRepo, see Vangay, Hillmann, and Knights (2019). We used the same
procedure as in the previous section with some additional preprocessing.
First, the read counts were rarefied to 28 358 reads per sample, which was
the lowest observed number of reads in a sample. After that, features with
less than 6 reads per sample on average, representing a relative abundance of
0.02%, were removed. The final dataset consisted then of 124 samples with
377 OTUs.

7.5.1 Results

The classification model was able to achieve an average roc-auc score of 0.92
±0.05, as depicted in figure 7.2(a).

Figure 7.2(b) represents the top 15 most predictive microbial OTUs in
the classification model. Analyzing these OTUs (and several more beyond
the top 15) primarily highlights 2 main patterns. The strongest pattern
observed in the data, most likely represents an effect that T2D has on the
dietary behavior of these Chinese T2D patients. Lactobacillus acidophilus,
Acidaminococcus intestini and Anaerostipes caccae are strongly associated
with T2D and with each other in this dataset. A regular dose of L. acidophilus
is commonly recommended in Chinese Medicine Cohen (2015). Fermented
soybean products are popular in China (i.a.) and various of these products
commonly contain L. acidophilus Chang, Kim, and Han (2010), Bedani,
Rossi, and Saad (2013), Kanda et al. (1976). Indeed, there is evidence that
supports the beneficial claims regarding these fermented products and T2D
Kwon et al. (2010), Mueller et al. (2012). Trans-aconitic acid in the urine
is a biomarker for the consumption of soy products Münger et al. (2017)
and Acidaminococcus is known to be able to oxidise trans-aconitate Cook,
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(a) The roc-auc plot. (b) Top 15 ranked feature importances.

Figure 7.2: (a) Individual ROC AUC curves for each shuffle and average ROC
AUC plot for all shuffles. (b) Average rank ± standard error for the top 15
ranked features based on the Pairwise Permutation Importance Algorithm.

Wells, and Russell (1994) converting it to acetate. A. caccae, is an acetate
and lactate consuming butyrate producer. Cross-feeding interactions between
L. acidophilus and A. caccae have been analyzed in detail in vitro Moens,
Verce, and Vuyst (2017). Other butyrate producing species, like Roseburia
intestinalis, can have similar cross-feeding interactions Saulnier et al. (2009)
but were not part of this specific pattern, but with the 2nd main pattern
(see below), suggesting that A. caccae was part of same fermented soybean
product popular with, or given to, these Chinese T2D patients that likely also
contained L. acidophilus and A. intestini.
The second pattern involves several butyrate producers (the Roseburia,
Faecalibacterium, Coprococcus genera, several Eubacterium species and
Anaerostipes hadrus) in a cross-feeding relationship with various acetate
producing dietary fibre degrading species (Blautia and Ruminococcus
representatives). This cluster of species is generally found to be negatively
associated with T2D, not just in this study throughout the diabetes
microbiome field Qin et al. (2012); de Goffau et al. (2013); Hur and Lee
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(2015); Hartstra et al. (2015); Murri et al. (2013). Insufficient butyrate
production has been associated with both T1D and T2D development both in
rats, mice and in humans Noureldein et al. (2020), Endesfelder et al. (2016),
Jia et al. (2017), Khan and Jena (2016). Besides being used by colonocytes as
a primary energy source Donohoe et al. (2012) butyrate is a powerful inhibitor
of histone deacetylase, which has emerged as a target in the control of insulin
resistance Sharma and Taliyan (2016), Dirice et al. (2017), Khan and Jena
(2015). Animal and in vitro studies have generally found a beneficial effect of
butyrate and acetate on glucose homeostasis and insulin sensitivity Canfora,
Jocken, and Blaak (2015).

7.6 Conclusions

In this paper, we have set a first step in correcting the compensation
effect, observed for ’permute and relearn’ permutation importances in case
correlated features are present. Our new PPA is able to obtain the right
ranking of features, when two features are highly correlated and have the
same importance, stated by the magnitude of their coefficient, in linear
models. Furthermore, while not yet optimal for correlations between more
than 2 features or correlated features with unequal importance related to the
output variable, our PPA is already able to obtain relevant biological insights
in a Chinese Type 2 Diabetes microbiome dataset.
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Abstract

Model transparency is a prerequisite in many domains and an increasingly
popular area in machine learning research. In the medical domain, for instance,
unveiling the mechanisms behind a disease often has higher priority than
the diagnostic itself since it might dictate or guide potential treatments and
research directions. One of the most popular approaches to explain model
global predictions is the permutation importance where the performance on
permuted data is benchmarked against the baseline. However, this method
and other related approaches will undervalue the importance of a feature in
the presence of covariates since these cover part of its provided information. To
address this issue, we propose Covered Information Disentanglement (CID), a
framework that considers all feature information overlap to correct the values
provided by permutation importance. We further show how to compute CID
efficiently when coupled with Markov random fields. We demonstrate its
efficacy in adjusting permutation importance first on a controlled toy dataset
and discuss its effect on real-world medical data.

8.1 Introduction

Understanding the biological underpinnings of disease is at the core of
medical research. Model transparency and feature relevance are thus a top
priority to discover new potential treatments or research directions. One
of the current most popular methods to explain local model predictions is
SHAP Lipovetsky and Conklin (2001); Štrumbelj and Kononenko (2014);
Lundberg and Lee (2017), a game-theoretic approach that considers the
features as “players” and measures their marginal contributions to all possible
feature subset combinations. SHAP has also been generalized in SAGE
Covert, Lundberg, and Lee (2020) to compute global feature importance.
However, recent work by Kumar et al. Kumar et al. (2020) exposes some
mathematical issues with SHAP and concludes that this framework is
ill-suited as a general solution to quantifying feature importance. Other
local-based methods such as LIME Ribeiro, Singh, and Guestrin (2016) and
its variants (see e.g. Singh, Ribeiro, and Guestrin (2016); Ribeiro, Singh,
and Guestrin (2018.); Guidotti et al. (2018); Pereira et al. (2019)) build weak
yet explainable models on the neighborhood of each instance. While this
achieves higher prediction transparency for each data point, in this work, we
are mainly concerned with a more holistic view of importance, which may
be more appropriate to guide new research directions and unravel disease
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mechanisms. Tree-based methods are very commonly selected for this purpose
because they compute the impurity or Gini importance Breiman (2001). The
impurity importance is biased in favor of variables with many possible split
points; i.e. categorical variables with many categories or continuous variables
Strobl et al. (2007). A generally accepted alternative to computing the Gini
importance is the permutation importance Breiman (2001), which benchmarks
the baseline performance against permuted data. There is, however, the issue
of multicollinearity. When features are highly correlated, feature permutation
will underestimate the individual importance of at least one of the features,
since a great deal of the information provided by this feature is “covered” by
its covariates. One option is to permute correlated features together Toloşi
and Lengauer (2011). However, this implies choosing an arbitrary correlation
grouping threshold. Most importantly, it misses the differentiation between
each feature’s contribution to the final prediction. Motivated by the idea
that there is an information overlap between different features, we develop
Covered Information Disentanglement (CID),1 an information-theoretic
approach to disentangle the shared information and scale the permutation
importance values accordingly. We demonstrate how CID can recover the
right importance ranking on artificial data and discuss its efficacy on the
Cardiovascular Risk Prediction dataset Hoogeveen et al. (2020).

8.2 Methodology

Notation

We denote matrices, 1-dimensional arrays, and scalars/functions with capital
bold, bold, and regular text, respectively (e.g. X, x, α/f). Given a dataset
XM×N , we will denote its random variables by capital regular text with a
subscript and the values using lowercase (e.g. Xi and xi), while the joint
density/mass will be represented as p(x). The expected loss of a function

given by: 1
M

∑M
i=1 l [y, f(xi)] will be denoted by L [f (X)].

8.2.1 Information Theory background

Information theory (IT) is a useful tool used in quantifying relations between
random variables. The basic building block in IT is the entropy of an r.v. Xi,
which is defined as: H(Xi) ≡ −

∑
xi
p(xi) log p(xi). The joint entropy between

1We make an implementation of CID publicly available at: https://github.com/
JBPereira/CID.

https://github.com/JBPereira/CID
https://github.com/JBPereira/CID
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r.v.s Xi and Xj is defined as: H(Xi, Xj) ≡ −
∑

xi

∑
xj
p(xi, xj)log p(xi, xj).

The mutual information between r.v.s Xi and Xj is the relative entropy
between the joint entropy and the product distribution p(xi)p(xj):

I(Xi, Xj) ≡
∑

xi

∑
xj
p(xi, xj) log

p(xi,xj)
p(xi)p(xj)

. For a more thorough exposition

to IT, the reader can refer to Cover and Thomas (2012).
Using the definitions above, one can derive properties that resemble those of
set theory, where joint entropy and mutual information are the information-
theoretic counterparts to union and intersection, respectively Ting (2008). In
order to keep this intuition when generalizing to higher dimensions, one can
define the entropy of the union of N features as:

Definition 8.2.1. Multivariate Union Entropy

H
(
∪Ni=1Xi

)
≡ −

∑
xi

p(x1, ..., xN )log p(x1, ..., xN )

and using the Inclusion-Exclusion principle, we can define the intersection
as:

Definition 8.2.2. Multivariate Intersection Entropy

H
(
∩Ni=1Xi

)
≡

∑
x1,...,xN

p(x1, ..., xN )hci(x1, ..., xN ),

hci(x1, ..., xN ) =

N∑
k=1

(−1)k−1
∑

I⊆{1, ..., N};
|I|=k

h(xI1 , ... , xIk),

h(x) = −log p(x) and hci is the local co-information.

This definition of multivariate intersection is also called co-information
and it may yield negative values. This can happen for instance if Xi has
no correlation with XI but knowing XI introduces a correlation between
the two (what is commonly known as ‘explaining away’). This motivated
Williams and Beer to draw the distinction between redundant and synergistic
information and propose partial information decomposition (PID) Williams
and Beer (2010). Ince (Ince, 2017) thoroughly analyzed the multivariate
properties of PID directly applied to multivariate entropy and suggested to
divide the individual terms in definition 8.2.2, so that positive local entropy
terms correspond to redundant entropy, while the negative ones correspond to
synergistic entropy.
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8.2.2 Permutation Feature Importance

Feature importance is a subjective notion that may vary with application.
Consider a supervised learning task where a model f is trained/tested on
dataset X, y and its performance is measured by a function L. In this work,
we will refer to feature importance as the extent to which a feature Xi affects
L[f(X)], on its own and through its interactions with X\{i}. Permutation
importance was first introduced by Breiman Breiman (2001) in random forests
as a way to understand the interaction of variables that is providing the
predictive accuracy.
Consider a dataset XM×N and denote the jth instance of the ith feature
by Xj

i . Suppose the set {1, ...,M} is sampled and denote the subsample by
s, s ⊆ {1, ...,M}. Consider further a random permutation of this subset which
we denote by π (s) and its jth element by πj (s). The permutation importance,
is given by:

ei(f, s) =

|s|∑
j∈s

(
E∼p(π)

[
L
(
f
(
Xj

1, ...,X
πj(s)
i , ...,Xj

N

))]

− L
(
f
(
Xj

1, ...,X
j
N

)))
(8.1)

ei(f) = E∼p(s) [ei(f, s)] (8.2)

8.2.3 Covered Information Disentanglement

In the presence of covariates, the permutation importance measures the
performance dip caused by removing the non-mutual information between the
feature and the remaining data. That is:

ei (f) = Ii (f)− e∪i (f), (8.3)

where Ii (f) = E∼p(s) [Ii(f, s)] is the expected total importance of feature i
under model f (the quantity we are interested in) and e∪i (f) = E∼p(s) [e

∪
i (f, s)]

is the expected performance dip covered by all other variables. To compute
e∪i (f) would require applying the Inclusion-Exclusion principle and measuring
the performance dip for all possible feature combinations of size 1 to the
number of features. Instead, we note that e∪i (f) intuitively measures the
model performance dip when the model is deprived of the information covered
by the r.v.s that are correlated with Xi. For an intuitive depiction of the
problem, see figure 8.1.
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Figure 8.1: An illustration of the permutation importance bias in the presence
of covariates and the measures needed to correct it. The mutual information
between random variable Xi and Y (represented in gray) is covered by the
information provided by r.v.s X1, X2 and X3. Permutation importance only
measures the non-covered part (non-shaded gray), and to correct its value, we
suggest computing Hc

i (X; Y ).

Motivated by the analogy between set-theory and information measures, we
define the joint information between an r.v. and the target variable that is
“covered” by the other r.v.s as:

Definition 8.2.3. Covered information (CI) Given an r.v. Xi and a
set of distinct r.v.s Xi− , i

− = {1, ... N}\{i}, the information of Xi w.r.t. Y
covered by Xi− is defined as:

Hc
i (X; Y ) = H

(
Xi ∩ Y ∩

{
∪j∈i−Xj

})
.

When it is clear from the context what Y and Xi− are, we will abbreviate
Hc

i (X; Y ) into Hc
i , denote the mutual information with Y by H∧i , and the

respective local co-information terms for the kth row in the dataset with hcik ≡
hci (X

k
i , Y

k) and h∧ik ≡ h∧i (X
k
i ,y

k). We further divide Hc
i and H∧i into its

redundant and synergistic counterparts, which for a specific sample s are given



8.2. METHODOLOGY 119

by:

Redundant MI : H∧
+

i (s) =
1

|s|
∑
k∈s

max (0, h∧ik)

Synergistic MI : H∧
−

i (s) =
1

|s|
∑
k∈s

|min (0, h∧ik)|

Redundant CI : Hc+

i (s) =
1

|s|
∑
k∈s

max (0, hcik)

Synergistic CI : Hc−

i (s) =
1

|s|
∑
k∈s

|min (0, hcik)|

Assumption 8.2.1. Permutation importance and entropy terms are related

through a map ϕf : R4 → R, such that ei(f, s) = ϕf

(
Hc+

i (s), Hc−

i (s), H∧
+

i (s), H∧
−

i (s)
)
+

ϵ, where ϵ is an error term.

Thus, if assumption 8.2.1 holds, we can use the information of Xi w.r.t. Y
by Xi− and approximate equation 8.3 with:

e∪i (f, s) ≈ϕf
(
0, Hc−

i (s), H∧
+

i (s), H∧
−

i (s)
)
−

ϕf

(
Hc+

i (s), Hc−

i (s), H∧
+

i (s), H∧
−

i (s)
)
. (8.4)

This means we can approximate the result of permuting all possible
combinations of features by computing only the single-feature permutation
loss and the covered information of r.v. Xi by all the others. Here, we are

implicitly defining: Ii (f, s) ≡ ϕf

(
0, Hc−

i (s), H∧
+

i (s), H∧
−

i (s)
)
, and thus

the true importance in the performance difference scale is given by mapping
the entropy values when there is no redundant entropy to the space of
performance differences.
Since we are predicting the feature importance using a map between
entropy terms (which measure model-agnostic importance) and permutation
importance values, the end result depends only on how learnable is the model
behavior w.r.t to entropy. Moreover, since the entropy values are computed
for the different subsample sets s, the overall importance variability is also
estimated.
For two datasets where I(Xi, Y ) > I(Xi, Y

′) but the covered info of
(Xi, Y ) > (Xi, Y

′), CID would correctly value Ii(f) > Ii(f ′) which is not
guaranteed using Shapley based methods since the contributions to subsets
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Figure 8.2: CID importance diagram. The permutation feature importance is
computed by first calculating the expected loss of the model f (L (f(X))).
Then, each feature’s values are permuted and the expected loss of f
computed. Subtracting each permuted dataset loss to the original one yields
the permutation importance. CID starts by inferring the network G for the
Markov random field Ψ (alternatively, a prior network is given), then the MRF
parameters θ are inferred, and finally, Hc

i /H
∧
i are computed for each feature,

which are then used to train the entropy/PI model ϕf and predict the true
importance I(f).

of features correlated with Xi are biased. The Shapley efficiency+symmetry
properties also imply that correlated features’ scores are scaled down.
To see this, consider Xi = Xj , then symmetry→ ϕi(vf ) = ϕj(vf ) and
efficiency→ ϕi(vf ) = ϕj(vf ) = (vf (D) −

∑
k ̸=i,j ϕk(vf ))/2. In contrast,

CID values do not sum to the complete data performance, but rather are
meaningful individually.

There is still the issue of computing Hc
i , since it involves computing p(X).

Since directionality is irrelevant for the purpose of computing overlapping
information, we suggest to model p(X) using an undirected graphical model
(UGM). Let G = (V, E) denote a graph with N nodes, corresponding to the
{X1, ..., XN} features, and let C be a set of cliques (fully-connected subgraphs)
of the graph G. Denoting a set of clique-potential functions by {ψC : X |C| →
R}, the distribution of a Markov random field (MRF ) Koller and Friedman
(2009) is given by: p(x) =

∏
c∈C ψc(xc)/Z, where Z =

∫ ∏
c∈C ψc(xc)dx is the

partition function. By the Hammersley-Clifford theorem, any distribution that
can be represented in this way satisfies: Xi ⊥ Xj |XN (Xi) for any Xj /∈ N (Xi),
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where N (Xi) is the set {Xk : (i, k) ∈ E}. This allows to significantly simplify
the expression of covered information yielding the main result of this paper:

Theorem 8.2.1. Consider an r.v. Xi and set of r.v.s Xi− , i− =
{1, ..., N}\{i}, a response r.v. Y , as well as the set of r.v.s that are neighbors
to both Xi and Y : XN (i,y), N (i, y) ∈ ∪{N (Xi), N (Y )}. For a Markov
random field, the covered information of Xi by Xi− w.r.t. Y is given by:

Hc
i = H∧i −E∼p(xN(i,y))

[
log

(
f

dTFe

dTFyFT
xi
e

)]
,

where F is a matrix with the product of joint potential values ψCF for set of
cliques F : {c |Xi, Y ∈ c}; f , Fy and Fxi

are an entry, column, and row of
F, respectively, while d and e are arrays with the product of potential values
ψCD , ψCE for set of cliques D : {c |Xi ∈ c, Y /∈ c} and E : {c |Xi /∈ c, Y ∈ c}
with fixed Xi− .

Proof. Using definition 8.2.1, 8.2.2 and 8.2.3:

Hc
i = H∧i +

1︷ ︸︸ ︷
H(Xi ∪ Y ∪Xi−)−

2︷ ︸︸ ︷
H(Xi− ∪ Y )+

3︷ ︸︸ ︷
H(Xi−)−

4︷ ︸︸ ︷
H(Xi ∪Xi−) .

The probability density for Markov Random fields is equal to p(x) =∏
c∈C ψc(xc)/Z, where Z is the partition function and C is the set of cliques

in the Markov network. Define two sets of cliques: A : {c |Xi ∈ c} and
B : {c |Xi /∈ c}. In that case (ignoring the partition function term because it
cancels out):

1 = −
∑
x

p(x)

[
log

∏
b∈B

ψb(xb) + log
∏
a∈A

ψa(xa)

]
,

2 = −
∑
x

p(x)

[
log

∏
b∈B

ψb(xb) + log
∑
xi

∏
a∈A

ψa(xa)

]
,

1 − 2 = −
∑
x

p(x)log

( ∏
a∈A ψa(xa)∑

xi

∏
a∈A ψa(xa)

)
.

To compute 3 − 4 , define four sets of cliques: C : {c |Xi /∈ c, Y /∈ c},
D : {c |Xi ∈ c, Y /∈ c}, E : {c |Xi /∈ c, Y ∈ c}, and F : {c |Xi ∈ c, Y ∈
c}. In order to reduce the clutter, we will introduce the following functions:
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d(xi, xi−) =
∏

j∈i−,j∼i ψ(xi, xj), e(y, xi−) =
∏

j∈i−,j∼y ψ(y, xj), f(xi, y) =
ψ(xi, y), where we will abbreviate d(xi, xi−) into d(xi) and e(y, xi−) into e(y)
when the value for random variable Xi− is fixed. Then (again, ignoring the
partition function):

3 = −
∑
x

p(x)

[
log

∏
c∈C

ψc(xc) + log
∑
xi

∑
y

d(xi)e(y)f(xi, y)

]
,

4 = −
∑
x

p(x)

[
log

∏
c∈C

ψc(xc) + log
∑
y

d(xi)e(y)f(xi, y)

]
,

3 − 4 = −
∑
x

p(x)log

( ∑
xi

∑
y d(xi)e(y)f(xi, y)∑

y d(xi)e(y)f(xi = Xi, y)

)
,

where f(xi = Xi, y) is the function f for a fixed value of the r.v. Xi. Since
the set of cliques A = {D∪F}, and denoting by d(Xi), f(Xi, Y ) the functions
d and f for fixed values of Xi and Y , then:

( 1 − 2 ) + ( 3 − 4 ) =

−
∑
x

p(x)log

(∑
xi

∑
y d(Xi)d(xi)f(Xi, Y )e(y)f(xi, y)∑

xi

∑
y d(Xi)d(xi)f(xi, Y )e(y)f(Xi, y)

)

= −E∼p(xN(i,y))

[
log f(Xi, Y ) + log

(
dTFe

dTFyFxie

)]
,

where xN (i,y) is an instance of the set of r.v.s that are neighbors to either Xi

or Y , d and e are column arrays with the different values of d(xi) and e(y)
for fixed Xi− , F is a matrix with all the values f(xi, y) with varying values of
Xi in the rows and Y in the columns, and Fy and Fxi are row and column
vectors of F corresponding to fixed Y and fixed Xi, respectively. This yields
the result of the theorem.

Considerations and simplifications

If a 2-clique MRF is chosen, then F depends only on Xi and Y , and can be
computed before the expectation.
Gaussian MRF : Learning an MRF ’s network structure is expensive.
One popular approach is to use graphical lasso Friedman, Hastie, and
Tibshirani (2008) which learns the entries of a Gaussian precision matrix by
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finding: min
Λ∈Sn+

− log det(Λ)+ tr(SΛ)+ ρ||Λ||1, where Λ is the precision matrix

(constrained to belong to Sn+, the set of positive semi-definite n×nmatrices), S
is the empirical covariance matrix and ρ acts in analogy to Lasso regularization
by penalizing a large number of non-zero precision entries. We can model
the potentials using Gaussian Markov random fields whose potentials are
ψs,t(xs, xt) = exp

[
− 1

2xsΛstxt
]
, ψs(xs) = exp

[
− 1

2

(
x2sΛss − 2ηsxs

)]
, where

η = Λµ (µ is the mean vector).
Discrete Approximation: Continuous MRF such as Gaussian Markov
Random fields depend on a continuous multivariate distribution and thus
the entropy must be replaced by differential entropy, which violates many of
the desired properties of discrete entropy. Therefore, we will approximate a
continuous distribution with a discrete one p(xi) ≈ δip(xi), where δi is the
ith feature bin size and xi is the mean value of the bin, and then carry on
with our computations as specified in theorem 8.2.1. For the case where all
bins have the same size per feature, all the δs cancel out.
Complexity: If we approximate the expectation in theorem 8.2.1 with the
empirical expectation, then the asymptotic complexity becomes O(SB2),
where S is the number of samples and B is the maximum between the number
of bins used to discretise continuous values and the maximum number of
values the discrete features take (typically, B ≪ S). This can be computed in
parallel for each feature.
Baseline and maximum importance The permutation importance of the

whole feature set: eX(f, s) = IX(f, s) = ϕf

(
0, 0, H∧

+

X (s), H∧
−

X (s)
)

and/or

the empty set: e∅(f, s) = I∅(f, s) = ϕf (0, 0, 0, 0) can be added to the info-PI
set to improve the model map ϕf .
Out-of-distribution problem In PI, models are evaluated in regions outside
the training distribution domain. For CID, substituting PI for permute and
retrain or feature ablation solves this issue.

8.3 Experimental Section

To test the CID ranking adjustment, we first tested it on a toy dataset
where the real importances are known, and a real-world medical dataset. We
implemented CID in Python using scikit-learn’s graphical lasso Pedregosa and
et al. (2011). For the toy dataset, we used scikit-learn’s Extremely Randomized
Trees and Bayesian regression implementations, and for the medical dataset
we used a Gradient Boosting Survival model Pölsterl (2020).
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8.3.1 Multivariate Generated Data Test

In order to test if CID adjusts the permutation ranking into the correct
one, we took 2000 samples from a multivariate distribution with the
following marginal distributions: X1 ∼ Uni(0, 1), X3 ∼ Gamma(1.5,2),
X4 ∼ Beta(0.5, 0.5), X2 ∼ X3 · X4, X5 ∼ −Exponential(0.2), X6 ∼ sin(X4)
and X7 ∼ X8 · X9 + (1−X8) · X10 with X8 ∼ Bin(1, 0.7) and
X9 ∼ N (−5, 1), X10 ∼ N (5, 1). Consider also the binning values: b =
[0, 0.375, 0.5, 0.575, 0.625, 0.7, 0.775, 0.85, 0.975]. We then defined the outcome

variable as: yj =
∑7

i=1 xi · I (bi ≤ uj < bi+1) +
(∑4

k=2 xk

)
· I (b8 ≤ uj < b9) +(∑6

l=5 xl

)
· I (uj ≥ b9), where u is an observation of U ∼ Uni(0, 1). The true

importances are thus: I1 ≥ I2 ≥ I3 ≥ I4 ≥ I5 = I6 ≥ I7. We transformed
the data into Gaussian using quantile information and chosen gaussian markov
random fields to pair with CID. The graph was inferred using graphical lasso
with a grid-search cross-validation to determine the optimal l1 penalization
parameter. To test the CID correction, we performed 200 Shuffle Splits with
Extremely Randomized Trees and computed the Gini importance for each
feature, as well as the permutation importance(PI). We then adjusted the
feature importances using the CID algorithm and Bayesian Regression as ϕ
(see assumption 8.2.1). You can compare the rankings in figure 8.3. As can be
seen from the swarmplot in figure 8.3, with the exception of X1, PI placed a
nearly equal weight on all features, centered around zero, presumably due to
the high feature covariance. The CID was able to rectify this and ranked the
features in the right order. It also placed every feature importance at non-zero
with a gap between unequally important features and similar importance
for X5/X6, matching well the true importances. Moreover, notice how the
Gini importance underestimated X3/X1, presumably because X2 offers many
quality splitting points due to the overlap and similarity with X3/X4.

8.3.2 Cardiovascular Event Prediction with Proteomics

Problem Introduction

Cardiovascular diseases (CVDs) are the number one cause of death globally.
Identifying asymptomatic people with the highest cardiovascular (CV) risk
remains a crucial challenge in preventing their first cardiac event. Clinically
used risk algorithms offer limited accuracy Piepoli et al. (2016). Consequently,
a substantial proportion of the general population at risk remains unidentified
until their first clinical event. Hoogeveen and Belo Pereira et al. recently
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Figure 8.3: Comparison of the importance ranking on the multivariate gaussian
dataset given by from left to right: Tree importance ( Gini importance ),
permutation importance, CID importance. The feature order is given by the
importance median. The ground truth is I1 ≥ I2 ≥ I3 ≥ I4 ≥ I5 = I6 ≥ I7.

demonstrated increased efficacy in predicting primary events using protein-
based models Hoogeveen et al. (2020). Since technical advances now allow for
cheap and reproducible high-throughput proteomic analysis Assarsson et al.
(2014), the field is prime for identifying new diagnostic markers or therapeutic
targets, as well as developing new targeted protein panels to quickly and
cheaply assess the risk of various diseases. The success of this endeavour is,
of course, dependent on reliable feature importance identification.
The reason this dataset is a good candidate to test CID, is the ”biological
robustness” of living systems Kitano (2004); Stelling et al. (2004). Biological
robustness describes a property of living systems whereby specific functions
of the system are maintained despite external and internal perturbations.
In proteomics, robustness is achieved in two ways: since protein structure
is intimately related to function Schermann (2008), proteins with similar
structure can exhibit similar functions, and proteins can be synthesized
through different pathways in the metabolic network. This means two
proteins located upstream the network relative to a third causing disease will
have redundant information, and so do two proteins whose structure is similar
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Algorithm 4 CID Importance

Input: XM×N , y, f , Ψ, G(optional)
Return: I(f)
1: S← SampleSubsets({1, ...,M})
2: e(f)← PermutationImportance(X, y, f , S)
3: G← InferGraph([X, y]) ▷ Infer graph if not povided
4: Ψθ ←InferMRFParams(Ψ, X, y)
5: H∧ ← ComputeMutualInfo(X, y), Hc ← 0
6: N ← GetNeighbors([X, y], G)
7: for i in [1, . . . , N ] do ▷ can be parallelized
8: for j in [1, . . . , M ] do
9: d, e,F← Potentials(Ψθ, X,y, i, j,Ni,Ny)

10: Hc
i [j]← H∧i [j]− log

(
f dTFe

dTFyFxi
e

)
11: end for
12: end for
13: Hc+

, Hc−
, H∧

+

, H∧
− ← RedundSyn(H∧,Hc,S)

14: ϕ← FitEntropyPI
(
Hc+

, Hc−
, H∧

+

, H∧
−
, e(f)

)
15: I(f)← E∼p(s)

[
ϕ
(
0, Hc−

, H∧
+

, H∧
−
)]

(this is depicted in figure 8.4).

8.3.3 Dataset Description

The dataset consists of a selection of 822 seemingly healthy individuals in a
nested case-control sample from the EPIC-Norfolk study Day et al. (1999).
Seemingly healthy individuals were defined as study participants who did not
report a history of CV disease. A total of 411 individuals who developed an
acute myocardial infarction (either hospitalization or death) between baseline
and follow-up through 2016 were selected, together with 411 seemingly healthy
individuals who remained free of any CV disease during follow-up. In the
original study, the authors demonstrate how predicting short-term events leads
to a significant accuracy improvement Hoogeveen et al. (2020), presumably
because the proteomic profile will change over time. We used the early-event
prediction dataset, where we only included patients who suffered from an event
earlier than 1500 days from measurement (total of 100 patients). We do not
make the code for this analysis available due to data confidentiality.
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Figure 8.4: Illustration of biological robustness for the event prediction with
proteomics problem. On the left square, it is shown how the levels of two
different proteins with similar structure (and hence, similar function) impact
the outcome (obesity); on the right square, it is shown how two different
proteins can influence the levels of a third outcome-related one through
different pathways in the metabolic network; on the bottom, there is a Venn
diagram representing the information overlap of the outcome (in gray) and the
other proteins considered.

8.3.4 Importance Ranking Experiment Details

To evaluate the models’ performance on days-to-event regression, we
performed 100 shuffle splits and measured the mean square error on the test
set. We used 5-fold cross-validation to select the optimal hyper-parameters of
a Survival Gradient Boosting regressor Pölsterl (2020). To prevent overfitting,
we pre-selected 50 proteins using univariate selection. We then compared the
CID with permutation importance, Univariate importance , SAGE Covert,
Lundberg, and Lee (2020), and Tree importance (Gini importance). We
used GraphicalLasso (GL) for network inference in all our experiments and
selected the l1 regularization term using grid-search cross-validation. For the
cardiovascular event survival analysis, we discretized the data into 10 bins.
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Figure 8.5: Importance rankings for cardiovascular event prediction using
proteomics given by permutation importance, CID, univariate importance,
SAGE and tree importance ( Gini importance )

For this experiment we used:

ei(f, s) = ϕf

(
Hc+

Xi
(s), Hc−

Xi
(s), H∧

+

i (s), H∧
−

i (s)
)

= Ii(f, s)g
(
Hc+

Xi
(s)
)(

1−
Hc+

Xi
(s)

H∧
+

i (s)

)
,

g
(
Hc+

Xi
(s)
)
=

{
c, if Hc+

Xi
(s) > 0, c ∈ [1,+∞[

1, otherwise
,

that is, the permutation importance is modelled as the true importance
weighted by the fraction of uncovered information (disregarding synergy)
scaled by c. We then found c using grid-search on the values: 1/c =
[1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4]. We removed data instances that contained values
exceeding 4 times the standard deviation to achieve better discretization.

Results

Overall, CID spreads the importance more evenly than Perm. imp. and aligns
better with the Univariate ranking. Thus, this corroborates the hypothesis
that Perm. imp. underrates correlated features. CID ranked TRAIL-R2,
PSP-D, and IL2-RA two or more places higher, while it ranked SELL and
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Method Corr. MSE top feats Avg. cycle time(s)

Perm. Imp. 0.8697 0.2824 ± 0.0107 0.7756 ± 0.2173
CID 0.8787 0.2801 ± 0.0098 18.76 ± 7.7256
Univar. Imp. 0.8185 0.2947 ± 0.0090 0.0008 ± 0.0003
SAGE 0.8499 0.2858± 0.0064 42179 ± 3835
Tree imp. 0.7219 0.2900± 0.0087 -

Table 8.1: Correlation between subset model performance and the subset’s
sum of importances for each method (higher is better) and the mean squared
error on top 10 to 35 features for each method (lower is better), as well as the
average running time per cycle in seconds.

PCOLCE five and seven places lower, respectively.
Gold Standard: To establish a gold-standard analysis of the ranking,
we asked world-renowned cardiovascular experts who commented on the
comparison. TRAIL-R2 and GDF-15 were identified as the highest predictors
of long-term mortality in patients with acute myocardial infarction in Skau
et al. (2017). PSP-D has been identified as a strong clinical predictor of
future adverse clinical outcome in stable patients with chronic heart failure in
Brankovic et al. (2019). Il2-RA has been positively associated with all-cause
mortality, CVD mortality, incident CVD, stroke, and heart failure in Durda
et al. (2015). To date, SELL and PCOLCE have not been associated as major
players in the development of cardiovascular disease.
Quantitative measure: In order to establish a quantitative measure of
the ranking quality, we followed an approach similar to what is described
in Covert, Lundberg, and Lee (2020), where multiple subsets of the data
were selected, the models were re-trained for each subset and then for each
subset and importance method we measured the correlation between the
performance and the subset’s sum of importances. We also computed the
model performance when trained on the top 10 to 35 proteins of each method.
We also report the average running time per cycle conducted on an 8-core
Intel(R) Core(TM) i7-7700HQ CPU @ 2.81Ghz. The results are displayed in
table 8.1 which shows CID outperformed the other methods on this dataset.

8.4 Discussion and Conclusion

Permutation importance is a popular algorithm used to equip black-box
models with global explanations. It has the advantage of being easy to
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understand, but its validity suffers in the presence of covariates. We propose
a novel framework (CID) to disentangle the shared information between
covariates and show how using Markov random fields leads to tractability,
making permutation importance competitive against methodologies where
all marginal contributions of a feature are considered, such as SHAP. Due
to network inference’s complexity, we have only explored graphical lasso in
conjunction with Gaussian Markov random fields. Although this particular
implementation is attractive for its scalability and intuitiveness, it might
lack sufficient expressive power to model more complex relationships between
features.
Recently, A. Fisher proposed model class reliance (MCR), a method to
estimate the range of variable importance for a pre-specified model class and
shown how it can be computed as a series of convex optimization problems for
model classes whose empirical loss is convex, although general computation
procedures are still an open area of research (Fisher, Rudin, and Dominici,
2018). By learning a map between permutation importance and entropy terms,
the importances retrieved by CID are less dependent on the specific fitted
model than permutation importance or SHAP, but the map quality still relies
on a consistent model behavior with regards to redundant entropy, as well
as a good MRF approximation to the data distribution. The former might
depend on the groups of features and thus future work includes modeling this
map using graph methods on the inferred network, where the node features
are the entropy terms. The latter could be improved by using a class of
non-parametric MRF s with higher flexibility. Should these two problems
be solved, then CID provides a truly model-agnostic feature importance
framework while retaining the intuitiveness of permutation importance.

8.5 Ethical Statement

With an increasing reliance on using machine learning methods to research
impactful domains such as biology and medicine, it is more important than
ever to achieve model transparency and accurately determine feature relevance.
In this work, we develop an efficient way to incorporate interactions when
ranking variables. In the biomedical domain with thousands or millions of
complex interactions among proteins, metabolites, genes, and so on, speed and
correctness in determining the elements governing a given process are critical
because they could significantly mitigate time, resources, and human lives
lost. On the other hand, model transparency can also be exploited to develop
adversarial examples or gain unwarranted access to protected systems/data.
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9
Summary and discussion

Cardiovascular diseases are a group of disorders with known and unknown
causes. Beyond the established causal factors, there are poorly understood
mechanisms raising the risk in patients with low traditional risk factors. To
develop new risk algorithms that can generalize well to the general population,
we need models capable of capturing complex interactions between different
physiological systems and thus encompass more than one event-causing
mechanism. Models from the Machine Learning (ML) field are promising
candidates to fill this gap due to their increased flexibility over traditional
statistical approaches. The rapid expansion in feature size presents a challenge
even for powerful ML models urging the need for biology-tailored algorithms
to take advantage of all the available data. In part I of this thesis, we first
demonstrate the improved prediction capabilities of combining ML models
with high-throughput technology data compared to traditional methods. In
part II we discuss novel ML algorithms to incorporate biological knowledge,
integrate multiple domains, and mitigate feature discovery bias.

133



134 CHAPTER 9. SUMMARY AND DISCUSSION

9.1 Part I: Applied Machine Learning in
Clinical Research

Identifying cardiovascular risk in asymptomatic people remains a critical
challenge in primary prevention with clinically used algorithms falling short
of predictive accuracy. In chapter 2, we hypothesized that since plasma
proteomics data capture a snapshot of the patient current physiological
state, it should include several markers that are on their own and through
interactions indicative of disease. Even though individual causal proteins have
previously been incorporated in risk prediction algorithms, these resulted in
modest improvements Piepoli et al. (2016), likely due to the high specificity
of such proteins and the lack of interactions in the model. The ability of ML
models to incorporate complex non-linear interactions should mitigate this
issue. To test our hypothesis, we measured 368 proteins in 1524 subjects from
independent prospective primary prevention cohorts used as derivation and
validation sets, respectively. We trained three models: a proteins-only model,
a model using clinical markers, and a combined model. The protein model
outperformed the refitted clinical model in the derivation and the validation
cohorts. The difference in predictive accuracy was the highest for 3-year
event prediction, which is consistent with the idea that both lifestyle and
interventions influence proteomics making this data type better suited for
short-time prediction. The most important features (retrieved by the model
Gini-importance) are consistent with previous findings. Thus, improvement is
likely due to the methodology interactions’ modeling capacity. This work is a
stepping stone toward using multiplex markers coupled with ML to determine
patient-specific risk.

Beyond primary prevention, patients with established cardiovascular disease
have a high risk of subsequent CVD events, so in chapter 3 we set out to test
whether the use of proteomics would yield similar prediction improvements
in secondary prevention. We tested this hypothesis first on 870 patients who
entered the SMART cohort for myocardial infarction, stroke, or transient
ischaemic attack with a 10-year SMART risk score above 15% and validated
the results on 700 subjects who underwent a carotid endarterectomy following
a stroke or transient ischaemic attack from the Athero-Express cohort. As in
primary prevention, we found the protein model significantly improved risk
prediction compared to the clinical model. C-reactive protein (CRP) is used
in clinical practice as stratifying marker to identify ’residual inflammatory
risk’, but it is unclear whether CRP reflects the entirety of inflammatory
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responses involved in atherogenesis. We tested this hypothesis by dividing the
patients into below and above median CRP and repeated the event prediction
analysis. The low CRP model retrieved four neutrophil-related proteins not
present neither in the initial model nor in the high CRP model, suggesting
a different inflammatory mechanism. Overall, the successful secondary event
prediction using proteomics is further evidence to justify using targeted
proteomics for risk prediction.

After establishing in the earlier chapters that proteomics improves risk
prediction, the next step is to include more data types and perform pathway
analysis to provide a more general overview of CVD’s pathophysiology.
In chapter 4, we used a multi-modal model jointly trained on genomics,
transcriptomics, proteomics, and clinical measurements to predict all-cause
mortality in the BIOSTAT-CHF cohort Voors et al. (2016). The cohort
features an index cohort composed of 2,516 patients with worsening signs
or symptoms of heart failure and a comparable validation cohort of 1,738
patients. After showing the model can predict with high accuracy, we
inspected the top most important clinical features of which renal dysfunction-
related markers were the most represented. Thus, since many pathways are
involved in heart failure, we focused the pathway analysis on a combination of
renal disease history, renal failure, and eGFR. We then computed correlations
between the most predictive markers for all domains and selected those
with the maximum correlation between each panel, starting with renal
dysfunction. This process yielded a list of 29 features. Performing pathway
over-representation analysis on these markers retrieved pathways related to
cysteine-type peptidase activity and regulation of endopeptidase activity
pathways. These pathways might become potential targets for therapy to
decrease mortality in patients with heart failure and chronic kidney disease.

9.2 Part II: Novel Machine Learning Algorithms
for Clinical Research

Despite the successful application of ML methods to predict CV risk
in part I, we found some challenges that motivated the development of
novel tailored algorithms. The significant improvement in risk prediction
using proteomics raised the question: ”Can we gain additional predictive
performance by incorporating protein-protein interaction (PPI) networks?”
Domain knowledge integration is particularly relevant in the Medical domain
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since the data typically contains higher number of features compared to the
number of examples. In chapter 5, we develop a novel graph kernel to map
the data into a higher dimensional space where the dimensions are weighted
protein interactions’ combinations of different sizes, which we call Graph Space
Embedding. What makes this graph kernel unique is that, for all dimensions,
it compares the same edges on both graphs. This design is particular to our
use case because the PPI networks are universal in humans. GSE achieves
improved ichaemia prediction over the existing graph kernels (which, in turn,
outperform the baseline method without PPI information) using a fraction of
the computational resources.
Even though we tailored this algorithm to our specific needs, it should still
be advantageous in any application where a universal feature interaction
network is present for all instances in the data. There are many such systems
in healthcare, though we have not tested the algorithm performance in other
settings.

After demonstrating the predictive power of targeted proteomics in chapters
2 and 3, we adopted a multi-domain approach in chapter 4 to maximize heart
failure prediction performance. The different domains provide perspectives
on the patient’s physiology, and therefore there is a larger opportunity to
identify the patient’s hidden states (like inflammation). However, we used a
stacked framework to combine the different data modalities. In this setting,
each dataset is passed to an independent model and the predictions are then
combined by a meta-model to produce the final prediction. The datasets are
therefore indirectly tied by the meta-model. However, these modalities form a
system of tightly connected layers, so we hypothesized if sharing information
across modalities would improve the final model. To this end, in chapter 6
we develop a novel multi-domain pre-processing technique called Manifold
Mixing which uses the topology of each dataset to ”deform” the others,
effectively sharing information across all modalities. We demonstrate how
this yields improved ichaemia predictive performance when using proteomics
and clinical parameters compared to the standard stacking technique and a
single model trained on the concatenated data. These results are promising
but preliminary. Several improvements are possible such as using non-linear
inter-domain maps and partitioning the data topologies into non-overlapping
regions based on curvature level.

All the algorithmic efforts above focused on improving prediction, but
perhaps an even more relevant ML contribution to Medical research is reliable
feature discovery. The models capable of distilling useful information of large,
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complex, and heterogeneous data are becoming increasingly opaque. With
the rapid expansion of both the Medical and ML fields, it is unlikely that a
particular model will remain relevant over the years, underscoring the need
for model-agnostic interpretation methodology. Model explanation techniques
fall under the umbrella of local and global explanations, the former serving
the purpose of improving trustworthiness in clinical practice while the latter
can guide general research directions or inspire novel drug targets. LIME
Ribeiro, Singh, and Guestrin (2016) is a popular local explainability method
that first perturbs data points in random directions and then trains a simple
interpretable model on the original complex model’s predictions. Evaluating
the model for random perturbations is a wasteful process since not all changes
will significantly change the model’s output, so in chapter 5, we extend this
method by taking statistically even steps in the direction of maximum output
change. The evenly spaced coverage of the output’s support allows us to use
interpolation methods and accurately reconstruct the output surface. This
method could be particularly useful in models with expensive predictions
since model evaluation is limited to the critical model behavior zones.
Global feature importance is what drove the pathophysiology discussions in
part I. Because we used a tree-based model in all our analyses, we could
retrieve the Gini-importance, which measures importance based on the total
decrease in impurity for all nodes that include a split on the feature. Although
this is a crucial advantage of tree-based models, this metric is known to be
biased in favor of variables with many possible split points as well as correlated
ones. A popular solution to the former is to use permutation importance (PI),
a model-agnostic method where each feature’s column is first independently
randomized, and then the model performance on this modified dataset is
compared to baseline. Intuitively, the more the performance suffers, the more
the model relies on that particular feature for prediction. Nevertheless, this
approach is still biased in the case of correlated features because the model
still has partial access to the permuted feature’s information. In chapter 7, we
tackle this issue by computing a feature correlation matrix and then permute
together all pairs of features exceeding a threshold correlation. Then, we
define the importance as the sum of permutation importance values weighted
by the correlations. We call this method Pairwise Permutation Algorithm
(PPA). We show how this reduces the PI bias in a controlled toy dataset and
then discuss the validity of the biological implications stemming from the
PPA ranking.
PPA is a stepping stone toward reducing PI bias, but it is an incomplete
solution since it only considers pairs of features. However, there are
many higher-order feature interactions in biological data. The number of
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combinations for tuples larger than two rapidly explodes, so permuting groups
of features for variable group size is not a viable option. In chapter 8, we treat
this problem from an information-theoretic perspective. The problem with
PI is that it only measures the joint information between the feature and the
output that is not ”overlapping” with the other features in the data. Since
information theory provides metrics with properties analogous to set theory,
we first quantify the amount of overlapping information between the feature
of interest and the rest with respect to the output. We then build a map from
information to the PI values’ space and recover the true importance by setting
the covered information of each point to zero and finding its map’s image.
Finally, because the information theory metrics are intractable, we prove
how using Markov Random Fields significantly simplifies their computation
leading to a scalable, truly unbiased, model agnostic feature importance
method. To test its efficacy, we designed a dataset with groups of correlated
non-normal random variables and demonstrate how CID can recover exactly
the true importance values while both PI and Gini importance yield biased
results. We call this framework Covered Information Disentanglement (CID).
For real datasets, the true importance is usually unknown, and estimating it
is precisely the goal, so we adopted two importance ranking metrics discussed
in Covert, Lundberg, and Lee (2020):

1. Correlation between model performance trained on random feature
subsets and sum of importances for said subsets

2. Average performance on top k important features

The second is not favorable for CID since there will likely be a high degree of
overlapping information among the top k features, but it is still an indication
of overall ranking quality. Nevertheless, it outperformed the other considered
methods on both performance metrics when tested on a real proteomics
dataset. We further discussed the validity of this ranking from a biological
perspective and argued these are consistent with previous findings.
CID is perhaps the development with the highest potential impact on medical
research in this thesis. However, there is a need for flexible Markov Random
Fields capable of modeling heterogeneous data before it can get widespread
adoption.

9.3 Concluding remarks

Predicting cardiovascular risk is a challenging task because it involves
multiple complex biological pathways. In this thesis, we demonstrate how
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Machine Learning (ML) models can distill relevant information for accurate
risk prediction out of large, heterogeneous datasets. The rapid expansion
of molecule measuring technology provides a unique opportunity to detect
disease progression, but the growing feature to sample size ratio makes
the Medical field especially problematic from a modeling perspective. We
can mitigate this difficulty by designing algorithms tailored to the biological
systems’ characteristics or by integrating the vast domain knowledge available.
In the future, the interplay between ML and Biology will accelerate Medical
research and ML adoption in clinical practice, although reliable model
explainability is a hard requirement for such developments.
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Characteristic Derivation cohort (SMART) Validation cohort (AE)
Number of patients 870 700
Age (years) 65(9) 70(9)
Male sex 657(75.5) 479(68.4)
BMI (kg/m2) 26.9 ± 3.9 26.2 ± 3.8
Systolic blood pressure (mmHg) 146 ± 22 152 ± 25
Diastolic blood pressure (mmHg) 82 ± 12 82 ± 31
Active smoking 299(34.4) 81(20.2)
Total cholesterol (mmol/L) 4.95 ± 1.22 4.31 ± 1.12
HDL cholesterol (mmol/L) 1.22 ± 0.36 1.10 ± 0.36
LDL cholesterol (mmol/L) 2.98 ± 1.07 2.43 ± 0.91
Triglycerides (mmol/L) 1.42(1.00− 2.10) 1.49(1.08− 2.04)
C-reactive protein (mg/L) 2.5(1.2− 5.2) 2.0(1.0− 4.5)
Diabetes mellitus 178(20.5) 163(23.3)
Lipid-lowering therapy 546(62.8) 541(77.5)
Antihypertensive therapy 578(66.4) 509(72.9)
Follow-up time (years) 7.98(4.61− 12.16) 3.00(2.17− 3.10)
Recurrent ASCVD event 263(30.2) 130(18.6)
Myocardial infarction 48(5.5) 39(5.6)
Ischaemic stroke 105(12.1) 53(7.5)
Cardiovascular death 110(12.6) 38(5.4)

Table A.2: Only primary recurrent ASCVD events are shown. Values
are n (%), mean± standard deviation, or median (IQR) for skewed data
(triglycerides, C-reactive protein, and follow-up time). SMART, Second
Manifestations of ARTerial disease; BMI, body mass index; ASCVD,
atherosclerotic cardiovascular disease.



144 APPENDIX A. SUPPLEMENTARY MATERIAL

Figure A.1: Overlap between predictive proteins
Relative importance plots of 50 proteins predictive in the derivation cohort.
Left: proteins predictive of events in the derivation cohort. Right: proteins
predictive of events in derivation cohort <3 years. Proteins that overlap
between two models are in blue.
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Figure A.2: Time-dependent receiver operating characteristics
Receiver operating characteristics (dynamic AUC) and standard deviation of
the survival models with a 2-year interval.

Figure A.3: Protein model validation in asymptomatic atherosclerosis
Receiver operating characteristic of protein model in validation cohort on
asymptomatic atherosclerosis.
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Toloşi, L.; and Lengauer, T. 2011. Classification with correlated features:
unreliability of feature ranking and solutions. Bioinformatics, 27: 1986–
1994.

Toma, I.; and McCaffrey, T. A. 2012. Transforming growth factor-β and
atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell
and tissue research, 347: 155–175.

Towbin, J. A.; and Bowles, N. E. 2002. The failing heart. Nature, 415: 227–
233.

Trachana, K.; Bargaje, R.; Glusman, G.; Price, N. D.; Huang, S.; and Hood,
L. E. 2018. Taking Systems Medicine to Heart. Circulation research, 122:
1276–1289.

Tromp, J.; Ouwerkerk, W.; Demissei, B. G.; Anker, S. D.; Cleland, J. G.;
Dickstein, K.; Filippatos, G.; van der Harst, P.; Hillege, H. L.; Lang,
C. C.; Metra, M.; Ng, L. L.; Ponikowski, P.; Samani, N. J.; van Veldhuisen,
D. J.; Zannad, F.; Zwinderman, A. H.; Voors, A. A.; and van der Meer, P.
2018. Novel endotypes in heart failure: effects on guideline-directed medical
therapy. European heart journal, 39: 4269–4276.

Tsivtsivadze, E.; Urban, J.; Geuvers, H.; and Heskes, T. 2011. Semantic
Graph Kernels for Automated Reasoning. In Proceedings of the Eleventh
SIAM International Conference on Data Mining, SDM.



BIBLIOGRAPHY 173

Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; and Turk, D.
2012. Cysteine cathepsins: from structure, function and regulation to new
frontiers. Biochimica et biophysica acta, 1824: 68–88.

Turk, V.; Turk, B.; and Turk, D. 2001. Lysosomal cysteine proteases: facts
and opportunities. The EMBO journal, 20: 4629–4633.

van Lammeren, G. W.; den Ruijter, H. M.; Vrijenhoek, J. E. P.; van der
Laan, S. W.; Velema, E.; de Vries, J.-P. P. M.; de Kleijn, D. P. V.; Vink,
A.; de Borst, G. J.; Moll, F. L.; Bots, M. L.; and Pasterkamp, G. 2014.
Time-dependent changes in atherosclerotic plaque composition in patients
undergoing carotid surgery. Circulation, 129: 2269–2276.

van Nunen, L. X.; Zimmermann, F. M.; Tonino, P. A. L.; Barbato, E.;
Baumbach, A.; Engstrøm, T.; et al. 2015. Fractional flow reserve versus
angiography for guidance of PCI in patients with multivessel coronary artery
disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet,
386(10006): 1853–1860.

Vangay, P.; Hillmann, B. M.; and Knights, D. 2019. Microbiome Learning Repo
(ML Repo): A public repository of microbiome regression and classification
tasks. 8.

Vasiljeva, O.; Reinheckel, T.; Peters, C.; Turk, D.; Turk, V.; and Turk, B.
2007. Emerging roles of cysteine cathepsins in disease and their potential as
drug targets. Current pharmaceutical design, 13: 387–403.

Verbree-Willemsen, L.; Zhang, Y.-N.; Ibrahim, I.; Ooi, S. B. S.; Wang, J.-W.;
Mazlan, M. I.; Kuan, W. S.; Chan, S.-P.; Peelen, L. M.; Grobbee, D. E.;
Richards, A. M.; Lam, C. S. P.; and de Kleijn, D. P. V. 2020. Extracellular
vesicle Cystatin C and CD14 are associated with both renal dysfunction and
heart failure. ESC heart failure, 7: 2240–2249.

Verhoeven, B. A. N.; Velema, E.; Schoneveld, A. H.; de Vries, J. P. P. M.;
de Bruin, P.; Seldenrijk, C. A.; de Kleijn, D. P. V.; Busser, E.; van der
Graaf, Y.; Moll, F.; and Pasterkamp, G. 2004. Athero-express: differential
atherosclerotic plaque expression of mRNA and protein in relation to
cardiovascular events and patient characteristics. Rationale and design.
European journal of epidemiology, 19: 1127–1133.

Vishwanathan, S. N.; Schraudolph, N. N.; Kondor, R.; and Borgwardt, K. M.
2010. Graph Kernels. Journal of Machine Learning Research, 1201–1242.



174 BIBLIOGRAPHY

Vock, D. M.; Wolfson, J.; Bandyopadhyay, S.; Adomavicius, G.; Johnson,
P. E.; Vazquez-Benitez, G.; and O’Connor, P. J. 2016. Adapting machine
learning techniques to censored time-to-event health record data: A general-
purpose approach using inverse probability of censoring weighting. Journal
of biomedical informatics, 61: 119–131.

Voors, A. A.; Anker, S. D.; Cleland, J. G.; Dickstein, K.; Filippatos, G.;
van der Harst, P.; Hillege, H. L.; Lang, C. C.; Ter Maaten, J. M.; Ng,
L.; Ponikowski, P.; Samani, N. J.; van Veldhuisen, D. J.; Zannad, F.;
Zwinderman, A. H.; and Metra, M. 2016. A systems BIOlogy Study to
TAilored Treatment in Chronic Heart Failure: rationale, design, and baseline
characteristics of BIOSTAT-CHF. European journal of heart failure, 18:
716–726.

Wang, C.; and Mahadevan, S. 2011. Heterogeneous Domain Adaptation Using
Manifold Alignment. In Walsh, T., ed., IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, 1541–1546. IJCAI/AAAI.

Wang, T. J.; Gona, P.; Larson, M. G.; Tofler, G. H.; Levy, D.; Newton-Cheh,
C.; Jacques, P. F.; Rifai, N.; Selhub, J.; Robins, S. J.; Benjamin, E. J.;
D’Agostino, R. B.; and Vasan, R. S. 2006. Multiple biomarkers for the
prediction of first major cardiovascular events and death. The New England
journal of medicine, 355: 2631–2639.

Weng, S. F.; Reps, J.; Kai, J.; Garibaldi, J. M.; and Qureshi, N. 2017.
Can machine-learning improve cardiovascular risk prediction using routine
clinical data? PloS one, 12: e0174944.

(WHO), W. H. O. 2021. Fact sheet cardiovascular diseases.
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-
diseases-(cvds). Accessed: 2021-01-05.

Williams, P. L.; and Beer, R. D. 2010. Nonnegative Decomposition of
Multivariate Information. arXiv:1004.2515.

Williams, S. A.; Kivimaki, M.; Langenberg, C.; Hingorani, A. D.; Casas, J. P.;
Bouchard, C.; Jonasson, C.; Sarzynski, M. A.; Shipley, M. J.; Alexander,
L.; Ash, J.; Bauer, T.; Chadwick, J.; Datta, G.; DeLisle, R. K.; Hagar,
Y.; Hinterberg, M.; Ostroff, R.; Weiss, S.; Ganz, P.; and Wareham, N. J.
2019. Plasma protein patterns as comprehensive indicators of health. Nature
medicine, 25: 1851–1857.



BIBLIOGRAPHY 175

Witten, D. M.; Tibshirani, R.; and Hastie, T. 2009. A penalized matrix
decomposition, with applications to sparse principal components and
canonical correlation analysis. 10: 515–534.

Wiviott, S. D.; Raz, I.; Bonaca, M. P.; Mosenzon, O.; Kato, E. T.; Cahn, A.;
Silverman, M. G.; Zelniker, T. A.; Kuder, J. F.; Murphy, S. A.; Bhatt,
D. L.; Leiter, L. A.; McGuire, D. K.; Wilding, J. P. H.; Ruff, C. T.;
Gause-Nilsson, I. A. M.; Fredriksson, M.; Johansson, P. A.; Langkilde,
A.-M.; Sabatine, M. S.; and Investigators, D. . 2019. Dapagliflozin and
Cardiovascular Outcomes in Type 2 Diabetes. The New England journal of
medicine, 380: 347–357.

WOLD, H. E. R. M. A. N. 1975. Path Models with Latent Variables: The
NIPALS Approach.

Wolpert, D. H. 1992. Stacked generalization. Neural Networks, 5: 241–259.

Wong, H. S.-C.; Chang, C.-M.; Kao, C.-C.; Hsu, Y.-W.; Liu, X.; Chang,
W.-C.; Wu, M.-S.; and Chang, W.-C. 2017. V-J combinations of T-
cell receptor predict responses to erythropoietin in end-stage renal disease
patients. Journal of biomedical science, 24: 43.

Wuttke, M.; Li, Y.; Li, M.; Sieber, K. B.; Feitosa, M. F.; Gorski, M.; Tin,
A.; Wang, L.; Chu, A. Y.; Hoppmann, A.; Kirsten, H.; Giri, A.; Chai, J.-
F.; Sveinbjornsson, G.; Tayo, B. O.; Nutile, T.; Fuchsberger, C.; Marten,
J.; Cocca, M.; Ghasemi, S.; Xu, Y.; Horn, K.; Noce, D.; van der Most,
P. J.; Sedaghat, S.; Yu, Z.; Akiyama, M.; Afaq, S.; Ahluwalia, T. S.;
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H.; Schmidt, R.; Schöttker, B.; Schulz, C.-A.; Schupf, N.; Shaffer, C. M.;
Shi, Y.; Smith, A. V.; Smith, B. H.; Soranzo, N.; Spracklen, C. N.; Strauch,
K.; Stringham, H. M.; Stumvoll, M.; Svensson, P. O.; Szymczak, S.; Tai,
E.-S.; Tajuddin, S. M.; Tan, N. Y. Q.; Taylor, K. D.; Teren, A.; Tham,
Y.-C.; Thiery, J.; Thio, C. H. L.; Thomsen, H.; Thorleifsson, G.; Toniolo,
D.; Tönjes, A.; Tremblay, J.; Tzoulaki, I.; Uitterlinden, A. G.; Vaccargiu,
S.; van Dam, R. M.; van der Harst, P.; van Duijn, C. M.; Velez Edward,
D. R.; Verweij, N.; Vogelezang, S.; Völker, U.; Vollenweider, P.; Waeber,
G.; Waldenberger, M.; Wallentin, L.; Wang, Y. X.; Wang, C.; Waterworth,
D. M.; Bin Wei, W.; White, H.; Whitfield, J. B.; Wild, S. H.; Wilson, J. F.;
Wojczynski, M. K.; Wong, C.; Wong, T.-Y.; Xu, L.; Yang, Q.; Yasuda,
M.; Yerges-Armstrong, L. M.; Zhang, W.; Zonderman, A. B.; Rotter, J. I.;
Bochud, M.; Psaty, B. M.; Vitart, V.; Wilson, J. G.; Dehghan, A.; Parsa, A.;



BIBLIOGRAPHY 177

Chasman, D. I.; Ho, K.; Morris, A. P.; Devuyst, O.; Akilesh, S.; Pendergrass,
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Samenvatting

Medisch onderzoek ervaart een sterke toename in de hoeveelheid beschikbare
data. Het enorme volume en de complexiteit van meetbare variabelen vormen
een uitdaging voor het gebruik van traditionele statistische methoden en zijn
voor geen enkel mens te bevatten. Het oplossen van dit probleem vereist
krachtige modellen die in staat zijn om de interacties tussen variabelen vast
te leggen en te onderzoeken hoe deze variabelen niet-lineair gerelateerd zijn
aan de aandoening die wordt bestudeerd. In dit werk gebruiken we eerst
Machine Learning (ML) -methoden om cardiovasculaire risico’s beter te
voorspellen, nieuwe biomarkers te identificeren en beschrijven we vervolgens
nieuwe biologisch gëınspireerde algoritmen om enkele van de ondervonden
uitdagingen op te lossen.
Aan de klinische kant demonstreren we hoe het combineren van gerichte
plasma proteomics met ML-modellen het voorspellen van het risico op
een eerste acuut myocardinfarct overtreft ten opzichte van traditionele
klinische risicofactoren overtreft. We breiden dit resultaat vervolgens uit
door aan te tonen dat deze combinatie ook superieur is bij het voorspellen
van terugkerende atherosclerotische cardiovasculaire aandoeningen (acuut
myocardinfarct, ischemische beroerte en cardiovasculaire sterfte). Ten slotte
verdiepen we ons op de pathofysiologische paden die betrokken zijn bij de
ontwikkeling van hartfalen met behulp van een multi-domein ML-model.
Aan de technische kant, aangezien proteomics een belangrijke rol heeft
gespeeld in onze klinische onderzoeken en er informatie beschikbaar is over
eiwit-eiwit interacties, willen we deze aanvullende kennis incorporeren om de
prestaties van onze analyses te verbeteren zonder meer data toe te voegen.
We hebben dit bereikt door een nieuwe “graph kernel” te ontwikkelen
die alle instanties in de data in kaart brengt in een “infinite-dimensional
space” waar de basisvectoren gewogen producten zijn van combinaties van
eiwitinteracties van grootte 1 tot oneindig. Vervolgens laten we zien hoe dit de
voorspelling van ischemie verbetert in vergelijking met het baseline algoritme
en andere “graph kernels”. Omdat deze methode de data projecteert in een
“infinite-dimensional space” en transparantie een harde vereiste is in onze
analyses, breiden we de “local model interpretability method” (LIME) uit.
LIME bouwt een interpretable model dat is getraind op de voorspellingen
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van de originele modellen voor random input perturbations. Onze methode
verstoort de input in de richting van maximale outputverandering met in
plaats daarvan equidistante outputveranderingen.
Er zijn verschillende onderling verbonden informatielagen in biologische
systemen. Biologisch bewuste “multi-domain” modellen mogen daarom
niet uitgaan van onafhankelijkheid tussen de domeinen. We hebben dit
probleem aangepakt door eerst aan te nemen dat de gegevens zich in een
lower-dimensional manifold bevinden (een ruimte die zich lokaal gedraagt als
een Euclidean space) vanwege de vele value constraints die voortvloeien uit
de interactiesvan alle componenten. Vervolgens vervormen we elk manifold
lokaal met behulp van de topologie van de resterende domeinen. Door de
getransformeerde datasets in een stacked model in te voeren, vergroten we
effectief de informatiestroom tussen domeinen en laten we zien hoe dit de
prestaties verbeterde.
Ten slotte bespreken we de kwestie van global model interpretability in
black-boxmodellen om de belangrijkste variabelen te bepalen die van belang
zijn voor de voorspellingen van het model. Het centrale onderzoeksobject
is permutation importance dat de prestaties van het model vergelijkt
wanneer de waarden van een specifiek kenmerk worden gerandomiseerd naar
de baseline. Deze techniek is aantrekkelijk vanwege zijn intüıtiviteit en
lineaire complexiteit. Deze benadering is echter biased voor features die
nauw aan elkaar verwant zijn, aangezien het model nog steeds nauwkeurige
voorspellingen kan doen met behulp van de non-permuted variabelen.
Dit probleem is met name relevant in biologische systemen vanwege hun
robuustheidseigenschap: de weerstand tegen verstoringen die wordt bereikt
door elementen met vergelijkbare functies, alternatieve routes en interacties.
We hebben dit probleem eerst benaderd door de correlatie tussen elk feature
pair in overweging te nemen en vervolgens permuteren we feature pairs
die een vooraf gedefinieerde correlatiedrempel overschrijden. Dit is echter
een onvolledige oplossing omdat het geen betrekking heeft op higher-order
interactions.
Onze laatste algoritmische ontwikkeling is misschien wel één van de
belangrijkste bijdrage van dit proefschrift vanwege de voordelen ten opzichte
van de state-of-the-art interpretability methods. Het doel is om het probleem
van permutation importance bias te behandelen vanuit een set-theory
perspective. Dit doen we door gebruik te maken van elementen uit de
Information Theory waarvan de eigenschappen analoog zijn aan die in de
set theory. Vervolgens beargumenteren we dat de waarden van permutation
importance een functie zijn van de redundante/synergetische entropie tussen
het kenmerk/de uitvoer en hoeveel van deze entropie wordt ”bedekt”
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door de andere kenmerken. Nadat we een kaart hebben geleerd tussen de
entropietermen en de permutatiebelangen, kunnen we het werkelijke belang
van een kenmerk, gemeten in de oorspronkelijke schaal voor verlies van het
model, herstellen door de afbeelding van de functie te berekenen voor een
bedekte entropie met nulwaarde. Ten slotte gebruiken we Markov Random
Fields om de computational complexity van de methode te verminderen. Het
belang van deze methode is om een global, model-agnostic, unbiased feature
importance methode te produceren die alle feature interacties in overweging
neemt met een korte computing time. Het uitbreiden van de transparantie in
complexe modellen zou het medisch onderzoek aanzienlijk kunnen versnellen
door het identificeren van belangrijke factoren die betrokken zijn bij complexe
biologische processen.
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Abstract

Medical research has seen a stark increase in the amount of available data.
The sheer volume and complexity of measured variables challenge the use
of traditional statistical methods and are beyond the ability of any human
to comprehend. Solving this problem demands powerful models capable of
capturing the variable interactions and how those are non-linearly related
to the condition under study. In this work, we first use Machine Learning
(ML) methods to achieve better cardiovascular risk prediction/novel disease
biomarker identification and then describe novel bio-inspired algorithms to
solve some of the encountered challenges.
On the clinical side, we start by demonstrating how combining targeted
plasma proteomics with ML models outperforms traditional clinical risk
factors in predicting the risk of first-time acute myocardial infarction. We
then extend this result by showing this combination is also superior when
predicting recurrent atherosclerotic cardiovascular disease (acute myocardial
infarction, ischaemic stroke, and cardiovascular death). Finally, we shed some
light on the pathophysiological pathways involved in heart failure development
using a multi-domain ML model.
On the technical side, since proteomics played a significant role in our
clinical investigations and there is information on protein-protein interactions
available, we would like to incorporate this additional knowledge to boost the
performance of our analyses without adding more data. We achieved this by
developing a novel graph kernel that maps all instances in the data into an
infinite-dimensional space where the basis vectors are weighted products of
protein interactions’ combinations of size 1 to infinity. We then show how
this improves the prediction of ischaemia compared to the baseline algorithm
and other graph kernels. Because this method projects the data into an
infinite-dimensional space and transparency is a hard requirement in our
analyses, we extend the local model interpretability method LIME. LIME
builds an interpretable model trained on the original models’ predictions for
random input perturbations. Our method perturbs the input in the direction
of maximum output change with equidistant output changes instead.
There are several inter-connected layers of information in biological systems.
Biologically aware multi-domain models should therefore not assume inter-
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domain independence. We tackled this problem by first assuming the data lies
in a lower-dimensional manifold (a space that locally behaves like Euclidean
space) due to the many value constraints stemming from all the components’
interactions. We then locally deform each manifold using the topology of
the remaining domains. By plugging the transformed datasets in a stacked
model, we effectively increase inter-domain information flow and show how
this improved performance.
Finally, we address the issue of global model interpretability in black-box
models to uncover the most important variables governing the model
prediction. The central study object is permutation importance which
compares the model’s performance when a specific feature’s values are
randomized to baseline. This technique is attractive because of its
intuitiveness and linear complexity. However, this approach is biased toward
closely related features since the model can still achieve accurate predictions
using the non-permuted variables. This issue is particularly relevant in
biological systems due to their robustness property: the resistance against
perturbations achieved through elements with similar functions, alternative
pathways, and interactions. We first mitigated this problem by considering
the correlation between each feature pair and then permuting feature pairs
exceeding a pre-defined correlation threshold. However, this is an incomplete
solution since it does not address higher-order interactions.
Our final algorithmic development is perhaps one of the most significant
contributions to this thesis for its advantages over the state-of-the-art
interpretability methods. The goal is to treat the problem of permutation
importance bias from a set-theory perspective. We do this by using elements
of Information Theory whose properties are analogous to those in set theory.
We then argue that the values of permutation importance are a function
of the redundant/synergistic entropy between the feature/output and how
much of this entropy is ”covered” by the other features. After learning a
map between the entropy terms and the permutation importance values,
we can recover the true feature importance measured in the original model
loss scale by computing the function’s image for a zero-valued covered
entropy. Finally, we use Markov Random Fields to mitigate the method’s
computational complexity. The significance of this method is that it offers
a global, model-agnostic, truly unbiased feature importance method that
considers all feature interactions with a fast computing time. Increasing the
transparency of complex models could significantly speed up Medical research
by discovering which key players are involved in intricate biological processes.



List of symbols

General math notation
I(x) Indicator function, I(x) = 1 if x is true, else 0
∞ Infinity
→ Tends towards, e.g. n→∞
∝ Proportional to
|x| Absolute value
|S| Size (cardinality) of a set
n! Factorial function
∇ Vector of first derivatives
≡ Defined as
O(·) Big-O: roughly means order of magnitude
R The real numbers
≈ Approximately equal to
argmaxxf(x) Argmax: the value of x that maximize f
Γ(x) Gamma function, Γ(x) =

∫∞
0
ux−1e−udu

exp(x) Exponential function ex

X A set from which values are drawn (e.g. X = RD)
{·} Set notation
Linear Algebra notation
< ·, · > Inner-product
< ·, · >F Frobenius inner product
A:,j the jth column of the matrix
Ai,: the ith row of the matrix
Probability/ML notation
X ⊥ Y X is independent of Y
X ⊥ Y |Z X is independent of Y given Z
X ⊥̸ Y X is not independent of Y
X ∼ p X is distributed according to p
E[X] Expected value of X
Eq[X] Expected value of X wrt distribution q
θ Parameter vector
Σ Covariance matrix
J(θ) Cost function
N (µ, σ2) Normal distribution with mean µ and standard deviation σ
N (X) neighbors of r.v. X, i.e. X ⊥̸ N (X)



186 List of symbols



Portfolio

Year ECTS
Courses
-Data visualization with ggplot2 2020 0.25
-Data processing in Shell 2020 0.25
-Experimental design in Python 2020 0.25
-Python Data science toolbox 2020 0.5
Professional work
-Campina research project: modelling infant formula fat content’s
impact on the child 2019-2022 10
-TNO research project: predicting glucose 2019 5
-Cargill project: Data processing pipeline 2021 5
Presentations
-”Protein Space Embedding Kernel for Plaque Volume Prediction”
poster presentation at Workshop on Computational Biology
at joint ICML/IJCAI/ECAI/AAMAS conference 2018 0.5
-”Graph Space Embedding” - Invited oral presentation at BioSB 2019 2019 0.5
-”Graph Space Embedding” - oral and poster presentation at IJCAI 2019 2019 1
-”Bio-inspired algorithms for cardiovascular risk prediction”
invited oral presentation at 87th EAS 2020 0.5
-”Biology guided ML for multi-omics analysis” presentation at ACS symposium 2020 1
-”Covered Information Disentanglement: Correcting Permutation
Feature Importance in the Presence of Covariates” poster presentation at
Machine Learning in Computational Biology (MLCB20) 2020 0.5
-”Covered Information Disentanglement: Model Transparency via Unbiased
Permutation Importance” oral presentation and poster presentation at AAAI22 2022 1.5
Conferences and Workshops
-ICML 2018 2018 0.5
-ICML 2018 ”Variational Bayes and Beyond: Bayesian Inference for Big Data” tutorial 2018 0.5
-Workshop on Computational Biology at joint
ICML/IJCAI/ECAI/AAMAS conference 2018 0.5
-IJCAI 2019 2019 0.5
-IJCAI 2019 ”Hands-On Deep Learning with TensorFlow 2.0” tutorial 2019 0.5
-MLCB20 2020 0.5
-AAAI22 2022 0.5



188 Portfolio



Acknowledgments

Throughout the successes and failures of this journey, several people made it
possible for me to keep moving forward and reach my destination. No matter
where our paths will lead or whether they cross again, I will carry you in my
heart with great kindness, for you were an indispensable light in the middle
of the storm.

Critical to my success was the momentum I gained in the first year, as
this fueled the excitement and curiosity to keep innovating and pushing the
boundaries. The motor behind this accelerating train were my supervisors
Evgeni Levin and Erik Stroes. Evgeni gave me the freedom and motivation
to pursue my own ideas and heightened my ambition to polish them into
high-quality publications. The life cycle of original work is generally an
unforgiving one. However, the calmness and simplicity with which he handled
the failures, made all the frustration more bearable and prevented the fear
of further exploration. Erik’s contagious enthusiasm, outstanding medical
expertise, and capacity to see the big picture made for a clear project
roadmap, preventing missteps on the path toward high-quality medical
research.

Similarly, I would like to thank Renate and Nick for our fruitful discussions
and your relentless quest for rigor and quality. Despite our different expertise
and opinions, the synergy between our backgrounds resulted in carefully
crafted work which I can confidently say I am proud of. I would also like to
thank Troy, Wouter, and Adriaan for our collaboration which, after several
refinements, yielded fruitful results.

Thanks Rens and Charlotte for our brief but effective collaborations!

Dear members of my defense committee, prof. dr. A.H. Zwinderman, prof.
dr. W.J. de Jonge, dr. C.J. Veenman, dr. H.J. Herrema and prof. dr. P.A.N.
Bosman, I highly appreciate your willingess to read/evaluate my thesis and
to serve as opponents during my defense.



190 Acknowledgments

Delicious as coffee may be, what made ”Koffietijd” an oasis to bask in, was
the company of my colleagues. The delightful conversations I had with Kim,
Ulrika, Torsten, Koen, Veera, Sultan, Xiang, Manon, Eduard, Anne Linde,
and others while the aroma of roasted coffee beans lingered in the air restored
my energy to keep on, and I am very grateful for it. A special thanks to my
dear paranymphs Kim and Ulrika for helping with the defense’s preparations
and our endless conversations. I hope we keep in touch in the future! Thank
you Sultan for your career advice and emotional support during the hardest
phases in my Ph.D. trajectory.

It is remarkable the profound impact someone thousands of kilometers away
can have on you. My frequent calls with my parents, grandmother, sister
and brother in law grounded me and allowed me to feel at home even with
the distance separating us. Thank you for always being there. I am blessed
to have friends that are just as caring and loving as family. Thank you Ana
and Mário, João, Alexandre, Diogo and Faca. Your unconditional support
and cheering lifted my spirit and prevented me from going under during the
darkest times.

Living in a foreign country generally means separation from your family
and friends. Over the years, I was lucky to find friends in some of the most
wonderful people I have ever met. Oliver, Andrea, Judith, Dhruv and Nino,
Diogo and Marcel, I will forever cherish our time together. Our dinners,
parties, and hangouts made life as an expat not only much easier but a
delightful and rewarding experience by itself. Fortunately, I had the luck to
have a Portuguese family present with me when Diogo and Catarina moved
to the Netherlands. Thank you for your constant presence. Your support was
invaluable.

Finally, none of this would be possible without you my dear Cláudia. You
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Medical research has seen a stark increase in the amount 
of available data.
The sheer volume and complexity of measured variables 
challenge the use of traditional statistical methods and 
are beyond the ability of any human to comprehend. 
Solving this problem demands powerful models capable 
of capturing the variable interactions and how those are 
non-linearly related to the condition under study.
Machine learning offers flexible and powerful models 
making them promising candidates to solve this prob-
lem. However, there may be a prohibitively large space 
of possible solutions which motivates the main theme of 
this thesis: Can we use our current biology knowledge to 
constrain this space? 
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