18 research outputs found

    Asymptotic waiting time analysis of finite source M/GI/1 retrial queueing systems with conflicts and unreliable server

    Get PDF
    The goal of the present paper is to analyze the steady-state distribution of the waiting time in a finite source M/G/1 retrial queueing system where conflicts may happen and the server is unreliable. An asymptotic method is used when the number of source N tends to infinity, the arrival intensity from the sources, the intensity of repeated calls tend to zero, while service intensity, breakdown intensity, recovery intensity are fixed. It is proved that the limiting steady-state probability distribution of the number of transitions/retrials of a customer into the orbit is geometric, and the waiting time of a customer is generalized exponentially distributed. The average total service time of a customer is also determined. Our new contribution to this topic is the inclusion of breakdown and recovery of the server. Prelimit distributions obtained by means of stochastic simulation are compared to the asymptotic ones and several numerical examples illustrate the power of the proposed asymptotic approach

    AN M[X]/G/1M^{[X]}/G/1 QUEUE WITH OPTIONAL SERVICE AND WORKING BREAKDOWN

    Get PDF
    In this study, a batch arrival single service queue with two stages of service (second stage is optional) and working breakdown is investigated. When the system is in operation, it may breakdown at any time. During breakdown period, instead of terminating the service totally, it continues at a slower rate. We find the time-dependent probability generating functions in terms of their Laplace transforms and derive explicitly the corresponding steady state results. Furthermore, numerous measures indicating system performances, such as the average queue size and the average queue waiting time, has been obtained. Some of the numerical results and graphical representations were also presented

    Non-Markovian Queueing System, Mx/G/1 with Server Breakdown and Repair Times

    Get PDF
    This paper deals with the steady state behavior of an MX/G/1 queue with breakdown. It assumed that customers arrive to the system in batches of variable size, but serve one by one. The main new assumption in this paper is that the repair process does not start immediately after a breakdown and there is a delay time waiting for repairs to start. We obtain steady state results in explicit and closed form in terms of the probability generating functions for the number of customers in the queue, the average waiting time in the queue

    Analysis of a multi-server queueing model with vacations and optional secondary services

    Get PDF
    In this paper we study a multi-server queueing model in which the customer arrive according to a Markovian arrival process. The customers may require, with a certain probability, an optional secondary service upon completion of a primary service. The secondary services are offered (in batches of varying size) when any of the following conditions holds good: (a) upon completion of a service a free server finds no primary customer waiting in the queue and there is at least one secondary customer (including possibly the primary customer becoming a secondary customer) waiting for service; (b) upon completion of a primary service, the customer requires a secondary service and at that time the number of customers needing a secondary service hits a pre-determined threshold value; (c) a server returning from a vacation finds no primary customer but at least one secondary customer waiting. The servers take vacation when there are no customers (either primary or secondary) waiting to receive service. The model is studied as a QBD-process using matrix-analytic methods and some illustrative examples arediscussed

    Single server retrial queues with speed scaling: analysis and performance evaluation

    Get PDF
    Recently, queues with speed scaling have received considerable attention due to their applicability to data centers, enabling a better balance between performance and energy consumption. This paper proposes a new model where blocked customers must leave the service area and retry after a random time, with retrial rate either varying proportionally to the number of retrying customers (linear retrial rate) or non-varying (constant retrial rate). For both, we first study a basic case and then subsequently incorporate the concepts of a setup time and a deactivation time in extended versions of the model. In all cases, we obtain a full characterization of the stationary queue length distribution. This allows us to evaluate the performance in terms of the mentioned balance between performance and energy, using an existing cost function as well as a newly proposed variant thereof. This paper presents the derivation of the stationary distribution as well as several numerical examples of the cost-based performance evaluation

    Transient behavior of M[x]/G/1 Retrial Queueing Model with Non Persistent Customers, Random break down, Delaying Repair and Bernoulli Vacation

    Get PDF
    In this paper we consider a single server batch arrival non-Markovian retrial queueing model with non persistent customers. In accordance with Poisson process, customers arrive in batches with arrival rate  and are served one by one with first come first served basis. The server is being considered as unreliable that it may encounter break down at any time. In order to resume its service the server has to be sent for repair, but the repair does not start immediately so that there is a waiting time before the repair process. The customer, who finds the server busy upon arrival, can either join the orbit with probability p or he/she can leave the system with probability 1-p. More details can be found in the full paper. Key words: Batch size, break down, delay time, transient solution, steady solution,  reliability indices

    Optimum cost analysis of batch service retrial queuing system with server failure, threshold and multiple vacations

    Get PDF
    The aim of this paper is to analyze the queuing model entitled to cost optimization in bulk arrival and a batch service retrial queuing system with threshold, server failure, non-disruptive service, and multiple vacations. When bulk arrival of customers find the server is busy, then all customers will join in the orbit. On the other hand, if the server is free, then batch service will be provided according to the general bulk service rule. Batch size varies from a minimum of one and a maximum of ‘b’ number of customers. Customers in the orbit seek service one by one through constant retrial policy whenever the server is in idle state. The server may encounter failure during service. If the server fails, then ‘renewal of service station’ will be considered with probability . If there is no server failure with probability in the service completion or after the renewal process and if the orbit is empty, the server then leaves for multiple vacations. The server stays on vacation until the orbit size reaches the value N. For this proposed queuing model, a probability generating function of the orbit size will be obtained by using the supplementary variable technique and various performance measures will be presented with suitable numerical illustrations. A real time application is also discussed for this system. Additionally, a cost effective model is developed for this queuing model

    A Discrete-Time Unreliable Geo/G/1 Retrial Queue with Balking Customers, Second Optional Service, and General Retrial Times

    Get PDF
    This paper deals with the steady-state behavior of a discrete-time unreliable / /1 retrial queueing system with balking customers and second optional service. The server may break down randomly while serving the customers. If the server breaks down, the server is sent to be repaired immediately. We analyze the Markov chain underlying the considered system and its ergodicity condition. Then, we obtain some performance measures based on the generating functions. Moreover, a stochastic decomposition result of the system size is investigated. Finally, some numerical examples are provided to illustrate the effect of some parameters on main performance measures of the system

    A Discrete-Time Unreliable Geo/G/1

    Get PDF
    This paper deals with the steady-state behavior of a discrete-time unreliable Geo/G/1 retrial queueing system with balking customers and second optional service. The server may break down randomly while serving the customers. If the server breaks down, the server is sent to be repaired immediately. We analyze the Markov chain underlying the considered system and its ergodicity condition. Then, we obtain some performance measures based on the generating functions. Moreover, a stochastic decomposition result of the system size is investigated. Finally, some numerical examples are provided to illustrate the effect of some parameters on main performance measures of the system
    corecore