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Asymptotic waiting time analysis of finite source M/GI/1
retrial queueing systems with conflicts and unreliable server

By ANATOLY NAZAROV (Tomsk), JÁNOS SZTRIK (Debrecen)
and ANNA KVACH (Tomsk)

Abstract. The goal of the present paper is to analyze the steady-state distribution

of the waiting time in a finite source M/G/1 retrial queueing system where conflicts may

happen and the server is unreliable. An asymptotic method is used when the number

of source N tends to infinity, the arrival intensity from the sources, the intensity of re-

peated calls tend to zero, while service intensity, breakdown intensity, recovery intensity

are fixed. It is proved that the limiting steady-state probability distribution of the num-

ber of transitions/retrials of a customer into the orbit is geometric, and the waiting time

of a customer is generalized exponentially distributed. The average total service time

of a customer is also determined. Our new contribution to this topic is the inclusion of

breakdown and recovery of the server. Prelimit distributions obtained by means of sto-

chastic simulation are compared to the asymptotic ones and several numerical examples

illustrate the power of the proposed asymptotic approach.

1. Introduction

Finite source queueing systems with repeated attempts are extremely popular

and powerful stochastic models to evaluate the performance of complex telecom-

munication networks, call centers, sensor networks, wireless communication sys-

tems, etc. For an overview on this topic, which is a modification of the machine

interference problem (see [16], [42]), we can refer to, for example, [1], which deals
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with modeling of call centers; [4] is the well-known book on retrial queueing sys-

tems; [8] treats finite-source retrial systems with two-way communication; [12]

is an important paper on M/G/1//N retrial queue; [13] is the classical book on

retrial systems; [15] deals with related models of retrial queues; [19] is a survey of

retrial queueing systems; and [27] investigates finite-source systems with vacation.

Since in practice the server may break down, i.e., it is unreliable and after

a failure it needs a repair, it is very important to investigate this type of sys-

tems. Retrial queues with a finite number of sources when the server is unreliable

have been considered in, for example [3], where the involved random variables

are exponentially distributed and there is no collision; [10] investigates with the

distribution of the retrials without collision; [14] uses an algorithmic approach to

get the distribution of the number of customers in the orbit when all the involved

random variables are exponentially distributed, [17] applies Markov-Renewal Sto-

chastic Petri Net for the analysis; [39] investigates M/M/1//N retrial systems

with unreliable sources and a server without collision; [46], [47] and [50] deal

with M/G/1//N retrial systems with unreliable server without collision using

the discrete-transformation method to get the steady-state distribution of the

system state.

It should be noted that, surprisingly, only a few papers have dealt with

systems when the arriving customers (primary or secondary) collide with the cus-

tomer under service and both enter into the orbit, see, for example, [2], [7], [20],

[21], [37]. Unfortunately, conflicts decrease the effectiveness of the system perfor-

mance, and that is why new protocols should be developed. Without going into

details and describing the protocols, we mention some patents where the colli-

sion is investigated, see, for example, [6], [18], [26], [48]. Hence, the mathematical

modeling of such systems is of basic interest. Investigations of queueing systems

with collision is important not only from a mathematical point of view, but from

that of application fields, too. Some examples are the following: wireless com-

munication systems for multiserver transmissions, random access communication

systems, systems with unslotted CSMA/CD protocols.

Nazarov and his colleagues have developed a very powerful asymptotic

method (see [36]) for the investigation of various queueing models. Finite source

retrial systems with conflicts have recently been treated among others in the

papers [22]–[25] and [28].

Sztrik and his colleagues have modeled systems with an unreliable server,

see, for example, [3], [11], [38], [43], [44], [49], and that is why the two research

groups combined their efforts in 2017.
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The unique contribution of our new model is a natural modification of the

M/G/1//N retrial system treated in [23], where the server was reliable and the

M/M/1//N system with an unreliable server analyzed in [33]. It is the continua-

tion of [35] where the asymptotic distribution of the number of customers in the

system was investigated. In [45], the present model has been analyzed by means

of stochastic simulation.

In this paper, an M/GI/1//N retrial queueing system with conflicts of re-

quests and a server subject to failure and repair is treated. Using asymptotic

analysis when N tends to infinity, it is proved that the limiting probability distri-

bution of the number of retrials is geometric with a given parameter. Based on

this, the prelimit distribution of the waiting time of a customer is obtained, and

by several examples, the power of the proposed approximations is illustrated.

When N tends to infinity, a natural question arises, why do not we use the

results concerning systems with infinity source, that is, when the arrival process

is Poisson? We have the following explanations in general:

• The performance measures should depend on the number of sources, denoted

by N .

• Even in the case of classical M/G/1 and M/G/1//N systems, the analysis

of the steady-state distribution of the number of customers in the system

is totally different. In the case of M/G/1, the steady state-distribution of

the queue length distribution can be computed in a recursive way (see, for

example, [5], [40]), but in the case of M/G/1//N , the distribution can be

obtained in a closed-form even if the formula is not simple.

• The calculation of the waiting time distribution is even more complicated,

using exact methods, only the Laplace transform of the waiting time can be

given in a rather complicated way.

• For retrial systems, the investigation is much more complicated. The re-

sults concern mainly systems without collision, only few papers deal with

collisions, mainly because of the mathematical complications due to the non-

neighboring transitions in the number of customers in the orbit.

• The authors are not aware of any paper dealing with M/G/1 retrial systems

with collision and unreliable server where the distribution of the waiting time

is given in a closed form.

Sections 2 deals with the description of the model. In Section 3, the elapsed

service time as a supplementary variable is introduced and the corresponding

Kolmogorov equations are obtained. Sections 4 and 5 are concerned with the

distribution of the number of transitions of a customer carries until the successful
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Figure 1. M/GI/1//N retrial queueing system with conflicts and

an unreliable server.

completion of its service. Section 6 is devoted to the distribution of the waiting

time of a customer in prelimit situation. In Section 7, the limiting average total

time of a customer under service is given. In Section 8, several numerical examples

and comparisons to simulation results are considered, illustrating the power of

the applied asymptotic method. Then several comments are made, and finally

a Conclusion completes the paper.

2. Description of the model and notations

In Figure 1, the operation of an M/GI/1//N retrial system with conflicts of

customers and an unreliable server is described. We have N sources and each of

them can send a primary call with intensity λ/N to the service facility. A source

cannot generate a new customer until the end of the successful service of the

current one. If a call finds the server idle, its service starts immediately.

Let B(x) denote the distribution function of the required service time, µ(y) =

B
′
(y)(1−B(y))−1 its service rate function, and B∗(y) its Laplace–Stieltjes trans-

form, respectively. Otherwise, if the server is busy, an arriving (primary or re-

peated) call causes conflict with the request under service and they both move

into the orbit. Times between the retrials are supposed to be exponentially dis-

tributed random variables with intensity σ/N . Assuming that the server is subject
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to breakdowns, the failure-free operation times are supposed to be exponentially

distributed with failure intensity γ0 if the server is idle, and with intensity γ1 if

it is busy. As soon as the server fails, the repair starts and the recovery times

are assumed to be exponentially distributed with intensity γ2. We consider the

situation when the server is broken, all sources can generate requests and send

them into the orbit. In addition, customers may repeat their calls from the orbit

for service, but all arriving customers immediately return to the orbit. Finally,

we assume that the interrupted customer is directed to the orbit and its next

service is independent of the interrupted one. All random variables involved in

the model construction are supposed to be independent of each other.

Let Q(t) denote the number of requests in the system at time t, that is, the

total number of requests in the orbit and in service. Similarly, let C(t) denote

the state of the server at time t, that is

C(t) =


0 if the server is idle at time t,

1 if the server is busy at time t,

2 if the server is failed at time t.

Hence, we will deal with process {C(t), Q(t)}, which is not Markovian. Therefore,

as usual, we introduce the elapsed service time as a supplementary variable.

3. Kolmogorov equations for the probability distribution

Let y(t) denote the supplementary random variable, equal to the elapsed

service time of the customer under service till time t.

It is clear that {C(t), Q(t), y(t)} is a Markov process. Let us note, that process

y(t) is defined only at C(t) = 1.

Let us define the steady-state probabilities and density function as follows:

p0(j) = P{C(t) = 0, Q(t) = j},

p1(j, y) =
∂P{C(t) = 1, Q(t) = j, y(t) < y}

∂y
,

p1(j) = P{C(t)=1, Q(t)=j}=

∞∫
0

p1(j, y)dy, p2(j) = P{C(t)=2, Q(t)=j}.

As usual, for p0(j), p1(j, y) and p2(j), the following system of Kolmogorov equa-

tions can be obtained:
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−
[
λ
N − j
N

+
j

N
σ + γ0

]
p0(j) +

∞∫
0

p1(j + 1, y)µ(y)dy + λ
N − j + 1

N
p1(j − 1)

+
j − 1

N
σp1(j) + γ2p2(j) = 0,

j = 0, . . . , N, p1(−1) = p1(0) = p1(N + 1) = 0,

∂p1(j, y)

∂y
= −

[
λ
N − j
N

+
j − 1

N
σ + µ(y) + γ1

]
p1(j, y), j = 1, . . . , N,

−
[
λ
N − j
N

+ γ2

]
p2(j) + λ

N − j + 1

N
p2(j − 1) + γ0p0(j) + γ1p1(j) = 0,

j = 0, . . . , N, p2(−1) = p1(0) = 0, (1)

with boundary condition

p1(j, 0) = λ
N − j + 1

N
p0(j − 1) +

j

N
σp0(j), j = 1, . . . , N, (2)

where µ(y) =
B

′
(y)

1−B(y)
is the service completion rate function.

Denoting the partial characteristic functions by

Hk(u) =

N∑
j=0

eiujpk(j), k = 0, 2; H1(u, y) =

N∑
j=1

eiujp1(j, y),

system (1) and condition (2) can be rewritten in the form

− (λ+ γ0)H0(u) +
[
λeiu − σ

N

]
H1(u) + e−iu

∞∫
0

H1(u, y)µ(y)dy + +γ2H2(u)

+ i
(σ − λ)

N

dH0(u)

du
+ i

(λeiu − σ)

N

dH1(u)

du
= 0,

∂H1(u, y)

∂y
=
[ σ
N
− λ− µ(y)− γ1

]
H1(u, y)− i (λ− σ)

N

∂H1(u, y)

∂u
,

γ0H0(u) + γ1H1(u) +
[
λ(eiu − 1)− γ2

]
H2(u) + i

λ(eiu − 1)

N

dH2(u)

du
= 0,

H1(u, 0) = λeiuH0(u) + i
(λeiu − σ)

N

dH0(u)

du
. (3)
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To get an exact solution to this system is very complicated, that is why we

solve it by the help of an asymptotic method, see [36]. The present model is a gen-

eralization of the ones treated in our previous papers either with exponentially

distributed service times or with reliable server, see [29], [31], [34], [35].

4. Asymptotic analysis of the first order

For the first order solution to (3), we can state the following theorem, see [29].

Theorem 1. Let Q(t) be the number of requests in the system in steady-

state, then

lim
N→∞

E exp

{
iw
Q(t)

N

}
= exp {iwκ} , (4)

where the value of parameter κ is the positive solution of the equation

λ (1− κ)− a(κ) [R0(κ)−R1(κ)] + γ1R1(κ) = 0, (5)

here a (κ) is

a (κ) = λ (1− κ) + σκ, (6)

and the steady-state probabilities Rk(κ) of the state of the server depend on κ.

They can be determined in the following way:

R0(κ) =

{
γ0 + γ2
γ2

+
γ1 + γ2
γ2

· a (κ)

a (κ) + γ1
[1−B∗(a(κ) + γ1)]

}−1
,

R1(κ) = R0(κ)
a (κ)

a (κ) + γ1
· [1−B∗(a(κ) + γ1)] ,

R2(κ) =
1

γ2
{γ0R0(κ) + γ1R1(κ)} . (7)

The proof of this theorem is given in [29]. Here we wanted to show the

dependence on κ to get its value. But as soon as κ is given for the simpler notation,

we omit it. Now, we present some results from the proof of Theorem 1, which we

will need later on in the proof of Theorem 2.

Namely, the system of equations

∞∫
0

R1(y)µ(y)dy = a (R0 −R1) + γ0R0 − γ2R2,

R
′

1(y)=− [a+µ(y)+γ1]R1(y), γ0R0+γ1R1−γ2R2 =0, R1(0)=aR0, (8)
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and equality
∞∫
0

R1(y)µ(y)dy = λ(1− κ) = aR0B
∗(a+ γ1), (9)

where R1(y) denotes the density function of steady-state probability that the

elapsed service time is less than y. The probabilistic meaning of the last equation

is that the mean arrival rate equals the mean departure/service rate. Furthermore,
∞∫
0

R1(y)dy = R1.

For easier understanding, let us give some explanations to the existence of κ.

If we denote by r(κ) the left-hand side of (5), then it is easy to see that r(0) =

λ (1−R0(0)) + (λ+ γ1)R1(0) > 0, and r(1) = −σR0(1)B∗(σ + γ1) < 0. Hence,

independently of the parameters N , λ, σ, γ0, γ1, γ2, there exists a κ in the interval

(0, 1).

5. Distribution of the number of transitions/attempts of a request

into the orbit

It is not difficult to see that in this system a service may not be completed

because of either conflicts or breakdowns of the server. In the case of interrupted

service, the customer goes into the orbit and after some random delay it retries

for service. That is why for these systems it is a very important and interesting

task to find the distribution of the number of transitions of a customer into the

orbit.

To the best knowledge of the authors, there is no paper dealing with the

distribution of the number of retrials with collisions. We must mention [9] and

[10], in which the distribution of the number of retrials in an M/G/1//N retrial

queue with reliable and unreliable server, respectively, was investigated but with-

out collision. The author used the discrete-transformation method combined with

a solution of linear systems of equations to get the exact distribution.

Let ν(t) denote the residual number of attempts of the tagged request into

the orbit, that is the number of retrials from t till the completion of its successful

service.

Furthermore, let us define the state of the server by

S(t) =


0 if the server is idle at time t,

1 if the server is busy but not by tagged customer at time t,

2 if the server is broken at time t,

3 if the server is busy by the tagged customer at time t.
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Finally, let us introduce the conditional generating functions as

Gk(j, z) = E
{
zν(t)|S(t) = k,Q(t) = j

}
, k = 0, 2;

Gk(j, z, y) = E
{
zν(t)|S(t) = k,Q(t) = j, y(t) = y

}
, k = 1, 3. (10)

Hence, using standard method in steady-state for functions G0(j, z), G1(j, z, y),

G2(j, z), G3(j, z, y), we have the following system of Kolmogorov equations:

−
[
λ
N − j
N

+
j

N
σ + γ0

]
G0(j, z) + λ

N − j
N

G1(j + 1, z, 0) + γ0G2(j, z)

+
j − 1

N
σG1(j, z, 0) +

σ

N
G3(j, z, 0) = 0,

−
[
λ
N − j
N

+
j − 1

N
σ + µ(y) + γ1

]
G1(j, z, y) + λ

N − j
N

G0(j + 1, z) + γ1G2(j, z)

+
j − 2

N
σG0(j, z) +

σ

N
zG0(j, z) + µ(y)G0(j − 1, z) +

∂G1(j, z, y)

∂y
= 0,

−
[
λ
N−j
N

+
σ

N
+γ2

]
G2(j, z)+λ

N−j
N

G2(j+1, z)+
σ

N
zG2(j, z)+γ2G0(j, z) = 0,

−
[
λ
N − j
N

+
j − 1

N
σ + µ(y) + γ1

]
G3(j, z, y) + λ

N − j
N

zG0(j + 1, z)

+
j − 1

N
σzG0(j, z) + γ1zG2(j, z) + µ(y) +

∂G3(j, z, y)

∂y
= 0. (11)

Theorem 2. For the generating function of the number of transitions ν of

the tagged customer into the orbit, we have

lim
N→∞

E zν =
1− q
1− qz

, (12)

where the probability q can be obtained as

q = 1−R0B
∗(a+ γ1), (13)

here

a = λ(1− κ) + σκ.

Proof. After introducing the notation
1

N
= ε, performing the following

substitutions in system (11), that is
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jε = x, Gk(j, z) = Fk(x, z, ε), k = 0, 2,

Gk(j, z, y) = Fk(x, z, y, ε), k = 1, 3, (14)

denoting a(x) = λ(1− x) + σx, and assuming the existence of the partial deriva-

tives, we obtain the above system in the form

− [a(x) + γ0]F0(x, z, ε) + λ(1− x)F1(x+ ε, z, 0, ε) + γ0F2(x, z, ε)

+ σ(x− ε)F1(x, z, 0, ε) + σεF3(x, z, 0, ε) = 0,

− [a(x)− σε+ µ(y) + γ1]F1(x, z, y, ε) + λ(1− x)F0(x+ ε, z, ε) + γ1F2(x, z, ε)

+ σ(x−2ε)F0(x, z, ε)+σεzF0(x, z, ε)+µ(y)F0(x−ε, z, ε)+
∂F1(x, z, y, ε)

∂y
= 0,

− [λ(1− x) + σε+ γ2]F2(x, z, ε) + λ(1− x)F2(x+ ε, z, ε) + σεzF2(x, z, ε)

+ γ2F0(x, z, ε) = 0,

− [a(x)− σε+ µ(y) + γ1]F3(x, z, y, ε) + λ(1− x)zF0(x+ ε, z, ε)

+ σ(x− ε)zF0(x, z, ε) + γ1zF2(x, z, ε) + µ(y) +
∂F3(x, z, y, ε)

∂y
= 0. (15)

Stage 1. Assuming the limits under the condition ε→ 0, and using notations

lim
ε→0

Fk(x, z, ε) = Fk(x, z), k = 0, 2, and lim
ε→0

Fk(x, z, y, ε) = Fk(x, z, y), k = 1, 3,

system (15) can be rewritten as

− [a(x) + γ0]F0(x, z) + a(x)F1(x, z, 0) + γ0F2(x, z) = 0,

∂F1(x, z, y)

∂y
−[a(x)+µ(y)+γ1]F1(x, z, y)+[a(x)+µ(y)]F0(x, z)+γ1F2(x, z) = 0,

− γ2F2(x, z) + γ2F0(x, z) = 0,

∂F3(x, z, y)

∂y
−[a(x)+µ(y)+γ1]F3(x, z, y)+a(x)zF0(x, z)+µ(y)+γ1zF2(x, z) = 0.

(16)

It is easy to see that from the third and first equations of system (16) it follows that

F0(x, z) = F2(x, z), F0(x, z) = F1(x, z, 0), respectively, thus F0(x, z) = F2(x, z) =

F1(x, z, 0). Designating their common value by F (x, z), let us consider the second

equation of system (16). The solution to this equation can be written in the form



Asymptotic waiting time analysis of finite source M/GI/1 407

F1(x, z, y) = e

y∫
0

[a(x)+γ1+µ(u)]du
{
F1(x, z, 0)

−F (x, z)

y∫
0

e
−

v∫
0

[a(x)+γ1+µ(u)]du
[a(x) + γ1 + µ(v)] dv

 , (17)

from which it is not difficult to obtain that functions F1(x, z, y) and F (x, z) are

equal.

Then let us consider the fourth equation of system (16). Taking into account

that F (x, z) = F0(x, z) = F2(x, z), the solution to this equation can be obtained

in the form

F3(x, z, y) = e

y∫
0

[a(x)+γ1+µ(u)]du
{
F3(x, z, 0)

−
y∫

0

e
−

v∫
0

[a(x)+γ1+µ(u)]du
[(a(x) + γ1)zF (x, z) + µ(v)] dv

 . (18)

Executing limiting transition as y →∞, the first factor of equation (18) is equal

to infinity, then consequently, the second factor equals zero. Hence,

F3(x, z, 0) = [a(x) + γ1] zF (x, z)

∞∫
0

e
−

v∫
0

[a(x)+γ1+µ(u)]du
dv

+

∞∫
0

e
−

v∫
0

[a(x)+γ1+µ(u)]du
µ(v)dv. (19)

Now, after standard calculations, it is not difficult to show that

F3(x, z, 0) = [1−B∗(a(x) + γ1)] zF (x, z) +B∗(a(x) + γ1). (20)

Stage 2. Our method is constructive, we represent the solution to system (15)

in the form of a decomposition, namely

Fk(x, z, ε) = F (x, z) + εfk(x, z) +O(ε2), k = 0, 2,

F1(x, z, y, ε) = F (x, z) + εf1(x, z, y) +O(ε2),

F3(x, z, y, ε) = F3(x, z, y) + εf3(x, z, y) +O(ε2). (21)
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Substituting them into system (15) equating coefficients at identical degrees ε,

the terms that do not contain ε are mutually canceled resulting in the following

system of equations:

− [a(x) + γ0] f0(x, z) + a(x)f1(x, z, 0) + γ0f2(x, z)

= σF (x, z)− σF3(x, z, 0)− λ(1− x)
∂F (x, z)

∂x
,

− [a(x) + µ(y) + γ1] f1(x, z, y) + [a(x) + µ(y)] f0(x, z) + γ1f2(x, z) +
∂f1(x, z, y)

∂y

= σ(1− z)F (x, z)− [λ(1− x)− µ(y)]
∂F (x, z)

∂x
,

γ2 [f0(x, z)− f2(x, z)] = σ(1− z)F (x, z)− λ(1− x)
∂F (x, z)

∂x
,

− [a(x) + µ(y) + γ1] f3(x, z, y) + a(x)zf0(x, z) + γ1zf2(x, z) +
∂f3(x, z, y)

∂y

= σzF (x, z)− σF3(x, z, y)− λ(1− x)z
∂F (x, z)

∂x
. (22)

Let us multiply the first equation of system (22) by R0, and the third one by R2.

Let us multiply the second equation by R1(y), and integrate from 0 to ∞. After

adding the received equalities, we get− [a(x) + γ0]R0 + a(x)R1 + γ2R2 +

∞∫
0

µ(y)R1(y)dy

 f0(x, z)

+a(x)R0f1(x, z, 0)−[a(x)+γ1]

∞∫
0

f1(x, z, y)R1(y)dy−
∞∫
0

f1(x, z, y)µ(y)R1(y)dy

+

∞∫
0

R1(y)
∂f1(x, z, y)

∂y
dy + [γ0R0 + γ1R1 − γ2R2] f2(x, z)

= σ(1− z)F (x, z) + σzR0F (x, z)− σR0F3(x, z, 0)

+


∞∫
0

µ(y)R1(y)dy − λ(1− x)

 ∂F (x, z)

∂x
. (23)

Then, it can be shown that
∞∫
0

R1(y)
∂f1(x, z, y)

∂y
dy = −R1(0)f1(x, z, 0)−

∞∫
0

f1(x, z, y)R
′

1(y)dy. (24)
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Due to the replacement
j

N
= x, we can conclude that x = κ. Keeping this fact

in mind, the first term of equality (23) is equal to zero, due to the first equation

of system (8).

Similarly, taking into account that
∞∫
0

µ(y)R1(y)dy = λ(1− κ) from (9), and

γ0R0 + γ1R1 − γ2R2 = 0 from system (8), we can rewrite (23) in the form

{a(κ)R0−R1(0)} f1(z, 0)−
∞∫
0

f1(z, y)
{
(a(κ)+γ1)R1(y)+µ(y)R1(y)+R

′

1(y)
}
dy

= σ(1− z)F (z) + σR0 [zF (z)− F3(z, 0)] . (25)

From the second equation of system (8), it follows that the integral is equal to

zero. From the fourth equation of system (8), we see that the factor of function

f1(z, 0) is also equal to zero. Thus, we obtain

(1− z)F (z) +R0 [zF (z)− F3(z, 0)] = 0. (26)

Let substitute the explicit form of function F3(z, 0), which is determined by equal-

ity (20), and keeping in mind that x = κ, we get

(1−z)F (z)+R0 {zF (z)− [1−B∗(a(κ) + γ1)] zF (z)−B∗(a(κ) + γ1)} = 0, (27)

from which it is not difficult to obtain that

F (z) =
1− q
1− qz

, (28)

where q = 1−R0B
∗(a(κ) + γ1).

Hence, by the law of total probability for the probability generating function

of the number of transitions of a customer into the orbit, we have

Ezν = R0F3(z, 0) + (1−R0)zF (z). (29)

From equation (26), it follows that R0F3(z, 0) = (1 − z)F (z) + R0zF (z). Thus,

equation (29) can be rewritten as

Ezν = (1− z)F (z) +R0zF (z) + (1−R0)zF (z) = F (z). (30)

Hence, we obtain that

Ezν =
1− q
1− qz

, (31)

coinciding with our statement given in (12). �
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Consequently, ν is geometric, namely

P {ν = n} = (1− q)qn, n = 0,∞, (32)

and for the prelimit situation, that is, when N is fixed, we can and will use the

following approximation P {ν = n} ≈ (1− q)qn.
In connection with the assumptions, in the mathematical operations we would

like to add the following remarks.

Remarks. The system is very complicated due to the collisions and server’s

breakdowns, and the authors cannot prove the existence of the above-mentioned

partial derivatives and limits. The form of the Taylor expansion is based on

the previous research experience of the authors. The correctness of the assump-

tion is justified by comparing the simulation and asymptotic results presented in

Section 7, that is, by an informal way of the proof.

6. Waiting time of the tagged customer in the orbit

Laplace transform of the waiting time of a tagged customer was investigated

in the case of a reliable server under exponentially distributed service time in [12]

without collision. For the moments of the waiting time, recursive relations were

derived, but the type of the distribution could be obtained. In [47] and [50],

the Laplace transform and moment of the waiting time were investigated in the

case of an unreliable server but without collision.

Let W denote the waiting time of the tagged customer in the orbit. Owing

to Theorem 2 in prelimit situation, that is, when N is fixed, we can state the

following Theorem.

Theorem 3. The characteristic function of the waiting timeW of the tagged

customer in the orbit can be obtained as

EeiuW ≈ (1− q) + q
σ(1− q)

σ(1− q)− iuN
. (33)

Proof. Since the characteristic function of the inter-retrial time τ of the

tagged customer in the orbit is

Eeiuτ =
σ

σ − iuN
, (34)
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by using the law of total expectation, we get

EeiuW ≈
∞∑
n=0

(
σ

σ − iuN

)n
(1− q)qn =

1− q
1− q σ

σ−iuN

= (1− q) σ − iuN
σ(1− q)− iuN

= (1− q) + q
σ(1− q)

σ(1− q)− iuN
. (35)

Hence,

E(W ) ≈ N

σ

q

1− q
=
N

σ

1−R0B
∗(a+ γ1)

R0B∗(a+ γ1)
. (36)

The theorem is proved. �

Consequently,

lim
N→∞

Eeiu
W
N = (1− q) + q

σ(1− q)
σ(1− q)− iu

.

Thus, by using equations (6) and (9), we get

lim
N→∞

E(
W

N
) =

1

σ

q

1− q
=

1

σ

1−R0B
∗(a+ γ1)

R0B∗(a+ γ1)
=

κ

λ(1− κ)
. (37)

This type of distribution is called a generalized exponential distribution, as we

met in our previous papers [32]–[34] and [41].

7. Average sojourn time of the customer under service

Another important characteristic of retrial queueing systems is the sojourn

time, or the total service time, of a customer under service. For classical retrial

queueing systems without interruptions, this characteristic can be found easily.

But for the considered system in which conflicts of the customers and server fail-

ures are possible, the sojourn time of a customer has a rather complex structure.

It is the sum of the following terms: a term of zero duration if a request from

the orbit finds the server busy, a non-zero term of the services interrupted by

conflicts and failures of the server, and finally a single term of successful service

completion after that the tagged request departs from the service.

Let T̄S denote the average sojourn time of a customer under service, and

TS(t) the residual sojourn time of a customer under service, respectively. Let us

introduce the supplementary random variable z(t) equal to the residual service

time, that is, the time interval from moment t until the successful completion of

the service. When N →∞, we have the following statement:
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Theorem 4. The average sojourn time T̄S of the customer under service

can be approximated by

T̄S ≈
1−B∗(a+ γ1)

(a+ γ1)B∗(a+ γ1)
, (38)

where

a = λ (1− κ) + σκ.

Proof. Let us define the following function of conditional average residual

sojourn time of a customer under service as follows:

g(z) = E {TS(t)|z(t) = z} .

Applying the law of total probability, we can write

g(z) = [1− (a+ γ1)∆t] (∆t+ g(z −∆t)) + (a+ γ1)∆tT̄S + o(∆t). (39)

Let us execute the limiting transition under conditions ∆t → 0, then we can

rewrite equation (39) in the form

g′(z) = −(a+ γ1)g(z) + 1 + (a+ γ1)T̄S .

Thus, we obtain a Cauchy problem with initial condition g(0) = 0. Its solution

can be written in the form

g(z)=e−(a+γ1)z
z∫

0

e(a+γ1)x
[
1+(a+γ1)T̄S

]
dx=

1+(a+γ1)T̄S
(a+γ1)

(
1−e−(a+γ1)z

)
. (40)

Thus, by using the law of total probability, we obtain

T̄S = (1−R0) T̄S +R0

∞∫
0

g(z)dB(z).

Substituting the explicit form (40) of function g(z) and carrying simple calcula-

tions, we get

T̄S = E(TS) ≈ 1−B∗(a+ γ1)

(a+ γ1)B∗(a+ γ1)
,

coinciding with (38).

The theorem is proved. �
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Let us check our result by using Little’s formula. If we apply it to E(TS),

we have

λ(1− κ)
1−B∗(a+ γ1)

(a+ γ1)B∗(a+ γ1)
= aR0B

∗(a+ γ1)
1−B∗(a+ γ1)

(a+ γ1)B∗(a+ γ1)
= R1.

If T denotes the sojourn time of a customer in the system, then T = W + TS ,

and using again Little’s formula for the response time, we have

lim
N→∞

λ(1− κ)E

(
W + TS
N

)
= κ.

Since

lim
N→∞

λ(1− κ)E

(
TS
N

)
= 0,

thus

lim
N→∞

E

(
W

N

)
=

κ

λ(1− κ)
,

which we got in (37).

8. Numerical examples for comparisons

Let us examine the range of applicability and accuracy of the obtained

asymptotic results. In [45], the simulation of the considered system was carried

out, analysis of the performance measures, graphs and tables were presented.

In the present paper, we use the results of the simulation in order to find out how

close the asymptotic results are to the simulated ones.

Let us denote by Pas(n) the asymptotic geometric distribution (32), and

by Ps(n) the probability distribution of the number of transitions of the tagged

customer into the orbit obtained with the help of the simulation program. Let us

define the accuracy (error) of the approximation by means of the Kolmogorov

distance ∆ in the following form

∆ = max
0≤i≤N

∣∣∣∣∣
i∑

n=0

[Ps(n)− Pas(n)]

∣∣∣∣∣ ,
suggesting an acceptable error ∆ < 0.05.

For numerical comparisons, we choose a gamma-distributed service time S

with shape parameter α and scale parameter β, with Laplace–Stieltjes transform

B∗(δ) of the form

B∗(δ) =

(
1 +

δ

β

)−α
.
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It can be shown that

E(S) =
α

β
, Var(S) =

α

β2
, V 2

S =
1

α
,

where V 2
S denotes the squared coefficient of variation of S. This distribution

allows us to show the effect of the distribution on the main performance measures,

because in the case when α = β, that is, when the average service time is equal to

the unit dealing with the same mean, we can see the impact of the variance, too.

Running the simulation program with inputs

λ = 1, σ = 1, γ0 = 0.1, γ1 = 0.1, γ2 = 1,

and applying the proposed approximation (32), we calculate the Kolmogorov

distance ∆ for various values of N and α = β in Table 1.

N = 10 N = 30 N = 50 N = 70 N = 100

α = 0.5 0.0218 0.0067 0.0038 0.0029 0.0021

α = 1 0.0292 0.0099 0.0064 0.0048 0.0035

α = 2 0.0360 0.0119 0.0075 0.0056 0.0040

Table 1. Kolmogorov distance between distributions Ps(n) and Pas(n)

for various values of parameters N and α = β.

From the presented Table 1, it is clear that already at N = 10 for different

values of α we obtain an error less than 0.04. With increasing N the error reduces,

as it was expected. Thus, we can conclude that the proposed approximation very

well approximates the distribution obtained using the simulation program, and

it is applicable even for small values of N .

In the next Table, we can compare the mean number of retrials in prelimit

case obtained by simulation and the limit distribution determined before.

N = 30 N = 50 N = 70 N = 100 limiting

α = 0.5 1.717 1.733 1.739 1.745 1.757

α = 1 2.340 2.368 2.380 2.389 2.410

α = 2 2.939 2.981 3.000 3.014 3.045

Table 2. Mean number of retrials in prelimit and limiting situations

for various values of parameters N and α = β.

Again, we can see the effectiveness of the proposed approximation, since the

difference is very small, and of course, as N increases, the mean number of retrials

in prelimit case also increases and is approaching to the limiting case, as it was

expected.
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Next, let us consider how the input parameters of the system influence the

system characteristics such as the mean sojourn time of the customer under service

T̄S = E(TS), and the limiting normalized mean waiting time of the customer in

the orbit W̄o = lim
N→∞

E

(
W

N

)
.

For Table 3, we have the following input parameters:

λ = 2, σ = 10, γ2 = 1, α = β, γ0 = γ1.

γ0 = γ1 = 0.1 γ0 = γ1 = 1 γ0 = γ1 = 10

T̄S W̄o T̄S W̄o T̄S W̄o

α = 0.1 0.124 0.103 0.086 0.285 0.037 2.100

α = 0.5 0.422 0.608 0.376 1.354 0.272 9.756

α = 1 1 1.846 1 3.940 1 33.74

α = 2 3.394 7.122 3.686 15.20 5.995 198.5

α = 5 24.34 53.44 30.20 126.5 156.1 5154

Table 3. T̄S and W̄o for various values of failure parameters γ0 = γ1.

From Table 3, the following conclusions could be drawn:

• With an increase of the service parameters α = β, the values of T̄S and W̄o

increase.

• The values of W̄o increase as failure intensity γ0 = γ1 increases.

• The value of T̄S with an increase of failure intensity of the server for α < 1

decreases, and for α > 1 increases.

The first two observations are natural, but the third one is surprising. Our ex-

planation for this interesting behavior is the following: since the service time is

gamma-distributed for α < 1, there is a high probability of occurrence of small

values of the service time, the smaller the α, the greater the probability of short

successful service time is, and this fact influences the mean total service time.

Both interrupted and successful service times can be very small with high prob-

ability, that is why T̄S is less than the mean required service which is the unit.

As the failure intensity increases, more and more retrials happen, that is, more

and more service takes place and their duration will be shorter and shorter. When

α = 1, we have an exponential distribution with a unit mean service time. Finally,

in the case of α > 1, the service times are longer and longer, resulting in more

and more phases for the interrupted service time as failure intensities increase.
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It should be mentioned that this phenomenon was noticed in [30] when the mean

total service time was investigated by the help of stochastic simulation.

9. Conclusion

In this paper, the waiting time of an M/G/1//N retrial queueing system with

conflict of requests where the server is unreliable was investigated. An asymp-

totic analysis was used when N tends to infinity. It was shown that the limiting

probability distribution of the number of transitions of the requests into the orbit

was geometric. In limiting and prelimit situation the waiting time of a customer

in the orbit was generalized exponentially distributed. Parameters of these distri-

butions were found. Moreover, the average total service time of a customer was

obtained. To illustrate the power of the proposed asymptotic approach for com-

parisons of the results, a simulation program was developed, by the help of which

the distribution of the number of transitions of a customer into the orbit was

obtained and the mean and variance of the waiting time were estimated. Several

sample examples were discussed in detail which demonstrated the effectiveness of

the asymptotic results at finite values of N , that is, in prelimit situation.
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