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This paper deals with the steady-state behavior of a discrete-time unreliable 𝐺𝑒𝑜/𝐺/1 retrial queueing system with balking
customers and second optional service. The server may break down randomly while serving the customers. If the server breaks
down, the server is sent to be repaired immediately. We analyze the Markov chain underlying the considered system and its
ergodicity condition. Then, we obtain some performance measures based on the generating functions. Moreover, a stochastic
decomposition result of the system size is investigated. Finally, some numerical examples are provided to illustrate the effect of
some parameters on main performance measures of the system.

1. Introduction

During the past few decades, there has been increasing
interest in studying retrial queueing systems because they are
widely used in performance analysis of many practical sys-
tems such as call center, computer systems, and telecommuni-
cation networks. Retrial queueing systems are characterized
by the feature that a blocked customer (a customer who finds
the server unavailable)may leave the service area temporarily
and join a retrial group in order to retry his request after some
random time. For more detailed review of the main results
and references on the retrial queueing systems, the readers
are referred to [1–3].

In the past, the research of retrial queueing systems
focusedmainly on the continuous-time case [4, 5]. Compared
with the continuous-time counterparts, the discrete-time
retrial queueing systems received less attention in the liter-
ature. One of the difficulties in developing the discrete-time
retrial queueing systems lied in the fact that the complexity of
the discrete-time retrial queueing models increases. The rea-
son is that in a discrete-time retrial queueing model, arrivals,
departures, and retrials can occur simultaneously; that is, the
probability that two or more events occur at every slot is
positive. In fact; the research on discrete-time retrial queue-
ing systems is very important due to the fact that they are
more appropriate than their continuous-time counterparts

for modeling slotted digital computer and communication
systems such as broadband integrated services digital net-
work (B-ISDN) and time-division multiple access (TDMA)
systems.The first work on discrete-time retrial queueing sys-
tem was discussed by Yang and Li [6]. They extended the
continuous-time M/G/1 retrial queueing system to the dis-
crete-time case and save the relationship between theGeo/G/1
retrial queues and the corresponding continuous-time coun-
terpart. Atencia and Moreno [7] generalized the model of
Yang and Li to the discrete-time Geo/G/1 retrial queue with
general retrial times. For related literature on discrete-time
retrial queueing systems, the reader may refer to [8, 9].

Most of the retrial queueing models in the literature
assumed that customers received service eventually. How-
ever, in practice, customers may balk or abandon the system
before receiving service. Queueing models with balking or
impatience customers arise in many diverse applications.
Although the incorporation of balking or impatience cus-
tomers in retrial queueing systems is very important, so far
there is only little work on retrial queueing systemswith balk-
ing or impatience customers in the literature [10–12]. On the
other hand, queueingmodels inwhich the servermay provide
a second phase service have been proved very useful to
analyze many practical situations, arising in manufactur-
ing systems, call center, and computer systems. The retrial
queueing systems with second phase service were studied by
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Artalejo and Choudhury [13], Atencia and Moreno [14], and
Choudhury and Deka [15].

In many practical situations, the server may be subjected
to unpredictable breakdowns. The breakdowns of the server
may have a great influence on performancemeasures of some
practical systems. So, the research of retrial queues with unre-
liable server is very important. There have been significant
contributions to the retrial queueing systems with unreliable
server. For example, the continuous-time retrial queueing
systems which take into account servers breakdowns and
repairs were discussed by Kulkarni and Choi [16], Wang et al.
[17, 18], and Li et al. [19]. Parallel to the continuous-time
unreliable retrial queues, the discrete-time retrial queueswith
starting failure were studied by Atencia and Moreno [20],
Wang and Zhao [21], and Atencia et al. [22]. The discrete-
time unreliable retrial queueing systems caused by negative
customers were discussed by Wang and Zhang [23]. In
contrast to the retrial queueing system with starting failure,
the analysis of discrete-time retrial queueing system is more
complex. Though the discrete-time retrial queueing systems
with unreliable server have been studied by some authors,
there is little work about the discrete-time unreliable retrial
queueing systems which assumed that the server’s life is
random time [24].

To the best of our knowledge, there is no published work
on discrete-time Geo/G/1 retrial queueing system with balk-
ing customer, second optional service, and unreliable server.
The main objective in this paper is to extend the analysis of
continuous-timeM/G/1 retrial queueing system with second
optional service [13], exponential server lifetime [17], and
general retrial times to discrete-time case. Moreover, our
model generalized the discrete-time retrial queueing system
studied by Atencia and Moreno [7] and Aboul-Hassan et al.
[11] directly. Our queueing system can be used tomodelmany
practical situations. For example, in the Voice-over-IP (VoIP)
system, the analogue voice information is digitized, sent to
the destination, and converted to the original analogue voice
signal. In the existing VoIP system, the admission control
is proposed for improving the quality of service (QoS) and
the VoIP system may reject some data packets request due to
network congestion. The admitted packets can be placed in
the buffer and then can be sent to another end user for further
process. The VoIP systems may break down during estab-
lishing connection, digitizing, and transferring information.
As soon as the VoIP system breaks down, it is repaired
immediately.

The rest of the paper is organized as follows. In Section 2,
we give a detailed description of the mathematical model.
In Section 3, the Markov chain underlying the queueing
system is analyzed and some performance measures of the
system are also obtained. In Section 4, we derive a stochastic
decomposition result. Finally, some numerical results are
provided to show the impact of the some parameters on the
performance measures of the system in Section 5.

2. The Mathematical Model

We consider a discrete-time single server retrial queue where
the time axis is segmented into slots of equal length and all

queueing activities occur at the slot boundaries. Let the time
axis be marked by 0, 1, 2, . . . , 𝑚, . . .. Specially, we assume that
the departures and the end of the repairs occur in the interval
(𝑚
−

, 𝑚), and the arrivals, the retrials, and the beginning of the
repairs occur in the interval (𝑚,𝑚

+

). That is, we consider an
early arrival system (EAS) policy.

Customers arrive at the system according to a geometric
arrival process with parameter 𝑝, where 𝑝 is the probability
that an arrival occurs in a slot. If an arriving customer finds
that the server is idle, he begins his service immediately and
leaves the system forever after service completion. Otherwise,
if an arriving customer finds that the server is busy or under
repair, he joins the orbit with probability 𝛼 or leaves the
system completely with probability 1 − 𝛼. We assumed that
only the first customer in the orbit is permitted to access to the
server. Successive interretrial times of any customer follow an
arbitrary distribution {𝑎

𝑖

}
∞

𝑖=0

with generating function𝐴(𝑥) =

∑
∞

𝑖=0

𝑎
𝑖

𝑥
𝑖.

The server provides two phases of different services for
customers in succession. As soon as the first-phase service
(FPS) of a customer is completed, he may receive the second-
phase service (SPS) with probability 𝑟 or leaves the system
with probability 𝑟 = 1−𝑟.The service times of the FPS and SPS
are independent and arbitrarily distributedwith distributions
{𝑠
1,𝑖

}
∞

𝑖=0

, {𝑠
2,𝑖

}
∞

𝑖=0

, and generating functions 𝑆
1

(𝑥) = ∑
∞

𝑖=0

𝑠
1,𝑖

𝑥
𝑖,

𝑆
2

(𝑥) = ∑
∞

𝑖=0

𝑠
2,𝑖

𝑥
𝑖, respectively. The corresponding 𝑛th

factorial moments are 𝛽
1,𝑛

and 𝛽
2,𝑛

, respectively.
The server may break down during serving customers. If

the server breaks down, it is sent to repair immediately; the
customer just being served before the server breakdownwaits
in the service station until the server is repaired to complete
his remaining service. It is assumed that the lifetimes of the
server for the FPS and SPS are geometrically distributed with
parameters 𝜃

1

= 1−𝜃
1

and 𝜃
2

= 1−𝜃
2

, respectively, where 𝜃
1

and 𝜃
2

are the probability that the failures do not occur in a
slot, respectively.

The repair times for the FPS and SPS are independent and
identically distributed with arbitrary distributions {𝑠

3,𝑖

}
∞

𝑖=0

and {𝑠
4,𝑖

}
∞

𝑖=0

, respectively.The corresponding generating func-
tions and 𝑛th factorial moments are 𝑆

3

(𝑥) = ∑
∞

𝑖=0

𝑠
3,𝑖

𝑥
𝑖,

𝑆
4

(𝑥) = ∑
∞

𝑖=0

𝑠
4,𝑖

𝑥
𝑖, 𝛽
3,𝑛

and 𝛽
4,𝑛

, respectively.
Finally, we suppose that various stochastic processes

involved in the system are independent of each other. In order
to avoid trivial cases, it is also supposed that 0 < 𝑝 < 1,
0 ≤ 𝑟 < 1, 0 < 𝜃

1

≤ 1, 0 < 𝜃
2

≤ 1.

3. The Markov Chain

At time 𝑚
+, the system can be described by the process

𝑌
𝑚

= (𝐶
𝑚

, 𝜉
0,𝑚

, 𝜉
1,𝑚

, 𝜉
2,𝑚

, 𝜉
3,𝑚

, 𝜉
4,𝑚

, 𝑁
𝑚

), where 𝐶
𝑚

denotes
the state of the server, 0, 1, 2, 3, or 4, according to whether
the server is free, busy with FPS, busy with SPS, under repair
during FPS, or under repair during SPS, and 𝑁

𝑚

is the
number of the customers in the orbit. If 𝐶

𝑚

= 0, then 𝜉
0,𝑚

represents the remaining retrial time. If 𝐶
𝑚

= 1, 2, then
𝜉
1,𝑚

, 𝜉
2,𝑚

represent the customers’ remaining service time
for FPS and SPS, respectively. If 𝐶

𝑚

= 3, 4, then 𝜉
1,𝑚

, 𝜉
2,𝑚

represent the remaining service time of the customerwhowas
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being served just before the server breakdown and 𝜉
3,𝑚

, 𝜉
4,𝑚

represent the remaining repair time of the server for the FPS
and SPS, respectively. It can be shown that {𝑌

𝑚

, 𝑚 ≥ 1} is a
Markov chain with the following state space:

Ω = {(0, 0)} ∪ {(0, 𝑖, 𝑘) : 𝑖 ≥ 1, 𝑘 ≥ 1}

∪ {(1, 𝑖, 𝑘) : 𝑖 ≥ 1, 𝑘 ≥ 0} ∪ {(2, 𝑖, 𝑘) : 𝑖 ≥ 1, 𝑘 ≥ 0}

∪ {(3, 𝑖, 𝑗, 𝑘) : 𝑖 ≥ 1, 𝑗 ≥ 1, 𝑘 ≥ 0}

∪ {(4, 𝑖, 𝑗, 𝑘) : 𝑖 ≥ 1, 𝑗 ≥ 1, 𝑘 ≥ 0} .

(1)

Define the stationary probabilities of the Markov chain as
follows:

𝜋
0,0

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 0,𝑁
𝑚

= 0} ,

𝜋
0,𝑖,𝑘

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 0, 𝜉
0,𝑚

= 𝑖,𝑁
𝑚

= 𝑘} ; 𝑖 ≥ 1, 𝑘 ≥ 1,

𝜋
𝑛,𝑖,𝑘

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 𝑛, 𝜉
1,𝑚

= 𝑖,𝑁
𝑚

= 𝑘} ;

𝑛 = 1, 2, 𝑖 ≥ 1, 𝑘 ≥ 0,

𝜋
𝑛,𝑖,𝑗,𝑘

= lim
𝑚→∞

𝑃 {𝐶
𝑚

= 𝑛, 𝜉
1,𝑚

= 𝑖, 𝜉
3,𝑚

= 𝑗,𝑁
𝑚

= 𝑘} ;

𝑛 = 3, 4, 𝑖 ≥ 1, 𝑗 ≥ 1, 𝑘 ≥ 0.

(2)

Then, the Kolmogorov equations for the stationary distri-
bution are

𝜋
0,0

= 𝑝𝜋
0,0

+ 𝑝 𝑟𝜋
1,1,0

+ 𝑝𝜋
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𝜋
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(4)

𝜋
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0,𝑘

𝑝𝜃
1

𝑠
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𝜋
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0,𝑘
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1

𝑠
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∞
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𝑗=1

𝜋
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1
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𝜋
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1
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𝜃
1
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1

𝑠
1,𝑖
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+ 𝑝𝑎
0

𝜃
1

𝑠
1,𝑖

𝜋
2,1,𝑘+1

+ (𝑝 + 𝑝𝛼) 𝜃
1

𝜋
1,𝑖+1,𝑘

+ (1 − 𝛿
0,𝑘

) 𝑝𝛼𝜃
1

𝜋
1,𝑖+1,𝑘−1
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0,𝑘

) 𝑝𝛼𝜃
1

𝜋
3,𝑖,1,𝑘−1

+ (𝑝 + 𝑝𝛼) 𝜃
1

𝜋
3,𝑖,1,𝑘

, 𝑖 ≥ 1, 𝑘 ≥ 0,

(5)

𝜋
2,𝑖,𝑘

= (𝑝 + 𝑝𝛼) 𝑟𝜃
2

𝑠
2,𝑖

𝜋
1,1,𝑘

+ (1 − 𝛿
0,𝑘
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× 𝑝𝛼𝑟𝜃
2

𝑠
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𝜋
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= 𝛿
0,𝑘

𝑝𝜃
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𝑠
1,𝑖

𝑠
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𝜋
0,0
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0,𝑘

)

× 𝑝𝜃
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1

𝑎
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𝑎
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𝑠
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𝑠
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𝜋
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) 𝑝𝛼𝜃
1

𝑠
3,𝑗

𝜋
1,𝑖+1,𝑘−1

+ (𝑝 + 𝑝𝛼) 𝜃
1

𝑠
3,𝑗

𝜋
1,𝑖+1,𝑘

(1 − 𝛿
0,𝑘

) 𝑝𝛼𝜃
1

𝑠
3,𝑗

𝜋
3,𝑖,1,𝑘−1

+ (𝑝 + 𝑝𝛼) 𝜃
1

𝑠
3,𝑗

𝜋
3,𝑖,1,𝑘

+ (𝑝 + 𝑝𝛼) 𝜋
3,𝑖,𝑗+1,𝑘

+ (1 − 𝛿
0,𝑘

) 𝑝𝛼𝜋
3,𝑖,𝑗+1,𝑘−1

, 𝑖 ≥ 1, 𝑗 ≥ 1, 𝑘 ≥ 0,

(7)

𝜋
4,𝑖,𝑗,𝑘

= (𝑝 + 𝑝𝛼) 𝑟𝜃
2

𝑠
2,𝑖

𝑠
4,𝑗

𝜋
1,1,𝑘

+ (1 − 𝛿
0,𝑘

) 𝑝𝛼𝑟𝜃
2

𝑠
2,𝑖

𝑠
4,𝑗

𝜋
1,1,𝑘−1

+ (1 − 𝛿
0,𝑘

) 𝑝𝛼𝜃
2

𝑠
4,𝑗

𝜋
2,𝑖+1,𝑘−1

+ (𝑝 + 𝑝𝛼) 𝜃
2

𝑠
4,𝑗

𝜋
2,𝑖+1,𝑘

+ (1 − 𝛿
0,𝑘

) 𝑝𝛼𝜃
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𝑠
4,𝑗

𝜋
4,𝑖,1,𝑘−1

+ (𝑝 + 𝑝𝛼) 𝜃
2

𝑠
4,𝑗

𝜋
4,𝑖,1,𝑘

+ (𝑝 + 𝑝𝛼) 𝜋
4,𝑖,𝑗+1,𝑘

+ (1 − 𝛿
0,𝑘

) 𝑝𝛼𝜋
4,𝑖,𝑗+1,𝑘−1

,

𝑖 ≥ 1, 𝑗 ≥ 1, 𝑘 ≥ 0,

(8)

with the normalizing condition

𝜋
0,0

+

∞

∑

𝑖=1

∞

∑

𝑘=1

𝜋
0,𝑖,𝑘

+

2

∑

𝑛=1

∞

∑

𝑖=1

∞

∑

𝑘=0

𝜋
𝑛,𝑖,𝑘

+

4

∑

𝑙=3

∞

∑

𝑖=1

∞

∑

𝑗=1

∞

∑

𝑘=0

𝜋
𝑙,𝑖,𝑗,𝑘

= 1,

(9)

where 𝛿
0,𝑘

denotes the Kronecker delta. To resolve (3)–(8), we
introduce the following generating functions:

𝜙
0

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=1

𝜋
0,𝑖,𝑘

𝑥
𝑖

𝑧
𝑘

,

𝜙
𝑛

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=0

𝜋
𝑛,𝑖,𝑘

𝑥
𝑖

𝑧
𝑘

, 𝑛 = 1, 2,

𝜙
𝑙

(𝑥, 𝑦, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑗=1

∞

∑

𝑘=0

𝜋
𝑙,𝑖,𝑗,𝑘

𝑥
𝑖

𝑦
𝑗

𝑧
𝑘

, 𝑙 = 3, 4,

(10)
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and the auxiliary generating functions:

𝜙
0,𝑖

(𝑧) =

∞

∑

𝑘=1

𝜋
0,𝑖,𝑘

𝑧
𝑘

, 𝑖 ≥ 1,

𝜙
𝑛,𝑖

(𝑧) =

∞

∑

𝑘=0

𝜋
𝑛,𝑖,𝑘

𝑧
𝑘

, 𝑛 = 1, 2, 𝑖 ≥ 1,

𝜙
𝑙,𝑖,𝑗

(𝑧) =

∞

∑

𝑘=0

𝜋
𝑙,𝑖,𝑗,𝑘

𝑧
𝑘

, 𝑙 = 3, 4, 𝑖 ≥ 1, 𝑗 ≥ 1,

𝜙
𝑚,𝑖,𝑗

(𝑦, 𝑧) =

∞

∑

𝑘=0

𝜋
𝑚,𝑖,𝑗,𝑘

𝑦
𝑗

𝑧
𝑘

, 𝑚 = 3, 4, 𝑖 ≥ 1, 𝑗 ≥ 1,

𝜓
1

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=0

𝜋
3,𝑖,1,𝑘

𝑥
𝑖

𝑧
𝑘

,

𝜓
2

(𝑥, 𝑧) =

∞

∑

𝑖=1

∞

∑

𝑘=0

𝜋
4,𝑖,1,𝑘

𝑥
𝑖

𝑧
𝑘

.

(11)

Multiplying (4)–(8) by 𝑧
𝑘 and summing over 𝑘, we get the

following equations:

𝜙
0,𝑖

(𝑧) = 𝑝𝜙
0,𝑖+1

(𝑧) + 𝑝𝑎
𝑖

𝑟𝜙
1,1

(𝑧)

+ 𝑝𝑎
𝑖

𝜙
2,1

(𝑧) − 𝑝𝑎
𝑖

𝑟𝜋
1,1,0

− 𝑝𝑎
𝑖

𝜋
2,1,0

, 𝑖 ≥ 1,

(12)

𝜙
1,𝑖

(𝑧) = 𝑝𝜃
1

𝑠
1,𝑖

𝜋
0,0

+ 𝑝𝜃
1

𝑠
1,𝑖

∞

∑

𝑗=1

𝜙
0,𝑗

(𝑧)

+
𝑝

𝑧
𝜃
1

𝑠
1,𝑖

𝜙
0,1

(𝑧) + 𝑝𝜃
1

𝑠
1,𝑖

𝑟𝜙
1,1

(𝑧)

+
𝑝

𝑧
𝜃
1

𝑎
0

𝑠
1,𝑖

𝑟 (𝜙
1,1

(𝑧) − 𝜋
1,1,0

) + 𝑝𝜃
1

𝑠
1,𝑖

𝜙
2,1

(𝑧)

+
𝑝

𝑧
𝜃
1

𝑎
0

𝑠
1,𝑖

(𝜙
2,1

(𝑧) − 𝜋
2,1,0

)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝜙
1,𝑖+1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝜙
3,𝑖,1

(𝑧) , 𝑖 ≥ 1,

(13)

𝜙
2,𝑖

(𝑧) = (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝑟𝑠
2,𝑖

𝜙
1,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝜙
2,𝑖+1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝜙
4,𝑖,1

(𝑧) , 𝑖 ≥ 1,

(14)

𝜙
3,𝑖,𝑗

(𝑧) = 𝑝𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

𝜋
0,0

+ 𝑝𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

∞

∑

𝑙=1

𝜙
0,𝑙

(𝑧)

+
𝑝

𝑧
𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

𝜙
0,1

(𝑧) + 𝑝𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

𝑟𝜙
1,1

(𝑧)

+
𝑝

𝑧
𝜃
1

𝑎
0

𝑠
1,𝑖

𝑠
3,𝑗

𝑟 (𝜙
1,1

(𝑧) − 𝜋
1,1,0

)

+ 𝑝𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

𝜙
2,1

(𝑧) +
𝑝

𝑧
𝜃
1

𝑎
0

𝑠
1,𝑖

𝑠
3,𝑗

× (𝜙
2,1

(𝑧) − 𝜋
2,1,0

)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝑠
3,𝑗

𝜙
1,𝑖+1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝑠
3,𝑗

𝜙
3,𝑖,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜙
3,𝑖,𝑗+1

(𝑧) , 𝑖 ≥ 1, 𝑗 ≥ 1,

(15)

𝜙
4,𝑖,𝑗

(𝑧) = (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝑟𝑠
2,𝑖

𝑠
4,𝑗

𝜙
1,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝑠
4,𝑗

𝜙
2,𝑖+1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝑠
4,𝑗

𝜙
4,𝑖,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜙
4,𝑖,𝑗+1

(𝑧) , 𝑖 ≥ 1.

(16)

By substituting (3) into (12), (13), and (15), we get

𝜙
0,𝑖

(𝑧) = 𝑝𝜙
0,𝑖+1

(𝑧) + 𝑝𝑎
𝑖

𝑟𝜙
1,1

(𝑧)

+ 𝑝𝑎
𝑖

𝜙
2,1

(𝑧) − 𝑝𝑎
𝑖

𝜋
0,0

, 𝑖 ≥ 1,

(17)

𝜙
1,𝑖

(𝑧) =
𝑝

𝑧
𝜃
1

𝑠
1,𝑖

𝜙
0,1

(𝑧) + 𝑝𝜃
1

𝑠
1,𝑖

𝜙
0

(1, 𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑟𝑠
1,𝑖

𝜙
1,1

(𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑠
1,𝑖

𝜙
2,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝜙
1,𝑖+1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝜙
3,𝑖,1

(𝑧)

+ (1 −
𝑎
0

𝑧
)𝑝𝜃
1

𝑠
1,𝑖

𝜋
0,0

, 𝑖 ≥ 1,

(18)

𝜙
3,𝑖,𝑗

(𝑧) = 𝑝𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

𝜙
0

(1, 𝑧) +
𝑝

𝑧
𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

𝜙
0,1

(𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑟𝑠
1,𝑖

𝑠
3,𝑗

𝜙
1,1

(𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

𝜙
2,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝑠
3,𝑗

𝜙
1,𝑖+1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝑠
3,𝑗

𝜙
3,𝑖,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜙
3,𝑖,𝑗+1

(𝑧)

+ (1 −
𝑎
0

𝑧
)𝑝𝜃
1

𝑠
1,𝑖

𝑠
3,𝑗

𝜋
0,0

, 𝑖 ≥ 1, 𝑗 ≥ 1.

(19)
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Then, multiplying (16), (19) by 𝑦
𝑗 and summing over 𝑗, we

obtain

𝜙
4,𝑖

(𝑦, 𝑧) = (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝑠
2,𝑖

𝑆
4

(𝑦) 𝑟𝜙
1,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝑆
4

(𝑦) 𝜙
2,𝑖+1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) [
𝜙
4,𝑖

(𝑦, 𝑧)

𝑦
− 𝜙
4,𝑖,1

(𝑧)]

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
2

𝑆
4

(𝑦) 𝜙
4,𝑖,1

(𝑧) ,

𝑖 ≥ 1, 𝑗 ≥ 1,

(20)

𝜙
3,𝑖

(𝑦, 𝑧) = 𝑝𝜃
1

𝑠
1,𝑖

𝑆
3

(𝑦) 𝜙
0

(1, 𝑧) +
𝑝

𝑧
𝜃
1

𝑠
1,𝑖

𝑆
3

(𝑦) 𝜙
0,1

(𝑧)

+ (1 −
𝑎
0

𝑧
)𝑝𝜃
1

𝑠
1,𝑖

𝑆
3

(𝑦) 𝜋
0,0

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑠
1,𝑖

𝑆
3

(𝑦) 𝑟𝜙
1,1

(𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑠
1,𝑖

𝑆
3

(𝑦) 𝜙
2,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝑆
3

(𝑦) 𝜙
1,𝑖+1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) 𝜃
1

𝑆
3

(𝑦) 𝜙
3,𝑖,1

(𝑧)

+ (𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼) [
𝜙
3,𝑖

(𝑦, 𝑧)

𝑦
− 𝜙
3,𝑖,1

(𝑧)] ,

𝑖 ≥ 1, 𝑗 ≥ 1.

(21)

Next, multiplying (17), (18), (14), (20), and (21) by 𝑥
𝑖 and

summing over 𝑖, we get

𝑥 − 𝑝

𝑥
𝜙
0

(𝑥, 𝑧) = 𝑝 [𝐴 (𝑥) − 𝑎
0

] (𝑟𝜙
1,1

(𝑧) + 𝜙
2,1

(𝑧))

− 𝑝 [𝐴 (𝑥) − 𝑎
0

] 𝜋
0,0

− 𝑝𝜙
0,1

(𝑧) ,
(22)

𝑥 − 𝜃
1

𝜔 (𝑧)

𝑥
𝜙
1

(𝑥, 𝑧) =
𝑝

𝑧
𝜃
1

𝑆
1

(𝑥) 𝜙
0,1

(𝑧)

+ 𝑝𝜃
1

𝑆
1

(𝑥) 𝜙
0

(1, 𝑧)

+ [(𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑆
1

(𝑥) 𝑟 − 𝜃𝜔 (𝑧)]

× 𝜙
1,1

(𝑧) + 𝜃
1

𝜔 (𝑧) 𝜓
1

(𝑥, 𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑆
1

(𝑥) 𝜙
2,1

(𝑧)

+ (1 −
𝑎
0

𝑧
)𝑝𝜃
1

𝑆
1

(𝑥) 𝜋
0,0

,

(23)

𝑥 − 𝜃
2

𝜔 (𝑧)

𝑥
𝜙
2

(𝑥, 𝑧) = 𝑟𝜔 (𝑧) 𝜃
2

𝑆
2

(𝑥) 𝜙
1,1

(𝑧)

− 𝜃
2

𝜔 (𝑧) 𝜙
2,1

(𝑧)

+ 𝜃
2

𝜔 (𝑧) 𝜓
2

(𝑥, 𝑧) ,

(24)
𝑦 − 𝜔 (𝑧)

𝑦
𝜙
3

(𝑥, 𝑦, 𝑧)

= 𝑝𝜃
1

𝑆
1

(𝑥) 𝑆
3

(𝑦) 𝜙
0

(1, 𝑧)

+
𝑝

𝑧
𝜃
1

𝑆
1

(𝑥) 𝑆
3

(𝑦) 𝜙
0,1

(𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑆
1

(𝑥) 𝑆
3

(𝑦) 𝑟𝜙
1,1

(𝑧)

+ (𝑝 +
𝑝

𝑧
𝑎
0

)𝜃
1

𝑆
1

(𝑥) 𝑆
3

(𝑦) 𝜙
2,1

(𝑧)

+ 𝜔 (𝑧) (𝜃
1

𝑆
3

(𝑦) − 1)𝜓
1

(𝑥, 𝑧)

+ 𝜔 (𝑧) 𝜃
1

𝑆
3

(𝑦) (
𝜙
1

(𝑥, 𝑧)

𝑥
− 𝜙
1,1

(𝑧))

+ (1 −
𝑎
0

𝑧
)𝑝𝜃
1

𝑆
1

(𝑥) 𝑆
3

(𝑦) 𝜋
0,0

,

(25)

𝑦 − 𝜔 (𝑧)

𝑦
𝜙
4

(𝑥, 𝑦, 𝑧)

= 𝑟𝜔 (𝑧) 𝜃
2

𝑆
2

(𝑥) 𝑆
4

(𝑦) 𝜙
1,1

(𝑧)

+ 𝜔 (𝑧) (𝜃
2

𝑆
4

(𝑦) − 1)𝜓
2

(𝑥, 𝑧)

+ 𝜔 (𝑧) 𝜃
2

𝑆
4

(𝑦)

× (
𝜙
2

(𝑥, 𝑧)

𝑥
− 𝜙
2,1

(𝑧)) ,

(26)

where 𝜔(𝑧) = 𝑝 + 𝑝𝛼 + 𝑧𝑝𝛼.
Choosing 𝑥 = 1 in (22), we can get 𝜙

0

(1, 𝑧) and putting
𝜙
0

(1, 𝑧) into (23), (25), we obtain

𝑥 − 𝜃
1

𝜔 (𝑧)

𝑥
𝜙
1

(𝑥, 𝑧) =
𝑝 (1 − 𝑧) 𝜃

1

𝑆
1

(𝑥)

𝑧
𝜙
0,1

(𝑧)

−
𝑝𝑎
0

(1 − 𝑧) 𝜃
1

𝑆
1

(𝑥)

𝑧
𝜋
0,0

+ [
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧
𝑟𝑆
1

(𝑥) − 𝜔 (𝑧)]

× 𝜃
1

𝜙
1,1

(𝑧) +
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧

× 𝑆
1

(𝑥) 𝜃
1

𝜙
2,1

(𝑧) + 𝜔 (𝑧) 𝜃
1

𝜓
1

(𝑥, 𝑧) ,

(27)
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𝑦 − 𝜔 (𝑧)

𝑦
𝜙
3

(𝑥, 𝑦, 𝑧) =
(1 − 𝑧) 𝑝𝜃

1

𝑆
1

(𝑥) 𝑆
3

(𝑦)

𝑧
𝜙
0,1

(𝑧)

−
𝑝𝑎
0

(1 − 𝑧) 𝜃
1

𝑆
1

(𝑥) 𝑆
3

(𝑦)

𝑧
𝜋
0,0

+ [
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧
𝑟𝑆
1

(𝑥) − 𝜔 (𝑧)]

× 𝜃
1

𝑆
3

(𝑦) 𝜙
1,1

(𝑧)

+
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧

× 𝑟𝑆
1

(𝑥) 𝜃
1

𝑆
1

(𝑥) 𝑆
3

(𝑦) 𝜙
2,1

(𝑧)

+
𝜔 (𝑧) 𝜃

1

𝑆
3

(𝑦)

𝑥
𝜙
1

(𝑥, 𝑧) − 𝜔 (𝑧)

× (1 − 𝜃
1

𝑆
3

(𝑦)) 𝜓
1

(𝑥, 𝑧) .

(28)

Letting 𝑦 = 𝜔(𝑧) in (26), (28), we obtain

𝜓
2

(𝑥, 𝑧) =
𝑆
4

(𝜔 (𝑧)) 𝜃
2

𝜔 (𝑧) [1 − 𝜃
2

𝑆
4

(𝜔 (𝑧))]

× {𝑟𝜔 (𝑧) 𝑆
2

(𝑥) 𝜙
1,1

(𝑧)

− 𝜔 (𝑧) 𝜙
2,1

(𝑧) +
𝜔 (𝑧)

𝑥
𝜙
2

(𝑥, 𝑧)} ,

(29)

𝜓
1

(𝑥, 𝑧) =
𝑆
3

(𝜔 (𝑧)) 𝜃
1

𝜔 (𝑧) [1 − 𝜃
1

𝑆
3

(𝜔 (𝑧))]

× {
(1 − 𝑧) 𝑝𝑆

1

(𝑥)

𝑧
𝜙
0,1

(𝑧)

−
𝑝𝑎
0

(1 − 𝑧) 𝑆
1

(𝑥)

𝑧
𝜋
0,0

+ [
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧
𝑟𝑆
1

(𝑥) − 𝜔 (𝑧)] 𝜙
1,1

(𝑧)

+
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧

× 𝑆
1

(𝑥) 𝜙
2,1

(𝑧) +
𝜔 (𝑧)

𝑥
𝜙
1

(𝑥, 𝑧) } .

(30)

Substituting (29), (30) into (24), (27), we obtain

𝑥 − 𝜑
2

[𝑤 (𝑧)]

𝑥
[1 − 𝜃

2

𝑆
4

(𝑤 (𝑧))] 𝜙
2

(𝑥, 𝑧)

= 𝜃
2

{𝑟𝜔 (𝑧) 𝑆
2

(𝑥) 𝜙
1,1

(𝑧) − 𝜔 (𝑧) 𝜙
2,1

(𝑧)} ,

(31)

𝑥 − 𝜑
1

[𝑤 (𝑧)]

𝑥
[1 − 𝜃

1

𝑆
3

(𝑤 (𝑧))] 𝜙
1

(𝑥, 𝑧)

= 𝜃
1

{
1 − 𝑧

𝑧
𝑝𝑆
1

(𝑥) 𝜙
0,1

(𝑧) −
1 − 𝑧

𝑧
𝑝𝑎
0

𝑆
1

(𝑥) 𝜋
0,0

+ [
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧
𝑆
1

(𝑥) 𝑟 − 𝜔 (𝑧)] 𝜙
1,1

(𝑧)

+
𝑧 + 𝑝𝑎

0

(1 − 𝑧)

𝑧
𝑆
1

(𝑥) 𝜙
2,1

(𝑧)} ,

(32)

where functions

𝜑
1

(𝑧) =
𝜃
1

𝑧

1 − 𝜃
1

𝑆
3

(𝑧)

, 𝜑
2

(𝑧) =
𝜃
2

𝑧

1 − 𝜃
2

𝑆
4

(𝑧)

. (33)

Letting 𝑥 = 𝑝 in (22), 𝑥 = 𝜑
2

(𝜔(𝑧)) in (31), and 𝑥 = 𝜑
1

(𝜔(𝑧))

in (32), we get

𝑝 [𝐴 (𝑝) − 𝑎
0

] 𝜋
0,0

= 𝑝 [𝐴 (𝑝) − 𝑎
0

]

× [𝑟𝜙
1,1

(𝑧) + 𝜙
2,1

(𝑧)]

− 𝑝𝜙
0,1

(𝑧) ,

𝜙
2,1

(𝑧) = 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))] 𝜙
1,1

(𝑧) ,

𝑝𝑎
0

(1 − 𝑧) 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

𝑧
𝜋
0,0

=
𝑝 (1 − 𝑧) 𝑆

1

[𝜑
1

(𝜔 (𝑧))]

𝑧
𝜙
0,1

(𝑧)

+ [
𝑧 + 𝑝𝑎

0

(1 − 𝑧) 𝑟𝑆
1

[𝜑
1

(𝜔 (𝑧))]

𝑧

−𝜔 (𝑧) ] 𝜙
1,1

(𝑧)

+
𝑧 + 𝑝𝑎

0

(1 − 𝑧) 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

𝑧
𝜙
2,1

(𝑧) .

(34)

Solving (34) we obtain the auxiliary generating functions
𝜙
0,1

(𝑧), 𝜙
1,1

(𝑧), and 𝜙
2,1

(𝑧) as follows:

𝜙
0,1

(𝑧) = (𝑝𝑧 (𝐴 (𝑝) − 𝑎
0

)

× [𝜔 (𝑧) − 𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]])

× (Υ (𝑧))
−1

×
𝜋
0,0

𝑝
,

(35)
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𝜙
1,1

(𝑧) = (𝑝𝐴 (𝑝) (1 − 𝑧) 𝑆
1

× [𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]])

× (Υ (𝑧))
−1

× 𝜋
0,0

,

(36)

𝜙
2,1

(𝑧) = 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]

× (𝑝𝐴 (𝑝) (1 − 𝑧) 𝑆
1

× [𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]])

× (Υ (𝑧))
−1

× 𝜋
0,0

,

(37)

where

Υ (𝑧) = [𝑧 + 𝑝𝐴 (𝑝) (1 − 𝑧)]

× 𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]] − 𝑧𝜔 (𝑧) .

(38)

Next, we give two lemmas which will be used later on and
their proof can be readily obtained. Thus, they are omitted.

Lemma 1. The inequality

𝑝𝐴 (𝑝) (1 − 𝑧) 𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]

− 𝑧 [𝜔 (𝑧) − 𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]] > 0

(39)

holds, for 0 ≤ 𝑧 < 1, if

𝜌
1

+ 𝑟𝜌
2

< 𝑝 +
𝑝𝐴 (𝑝)

𝛼
, (40)

where 𝜌
1

= 𝑝𝛽
1,1

(1+(𝜃
1

/𝜃
1

)𝛽
3,1

), 𝜌
2

= 𝑝𝛽
2,1

(1+(𝜃
2

/𝜃
2

)𝛽
4,1

).

Lemma 2. The following limits are positive if 𝜌
1

+ 𝑟𝜌
2

< 𝑝 +

𝑝𝐴(𝑝)/𝛼 as follows:

lim
𝑧→1

1 − 𝑧

Υ (𝑧)
=

1

𝑝𝐴 (𝑝) + 𝛼𝑝 − 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
,

lim
𝑧→1

𝜔 (𝑧) − 𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]

Υ (𝑧)

=
𝛼 (𝜌
1

+ 𝑟𝜌
2

− 𝑝)

𝑝𝐴 (𝑝) + 𝛼𝑝 − 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
.

(41)

From above Lemmas, we can easily get that 𝜙
0,1

(𝑧) and
𝜙
1,1

(𝑧) are defined for 𝑧 ∈ [0, 1) and can be extended by
continuity, for 𝑧 = 1, if 𝜌

1

+ 𝑟𝜌
2

< 𝑝+𝑝𝐴(𝑝)/𝛼. Then, we can
obtain the generating functions of the stationary distribution
of the system which are given by the following theorem.

Theorem 3. If 𝜌
1

+𝑟𝜌
2

< 𝑝+𝑝𝐴(𝑝)/𝛼, the stationary distribu-
tion of the Markov chain {𝑌

𝑚

, 𝑚 = 1, 2, . . .} has the following
generating functions:

𝜙
0

(𝑥, 𝑧)=𝑝𝑥𝑧 {𝜔 (𝑧)−𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]}

× (Υ (𝑧))
−1

×
𝐴 (𝑥) − 𝐴 (𝑝)

𝑥 − 𝑝
𝜋
0,0

,

(42)

𝜙
1

(𝑥, 𝑧) =
𝑆
1

(𝑥) − 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

𝑥 − 𝜑
1

(𝜔 (𝑧))

×
𝑝𝜔 (𝑧)𝐴 (𝑝) (1 − 𝑧) 𝑥𝜃

1

Υ (𝑧) [1 − 𝜃
1

𝑆
3

(𝜔 (𝑧))]

𝜋
0,0

,

(43)

𝜙
2

(𝑥, 𝑧) =
𝑆
2

(𝑥) − 𝑆
2

[𝜑
2

(𝜔 (𝑧))]

𝑥 − 𝜑
2

(𝜔 (𝑧))

×
𝑟𝑝𝜔 (𝑧)𝐴 (𝑝) (1 − 𝑧) 𝑥𝜃

2

𝑆
1

[𝜑
1

(𝜔 (𝑧))]

Υ (𝑧) [1 − 𝜃
2

𝑆
4

(𝜔 (𝑧))]

𝜋
0,0

,

(44)

𝜙
3

(𝑥, 𝑦, 𝑧) =
𝑆
1

(𝑥) − 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

𝑥 − 𝜑
1

(𝜔 (𝑧))

×
𝑆
3

(𝑦) − 𝑆
3

(𝜔 (𝑧))

𝑦 − 𝜔 (𝑧)

×
𝑝𝜔 (𝑧)𝐴 (𝑝) (1 − 𝑧) 𝑥𝑦𝜃

1

Υ (𝑧) [1 − 𝜃
1

𝑆
3

(𝜔 (𝑧))]

𝜋
0,0

,

(45)

𝜙
4

(𝑥, 𝑦, 𝑧) =
𝑆
2

(𝑥) − 𝑆
2

[𝜑
2

(𝜔 (𝑧))]

𝑥 − 𝜑
2

(𝜔 (𝑧))

×
𝑆
4

(𝑦) − 𝑆
4

(𝜔 (𝑧))

𝑦 − 𝜔 (𝑧)

×
𝑟𝑝𝜔 (𝑧)𝐴 (𝑝) (1 − 𝑧) 𝑥𝑦𝜃

2

𝑆
1

[𝜑
1

(𝜔 (𝑧))]

Υ (𝑧) [1 − 𝜃
2

𝑆
4

(𝜔 (𝑧))]

× 𝜋
0,0

,

(46)

where

𝜋
0,0

=
𝑝𝐴 (𝑝) + 𝛼𝑝 − 𝛼 (𝜌

1

+ 𝑟𝜌
2

)

𝐴 (𝑝) (𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

))
. (47)

Proof. Substituting (35)–(37) into (22), (31) and (32), yields
𝜙
0

(𝑥, 𝑧), 𝜙
2

(𝑥, 𝑧), and 𝜙
1

(𝑥, 𝑧) inTheorem 3. Further, substi-
tuting (36), (37), (43), and (31) into (29) and (30), respectively,
we get

𝜓
2

(𝑥, 𝑧) =
𝑆
4

(𝜔 (𝑧))

𝜔 (𝑧)

𝑆
2

(𝑥) − 𝑆
2

[𝜑
2

(𝜔 (𝑧))]

𝑥 − 𝜑
2

(𝜔 (𝑧))

×
𝑟𝑝𝜔 (𝑧)𝐴 (𝑝) (1 − 𝑧) 𝑥𝜃

2

𝑆
1

[𝜑
1

(𝜔 (𝑧))]

Υ (𝑧) [1 − 𝜃
2

𝑆
4

(𝜔 (𝑧))]

𝜋
0,0

,

(48)
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𝜓
1

(𝑥, 𝑧) =
𝑆
3

(𝜔 (𝑧))

𝜔 (𝑧)

𝑆
1

(𝑥) − 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

𝑥 − 𝜑
1

(𝜔 (𝑧))

×
𝑝𝜔 (𝑧)𝐴 (𝑝) (1 − 𝑧) 𝑥𝜃

1

Υ (𝑧) [1 − 𝜃
1

𝑆
3

(𝜔 (𝑧))]

𝜋
0,0

.

(49)

Inserting (35)–(37), (48)-(49) into (26) and (28), respec-
tively, we can get 𝜙

4

(𝑥, 𝑦, 𝑧) and 𝜙
3

(𝑥, 𝑦, 𝑧) in Theorem 3.
From normalizing condition (9), which can be written as

𝜋
0,0

+ 𝜙
0

(1, 1) +

2

∑

𝑖=1

𝜙
𝑖

(1, 1) +

4

∑

𝑗=3

𝜙
𝑗

(1, 1, 1) = 1, (50)

we can find the unknown constant 𝜋
0,0

in Theorem 3.

Based on Theorem 3, we can easily obtain the marginal
generating functions of the number of customers when the
server is in various states and some performance measures.
They are summarized in the following Corollary.Their proofs
are very easy, and thus are omitted.

Corollary 4. (1) The marginal generating function of the
number of customers in the orbit when the server is idle is given
by

𝜋
0,0

+ 𝜙
0

(1, 𝑧)

=𝐴 (𝑝){
𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]] (1 − 𝑧) 𝑝

Υ (𝑧)

− (𝑧 (𝜔 (𝑧) − 𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]))

×(Υ (𝑧))
−1

}×𝜋
0,0

.

(51)

(2) The marginal generating function of the number of
customers in the orbit when the server is busy with FPS is given
by

𝜙
1

(1, 𝑧) =
1 − 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

1 − 𝜑
1

(𝜔 (𝑧))

×
(1 − 𝑧) 𝑝𝐴 (𝑝) 𝜔 (𝑧) 𝜃

1

Υ (𝑧) (1 − 𝜃
1

𝑆
3

(𝜔 (𝑧)))

𝜋
0,0

.

(52)

(3)The marginal generating function of the number of cus-
tomers in the orbit when the server is busy with SPS is given
by

𝜙
2

(1, 𝑧) =
1 − 𝑆
2

[𝜑
2

(𝜔 (𝑧))]

1 − 𝜑
2

(𝜔 (𝑧))

×
𝑟𝑝𝜔 (𝑧)𝐴 (𝑝) (1 − 𝑧) 𝜃

2

𝑆
1

[𝜑
1

(𝜔 (𝑧))]

Υ (𝑧) [1 − 𝜃
2

𝑆
4

(𝜔 (𝑧))]

𝜋
0,0

.

(53)

(4) The marginal generating function of the number of
customers in the orbit when the server is under repair during
FPS is given by

𝜙
3

(1, 1, 𝑧) =
1 − 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

1 − 𝜑
1

(𝜔 (𝑧))

×
1 − 𝑆
3

(𝜔 (𝑧))

𝛼Υ (𝑧)

𝐴 (𝑝) 𝜔 (𝑧) 𝜃
1

1 − 𝜃
1

𝑆
3

(𝜔 (𝑧))

𝜋
0,0

.

(54)

(5)The marginal generating function of the number of cus-
tomers in the orbit when the server is under repair during SPS
is given by

𝜙
4

(1, 1, 𝑧) =
1 − 𝑆
2

[𝜑
2

(𝜔 (𝑧))]

1 − 𝜑
2

(𝜔 (𝑧))

1 − 𝑆
4

(𝜔 (𝑧))

𝛼Υ (𝑧)

×
𝐴 (𝑝) 𝜔 (𝑧) 𝜃

2

𝑟𝑆
1

[𝜑
1

(𝜔 (𝑧))]

1 − 𝜃
2

𝑆
4

(𝜔 (𝑧))

𝜋
0,0

.

(55)

(6)The probability generating function of the orbit size (i.e.,
of the variable N) is given by

Ψ (𝑧) = 𝜋
0,0

+ 𝜙
0

(1, 𝑧) +

2

∑

𝑖=1

𝜙
𝑖

(1, 𝑧) +

4

∑

𝑗=3

𝜙
𝑗

(1, 1, 𝑧)

= (𝐴 (𝑝) {𝜔 (𝑧) (1 − 𝛼𝑧) − 𝛼𝑆
1

× [𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]})

× (𝛼Υ (𝑧))
−1

× 𝜋
0,0

.

(56)

(7) The probability generating function of the number of
customers in the system (i.e., of the variable L) is given by

Φ (𝑧) = 𝜋
0,0

+ 𝜙
0

(1, 𝑧) + 𝑧

2

∑

𝑖=1

𝜙
𝑖

(1, 𝑧) + 𝑧

4

∑

𝑗=3

𝜙
𝑗

(1, 1, 𝑧)

= (𝐴 (𝑝) {𝛼𝑧𝜔 (𝑧) + 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

× [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]] [𝜔 (𝑧) (1 − 𝑧) − 𝛼] })

× (𝛼Υ (𝑧))
−1

× 𝜋
0,0

.

(57)

Corollary 5. (1) The system is idle with probability

𝜋
0,0

=
𝑝𝐴 (𝑝) + 𝛼𝑝 − 𝛼 (𝜌

1

+ 𝑟𝜌
2

)

𝐴 (𝑝) (𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

))
. (58)

(2) The system is occupied with probability

𝜙
0

(1, 1) +

2

∑

𝑖=1

𝜙
𝑖

(1, 1) +

4

∑

𝑗=3

𝜙
𝑗

(1, 1, 1)

=
𝐴 (𝑝) (𝛼𝑝 + 𝛼 (𝜌

1

+ 𝑟𝜌
2

)) − 𝛼 (𝑝 − 𝜌
1

− 𝑟𝜌
2

)

𝐴 (𝑝) (𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

))
.

(59)
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(3) The probability that the server is idle is

𝜋
0,0

+ 𝜙
0

(1, 1) =
𝑝 + 𝛼𝑝 − 𝛼 (𝜌

1

+ 𝑟𝜌
2

)

𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
. (60)

(4) The probability that the server is busy with FPS is

𝜙
1

(1, 1) =
𝑝𝛽
1,1

𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
. (61)

(5) The probability that the server is busy with SPS is

𝜙
2

(1, 1) =
𝑟𝑝𝛽
2,1

𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
. (62)

(6) The probability that the server is under repair during
FPS is

𝜙
3

(1, 1, 1) =

𝑝𝛽
1,1

𝛽
3,1

(𝜃
1

/𝜃
1

)

𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
. (63)

(7) The probability that the server is under repair during
SPS is

𝜙
4

(1, 1, 1) =

𝑝𝛽
2,1

𝛽
4,1

(𝜃
2

/𝜃
2

)

𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
. (64)

(8) The mean number of customers in the orbit is

𝐸 (𝑁) = (2𝛼 [𝑝 − 𝜌
1

− 𝑟𝜌
2

] [𝑝𝐴 (𝑝) (1 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

))

− (𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

))])

× (2 [𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)]

× [𝑝𝐴 (𝑝) + 𝛼 (𝑝 − 𝜌
1

− 𝑟𝜌
2

)])
−1

+ (𝛼𝑝
2

𝜏 [𝛼 + 𝛼 𝑝𝐴 (𝑝)])

× (2 [𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)]

× [𝑝𝐴 (𝑝) + 𝛼 (𝑝 − 𝜌
1

− 𝑟𝜌
2

)])
−1

,

(65)

where

𝜏 = 𝛽
1,2

(1 +
𝜃
1

𝜃
1

𝛽
3,1

)

2

+ 𝛽
1,1

[
𝜃
1

𝜃
1

𝛽
3,2

+ 2
𝜃
1

𝜃
1

𝛽
3,1

(1 +
𝜃
1

𝜃
1

𝛽
3,1

)]

+ 𝑟𝛽
2,2

(1 +
𝜃
2

𝜃
2

𝛽
4,1

)

2

+ 𝑟𝛽
2,1

[
𝜃
2

𝜃
2

𝛽
4,2

+ 2
𝜃
2

𝜃
2

𝛽
4,1

(1 +
𝜃
1

𝜃
1

𝛽
4,1

)]

+ 2𝑟𝛽
1,1

𝛽
2,1

(1 +
𝜃
1

𝜃
1

𝛽
3,1

)(1 +
𝜃
2

𝜃
2

𝛽
4,1

) .

(66)

(9) The arrival rate to the orbit is given by

𝑃Orbit = 𝛼𝑝[

[

2

∑

𝑖=1

𝜙
𝑖

(1, 1) +

4

∑

𝑗=3

𝜙
𝑗

(1, 1, 1)]

]

=
𝛼𝑝 (𝜌
1

+ 𝑟𝜌
2

)

𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
.

(67)

(10) The arrival rate to the system is given by

𝑃System = 𝑝 [𝜋
0,0

+ 𝜙
0

(1, 1)]

+ 𝛼𝑝[

[

2

∑

𝑖=1

𝜙
𝑖

(1, 1) +

2

∑

𝑗=1

𝜙
𝑗

(1, 1, 1)]

]

=
𝑝 (𝑝 + 𝛼𝑝)

𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
.

(68)

(11) The loss probability of a customer is

𝑃Loss = 𝑝𝛼[

[

2

∑

𝑖=1

𝜙
𝑖

(1, 1) +

4

∑

𝑗=3

𝜙
𝑗

(1, 1, 1)]

]

=
𝑝𝛼 (𝜌
1

+ 𝑟𝜌
2

)

𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)
.

(69)

Remark 6 (special cases). In the remark, we consider some
special cases of our model.

(i) When 𝜃
1

= 1, 𝑟 = 0, the present model reduced to a
discrete-time Geo/G/1 retrial queue with balking
customer. In this case, the generating function in
Theorem 3 reduces to

𝜙
0

(𝑥, 𝑧)

=
𝑝𝑥𝑧 (𝜔 (𝑧) − 𝑆

1

(𝜔 (𝑧)))

𝑝𝐴 (𝑝) (1 − 𝑧) 𝑆
1

(𝜔 (𝑧)) − 𝑧 [𝜔 (𝑧) − 𝑆
1

(𝜔 (𝑧))]

×
𝐴 (𝑥) − 𝐴 (𝑝)

𝑥 − 𝑝
𝜋
0,0

,

𝜙
1

(𝑥, 𝑧)

=
𝑆
1

(𝑥) − 𝑆
1

[𝜑
1

(𝜔 (𝑧))]

𝑥 − 𝜔 (𝑧)

×
𝑝𝜔 (𝑧)𝐴 (𝑝) (1 − 𝑧) 𝑥

𝑝𝐴 (𝑝) (1 − 𝑧) 𝑆
1

(𝜔 (𝑧)) − 𝑧 [𝜔 (𝑧) − 𝑆
1

(𝜔 (𝑧))]
𝜋
0,0

,

(70)

where

𝜋
0,0

=
𝑝𝐴 (𝑝) + 𝛼𝑝 − 𝛼𝜌

𝐴 (𝑝) (𝑝 + 𝛼𝑝 + 𝛼𝜌)
, 𝜌 = 𝑝𝛽

1,1

, (71)

which coincides with the generating functions of
Theorem 3.1 in Aboul-Hassan et al. [11].
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(ii) When 𝜃
1

= 1, 𝑟 = 0, and 𝛼 = 1, the present model
reduced to a discrete-time Geo/G/1 retrial queue with
general retrial times. In this case, the generating
function inTheorem 3 reduces to

𝜙
0

(𝑥, 𝑧)

=
𝑝𝑥𝑧 (𝛾 (𝑧) − 𝑆

1

(𝛾 (𝑧)))

𝑝𝐴 (𝑝) (1 − 𝑧) 𝑆
1

(𝛾 (𝑧)) − 𝑧 [𝛾 (𝑧) − 𝑆
1

(𝛾 (𝑧))]

×
𝐴 (𝑥) − 𝐴 (𝑝)

𝑥 − 𝑝
𝜋
0,0

,

(72)

𝜙
1

(𝑥, 𝑧)

=
𝑆
1

(𝑥) − 𝑆
1

[𝛾 (𝑧)]

𝑥 − 𝛾 (𝑧)

×
𝑝𝛾 (𝑧) 𝐴 (𝑝) (1 − 𝑧) 𝑥

𝑝𝐴 (𝑝) (1 − 𝑧) 𝑆
1

(𝛾 (𝑧)) − 𝑧 [𝛾 (𝑧) − 𝑆
1

(𝛾 (𝑧))]
𝜋
0,0

,

(73)

where

𝜋
0,0

=
𝑝𝐴 (𝑝) + 𝑝 − 𝜌

𝐴 (𝑝)
, 𝜌 = 𝑝𝛽

1,1

, (74)

which coincides with the generating functions of
Theorem 1 in Atencia and Moreno [7].

4. Stochastic Decomposition

The property of stochastic decomposition was studied firstly
in queueing system with vacations; see Fuhrmann and
Cooper [25]. Artalejo and Falin [26] generalized the concept
of stochastic decomposition to retrial queueing system. In
this section, we give a stochastic decomposition result of the
system size distribution in our model. As a consequence of
the stochastic decomposition result, we provide upper and
lower estimates for the distance between the steady-state
distribution of our discrete-time queueing system and the
corresponding system without retrials.

Theorem 7. The total number of customers in the system (𝐿)

can be represented as the sum of two independent random vari-
ables, one of which is the number of customers in the unreliable
Geo/G/1/∞ queue with customer balking and second optional
service (𝐿

0

) and the other is the number of repeated customers
given that the server is idle or down (𝑀

0

).That is, 𝐿 = 𝐿
0

+𝑀
0

.

Proof. It is easy to show that Φ(𝑧) can be represented by
Φ(𝑧) = Φ

1

(𝑧)Φ
2

(𝑧), where

Φ
1

(𝑧)

= (𝛼𝑧𝜔 (𝑧) + 𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟+𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]

× [𝜔 (𝑧) (1 − 𝑧) − 𝛼] ) × (𝛼Ω (𝑧))
−1

×
𝑝 + 𝑝𝛼 − 𝛼 (𝜌

1

+ 𝑟𝜌
2

)

𝑝 + 𝑝𝛼 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)

(75)

is the generating function of Geo/G/1 queue with balking
customer second optional service and unreliable server in
special case (i) and Φ

2

(𝑧) given by

Φ
2

(𝑧) =

∞

∑

𝑘=0

𝑃 (𝑀
0

= 𝑘) 𝑧
𝑘

= ((𝑝 + 𝑝𝑧) 𝑆
1

[𝜑
1

(𝜔 (𝑧))] [𝑟 + 𝑟𝑆
2

[𝜑
2

(𝜔 (𝑧))]]

−𝑧𝜔 (𝑧) ) × (Υ (𝑧))
−1

×
𝑝𝐴 (𝑝) + 𝛼𝑝 − 𝛼 (𝜌

1

+ 𝑟𝜌
2

)

𝑝 + 𝛼𝑝 − 𝛼 (𝜌
1

+ 𝑟𝜌
2

)

=
𝜋
0,0

+ 𝜙
0

(1, 𝑧)

𝜋
0,0

+ 𝜙
0

(1, 1)
,

(76)

is the probability generating function of the number of cus-
tomers in the orbit given that the server is idle.This completes
the proof.

The property of stochastic decomposition can be applied
to give a measure of the proximity between the steady-state
distributions of the unreliable Geo/G/1 queue with balking
and our queueing model. The result is summarized in the
following theorem.

Theorem 8. The following inequalities hold:

2𝛼 [𝑝 − (𝜌
1

+ 𝑟𝜌
2

)] [𝐴 (𝑝) − 1]

𝐴 (𝑝) [𝑝 + 𝛼𝑝 + 𝛼 (𝜌
1

+ 𝑟𝜌
2

)]

≤

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨𝑃 (𝐿 = 𝑗) − 𝑃 (𝐿
0

= 𝑗)
󵄨󵄨󵄨󵄨

≤
2𝛼 [𝑝 − (𝜌

1

+ 𝑟𝜌
2

)] [𝐴 (𝑝) − 1]

𝐴 (𝑝) [𝑝 + 𝛼𝑝 − 𝛼 (𝜌
1

+ 𝑟𝜌
2

)]
.

(77)

The proof which is similar to Aboul-Hassan et al. [11] is
omitted.

5. Numerical Examples

In this section, we present some numerical examples to study
the effect of the system parameters on themean orbit size.We
assume that 𝑝 is the probability that a customer arrives to the
system and 𝑞 is probability that a customer receives the sec-
ond phase service. Moreover, the retrial times are geometric
distributions with parameters 𝑟 and thier generating function
is 𝐴(𝑥) = (1 − 𝑟)/(1 − 𝑟𝑥). It is also assumed that the service
times during the FPS and SPS are geometric distributions
with means 𝛽

1,1

, and 𝛽
2,1

, respectively, and the repair times
for the FPS and SPS are geometric distributions with means
𝛽
3,1

and 𝛽
4,1

, respectively.
In Figures 1 and 2, the mean number of customers in

the orbit 𝐸(𝑁) is plotted against 𝑞. We present three curves
which correspond to 𝛼 = 0.5, 0.7, 0.9 and 𝜃

1

= 0.5, 0.6, 0.7,
respectively, in Figures 1 and 2. We observe that 𝐸(𝑁)
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Figure 1: 𝐸(𝑁) versus 𝑞 for different 𝛼.
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Figure 2: 𝐸(𝑁) versus 𝑞 for different 𝑅.

increases with the value of 𝑞. It is easily explained due to the
fact that a customer choosing to receive the second-optional
service increases the mean sojourn time. It is also shown that
𝐸(𝑁) is increasing as a function of 𝛼 and decreases with the
value 𝜃

1

which agree with the intuitive expectations.
In Figures 3 and 4, the mean number of customers in

the orbit 𝐸(𝑁) is plotted against 𝑟 which is the probability
that the retrial fails. We choose 𝑝 = 0.1, 𝛼 = 0.9, 𝛽

1,1

=

𝛽
2,1

= 2, and 𝜃
1

= 𝜃
2

= 0.5 in general. Figures 3 and 4 show
that 𝐸(𝑁) exhibits a stable increasing when 𝑟 approximates a
threshold value 𝛾 (when 𝑟 ≤ 𝛾 the system is stable) and then
a sharp increasing with the increasing of 𝑟. It is also shown in
Figures 3 and 4 that 𝐸(𝑁) is increasing with the mean repair
time 𝛽

3,1

and 𝛽
4,1

, respectively, which agree with the intuitive
expectations.

From the curves in Figures 1 and 2, we can also obtain the
comparative results between our model and the correspond-
ing discrete-time queueing model without second optional
service and server breakdowns. Figure 2 also shows that
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Figure 3: 𝐸(𝑁) versus 𝑟 for different 𝜃
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Figure 4: 𝐸(𝑁) versus 𝑟 for different 𝛽
3,1

.

the mean number of customers in the orbit 𝐸(𝑁) increases
significantly compared with themodel of Aboul-Hassan et al.
[11]. That is, our simulation results show that the breakdown
of the server has a heavy impact on the performancemeasures
of the discrete-time retrial queueing model with balking
customer. Moreover, it is also shown in our simulation results
that the impact of parameter 𝑞 on 𝐸(𝑁) is more noticeable
as the probability that a customer may not balk increases.
In addition, Figures 3 and 4 show how the mean repair
time affects the mean customer of customers in the orbit. In
general, compared with the previous model of Aboul-Hassan
et al. [11] andAtencia andMoreno [24], our simulation results
show the impact of various practical factors on the mean
number of customers in the orbit 𝐸(𝑁) simultaneously.
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