369 research outputs found

    fMRI scanner noise interaction with affective neural processes

    Get PDF
    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes

    Doctor of Philosophy

    Get PDF
    dissertationHearing aids suffer from the problem of acoustic feedback that limits the gain provided by hearing aids. Moreover, the output sound quality of hearing aids may be compromised in the presence of background acoustic noise. Digital hearing aids use advanced signal processing to reduce acoustic feedback and background noise to improve the output sound quality. However, it is known that the output sound quality of digital hearing aids deteriorates as the hearing aid gain is increased. Furthermore, popular subband or transform domain digital signal processing in modern hearing aids introduces analysis-synthesis delays in the forward path. Long forward-path delays are not desirable because the processed sound combines with the unprocessed sound that arrives at the cochlea through the vent and changes the sound quality. In this dissertation, we employ a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. In addition, the method of this dissertation automatically identifies and suppresses residual acoustical feedback components at frequencies that have the potential to drive the system to instability. The suppressed frequency components are monitored and the suppression is removed when such frequencies no longer pose a threat to drive the hearing aid system into instability. Together, the method of this dissertation provides more stable gain over traditional methods by reducing acoustical coupling between the microphone and the loudspeaker of a hearing aid. In addition, the method of this dissertation performs necessary hearing aid signal processing with low-delay characteristics. The central idea for the low-delay hearing aid signal processing is a spectral gain shaping method (SGSM) that employs parallel parametric equalization (EQ) filters. Parameters of the parametric EQ filters and associated gain values are selected using a least-squares approach to obtain the desired spectral response. Finally, the method of this dissertation switches to a least-squares adaptation scheme with linear complexity at the onset of howling. The method adapts to the altered feedback path quickly and allows the patient to not lose perceivable information. The complexity of the least-squares estimate is reduced by reformulating the least-squares estimate into a Toeplitz system and solving it with a direct Toeplitz solver. The increase in stable gain over traditional methods and the output sound quality were evaluated with psychoacoustic experiments on normal-hearing listeners with speech and music signals. The results indicate that the method of this dissertation provides 8 to 12 dB more hearing aid gain than feedback cancelers with traditional fixed gain functions. Furthermore, experimental results obtained with real world hearing aid gain profiles indicate that the method of this dissertation provides less distortion in the output sound quality than classical feedback cancelers, enabling the use of more comfortable style hearing aids for patients with moderate to profound hearing loss. Extensive MATLAB simulations and subjective evaluations of the results indicate that the method of this dissertation exhibits much smaller forward-path delays with superior howling suppression capability

    Adaptive gain processing with offending frequency suppression for digital hearing aids

    Get PDF
    Journal ArticleDigital hearing aids identify acoustic feedback signals and cancel them continuously in a closed loop with an adaptive filter. This scheme facilitates larger hearing aid gain and improves the output sound quality of hearing aids. However, the output sound quality deteriorates as the hearing aid gain is increased. This paper presents two methods to modify the forward path gain in digital hearing aids. The first approach employs a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. The second method of this paper automatically identifies and suppresses residual acoustical feedback components at frequencies that have the potential to drive the system to instability. The suppressed frequency components are monitored and the suppression is removed when such frequencies no longer pose a threat to drive the hearing aid system into instability. Together, the gain processing methods of this paper provide 8 to 12 dB more hearing aid gain than feedback cancelers with fixed gain functions. Furthermore, experimental results obtained with real world hearing aid gain profiles indicate that the gain processing methods of this paper, individually and combined, provide less distortion in the output sound quality than classical feedback cancelers enabling the use of more comfortable style hearing aids for patients with moderate to profound hearing loss

    ReM-AM: Reflective Middleware for Acoustic Management in Intelligent Environments

    Get PDF
    This paper presents the architecture of a Reflective Middleware for Acoustic Management that will improve the interaction between users and agents in Intelligent Environments, using the Multiagent System paradigm. The middleware manages the acoustic services, from the identification and recognition of the acoustic signals, until the interpretation, processing and analysis of them. In this paper are detailed the architecture bases, the middleware components, and case studies where this Middleware can be used. Acoustic signals and vibrations will generate the connection between agents, but it will also include the sounds that are provided by the users of the Intelligent Environment, making it an interactive and immersive experience.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    ReM-AM: Reflective Middleware for Acoustic Management in Intelligent Environments

    Get PDF
    This paper presents the architecture of a Reflective Middleware for Acoustic Management that will improve the interaction between users and agents in Intelligent Environments, using the Multiagent System paradigm. The middleware manages the acoustic services, from the identification and recognition of the acoustic signals, until the interpretation, processing and analysis of them. In this paper are detailed the architecture bases, the middleware components, and case studies where this Middleware can be used. Acoustic signals and vibrations will generate the connection between agents, but it will also include the sounds that are provided by the users of the Intelligent Environment, making it an interactive and immersive experience.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Joint NN-Supported Multichannel Reduction of Acoustic Echo, Reverberation and Noise

    Get PDF
    We consider the problem of simultaneous reduction of acoustic echo, reverberation and noise. In real scenarios, these distortion sources may occur simultaneously and reducing them implies combining the corresponding distortion-specific filters. As these filters interact with each other, they must be jointly optimized. We propose to model the target and residual signals after linear echo cancellation and dereverberation using a multichannel Gaussian modeling framework and to jointly represent their spectra by means of a neural network. We develop an iterative block-coordinate ascent algorithm to update all the filters. We evaluate our system on real recordings of acoustic echo, reverberation and noise acquired with a smart speaker in various situations. The proposed approach outperforms in terms of overall distortion a cascade of the individual approaches and a joint reduction approach which does not rely on a spectral model of the target and residual signals

    Ultrasonic splitting of oil-in-water emulsions

    Get PDF

    Neural architecture for echo suppression during sound source localization based on spiking neural cell models

    Get PDF
    Zusammenfassung Diese Arbeit untersucht die biologischen Ursachen des psycho-akustischen Präzedenz Effektes, der Menschen in die Lage versetzt, akustische Echos während der Lokalisation von Schallquellen zu unterdrücken. Sie enthält ein Modell zur Echo-Unterdrückung während der Schallquellenlokalisation, welches in technischen Systemen zur Mensch-Maschine Interaktion eingesetzt werden kann. Die Grundlagen dieses Modells wurden aus eigenen elektrophysiologischen Experimenten an der Mongolischen Wüstenrennmaus gewonnen. Die dabei erstmalig an der Wüstenrennmaus erzielten Ergebnisse, zeigen ein besonderes Verhalten spezifischer Zellen im Dorsalen Kern des Lateral Lemniscus, einer dedizierten Region des auditorischen Hirnstammes. Die dort sichtbare Langzeithemmung scheint die Grundlage für die Echounterdrückung in höheren auditorischen Zentren zu sein. Das entwickelte Model war in der Lage dieses Verhalten nachzubilden, und legt die Vermutung nahe, dass eine starke und zeitlich präzise Hyperpolarisation der zugrundeliegende physiologische Mechanismus dieses Verhaltens ist. Die entwickelte Neuronale Modellarchitektur modelliert das Innenohr und fünf wesentliche Kerne des auditorischen Hirnstammes in ihrer Verbindungsstruktur und internen Dynamik. Sie stellt einen neuen Typus neuronaler Modellierung dar, der als Spike-Interaktionsmodell (SIM) bezeichnet wird. SIM nutzen die präzise räumlich-zeitliche Interaktion einzelner Aktionspotentiale (Spikes) für die Kodierung und Verarbeitung neuronaler Informationen. Die Basis dafür bilden Integrate-and-Fire Neuronenmodelle sowie Hebb'sche Synapsen, welche um speziell entwickelte dynamische Kernfunktionen erweitert wurden. Das Modell ist in der Lage, Zeitdifferenzen von 10 mykrosekunden zu detektieren und basiert auf den Prinzipien der zeitlichen und räumlichen Koinzidenz sowie der präzisen lokalen Inhibition. Es besteht ausschließlich aus Elementen einer eigens entwickelten Neuronalen Basisbibliothek (NBL) die speziell für die Modellierung verschiedenster Spike- Interaktionsmodelle entworfen wurde. Diese Bibliothek erweitert die kommerziell verfügbare dynamische Simulationsumgebung von MATLAB/SIMULINK um verschiedene Modelle von Neuronen und Synapsen, welche die intrinsischen dynamischen Eigenschaften von Nervenzellen nachbilden. Die Nutzung dieser Bibliothek versetzt sowohl den Ingenieur als auch den Biologen in die Lage, eigene, biologisch plausible, Modelle der neuronalen Informationsverarbeitung ohne detaillierte Programmierkenntnisse zu entwickeln. Die grafische Oberfläche ermöglicht strukturelle sowie parametrische Modifikationen und ist in der Lage, den Zeitverlauf mikroskopischer Zellpotentiale aber auch makroskopischer Spikemuster während und nach der Simulation darzustellen. Zwei grundlegende Elemente der Neuronalen Basisbibliothek wurden zur Implementierung als spezielle analog-digitale Schaltungen vorbereitet. Erste Silizium Implementierungen durch das Team des DFG Graduiertenkollegs GRK 164 konnten die Möglichkeit einer vollparallelen on line Verarbeitung von Schallsignalen nachweisen. Durch Zuhilfenahme des im GRK entwickelten automatisierten Layout Generators wird es möglich, spezielle Prozessoren zur Anwendung biologischer Verarbeitungsprinzipien in technischen Systemen zu entwickeln. Diese Prozessoren unterscheiden sich grundlegend von den klassischen von Neumann Prozessoren indem sie räumlich und zeitlich verteilte Spikemuster, anstatt sequentieller binärer Werte zur Informationsrepräsentation nutzen. Sie erweitern das digitale Kodierungsprinzip durch die Dimensionen des Raumes (2 dimensionale Nachbarschaft) der Zeit (Frequenz, Phase und Amplitude) sowie der zeitlichen Dynamik analoger Potentialverläufe. Diese Dissertation besteht aus sieben Kapiteln, welche den verschiedenen Bereichen der Computational Neuroscience gewidmet sind. Kapitel 1 beschreibt die Motivation dieser Arbeit welche aus der Absicht rühren, biologische Prinzipien der Schallverarbeitung zu erforschen und für technische Systeme während der Interaktion mit dem Menschen nutzbar zu machen. Zusätzlich werden fünf Gründe für die Nutzung von Spike-Interaktionsmodellen angeführt sowie deren neuartiger Charakter beschrieben. Kapitel 2 führt die biologischen Prinzipien der Schallquellenlokalisation und den psychoakustischen Präzedenz Effekt ein. Aktuelle Hypothesen zur Entstehung dieses Effektes werden anhand ausgewählter experimenteller Ergebnisse verschiedener Forschungsgruppen diskutiert. Kapitel 3 beschreibt die entwickelte Neuronale Basisbibliothek und führt die einzelnen neuronalen Simulationselemente ein. Es erklärt die zugrundeliegenden mathematischen Funktionen der dynamischen Komponenten und beschreibt deren generelle Einsetzbarkeit zur dynamischen Simulation spikebasierter Neuronaler Netzwerke. Kapitel 4 enthält ein speziell entworfenes Modell des auditorischen Hirnstammes beginnend mit den Filterkaskaden zur Simulation des Innenohres, sich fortsetzend über mehr als 200 Zellen und 400 Synapsen in 5 auditorischen Kernen bis zum Richtungssensor im Bereich des auditorischen Mittelhirns. Es stellt die verwendeten Strukturen und Parameter vor und enthält grundlegende Hinweise zur Nutzung der Simulationsumgebung. Kapitel 5 besteht aus drei Abschnitten, wobei der erste Abschnitt die Experimentalbedingungen und Ergebnisse der eigens durchgeführten Tierversuche beschreibt. Der zweite Abschnitt stellt die Ergebnisse von 104 Modellversuchen zur Simulationen psycho-akustischer Effekte dar, welche u.a. die Fähigkeit des Modells zur Nachbildung des Präzedenz Effektes testen. Schließlich beschreibt der letzte Abschnitt die Ergebnisse der 54 unter realen Umweltbedingungen durchgeführten Experimente. Dabei kamen Signale zur Anwendung, welche in normalen sowie besonders stark verhallten Räumen aufgezeichnet wurden. Kapitel 6 vergleicht diese Ergebnisse mit anderen biologisch motivierten und technischen Verfahren zur Echounterdrückung und Schallquellenlokalisation und führt den aktuellen Status der Hardwareimplementierung ein. Kapitel 7 enthält schließlich eine kurze Zusammenfassung und einen Ausblick auf weitere Forschungsobjekte und geplante Aktivitäten. Diese Arbeit möchte zur Entwicklung der Computational Neuroscience beitragen, indem sie versucht, in einem speziellen Anwendungsfeld die Lücke zwischen biologischen Erkenntnissen, rechentechnischen Modellen und Hardware Engineering zu schließen. Sie empfiehlt ein neues räumlich-zeitliches Paradigma der dynamischen Informationsverarbeitung zur Erschließung biologischer Prinzipien der Informationsverarbeitung für technische Anwendungen.This thesis investigates the biological background of the psycho-acoustical precedence effect, enabling humans to suppress echoes during the localization of sound sources. It provides a technically feasible and biologically plausible model for sound source localization under echoic conditions, ready to be used by technical systems during man-machine interactions. The model is based upon own electro-physiological experiments in the mongolian gerbil. The first time in gerbils obtained results reveal a special behavior of specific cells of the dorsal nucleus of the lateral lemniscus (DNLL) - a distinct region in the auditory brainstem. The explored persistent inhibition effect of these cells seems to account for the base of echo suppression at higher auditory centers. The developed model proved capable to duplicate this behavior and suggests, that a strong and timely precise hyperpolarization is the basic mechanism behind this cell behavior. The developed neural architecture models the inner ear as well as five major nuclei of the auditory brainstem in their connectivity and intrinsic dynamics. It represents a new type of neural modeling described as Spike Interaction Models (SIM). SIM use the precise spatio-temporal interaction of single spike events for coding and processing of neural information. Their basic elements are Integrate-and-Fire Neurons and Hebbian synapses, which have been extended by specially designed dynamic transfer functions. The model is capable to detect time differences as small as 10 mircrosecondes and employs the principles of coincidence detection and precise local inhibition for auditory processing. It consists exclusively of elements of a specifically designed Neural Base Library (NBL), which has been developed for multi purpose modeling of Spike Interaction Models. This library extends the commercially available dynamic simulation environment of MATLAB/SIMULINK by different models of neurons and synapses simulating the intrinsic dynamic properties of neural cells. The usage of this library enables engineers as well as biologists to design their own, biologically plausible models of neural information processing without the need for detailed programming skills. Its graphical interface provides access to structural as well as parametric changes and is capable to display the time course of microscopic cell parameters as well as macroscopic firing pattern during simulations and thereafter. Two basic elements of the Neural Base Library have been prepared for implementation by specialized mixed analog-digital circuitry. First silicon implementations were realized by the team of the DFG Graduiertenkolleg GRK 164 and proved the possibility of fully parallel on line processing of sounds. By using the automated layout processor under development in the Graduiertenkolleg, it will be possible to design specific processors in order to apply theprinciples of distributed biological information processing to technical systems. These processors differ from classical von Neumann processors by the use of spatio temporal spike pattern instead of sequential binary values. They will extend the digital coding principle by the dimensions of space (spatial neighborhood), time (frequency, phase and amplitude) as well as the dynamics of analog potentials and introduce a new type of information processing. This thesis consists of seven chapters, dedicated to the different areas of computational neuroscience. Chapter 1: provides the motivation of this study arising from the attempt to investigate the biological principles of sound processing and make them available to technical systems interacting with humans under real world conditions. Furthermore, five reasons to use spike interaction models are given and their novel characteristics are discussed. Chapter 2: introduces the biological principles of sound source localization and the precedence effect. Current hypothesis on echo suppression and the underlying principles of the precedence effect are discussed by reference to a small selection of physiological and psycho-acoustical experiments. Chapter 3: describes the developed neural base library and introduces each of the designed neural simulation elements. It also explains the developed mathematical functions of the dynamic compartments and describes their general usage for dynamic simulation of spiking neural networks. Chapter 4: introduces the developed specific model of the auditory brainstem, starting from the filtering cascade in the inner ear via more than 200 cells and 400 synapses in five auditory regions up to the directional sensor at the level of the auditory midbrain. It displays the employed parameter sets and contains basic hints for the set up and configuration of the simulation environment. Chapter 5: consists of three sections, whereas the first one describes the set up and results of the own electro-physiological experiments. The second describes the results of 104 model simulations, performed to test the models ability to duplicate psycho-acoustical effects like the precedence effect. Finally, the last section of this chapter contains the results of 54 real world experiments using natural sound signals, recorded under normal as well as highly reverberating conditions. Chapter 6: compares the achieved results to other biologically motivated and technical models for echo suppression and sound source localization and introduces the current status of silicon implementation. Chapter 7: finally provides a short summary and an outlook toward future research subjects and areas of investigation. This thesis aims to contribute to the field of computational neuroscience by bridging the gap between biological investigation, computational modeling and silicon engineering in a specific field of application. It suggests a new spatio-temporal paradigm of information processing in order to access the capabilities of biological systems for technical applications
    corecore