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Summary

This thesis investigates the biological background of the psycho-acoustical precedence e�ect,

enabling humans to suppress echoes during the localization of sound sources. It provides a

technically feasible and biologically plausible model for sound source localization under echoic

conditions, ready to be used by technical systems during man-machine interactions.

The model is based upon own electro-physiological experiments in the mongolian gerbil. The �rst

time in gerbils obtained results reveal a special behavior of speci�c cells of the dorsal nucleus

of the lateral lemniscus (DNLL) - a distinct region in the auditory brainstem. The explored

persistent inhibition e�ect of these cells seems to account for the base of echo suppression at

higher auditory centers. The developed model proved capable to duplicate this behavior and

suggests, that a strong and timely precise hyperpolarization is the basic mechanism behind this

cell behavior.

The developed neural architecture models the inner ear as well as �ve major nuclei of the audi-

tory brainstem in their connectivity and intrinsic dynamics. It represents a new type of neural

modeling described as Spike Interaction Models (SIM). SIM use the precise spatio-temporal in-

teraction of single spike events for coding and processing of neural information. Their basic

elements are Integrate-and-Fire Neurons and Hebbian synapses, which have been extended by

specially designed dynamic transfer functions. The model is capable to detect time di�erences

as small as 10�s and employs the principles of coincidence detection and precise local inhibition

for auditory processing.

It consists exclusively of elements of a speci�cally designed Neural Base Library (NBL), which has

been developed for multi purpose modeling of Spike Interaction Models. This library extends the

commercially available dynamic simulation environment of MATLAB/SIMULINK by di�erent

models of neurons and synapses simulating the intrinsic dynamic properties of neural cells. The

usage of this library enables engineers as well as biologists to design their own, biologically

plausible models of neural information processing without the need for detailed programming

skills. Its graphical interface provides access to structural as well as parametric changes and is

capable to display the time course of microscopic cell parameters as well as macroscopic �ring

pattern during simulations and thereafter.

Two basic elements of the Neural Base Library have been prepared for implementation by special-

ized mixed analog-digital circuitry. First silicon implementations were realized by the team of the

DFG Graduiertenkolleg GRK 164 and proved the possibility of fully parallel on line processing of

sounds. By using the automated layout processor under development in the Graduiertenkolleg,

it will be possible to design speci�c processors in order to apply the principles of distributed

biological information processing to technical systems. These processors di�er from classical von

Neumann processors by the use of spatio temporal spike pattern instead of sequential binary

values. They will extend the digital coding principle by the dimensions of space (spatial neigh-

borhood), time (frequency, phase and amplitude) as well as the dynamics of analog potentials

and introduce a new type of information processing.
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This thesis consists of seven chapters, dedicated to the di�erent areas of computational neuro-

science.

Chapter 1 provides the motivation of this study arising from the attempt to investigate the

biological principles of sound processing and make them available to technical systems interacting

with humans under real world conditions. Furthermore, �ve reasons to use spike interaction

models are given and their novel characteristics are discussed.

Chapter 2 introduces the biological principles of sound source localization and the precedence

e�ect. Current hypothesis on echo suppression and the underlying principles of the precedence

e�ect are discussed by reference to a small selection of physiological and psycho-acoustical ex-

periments.

Chapter 3 describes the developed neural base library and introduces each of the designed

neural simulation elements. It also explains the developed mathematical functions of the dy-

namic compartments and describes their general usage for dynamic simulation of spiking neural

networks.

Chapter 4 introduces the developed speci�c model of the auditory brainstem, starting from

the �ltering cascade in the inner ear via more than 200 cells and 400 synapses in �ve auditory

regions up to the directional sensor at the level of the auditory midbrain. It displays the em-

ployed parameter sets and contains basic hints for the set up and con�guration of the simulation

environment.

Chapter 5 consists of three sections, whereas the �rst one describes the set up and results

of the own electro-physiological experiments. The second describes the results of 104 model

simulations, performed to test the models ability to duplicate psycho-acoustical e�ects like the

precedence e�ect. Finally, the last section of this chapter contains the results of 54 real world

experiments using natural sound signals, recorded under normal as well as highly reverberating

conditions.

Chapter 6 compares the achieved results to other biologically motivated and technical models

for echo suppression and sound source localization and introduces the current status of silicon

implementation.

Chapter 7 �nally provides a short summary and an outlook toward future research subjects

and areas of investigation.

This thesis aims to contribute to the �eld of computational neuroscience by bridging the gap

between biological investigation, computational modeling and silicon engineering in a speci�c

�eld of application. It suggests a new spatio-temporal paradigm of information processing in

order to access the capabilities of biological systems for technical applications.
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Chapter 1

Problem and Motivation

This thesis models auditory brain functions for echo suppression based on computational models

of dynamic spiking neurons. Since this is a true interdisciplinary task, combining elements of

engineering, computer science and biology, the motivation for this study has been derived from

three problems, each one out of these three �elds of science.

First, the proposed model architecture aims to provide a useful tool for the mobile robot PERSES

to localize sound sources in reverberating rooms in order to guide general attention during man

machine interaction. Second, it aims to provide an easy programming tool to simulate dynamic

neural networks based on Spike Interaction Models (SIM) with Integrate and Fire neurons.

And third, it aims to provide a physiologically plausible explanation, for persistent inhibition of

neurons in the Dorsal Nucleus of the Lateral Lemniscus (DNLL - a small region in the auditory

brainstem) which has been measured by several biologists.

The sections of this introductory chapter have been dedicated to these three sources of motivation.

The �rst section explains the importance and problems of echo suppression for mobile systems

during the man-machine interaction. The second one introduces spike interaction models and

provides 5 reasons to use them. Finally, the third one explains the persistent inhibition e�ect

including an assumption on its functional role and a hypothesis of its root causes.

1.1 Echo Suppression during Man-Machine Interaction

At the beginning of the 21 century many technical and computer based machines penetrate

almost all parts of human life. They have become daily communication partners to nearly every-

body. Nevertheless, while communicating with those machines we are still limited to a narrow

spectrum of arti�cial activities like moving mouse pointers, pushing keyboard buttons and speak-

ing into closely attached microphones. Although, today's machines can display moving pictures

and generate sound or speech fairly well, sensation and interpretation of human communication

signals under natural conditions remains problematic.

Therefore, many engineers strive to understand the problems of natural signal processing and

build models to overcome the current limitations. Attracted by the growing knowledge in neuro-

physiology, more and more engineers step back from common technical models and line up with

biologists to model the proven capabilities of the nervous system during the processing of visual

and acoustical signals in natural environments.

9
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This study is concerned with a very speci�c feature of acoustical communication - the local-

ization of sound sources in reverberating environments. In this context, it aims to add

another piece to the challenging scienti�c task of understanding the principles of biological sig-

nal processing and to develop technical systems for e�ective processing of communication signals.

It has long been known that acoustical echoes, arriving from re�ecting surfaces in closed acousti-

cal environments, distort the physical phenomena of sound and confuse the technical localization

of sound sources. However, natural auditory systems of many species easily suppress those echoes

to a certain extend and obtain stable sound source localization to guide general and auditory

attention.

During acoustical Man-Machine Interaction, a stable localization of sound sources, even

under echoic conditions, is a critical prerequisite for the correct perception of acoustical com-

munication signals. It enables the selection of auditory information from the auditory scenes

as well as their interpretation at higher levels during speech recognition and the generation of

visuo-motor reactions.

Typical examples of technical systems depending on echo suppression are Video Conferencing

Systems or Voice Interaction Systems. For mobile technical systems like robots, echo suppression

is also a critical ability, in order to separate and focus on speci�c sound sources within mixed

acoustical scenes and unknown acoustic environments and to direct theirs sensors - i.e. micro-

phones and cameras - toward the source of attention.

Especially for the combination of several senses in multimodal approaches to guide mobile sys-

tems, the auditory sound source localization provides a very useful cue to direct their initial

attention. However, models of the Superior Olivary Complex, a higher brain stem structure

combining the azimuthal maps of di�erent modalities, need a stable source localization even un-

der the reverberating conditions of closed rooms, most robots operate in. Such models have been

developed for example by Gross et.al [BWH+02], [SGB02]. The architecture presented here, aims

to provide this stable sound source localization under echoic conditions to be used within the

multimodal models for guidance of the mobile robot PERSES during navigation in a hardware

store.

To obtain this stable localization of sound in reverberating rooms, any technical system has to

cope with echoes, containing very similar information but arriving with signi�cant delays up to

20ms from di�erent directions in the horizontal and vertical plane. To exclude them from the

evaluation of sound direction, a mechanism is needed to either separate or suppress them.

By now, there are technical solutions available to suppress echoes by inverse acoustical models

or separate them by Independent Component Analysis (see section 6.2). However, a common

prerequisite for their success is a stable spatial relationship between the acoustical sensor and

the acoustical environment. The issue remains unsolved for mobile systems - like robots - con-

stantly changing their position within unknown environments. Under these conditions, common

computational models will lack essential information and fail to react within reasonable time.
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The presented neural architecture provides a physiologically plausible and technically feasible

model to suppress echoes during sound source localization under natural conditions. Exclusively

driven by sensory information, it strives to duplicate speci�c features of auditory processing

within the auditory brain stem as they are revealed by today's psychophysical and physiological

experiments. To realize this task, the model does not need any prior knowledge on the acoustical

scene or the environment.

Although the presented architecture does not cover the complex physiological mechanisms em-

ployed by nature during sound source localization, the obtained results parallel a number of

important psychoacoustic experiments and could prove their stability and robustness under nat-

ural conditions. Since all parts of the proposed architecture are based on basic physiologically

motivated models of auditory neurons and synapses, it may account as a reasonable base for

further extension, adaptation and technical implementation.



12 CHAPTER 1. PROBLEM AND MOTIVATION

1.2 Why to use a Spike Interaction Model?

One of the most prominent features of the proposed architecture is the attempt to model all

levels of auditory processing based on a dynamic Integrate and Fire (IF) model of nerve cells.

To distinguish networks of dynamic IF neurons from other modeling approaches, they shall be

named as Spike Interaction Model (SIM) throughout this work. Spike Interaction Models

signi�cantly di�er from common Neural Networks and communicate entirely by time-discrete,

binary pulses known as spikes. In order to generate them at the right time and the right place,

the inner- (soma-) potential of each cell has to exceed a speci�c �ring threshold.

The time-continuous and analog valued soma potentials result from a spatial and temporal

integration of post-synaptic potentials (PSP), generated at inter-neuron-link elements called

synapses. These synapses function as unidirectional sender-to-receiver links between single cells

and transform the uniform spike pulses into graded potentials with speci�c dynamic shapes

depending on the speci�c dynamic transfer function of that synapse.

Each Cell contains speci�c internal parameters, describing the time course of the soma potential

immediately after �ring and the dynamic change of internal parameters depending on the �ring

history of that cell. For further details of the employed elements and their interactions see

chapter 3 Neural Base Library and the description of Integrate and Fire Networks (IFN) below.

Based on these general principles of information processing, the simulation of Spike Interac-

tion Models requires the dynamic solution of many coupled nonlinear di�erential equations and

therefore, a signi�cant computing power of conventional computers. Taking into account the

engineering aim, to design on-line reactive systems, the question arises, why use this rather ex-

pensive dynamic IF cell model and why to use spikes?

Starting from a top level view on neural network modeling approaches, this section will describe

5 answers to this question and brie�y postulate the immense computing power and technical

relevance of Spike Interaction Models.

1.2.1 Neural Network Modeling Approaches

In today's literature the term Neural Networks refers to a wide variety of computational archi-

tectures and elements. It would be far beyond the scope of this work to provide a comprehensive

overview on today's Neural Networks. For further insights the interested reader might refer to

comprehensive books published by Zurrada [Zur92],Fausett [Fau94], Bishop [Bis96], Bulinaria

[Bul02] or Bosque [Bos02]. However, it seems useful at this point, to provide a short overview on

the evolution of neural network modeling approaches in order to display their historical develop-

ment away and towards physiological compliance. Looking from above, two principal approaches

can be observed - the Statistical Modeling Approach and the Dynamic Modeling Approach.

Statistical Modeling Approach

The roots of the statistical approach reach back to 1943 when McCulloch and Pitts [MP43] pub-

lished their �rst formal model on neural functionality. It was based on the linear summation of

static weight values and their comparison with constant �ring thresholds. Since McCulloch and

Pitts could realize the two basic logical operations NAND and NOR, they concluded, that any

logical function could be computed based on this network type.
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During the last 5 decades, this formal logical approach has been the base for a number of far

more developed statistical models concerned to �nd solutions for complex and high dimensional

problems by geometric networks adapting to the inherent statistics of natural and technical sig-

nals. Some of the most prominent and well known architectures of this type are the Perceptron

[Ros58], the Associative Memory [Hop82], the Error Backpropagation network, the Kohonen Maps

[Koh77], the Neural Gases [Mar91], the Radial Basis Functions [VC71], the Support Vector Ma-

chines (SVM) [Vap95] and the Independent Component Analysis (ICA) Networks [RE01][HK01].

During their course of development, the applied adaptation rules moved from strictly supervised

learning - the target is known and used for error calculations - toward unsupervised learning - the

target is unknown and the adaptation is obtained from the statistics of the presented input. Two

of the most notable adaptation principles are the Learning Vector Quantization (LVQ) and the

Delta Rule. In modern approaches, like SVM and ICA, adaptation rules become a very powerful

but integrative part of the architecture itself (see [HK01]).

These Networks, and a wide variety of modi�cations, have proven signi�cant power to solve a

large number of technical and perceptual problems, based on software running on classical von

Neumann computer architectures. Some of them are already commonly available as tool boxes

in standard simulation software packages (i.e. MATLAB Neural Networks Toolbox ) or stand

alone applications.

By today, they have become very useful tools for engineers, but to most biologists they lack the

ability to contribute to the understanding of the nervous system. The level of detail and the cell

properties accessible in today physiology laboratories are barely part of these models. Therefore,

they are of no signi�cant help to bridge the gap between detailed knowledge on cell structures

and the observed, but still not fully understood, functionality of nerve cells within their networks.

In general, statistical models of neural networks share the view on nerve cells and their connec-

tions as computational elements, carrying and processing time continuous parameters describing

the statistics of cell activity at the level of seconds or above (i.e. cell spike rate per second, long

term change of synaptic conductance, average dendritic potential per second etc.).

Dynamic Modeling Approach

The historical base of the Dynamic Modeling Approach is marked by the experiments and publi-

cations of Alan Hodgkin, A.F. Huxley and Bernard Katz in 1949 [HK49] [HH52]. They applied

the Goldmann equation, describing ion currents trough a cell membrane, to Sodium, Potassium

and Chloride Ions and were able to built an electrical circuit, reproducing the time course of

physiological cell potentials, already postulated by Walter Nernst in 1888 [Ner88]. Three years

later in 1952, they could prove the validity of their models by voltage clamp experiments at the

giant axon of squid. Here, they observed congruent results on the dynamic of cell potentials in

the range of ms from their technical model and the physiological experiment. For more detailed

information see Kandel and Schwartz [KSJ91]S.81 �.
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Di�erent from the statistical approach, Hodgkin and Huxley modeled the time dynamics of neu-

ral potentials in the millisecond range and directly compared it to the recordings of physiological

experiments. In general, modeling of sub-second time dynamics functioning as information pa-

rameter can be seen as the principle characteristic of the Dynamic Modeling Approach for neurons

and their networks.

Time dynamics has 3 principle degrees of freedom:

1. dynamic of magnitudes - the magnitude of each parameter changes over time

2. dynamic of phase - the timing relationship between di�erent parameters changes over time

4. dynamic of frequencies - the frequency of periodic parameters changes over time

Based on the early work of Hodgkin and Huxley, a number of dynamic models have been devel-

oped using either single or several parameters of time dynamics for information representation.

By example, one early work refers to the microscopic experiments of Woodhull [Woo73] and

Sigworth [SN80] in the 70'th, concerned with the improvement of Hodgkin and Huxleys �ndings

and their validation in other species, and the work of Dekin and Getting in the 80'th [DG87],

explaining the mechanism behind the dynamic response properties and delayed cell responses in

natural cells.

Another step toward physiological cell models has been the introduction of dynamic neurons

in the late 80' th of the last century. Dynamic neurons do not generate spikes but use a general

dynamic transfer function to model intrinsic cell functionality. Even though they use an entirely

continuous simulation system with no discrete events, they are capable, to take advantage of

phase and frequency as additional parameters for information coding. Typical examples have

been published for example by the group of P. Tavan [KHRT94]. A common engineering ap-

proximation of dynamic neurons are the complex neurons, which use a rotating pointer as the

model for dynamic cell potentials. However, the essential limitation of both models arises from

the general assumption of oscillatory signals. Ignoring the e�ect of single events limits their time

resolution to the range of ms and therefore, they lack the ability to explain physiological e�ects

based on single spike events.

A separate type of dynamic networks to be mentioned are the Time Delay Networks (TDNN)

originally developed by Alex Waibl et.al [WHL+89]. TDNN introduce axonal and dendritic time

delays to the interaction between dynamic neurons. Based on the modi�cation of those time

delays, they have proven signi�cant capabilities, to solve time complex problems like speech

recognition and time series approximation. However, although time delays are physiological

plausible and well known, their modi�cation is naturally limited to a narrow range of only a few

ms, resulting from conductance changes of ion channels.

The detailed modeling of phase dynamics in TDNN marks a signi�cant step towards physiological

relevant modeling, but their nearly exclusive employment for information processing can't claim to

cover all of the essential parts of natural information processing and lacks the power of amplitude

and frequency dynamics. Furthermore, delays used in TDNN, in many cases, reach outside the

physiological range and display a rather non physiological adaptability.
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Increasing knowledge on cell physiology and synaptic transmission in the 90'th led �nally to

Networks of Leaky Integrate and Fire Neurons. Leaving the purely continuous paradigm

by introducing time discrete binary pulses for inter cellular communication, they mark another

important step toward physiological compliant modeling. While the term 'leaky' refers to the

dynamics of magnitude, emulating the time course of membrane potentials, 'integrate' describes

the spatial and temporal integration of graded dynamic potentials with a resolution of �s, capa-

ble to interpret phase dynamics as well as frequency dynamics. Finally the term '�re' describes

the ability of IF neurons to generate single, time discrete pulses (spikes) at a time resolution of

�s and therefore, to generate phase dynamics (temporal relationships to spikes from other cells)

as well as frequency dynamics (temporal distance to preceding spikes of the same cell).

It is easy to observe that networks of IF cells require speci�c inter-link-elements to transform the

emitted binary pulses into graded dynamic potentials. Those synapses are modeled as separate

dynamic transducer, employing 2'nd order �lters as already proposed by Hodgkin and Huxley in

their initial work 1949 [HK49]. These �lters respond to the dirac-like Spikes by a speci�c con-

tinuous time course, consisting of a rising phase (depolarization) to reach a certain magnitude

and a decay phase (repolarization) to return to the resting state. Most notably, the dynamic

parameters of these graded potentials (rise-time, magnitude and decay time) can code several

dimensions of information stored at the local site of every synapse by properties of ion channels

and transmitter substances. In contrast to single 'weight' values, employed by many statistical

neural networks, synapses in IF networks account for a substantial part of the information pro-

cessing and can change their parameters on di�erent time scales (for details see section 3.1).

Throughout the history of dynamic modeling it has been a major question for engineers and

biologists, to reveal the basic principles when and how synaptic transmission properties are to

be changed. The �rst and still relevant models for synaptic adaptation reach back to 1949 when

Donald Hebb [Heb49] published it's scheme for synaptic adaptation entirely based on local po-

tential di�erences between the post-synaptic membrane and the receiving cell. Today well known

as the Hebb Rule, this basic principle has been largely modi�ed and detailed by numerous models

of synaptic transmission. Recommended further readings on this topic include Henry Markram

[MLFS97] and Lary Abbot [Abb98] and their models for Long Term Potentiation (LTP) and

Long Term Depression (LTD).

A last, but not least important feature of IF networks results from the fact that a single IF cell

receives input (graded post-synaptic potentials - PSP) from more than one cell. Generated at the

many branches of the natural dendrite, the postsynaptic potentials overlap within the dendrite,

performing a spatial integration of information received from di�erent spatially distributed cells.

Since those PSP can be excitatory (EPSP - depolarizing the membrane) as well as inhibitory

(IPSP - hyperpolarizing the membrane) their interference can result in total suppression as well

as maximum ampli�cation. Since the branches of the dendrite are of di�erent length and mor-

phology, PSP traveling along these branches will reach the cell body at di�erent times. In some

IF network models these delays are taken into account and mark another parameter for infor-

mation coding and decoding as already used in the TDNN described above.
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In general, model networks based on Integrate and Fire neurons mirror the ability of natural

nerve cells to integrate information over space and time based upon graded dynamic potentials

containing the information locally stored and modi�ed in synapses, and communicate by uniform

binary spikes, generated at speci�c points in time and space.

One of the latest and a very successful modeling approaches using IF neurons is the Spike

Response Model (SRM) of Gerstner and van Hemmen [GV94],[GK02],[VGH+90], [VDC02].

Here the synaptic transfer function is described by the spike response kernel:

�n(t) = Jn�(t��n)(1.1)

Here, Jn describes the linear scalable amplitude of the dynamic potential in response to a binary

spike arriving from the sending neuron n. The term (�n) refers to the speci�c delay of this

response with regard to the spike time tn of the sending neuron n. Since � marks a standard

�lter response kernel of the type 1 =
R
1

�1
ds�(s), the synaptic transfer function consists of a

dynamic potential with two parameters of freedom: 1. the linear scalable amplitude J and

2. the delay � adjustable in the range of �s. The combination of dynamic responses with

di�erent amplitudes and delays at the site of the synapses combines the power of TDNN and

IF transmission models and marks a signi�cant step toward physiological compliant modeling.

However, the SRM transmission model lacks the ability to employ di�erent and changing synaptic

response kernels. It will be shown later that especially the variation of rise time and decay

time constant between di�erent synapses mark a powerful tool for information processing in

the nervous system. Additionally, physiological synapses exhibit a dynamic response pattern,

where each response to a uniform spike depends on the previous �ring history and will decay in

amplitude and duration as a result of preceding spikes. Although SRM synapses can alter their

amplitude this is, like in statistical networks, rather seen as a long term macroscopic behavior,

than as a usage of magnitude dynamics for information processing at the microscopic level.

At the site of the Neuron, the SRM also adds signi�cant physiological parameters to the dynamic

modeling approach. First of all, the superposition of synaptic potentials in time and space is

taken into account when integrating synaptic potentials over both parameters. Second, a phys-

iologically well proven refractory period after each emitted spike is introduced by the standard

refractory kernel �(t� tf ). The pure soma potential �(t) of SRM is therefore described by:

�(t) =
X
n

Jn
X
tfn

�(t��n � tfn) +
X
tf

�(t� tf )(1.2)

The limitation here arises again from the usage of a standard kernel � for the refractory conditions

of every cell. Individual physiological Neurons can, depending on their function and morphology,

exhibit a wide range of absolute and relative refractory periods and therefore, exhibit signi�cant

di�erences in parameters like excitability, maximum �ring rate and �ring time.

Finally, the SRM determines the �ring time of each cell as a �ring probability instead of the

deterministic threshold comparison. The reasoning behind is the seemingly stochastic �ring be-

havior of spike generation. On the other hand, if inter-spike-intervals of 1 � 10�s are used for

information processing during sound source localization (as is shown later) it seems unlikely that

the exact timing of spikes can be su�ciently modeled by varying the intensity of a Poisson Pro-

cess as originally done in SRM. For the purpose of auditory modeling, it seems therefore more

helpful, to stay with a deterministic spike generation function.
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In conclusion, Spike Response Models (SRM) take advantage of the time dynamics and can

interpret information coded in phase dynamics as well as frequency dynamics. However the

dynamic of amplitudes is limited to the macroscopic time frame and �ring times make not full

use of the microscopic time resolution seen in physiological networks.

For the purpose of this work, it seemed therefore helpful to develop a even more detailed IF

modeling approach named Spike Interaction Model (SIM). It consists of synaptic elements

with variable kernel parameters and cell models with variable refractory kernels and dynamic

response properties. These elements and their interaction are described in detail in section 3

�Neural Base Library�. SIM can identify and code all three dimensions of time dynamics on

the detailed time scale of �s and they exclusively use single spike events for information coding,

transfer and interpretation.

So far, very few is known about spatial structures, connectivity and ion-potentials within cells

and dendrites. Therefore, also SIM can only attempt to reproduce current knowledge on speci�c

neural structures, but due to the developed simple to use and to modify construction kit (see

Section 3 Neural Base Library) they should be a useful tool for biologists and engineers to

interpret their �ndings and to postulate further principles of natural information processing.

1.2.2 Reasons to use Spike Interaction Models

As mentioned during the Introduction of this section, the computational expensive usage of Spike

Interaction Models has 5 reasons, four of them are relevant to this work :

1. SIMs provide three additional dimensions for dynamic information coding and processing

2. SIMs are capable to resolve and process information at the time scale of �s

3. SIMs model parameters on a level of detail, accessible during physiological experiments

4. SIMs are technically implementable on a Software and Hardware Level

5. SIMs can perform un-supervised learning entirely based upon local conditions

(not used in the proposed architecture)

Reason 1: Additional Dimensions for dynamic Information Coding and Processing

This feature of SIM's is probably the most relevant reason why nature has chosen a type of

information representation fairly unusual and computational intensive to conventional computers

as of today. Beside the well established 3 dimensions of space and the commonly used dimension

of magnitude, SIM use Time as additional parameter of information representation.

Although this might seem to add only one coding parameter, anyone familiar with dynamic

signal processing, will be aware that the timing of events has tree intrinsic parameters:

� the time-distance of events in relationship to other events - phase

� the time-frame of event repetition - frequency

� and the time-course of parameter values within a certain event - dynamic of magnitudes
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In case of periodic invariant signals (i.e. a sinus wave) these parameters remain stable and are

rather signal parameters than coding dimensions. But natural sensory signals, used for human

communication, are usually a-periodic and time variant.

Therefore, a coding scheme preserving these signal parameters will be able to extract the dynam-

ics of phase relationships (i.e. the changing time-distance between spikes in the left and right

auditory nerve), the dynamics of frequency (i.e. the changing time-frame of spike repetition

in a speci�c auditory �ber) and the dynamics of magnitude (i.e. the changing time-course of

membrane potential within a auditory cell).

Since auditory sensors code all time parameters with high accuracy, they become available to

information processing throughout the nervous system. Hence, changing phase relationships be-

tween the left and the right ear can be extracted even when amplitude and frequency of both

signals are identical. Short term frequency components or gaps at the level of �s in acoustical

signals are decoded as frequency dynamics and alter the auditory perception of clicks and speech

signi�cantly. And dynamic magnitude responses of auditory cells can clearly distinguish the

onset of acoustical signals from their continuation in case of absolutely identical physical signals.

In distinction to the current spike response models, SIM extend the kernel transfer function

of synapses and neurons by dynamic properties leading to non - uniform dynamic responses

depending on the �ring history of the element and its soundings. This way speci�c parts of the

signal like onsets or intrinsic changes become enhanced and available for evaluation. A detailed

description of the extended kernel function is provided in sections 3.1.2 and 3.3.3 of this thesis.

It becomes clear that the intrinsic parameters of time, as mentioned above, are used as inde-

pendent dimensions for information processing by natural neural networks. Taking into account

that they add to the 3D spatial dimension, represented by spatial neighboring and 3D local and

global connectivity, it can be imagined that a small nucleus of neural cells exceeds the computing

power of a modern PC which is limited to the sequential comparison of binary values, completely

ignoring the dimensions of time and space for information processing. A new type of computing

architecture, based on analog-digital models of nerve cells could take advantage of at least the

time parameters and realize a truly parallel information processing, capable to process several

thousands of today's processor instructions within some nanoseconds. Especially for perceptual

tasks, this new paradigm of information processing and processor architecture could open a wide

range of computing power not accessible by today's CPU's.

Spike Interaction Models, duplicating essential features of the time-dynamics of graduated mem-

brane potentials, are capable to model this tremendous computing power at least in principle.
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Reason 2: Capability to resolve and process information at the time scale of �s

One of the most commonly agreed principles of natural information processing is the Coincidence

Detection (CoD) of spikes. It refers to the spatial integration of postsynaptic potentials at the

site of the neuron and is illustrated in �gure 1.1.
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Figure 1.1: Panel A - two pulses arrive with a time delay of 500�s at di�erent synapses of the receiving

neuron - they generate postsynaptic potentials of slightly di�erent shape - these PSP overlap and shape

the soma potential but do not reach the �ring threshold - the receiving cell does not emit an own spike -

no coincidence is detected, Panel B - the arrival delay has shortened to 20�s - still the resulting soma

potential does not reach the threshold and still no coincidence is detected, Panel C - The two pulses

coincide with only 10�s time di�erence and cause the receiving neuron to emit an own spike
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Figure 1.2: Panel A - no interference of inhibitory (IPSP) and excitatory (EPSP) postsynaptic poten-

tials due to an arrival delay larger than the IPSP duration, Panel B - interference of IPSP and EPSP

results in a diminished soma potential and a decrease of emitted spikes, Panel C - arrival of an in-

hibitory pulse 100�s before the excitatory pulse causes delayed spiking and further decreases the number

of spikes, Panel D - arrival of the inhibitory pulse coincident with the excitatory pulse erases the e�ect

of excitation and prevents the neuron from �ring, Panel E - arrival of inhibition shortly after excitation

still diminishes the number of pulses emitted but does not cause time delay, Panel F - late arrival of

inhibition with regard to excitation restores the reaction of the neuron to the excitatory input.

As displayed in �gure 1.1, although a single spike lasts more than 100�s, SIM networks are

capable to detect time di�erences in the range of 10�s and less, as they are prominent in au-

ditory signals i.e. between the left and the right auditory nerve. Also at many other places

during sensory information processing, the exact timing of PSP arriving at the site of the soma
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determines, if and when a speci�c cell responds. The emitted spikes again will interact at the

next stage of processing and in this way, natural neural networks use phase di�erences of a few

�s as information parameters employing the simple mechanism of coincidence detection.

As mentioned above, timely coincidence can not only lead to ampli�cation of PSP among ex-

citatory synapses but also cause interference e�ects, if inhibitory potentials are involved. As

can been seen in �gure 1.2, the timely exact coincidence of excitatory postsynaptic potentials

(EPSP) and inhibitory postsynaptic potentials (IPSP) can signi�cantly diminish, or even erase,

the e�ect of arriving spikes. A typical result is a delayed �ring as shown in Panel C of Figure

1.2 or a slowed down �ring rate visible under the conditions of Panel B, C, E and F.

By these two examples it should become clear that the timing of single spikes matters and signif-

icantly changes the �ring pattern of nerve cells. One might argue that if these time relationships

between single spikes are stable within a given time frame, it should also be possible to model

them as a delay between continuous signals (rate model). However, this is not the case. Espe-

cially acoustical communication signals change on a very short time scale, and as psychoacoustic

experiments show, acoustical events in the range of microseconds alter our perception as well as

the associated reactions to these signals.

Therefore, to duplicate natural information processing principles it is mandatory, to simulate

them on the single spike level and assure a time resolution in the �s range. Since Spike Interaction

Models are capable to do so, this has been another reason to employ them for the proposed neural

architecture.

Reason 3: Accessibility of physiological parameters

One of the general goals in dynamic modeling of neural networks is, to bridge the gap between

experimental physiological knowledge and technical applicable models. This subsection aims to

show that SIM feature the ability to make modeling results directly comparable to experimental

results and help biologists as well as engineers to understand the mechanisms of speci�c neural

functionality.

Recording techniques in neurobiological experiments have been signi�cantly improved during the

last 30 years. By now the single neuron is no more just an anatomically observable object, it can

be also studied under �working conditions� in vivo and in vitro (living slices). Besides improved

imaging methods to study the morphology and their postnatal development, high resolution

electrodes allow now access to single cells in the living brain.

Section 5.1 describes the neurophysiological experiments performed to study the echo suppression

in living brain cells of the Mongolian Gerbil (Meriones Unigulatus) during this study. In order

to validate the proposed model, identical stimuli have been presented to the animals as well as

to the computational model and, as shown later, indeed very similar results could be obtained.

However, in order to perform this type of validation the model has to give access to measurable

and therefore comparable parameters.

Depending on the experimental setup, the most commonly accessible parameter is the number

of spikes emitted within a given time frame after the onset of the stimulus. Hereby, the time

resolution of today's experimental setups goes down to 5�s. In order to compare the results it

is therefore necessary, to choose a model which gives access to these parameters - i.e. models
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single spikes at a time resolution at least close to the experiment. Since the employed SIM

simulates all elements at a time resolution of 10�s it ful�lls this requirement fairly well. Even

total compliance could be reached by choosing a smaller simulation time step of the employed

SIMULINK simulation system. In this model the 10�s level has been chosen, to keep the ability

of the model to compute real world signals of 1� 2s duration within a reasonable time.

Secondly, anyone monitoring the �ring pattern of natural nerve cells will observe their dynamic

behavior. A large portion of cells respond to changes within their input pattern with a dense

burst of spikes and slows down to a periodic �ring as the timely input relations remain stable.

Since the initial burst in many cases preconditions the following spike pattern, it is necessary

to include this general feature of nerve cells into the model. This was one of the arguments to

further improve the Spike Response Model and work with the dynamic IF Cells of the Spike

Interaction Model.

Finally, additional features of natural spikes like shape and duration of action potentials could be

studied in nature, during the physiological experiments and have been transferred to the model.

Beside the accessible parameters in the speci�c experimental setup used in this study, the world

of neurophysiology knows a lot more about nerve cells at the level of ion-channels, transmitter

properties and morphological di�erences between speci�c cell types. The modeling approach of

dynamic IF Neurons with variable internal properties could at least include some of them. For

example time constants of cells in the MSO (Medial Superior Olive - a brainstem region seen to

bee responsible for Interaural Time Delay evaluation) observed in the early work of Grothe [GS93]

and of time constants of synapses within the DNLL (Dorsal Nucleus of the Lateral Lemniscus -

another region in the lower brainstem hypothetically realizing the echo suppression during sound

source localization) observed by Wu in 1998 [Wu98] have been included into the model.

Although, at this study, SIM do not model the speci�c properties of ion-channels and transmit-

ters, their ability to de�ne separate dynamic properties to each synapse and cell, opens a wide

range of modeling parameters for static and dynamic details, observed in physiology. This way,

macroscopically observed cell and network behavior can be studied by variations of microscopic

model parameters and these models may help biologists, to understand the functional relevance

of intrinsic cell parameters as well as their role within the network of speci�c nuclei and projec-

tions.

On the other hand, the modeling of microscopic, physiologically plausible dynamic parameters

might help the engineer, to achieve an overall functionality of neural architectures similar to

those, studied in psychoacoustic experiments and useful in real life.

Reason 4: Easy to implement on a Software and Hardware Level

The value of any model to a physiologist is often limited by the complexity of action, necessary

to implement structural and parametric modi�cations in order to watch their implications in a

simple and easy to understand manner. The accessibility and the handling of programming and

modi�cation is therefore a critical parameter, when modeling neural networks, aiming to help

during the interpretation of physiological �ndings.

On the other hand, a valuable model for engineering purposes needs to be able, to perform in
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a real world environment. To achieve this, computing has to be done on a real-time level or at

least during very short computing times.

Both, the level of detail and user accessibility demanded by physiologists and the computing speed

needed by engineers, usually compete with each other and are barely to be aligned in one modeling

approach. The here presented architecture addresses this antagonism by taking advantage of

today's advanced commercial simulation tools and silicon implementation techniques.

Since SIM entirely consist of single elements modeling nerve cells, synapses and connecting

elements like axons and dendrites, a small library of those elements proves su�cient to create

any type of neural network model. Additionally, their parameters can be modi�ed from outside

without complicated programming. But at the same time, the dynamic character of SIM requires

the generation and solution of higher order di�erential equations - a rather complicated matter

usually not in focus of physiological research.

A well suited base to combine the two requirements is provided by the dynamic simulation tool

of the MATLAB family, named SIMULINK. This entirely graphical oriented software tool takes

care of the generation and solution of the appropriate di�erential equations and opens the world

of dynamic simulation to the inexperienced user. Additionally, it provides a number of standard

libraries containing elements for signal generation, display and general processing from simple

math up to higher order �ltering.

During the course of this thesis, a speci�c Neural Base Library (NBL) has been created, contain-

ing several types of basic SIM elements as described in chapter 3. They are instantly available

after installing MATLAB 5.2 with SIMULINK 2.2 or higher, at any laptop or desktop and load-

ing a 250k �le, free for distribution by the author. Using this library, anyone can create Spike

Interaction Models by simply using the mouse pointer to move those elements out of the library

into a graphical simulation panel, connecting them by visible lines to variable types of sources

or display elements provided by the SIMULINK environment. This way, it will take only about

two hours to gain the ability to built simple SIM.

Since all of the neural elements will be instances of the Neural Base Library, their general prop-

erties can be simply changed by graphical modi�cations of library elements. At the same time,

individual parameters, like the dynamic shape of speci�c PSP or dynamic thresholds of neurons,

are accessible by editing the mask of each element in the simulation workspace. For further detail

see chapter 4 Neural Model Architecture. Additionally, the SIMULINK environment allows the

user, to group portions of the model into subsystems (i.e. all neurons and synapses of a speci�c

functional nucleus) creating a general view onto more complex models, where single elements are

still easily accessible.

Furthermore, by the use of �scopes�, a display element provided by SIMULINK, any parameter

(for example the time course of the soma potential within a speci�c neuron) can be displayed

during the simulation or afterwards. The elements of the NBL therefore contain speci�c outputs

providing visual access to all of their intrinsic parameters during simulation, if needed. This

feature allows the experimenter to �look behind the curtain� and might help to understand the

speci�c reaction of individual elements (i.e. �ring patterns) under de�ned dynamic conditions.
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Finally, the simple principle of graphical programming provided by the SIMLULINK environment

and the NBL, allows the physiologist to implement the proposed, or any other SIM architecture

easily on any standard PC, and to modify its parameters depending on whatever hypothesis he

is looking for. However, the question is how to make them working in real time for engineering

purposes?

There are 3 principle ways to speed up simulation times of SIM generated in SIMULINK envi-

ronments.

1. Automated generation of C-code running on conventional PC processors

2. Automated generation of Assembler code for Digital Signal Processors (DSP)

3. Silicon implementation on speci�c processor chips based on pre-designed analog-

digital layouts for SIM elements

The �rst two of these options are commercially provided by the �Real-Time Interface to Simulink�

of the dSPACE GmbH in Paderborn and require only little additional e�orts for implementation.

The general speed up by conventional C code depends on the speci�c architecture and ranges

between 2 and 5 times faster computation for the proposed architecture. Automated generation

of assembler code, executed on the speci�cally optimized DSP, shortens the simulation time ap-

proximately by a factor of 10 for the presented rather complex architecture and can reach real

time performance in many cases of more simple SIM.

Finally, the silicon implementation will reach real time performance in any case and provides

speci�c integrated Hardware/Software solutions suitable for a wide range of commercial applica-

tions. Corresponding hardware layouts for basic SIM elements have been developed and tested

within the DFG Graduate Colleg GRK 164/1-96 �Automated design of analog and mixed analog-

digital structures applied to neural networks� at the Technical University of Ilmenau. For further

details of hardware implementability see section 6.3.4 Silicon Implementability.

Reason 5: Ability to perform unsupervised learning based upon local conditions

Beside the four reasons to use Spike Interaction Models for the proposed architecture, another

important feature of the SIM modeling approach, concerning the adaptation to environmental

signals shall be mentioned. Although no learning or adaptation principles have been implemented

in the � Neural Architecture for Echo Suppression during Sound Source Localization�, many other

SIM depend on this general ability of natural neural networks to modify their synaptic properties

in order to extract and store knowledge about the environment and behavioral relevant signal

features.

It has been mentioned during the discussion of dynamic modeling approaches that natural

synapses change their dynamic properties depending on the local electrical and chemical condi-

tions resulting from speci�c �ring patterns. Although not all secrets of this mechanism have been

revealed by today, the general principle of Donald Hebb is widely accepted and has been applied

in many models. Therefore a Hebbian like learning principle has been introduced in the neural

elements �learning dynamic synapse� and �learning dynamic neuron� of the Neural Base Library
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presented in section 3. Here, a mechanism for long term modi�cation of synaptic properties has

been introduced resulting in a modi�ed Hebbian Learning Rule called Timing Of Potentials - or

TOP learning.

The implemented model for TOP Learning realizes Long Term Potentiation (LTP) as increase of

synaptic conductance as well as Long Term Depression (LTD), as decrease of synaptic conduc-

tance. The amount and direction of modi�cation here depends on the local relationship between

postsynaptic potentials, resulting from a presynaptic spikes of the sending neuron, on one side,

and dendritic potentials, resulting from PSP of neighboring synapses as well as back-propagating

postsynaptic spikes of the receiving neuron on the other side. In summary, the di�erence of both

potentials will de�ne the number of NMDA channels available for activation and change the

conductance of the synapse by either diminishing them in case of depression (LTD) or increas-

ing them in case of potentiation (LTP). Using the speci�c parameters of dynamic IF neurons,

this adaptive mechanism modi�es not only the amplitude of postsynaptic responses but also the

decay time constants, and therefore the in�uence of the speci�c synapse onto the soma potential

of the receiving neuron.

By using this NBL element, or a even more detailed adaptation mechanisms, SIM are capable to

modify their intrinsic transfer relations between speci�c cells as well as neural nuclei, depending

on the local interaction of presynaptic and postsynaptic spikes and/or potentials. This way, they

can duplicate learning as well as developmental changes in network connectivity, helping the

physiologist to explain and the engineer to access, adaptive properties of neural networks.

In conclusion, these 5 reasons to use Spike Interaction Models make them the appropriate model-

ing approach for architectures aiming to duplicate physiological �ndings and make them applicable

to technical systems acting in the real world environment. They have been used during this study

as well as for other models to guide auditory attention [ZITP97] and to model auditory pitch

perception (unpublished).
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1.3 Persistent Inhibition in the DNLL

As mentioned during the introduction, a third motivation for this thesis has been derived from

the physiological problem, to provide a plausible and functional model, reproducing the mea-

sured results on Persistent Inhibition in DNLL neurons and their role during echo suppression.

As of today, the physiological circuitry realizing the complex task of echo suppression is not

fully revealed, but current experimental results suggest a signi�cant role of the Dorsal Nucleus

of the Lateral Lemniscus (DNLL). This small nucleus of auditory neurons marks a signi�cant

transformation station within the auditory brain stem and is mainly populated by inhibitory

neurons, with some of them showing Excitatory/Inbitory (EI) response properties. Hence, they

receive excitatory input from the contralateral (opposite) hemisphere and inhibitory input from

the ipsilateral (identical) hemisphere. The physiological and functional details of this nucleus

are described in the sections 4.5�The Lateral Lemniscus� on page 110 and will therefore not be

detailed here.

In the late 90'th, a speci�c feature of DNLL cells has been revealed by Pollak et al. [YP94c],[YP98]

during experiments with the mustache bat. If the bat had perceived a preceding sound from a

location in one hemisphere, any subsequent sound arriving from the opposite hemisphere did not

cause the appropriate DNLL cells to �re immediately as expected. They �red with a signi�cant

delay of up to 30 ms. Hence, they seem to be inhibited even after the inhibitory signal had

ended. This phenomena is called Persistent Inhibition - (PI) and is described in detail in

the subsection �Peristent Inhibition� on page 45.

At this point it shall be mentioned that actual physiological experiments in Bats and Cats

[Yin94][Pol97][KK00][BP01] show evidence that inhibitory in�uences from the DNLL shape the

direction sensitivity of speci�c EI Neurons within the Inferior Colliculus (IC), as the next higher

auditory center.

Under onset conditions (no preceding sound) these IC cells become contralaterally excited by

lower auditory centers, possibly the Cochlear Nucleus (CN). Several studies [FBAR93] [LK92]

[VHKG92] [PP94] could reveal that the same IC cells perceive complementary inhibition from

the DNLL.

Since the �ring pattern of DNLL cells, for reasons given later, will depend on the direction of the

arriving sound signal, either one of the IC hemispheres will be inhibited by the referring DNLL

and therefore the IC displays a direction sensitive �ring behavior as well. This is the normal

condition and has been supported by several experiments, lately again by Litovski et al. in the

IC of cat [LSC01].

But if the DNLL doesn't �re during that period, the referring IC Cells will not be inhibited and

will therefore continue to duplicate the excitatory pattern of the Cochlear Nucleus despite the

fact that the direction of sound has changed. Hence, the directional sensitivity of these IC Cells
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is suppressed during the period of persistent inhibition and they respond as if the sound still

arrives from the direction of the �rst sound.

This �nding have be veri�ed by experiments presented in this thesis and seems to hold for the

DNLL of the Gerbil as well (see section 5.1 Physiological Experiments). Therefore, it seems

likely to be a common feature of the auditory processing in mammals.

Comparing these �ndings with well known results from psychoacoustic experiments, persistent

inhibition seems to account as a possible mechanism for the historical Law of the �rst wave front

[Hen49],[CM76][Bla74] and the similar Precedence E�ect �rst studied and published by Wallach

et al. in the middle of the last century [WNR49]. Both e�ects will be further elaborated in sec-

tion 2.2 Acoustical Echoes and 2.3 Summing Localization and the Precedence E�ect, describing

the basics of physiological echo suppression during sound source localization.

If persistent inhibition in the DNLL is the basic underlying principle of those proven e�ects the

question arises: Where does it come from?

In their early work Yang and Pollak [YP94c] showed that the blocking of GABAergic inhibi-

tion within the DNLL and of glycinergic inhibition towards the DNLL, abolished the persistent

inhibition and restored the neurons ability to respond to subsequent sounds as if there was no

preceding sound from another direction. At the same time they could prove the early work

of Boudreau [BT68] that the general formation of EI properties (without persistent inhibition)

takes place in a lower auditory center (the Lateral Superior Olive - LSO) and not in the DNLL.

Both features suggest that persistent inhibition is evoked within the DNLL itself and depends

on speci�c inhibitory e�ects within this auditory nucleus.

Another indicator arises from the physiological �ndings of Glendering [GBHM81] , Shneider-

mann [SOH88] and Markovitz [MP93]. They found that the DNLL perceives strong inhibitory

projections from the ipsilateral LSO and the contralateral DNLL.

The general hypothesis of this study is that the push-pull e�ect of inhibition and excitation within

the DNLL and its surrounding auditory nuclei, naturally results in a period of persistent inhibition

without a need for speci�c inhibitory inter-neurons, extended latencies or additional circuits. The

proposed architecture aims to provide a physiologically consistent model of the several auditory

nuclei involved and simulates relevant physiological and psychoacoustic experiments.
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As mentioned above, one major motivation of this thesis was to provide a plausible explanation

for the e�ect of persistent inhibition and make it available to mobile technical systems for echo

suppression during sound source localization.

The following chapter 2 will therefore explain the general principles of auditory sound source

localization and physiological echo suppression.

Chapter 3 then introduces a multi purpose dynamic simulation system developed and employed

to model and explain the principles of sound source localization including the persistent inhibi-

tion e�ects within the DNLL.

The following Chapter 4 will describe each of the modeled centers within the auditory brainstem

in detail. It starts with the outer ear and moves step by step up to the inferior colliculus re-

sulting in a complex spike interaction model, capable to perform echo suppression during source

localization based on detailed models of auditory neurons, nuclei and their connections.

Chapter 5 describes the experimental results derived from physiological experiments with the

Mongolian Gerbil as well as from psycho-acoustical and real world experiments, using designed

and free �eld recorded signals. Here, the responses of living biological cells are directly compared

to the model cell behavior under dynamic conditions.

Finally, Chapter 6 discusses these results in the context of other biologically motivated and

technical models for echo suppression and brie�y introduces the achieved status of silicon imple-

mentation.

At the end, chapter 7 will provide a short outlook towards further improvements and possible

applications of the developed Spiking architecture for echo suppression during sound source

localization.



Chapter 2

Sound Localization and Echo

Suppression

The aim of this chapter is, to provide a short introduction to the natural principles of sound local-

ization, the generation and impact of echoes and their auditory suppression by the Precedence

E�ect. It contains a short overview of relevant psychoacoustic and physiological experiments

including current hypothesis on neurophysiological circuits.

2.1 Interaural Disparities - Neural Cues for Sound Localization

Sound is one of the most prominent communication signals in the animal kingdom and is used for

interaction in all kinds of natural media like air, water and even the subterranean environment.

In general the term sound refers to the oscillation of molecules in elastic media. It's intensity

and dispersion properties therefore depend on the characteristics of the medium it travels in.

A sonic event is usually composed of a number of sound components with speci�c frequency,

phase and amplitude characteristics changing over time. The resulting physical phenomena is

a time series of pressure changes spreading spherically from the sound source into all directions

of the medium. It is characterized by the physical parameters sound pressure, frequency and

phase, whereas the sound pressure or intensity decreases proportional to the distance from the

sound source. Since naturally sensed sound intensities spread over a wide range, they are usu-

ally described by a logarithmic measure the Sound Pressure Level (SPL). It is de�ned by the

relationship:

SPL = 20log
Px
P0

[dB](2.1)

and relates the real sound pressure Px to a reference pressure P0 marking the human perceptual

boarder at 2� 10�5 Pa. Under this de�nition, the observable sound pressure for humans reaches

from 0 dB (perception threshold) to 120 dB (pain barrier). The frequency of sound is described

by the usual unit of Hertz [Hz] = 1
s - describing the number of repetitions per second. It's phase

is either characterized by the absolute measure of Time Di�erence (TD) in seconds [s] or the

relative measure Phase Di�erence (PD) referring to a single cycle and measured in radiant [rad].

The part of science dealing with the physical phenomena of sound is generally named Acoustics,

whereas the perceptual side of sound is referred to as Audition.

28
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Sound is sensed by the most fragile sensory organ - the ear. Almost all species use two instances

of ears at the left and the right hemisphere of the body. These hemispheres are referred to as

aural �elds and from here, the term Binaural Hearing arises - simply describing the dual charac-

ter of sound perception.

Since Binaural Hearing is common within nature, it is obvious that auditory systems use the

di�erences of the same sonic event arriving at the two ears for information processing. These

di�erences are referred to as Interaural Disparities. The two most common Interaural Disparities

are the Interaural Intensity Di�erence (IID) - describing the SPL Di�erence between the

two ears measured in [dB] and the Interaural Time Di�erence (ITD) - describing the phase

di�erence between the two ears measured in [�s]. Please note that in German literature IID is

sometimes mentioned as IPD - Interaural Pegel Di�erence not to confuse with the IPD - referring

to Interaural Phase Di�erences as the relative measure for ITD. To avoid confusion, throughout

this thesis IID will be used for Interaural Intensity Di�erences and ITD for Interaural Phase

Di�erences. Although there are also di�erences within the frequency spectra of the two ears, no

common measure is yet de�ned for them and they wont be subject to this study.

The question now becomes: Where do these interaural disparities arise from and how are they

employed for sound source localization? The general principle is shown in �gure 2.1 and is due

to the di�erent relative positions of the two ears with regard to the location of the sound source.

Sound Source

Listener

Figure 2.1: Interaural Disparities during sound perception

As the sound travels from the sound source toward the head of the listener, any wavefront �rst

reaches the (ipsilateral) ear on the hemisphere of the sound source and only after traveling the

distance �S it reaches the ear on the opposite (contralateral) side. If the traveling medium is

air, with a sonic speed of 340ms�1, the Interaural Time Di�erence can be calculated to:

�ITD =
�S

340
=

cos(�) � b

340
(2.2)

This simple relationship holds in principle for all frequencies as long as the de�ection of the wave

front remains small compared to the auditory base b. Hence, this relationship holds as long as

the distance between sound source and listener is large enough (for humans the critical distance

sits at about at 1 meter). However, since the wavelength of higher frequency sounds shortens to

the the range of �s (i.e. wavelength of 5 kHz = 200 �s), the interaural traveling distance �S

exceeds the wavelength and the Interaural Phase Di�erence will be identical for several di�erent
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sound source locations. This is one of the reasons why ITD's are mainly used to locate low

frequency sounds up to 1 kHz.

Beside the principle of ITD generation, another feature becomes visible in �gure 2.1. As the

sound propagates through the medium it looses energy and therefore, the amplitude of each

wave front decreases proportional to the distance from the source (see shading of the wave fronts

in �gure 2.1). As the sound reaches the ipsilateral ear, it contains more energy than at the time

arriving at the contralateral side. This Interaural Intensity Di�erence is further enhanced by

the shadowing e�ect of the head. Since the tissue of the head has a higher density than air,

the sound looses additional energy during penetration. This energy absorption is a nonlinear

function of frequency and rises with the frequency level, but is prominent throughout the entire

spectrum. Hence, IID's result from distance di�erences with regard to the sound source location

and energy absorption by head tissue. They mark a robust and widely used cue for sound source

localization and will be the major cue employed by the proposed model of auditory processing.

The relationships mentioned above describe the main cues for sound source localization in the

azimuthal plane. However, spectral cues and extended mechanisms for IID and ITD evaluation

are employed to localize sound sources in the vertical plane and to distinguish between front and

back locations. However, since the focus of this work is concentrated on the localization task

within the horizontal plane and specially directed towards mechanisms for echo suppression, the

introduction to interaural cues will stop at this point. For a deeper and more comprehensive

introduction to interaural disparities one should refer to Blauert [Bla74], Zenner [Zen94], Cremer

[CM76] or Zwicker and Fastl [ZF99].

As outlined in section 4 �Model Architecture and Physiological Correlates�, interaural disparities

become evaluated by the lower nuclei of auditory processing in the Superior Olivary Complex

(SOC) and are the major information parameters the neural auditory system employs for local-

ization of sound sources. Therefore, they also mark the critical information parameters coded

and processed by the proposed architecture for echo suppression during sound source localization.
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2.2 Acoustical Echoes

Acoustical Echoes are a common experience for everybody. They are usually associated with an

extreme case, when short words are repetitively perceived for instance after calling into steep

mountain walls. Here, the originally emitted sound is re�ected by the hard mountain wall and

returns to the callers ear after traveling the distance toward the wall and return. If this distance

is long enough, the re�ected sound returns with a delay longer than the time needed to end the

call and is perceived as a repetition �by the mountains�. For example a call of 200 ms duration is

fully separately returned, if the distance to the wall is at least 34 m. This phenomena also occurs

in any city with skyscrapers but due to the signi�cant acoustical background it is not perceived

as strong as in a quite mountain valley.

Another common, but annoying experience of echoes is known in large railway station halls or

airports, when the announcements of loudspeakers seemingly overlap them self, making it a hard

task to extract the speech content from the announcement. This has two reasons. The �rst is

due to several loudspeakers emitting the same signal at the same time but at di�erent distances

to the listener. In this case, the sound of the far speaker reaches the ear signi�cantly later then

the sound of the near speaker and overlaps it with similar intensity, disrupting directional in-

formation as well as the content. By today, this problem has been widely managed by careful

positioning of speakers and arti�cially adapted signal amplitudes and delays.

The second reason is also true for a single speaker in large reverberating rooms. Here, the per-

ceived disturbance results from the re�ection of sound by the walls of this room. If their distance

to the listener is large enough, the re�ected sounds will arrive at the listeners ear signi�cantly

after the sound arriving directly from the source. As long as the resulting delay is larger than

about 30 ms and strong enough to exceed the background, it is perceived to interfere with the

original and causes the same annoying �mixture�.

The delay at which the listener perceives the re�ected sound as a separate sonic event has been

�rst investigated by Haas [Haa51] and is well described in the text book of Blauert [Bla74] pg.179

�. It has been found to range between 2 and 30 ms and is referred to as Echo-Threshold.

However, the e�ect of overlapping re�ected sound is also widely used to create a positively per-

ceived ampli�cation in large concert halls. By today, it has become an entire section of acoustical

science and architecture to calculate and optimize the re�ection properties of concert halls in

order to diminish the delay of original and re�ected sounds below the Echo-Threshold. In this

case the human auditory system no longer perceives two separate sounds but groups them to-

gether and perceives a louder signal. This natural ampli�cation has already been used by ancient

speakers i.e. in the Roman arenas and during the Island �Thing� happening at the high mountain

wall of the continental divide.

From these examples, the general nature of echoes as re�ections of sound by hard surfaces

becomes transparent. The amount of re�ection depends on the density of the walls surface.

As the sound travels trough a medium like air, it is re�ected by any surface with a density

higher than air. A simpli�ed relationship is: The higher the density of the wall the higher the
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amplitude and the broader the spectrum of the re�ection. Therefore a concrete or tiled wall

will re�ect nearly all frequencies with much higher amplitude, than the same wall, covered by a

soft curtain. Based on this, environments with many hard covered walls are referred to as closed

acoustical environments or reverberating environments. On the opposite, speci�c rooms with walls

covered by materials totally absorbing and not re�ecting any sound are called acoustically dead

environments or unechoic chamber and �nally free �eld conditions with no signi�cant re�ection

surfaces are called acoustically open environments.

A typical measure to describe an acoustically closed or reverberating environment is the so called

Reverberation-Radius. Figure 2.2 shows a common example of a click sound recorded during this

study in a reverberating environment with a Reverberation-Radius o� 200ms.

Reverberation Radius

Diffuse Sound

Figure 2.2: Reverberation radius of a click sound recorded in a highly reverberating environment

As shown, the Reverberation-Radius refers to that time after the sonic event, when the signal level

of the primary sound just equals the level of the di�use sound �eld. Within the Reverberation-

Radius the primary sound is extended by overlapping sound re�ections from the surrounding

walls. Under the condition of �gure 2.2 it is perceived as a prolongation of the sonic event and

results in a less precise ability to localize the sound source. This is due to the fact that the

Reverberation Radius exceeds the Echo-Treshold of 30 ms described above.

Auditory systems use this feature to determine the distance of a sound source, while evaluating

the di�erence between the �rst sonic event and its re�ected components during the prolonged

primary sound. As can be seen, there is no sharp boarder line between the prolonged primary

sound and the di�use sound resulting from the background noise of the speci�c environment. As

a general rule it is observable that: the higher the background level, the shorter the distance a

sound source or echo is perceivable.

Since the determination of sound source distances will be not subject to this study, this e�ect

will not be further elaborated at this point. For further details consult the early publications of

Hornbostel [vEMH26]and Max�eld [Max33] or more the comprehensive description in the Blauert

textbook pg.222 �.[Bla74].
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The re�ection properties of sound also follows the general law of mirrored re�ection known from

light. Hence, the angle of arrival will be equal to the angle of re�ection. As displayed in �gure

2.3, in a closed and highly reverberating environment, the sound is re�ected more than once and

arrives at di�erent points in time from a variety of directions, di�erent from the source direction.

Sound Source

Listener

Direct Sound

Reflected Sound

Figure 2.3: Echoes during sound perception

If the room is small as displayed in �gure 2.3, the delays of the re�ected sounds range below

the Echo-Threshold and cause an ampli�cation. The interesting e�ect is that in this case the

ampli�ed sound is still perceived as originating from the direction of the sound source, despite

the physical fact of di�erent components arriving as re�ection from di�erent walls surrounding

the listener.

This e�ect of grouping sounds from any direction to the direction of the �rst sound is known as

the Law of the First Wave Front and has been �rst investigated by Henry [Hen49] and later

evaluated by Cremer [CM76].

Since the Law of the �rst Wave Front is the major e�ect realized by the human auditory system

to suppress echoes during sound source localization it will be in focus of this study and shall be

introduced in greater detail in the next section.
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2.3 Summing Localization and the Precedence E�ect

As mentioned in the last section, the Law of the First Wave Front applies to all sounds arriving

at the human ear during a short period, after a sonic event. The upper boundary of that period

is marked by the Echo Threshold at delays around 30 ms and the lower boundary sits at delays

of 0.6 to 1 ms [Bla74]. It states that: Any sound arriving after a �rst sonic event, with delays or

intensities below the Echo Threshold is perceived to originate from the direction of the �rst sound

- see Blauert pg.178 [Bla74]. This e�ect is not based upon physical and propagation properties

of sound, but is caused by the auditory processing within the nervous system. Therefore, it

only occurs at a perceptual level and is so far not accessible for technical systems relying on

microphone recordings of the physical phenomena.

During the last century, a large number of psychoacoustic experiments has been performed re-

vealing most of the psychoacoustic features of this law. However, until now there is no clear

evidence which physiological structures and mechanisms are responsible for the Law of the �rst

wavefront. To introduce the current status, this section will provide a short overview on the

main psychoacoustic experiments regarding echo suppression and current neurophysiological hy-

pothesis on the neural circuits carrying it out.

2.3.1 Summing Localization

The Law of the �rst wavefront is known since long, and the earliest psychoacoustic experiments

go back to the 30'th and 40'th of the last century.

In the 30'th, Blumlein [Blu31] was the �rst to realize the possibility, to generate spatial sound

e�ects, when transmitting electroacoustical recordings of concerts. He tested which di�erences

between two separately presented sound signals will cause the listener to perceive a sound loca-

tion, di�erent from that of the two speakers. Blumlein, DeBoer [DV39] and a number of acoustic

engineers during the following years found that the listener perceives a virtual sound source lo-

cation, if the sound arrives from two speakers with no, or very little, time or intensity di�erence

at the two ears.

Stereobase a

Base angle �

Figure 2.4: Traditional setting of stereo experiments
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As displayed in Figure 2.4, the traditional stereo setting consists of two speakers, positioned with

a symmetrical base angle � to the listener. If the two speakers emit absolute identical signals, the

location of the sound is perceived to originate just from the midline. As the two signals become

slightly delayed, the virtual sound source location moves toward the location of the earlier signal

and reaches it at about 0.6 - 1 ms delay. Based on these insights, the recording of a classical

concert was transmitted between Philadelphia and Washington �rst in 1933, using a two speaker

setting to generate a stereo e�ect during perception.

Warncke [War41], concerned with the generation of stereo-phonic e�ects for the just born tone-

movies, called this e�ect Summing Localization and employed it to generate spatial impres-

sions for tone-�lms. A �rst systematic quanti�cation of the Summing Localization e�ect has

been done by Wendt [Wen63] in the 60'th and can be followed in detail at the Blauert Text Book

[Bla74]. Most recently, Litovsky et.al [LSC01] comprehensively investigated the phenomena of

binaural echo suppression including the Summing Localization. The revealed upper boundary

of the Summing Localization e�ect around 1 ms remained stable throughout all kinds of experi-

ments and marks the lower boundary for the Law of the precedence e�ect.

2.3.2 Precedence E�ect

Another early experiment was published by Wallach in 1949 [WNR49] [WNR73]. He increased

the time di�erence of the two speakers in stereo settings (see Fig.2.4) beyond the upper boundary

of the Summing Localization and found the test persons, to perceive the location of the speaker

carrying the preceding signal as the source location for both signals.

He called this e�ect Precedence E�ect and obviously described the Law of the First Wave

Front by this term. The precedence e�ect therefore is nothing else, than the experimental ob-

servation of the Law of the First Wave Front. From now on, it will be preferably employed to

describe the e�ect of echo suppression during the speci�c period after a sonic event, covered by

the Law of the First Wavefront.

A large number of psychoacoustic experiments in the 60'th and 70'th has been concerned with

the precedence e�ect and studied it's boundaries as well as several parameters. However, a com-

prehensive presentation of them would clearly lead beyond the scope of this work. Therefore,

only a rare selection of signi�cant experiments will be presented here. For a detailed summary

of experimental results one might refer to the original Blauert Textbook [Bla74]pg.177 �, the

actual version of it [Bla01] pg.409 �. or the review of Litovsky et al.[LCYG99].

Echo Thresholds and their Parameters

The mayor parameter investigated to study the precedence e�ect has been the echo treshold and

its dependency on Intensity Di�erence (ID) between signal and echo, Inter Signal Time Delay

(ISTD), signal type and signal duration.

Already in the 50'th, Lochner and Burger [LB58] and Meyer and Schodder [MS52] independently

investigated the Echo-Threshold, using the traditional stereo setting with a base angle � = 80Æ
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and speech signals of 5 to 15 syllables per second. By varying the Inter Signal Time Delay and

Inter Signal Intensity Di�erence (ID) between the leading signal (S0) and the trailing signal

(ST ), they asked the test person to determine, when the echo was separately perceivable. The

observed curves are displayed in Fig.2.5.

Figure 2.5: Echo-Thresholds determined using a standard stereo con�guration with base angle of 80

degrees for continuing speech with an average speed of 5 syllables per second

Their results suggest that at very short delays, already very small intensity di�erences are suf-

�cient to suppress the echo. Common to the two lower curves is the result that even when the

trailing sound was absolutely louder than the leading sound (positive ID), it was not perceived

as separate sonic event for delays up to 35ms. Hence, the perception of the trailing echo is

suppressed even if this is unnaturally loud.

Another important early experiment has been carried out by Damaske [Dam71]. He investigated

the dependency between Echo-Threshold and signal duration by using broad-band noise signals

of di�erent length. Di�erent from others, he did not employ the traditional stereo setting, but

had the leading signal source (SO) positioned in the midline of the listener and the trailing signal

arriving from the left hemisphere (see Fig.2.6 upper right corner).

It can be observed in Fig. 2.6 that signal duration had only little in�uence on the Echo Threshold

as upper limit of the precedence e�ect. Up to delays of 20ms and ID's of 10dB the three curves

are nearly identical. However, a general impression looking at the whole experiment is that the

precedence e�ect increases slightly as the signal becomes longer.

A second generally notable observation of Damaske is the fact that the precedence e�ect is also

prominent if the signal originates from the midline and neither one of the two hemispheres.

The signal duration in�uence becomes more prominent when comparing the curves of equal in-

tensity obtained at several di�erent experiments. Figure 2.7 shows the curves of equal intensity

between leading sound and echo obtained from David and Hanson [DH62] - curve (a and e),

Lochner and Burger [LB58] - curve(b), Haas[Haa51] - curve (c) and Meyer and Schodder [MS52]

- curve (d).
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Figure 2.6: Echo-Thresholds for noise impulses of di�erent durations under the condition of a frontal

primary sound source SO and a secondary source from � = 89Æ

Figure 2.7: Echo thresholds for continuous speech of average speed (5 syllables per sencond); standard

stereophonic loudspeaker arrangement, base angle � = 80Æ from Blauer [Bla96]pg.226

As displayed, for most speech signals (curves b,c and d) echoes, which are 10 dB louder, need to

be delayed by 15-20 ms until the echo is perceived equally intense as the leading sound.

In case of long, slow raising pure tone signals, as employed by Lochner and Burger to obtain

curve e, the echo is already perceived equally loud if it is 5 dB louder than the signal, but at

much larger delays around 20-40 ms. However, the general course of curve e is very similar to

those of the speech signals (b,c and d).

For a high pass click with steep signal raise, marked by curve a, 10dB louder echoes are perceived

if they arrive only 2 ms after the leading signal. Hence, echoes of short signals and clicks are

perceived at much shorter delays but need to be much louder (higher ID). But a general e�ect

is visible at all 5 experiments. During a signi�cant period after the leading signal (delays up to

60ms) echoes become generally muted since they are perceived as equaly loud even if they have

much higher Sound Pressure Level than the leading sound.
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Based on these, and a number of other experiments, Blauert [Bla74]summarizes on pg. 184 f:

� The smallest echo-thresholds around 2ms are observable for short clicks of 1� 5ms

� For longer slow rising signals the echo-threshold is higher and relative constant - for speech

it sits around 20ms

� Steep onsets of signals as well as high intensities of the trailing sound shorten the Echo-

Threshold. Accordingly, trailing sounds of smaller intensities need longer delays to be

perceived as an echo [BS66].

� The precedence e�ect is also present, when the leading sound originates from the midline

of the listener.

� The precedence e�ect is not due to free �eld sound propagation since it is also present

during dichotic presentation - for example, separate presentation of the �rst sound to the

left ear only and of the second sound to the right ear only by the use of head phones.

Based on this summary Blauert concludes that a contralateral inhibition process is very likely

to be involved in the generation of the precedence e�ect under dichotic as well as free �eld

conditions. This suggests that a contralateral inhibitory connection needs to be included in the

neural model architecture in order to realize the precedence e�ect and a su�cient suppression of

echo directions during sound source localization.

Discrimination Threshold

Meanwhile, a number of further experiments have been carried out and revealed an additional

parameter of the precedence e�ect. As shown in Table 2.1, during Summing Localization lead

and lag signal are perceived as a joined sonic event from a virtual source in between the speaker

positions. The Echo-Threshold refers to the upper limit of the period, when echo suppression

causes the listener to perceive lead and lag signals still as a joined sonic event but from the

direction of the lead source. The new parameter Discrimination Threshold now - describes

the upper boundary of the discrimination suppression period, during which the echo is perceived

as a separate sonic event but also originating from the direction of the lead source. Above the

Discrimination Threshold, lead and lag are perceived as separate sonic events originating from

separate locations.

Echo Suppression and Discrimination Suppression have been studied among others by Yang and

Grantham [YG97b] and Litovsky [LSC01].

Litovsky et al.[LSC01] found the Echo Threshold for 1 ms noise clicks in six normal-hearing

listeners at 1-5 ms, but the Discrimination Suppression remained potent for delays of 10 ms

or longer. At the longest delays tested, two distinct sounds were perceived, but they were not

always heard at independent spatial locations.

The results of these experiments suggest that directional cues of the echo are not necessarily

salient for all conditions, when the lag is subjectively not heard as a separate event. In other

words, during discrimination suppression the echo information is perceived by the auditory sys-

tem, but the localization mechanism remains disabled.
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Overview on Echo Suppression E�ects
E�ect Lead-Lag Intervall Sonic Event Location

Summing Localization 0 to 1 ms joined joined virtual

Echo Suppression 1 to 20 ms joined joined lead source

Discrimination Suppression 20 to 30 ms separate joined lead source

No Suppression above 30 ms separate separate

Table 2.1: Suppression e�ects during the perception of lead and lag stimulus pairs:

joined - perception of only one sonic event or one sound source location

joined virtual - perception of only one sound source at a virtual location

joined lead source - perception of only one sound source at the location of the leading source

separate - perception as two separate sonic events or two sound source locations

This hypothesis is also supported by �ndings of Freyman, McCall and Clifton [FMC98], study-

ing normal-hearing listeners' sensitivity to changes in the intensity of the lagging sound. They

conclude that the precedence e�ect does not consist of a general suppression or attenuation of

the lagging sound, but rather a suppression of directionality cues.

The Discrimination Threshold is a perceptual parameter describing the upper boundary of a pe-

riod, where the echo is perceived but cannot be discriminated to arrive from a di�erent direction.

In most cases it is higher than the Echo Threshold and suggests that the auditory content of the

echo is prominent in the auditory brain, while the directional information is still suppressed. In

terms of the developed model architecture, discrimination suppression is observable at the level of

the IC. Here echoes cause clearly distinguishable sonic events (spikes) but since they are nearly

equal in intensity at both hemispheres their directional information is completely suppressed (see

section 4.6 The Inferior Colliculus)

The Clifton E�ect

Additionally to the investigation of perceptual thresholds, experiments of Clifton and Freyman

[Cli87] [CF89] revealed the adaptive nature of the precedence mechanism. In his �rst experiment

Clifton found that test persons, listening to clicks presented from a standard stereo setting with

a few milliseconds delay, perceived both clicks for some seconds separately, when the location of

the leading source was switched from one side to the other. During the second experiment when

a click train with lead and lag stimulus of de�ned delay was presented several times, the subjects

reported a "fade-out" of echo clicks after a number of clicks sets at each delay, regardless of rate.

This result has been interpreted as a buildup in inhibition of echoes produced by the ongoing

click train. This so called Clifton e�ect suggests that adaptation is prominent in the precedence

circuit and might be carried out within higher auditory structures.

Extended results of the adaptive nature of echo suppression where observed by Freyman, Clifton

and Litovsky [FCL91], when a train of conditioning clicks or noise bursts was presented in a stereo

setting just before a click/noise pair containing an echo. In seven of nine listeners, perception

of the lagging sound was strongly diminished by the presence of a train of "conditioning" clicks
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presented just before the test click. Echo threshold increased, as the number of clicks in the train

increased from 3 to 17. For a �xed number of clicks, the e�ect was essentially independent of

click rate (from 1/s through 50/s) and duration of the train (from 0.5 through 8 s). But when

only the lead sound was presented during the conditioning train, the perceptability of the lag

sound appeared to be enhanced.

Another more complex experiment of Clifton [CFLM94]proposes that echoes provide information

about room acoustics, which the listener picks up during the ongoing sound and uses to form

expectations about what will be heard. When expectations are violated by changes in the echo,

this disruption can be seen in a lowering of echo threshold, relative to the �built-up� threshold

when expectations are ful�lled.

The Clifton e�ect describes the adaptive nature of the precedence e�ect, which can be modi�ed

by conditioning signals or changes in the spectral content. It suggests the involvement of higher

auditory centers during the generation of the precedence e�ect.

Interaural Disparities and/or Spectral Disparities

Another question raised by experimenters since the 80'th is: Whether the precedence e�ect relies

on Interaural Disparities (ITD and IID as introduced before) or Spectral Disparities (resulting

from spectral changes during the re�ection of sound) or both of them?

To answer this question, Yang and Grantham [YG97a] tested the Spectral Overlap Hypothesis

- SOH of Blauert and Divenyi [BD88], and the Localization Strength Hypothesis (LSH) later

proposed by Divenyi [Div92]. The Spectral Overlap Hypothesis states that: �The higher the

coincidence between the spectra of the lead and the lag stimulus, the more suppression is exposed

to the lag stimulus�.

This hypothesis was supported by experimental results, when the test persons heard stimulus

pairs with 5-ms, 1-octave, weighted noise bursts of 65 dB where lead and lag had been paramet-

rically set to center frequencies of 0.5, 2.0, or 3.0 kHz. Discrimination thresholds were higher,

when lead and lag center frequencies coincided than when they did not coincide.

The Localization Strength Hypothesis on the other hand states: �The greater the localization

strength of the lead stimulus, the greater suppression it exerted on discriminability of the lag

sound position� This was supported in another experiment, when lead and lag stimuli were 8-ms,

1.5-kHz weighted tone bursts of 65 dB, with lead and lag rise times parametrically set to 0,

2, or 4 ms. In this case, the amount of discrimination suppression increased as lead rise time

became more abrupt or as lag rise time became more gradual. Since they could support both

hypothesis, they found that spectral overlap and localization strength appear to be two relatively

independent factors governing discrimination suppression.

The psychoacoustic experiments cited above, have been concerned with the precedence e�ect as

a perceptual phenomena and investigated its dependencies on signal parameters and stimula-

tion conditions. However, in order to �nd a consistent hypothesis to explain this phenomena,

physiologists have studied the responses of living cells and nodes within the auditory system.
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2.3.3 Neurophysiological Experiments and Hypotheses

Since the 70'th of the last century the question: What physiological structures may be involved

to generate the precedence e�ect? concern many laboratories. Only some of the major experi-

ments and derived hypothesis shall be mentioned here to justify the neural architecture chosen

to model the precedence e�ect. However, the interested reader might refer to a comprehensive

review published by Litovsky, Colburn, Yost, and Guzman in 1999 [LCYG99].

Involvement of the Auditory cortex

One of the �rst questions investigated was and still is: To what extend is the auditory cortex

involved with the echo suppression task of the precedence e�ect?.

There has been a relevant number of experiments, suggesting a rather minor role of cortical

structures regarding sound source localization. For example, Whit�led experimented in the 70'th

with unilateral ablation of the whole auditory cortex in cats. His publication in 1974 [Whi74]

states that the precedence e�ect becomes disrupted after ablation, but later reports [WDCW78]

put these results in question, since some of the animals still turned their head to the leading

source after one hemisphere of the auditors cortex was ablated. This might be partly caused

by the learning e�ect generally involved in cortex ablation studies and therefore only of limited

signi�cance.

Experiments with brain damaged humans have been carried out by Cornelisse [CK87]. Here,

patients with lesion in the left hemisphere, in areas outside the temporo-parietal region, did not

display de�cits under any condition. Patients with discrete right temporo-parietal lobe lesion

were able to localize single clicks, but frequently reversed the apparent perceptual locus of paired

clicks in the hemi�eld contralateral to the side of lesion.

Induced by publications of Hafter et al. [eaH88], who reported the release of post-onset adaptation

by additional short trigger signals with di�erent spectral properties, Blauert [BCV89] tried to

observe a similar �active release process�, to overcome the precedence e�ect, but found this not

to be true for a number of exploratory precedence-e�ect settings.

Moore et al.[MCR90] investigated the ability of human patients with unilateral temporal lobe

lesion, multiple sclerosis, or dyslexia, previously shown to disrupt neural timing. Their results

suggest that sound localization, using stimulus conditions known to elicit the precedence e�ect,

places greater demands on neural timing and integration than conventional tests of localization,

and may depend on a more sensitive index of neural function.

Finally in 2000, Litovsky, Hawley, Fligor and Zurek [LHFZ00] disproved a hypothesis of Saberi

and Perrot [SP90] suggesting that listeners can unlearn the suppression of the lag's directional

information after training with an adaptive psychophysical procedure. Since Listeners showed

no sign of unlearning after 9-13 hours they conclude, hat directional information contained in

the lagging source is not easily accessible, hence the suppression of this directional information

is not realized in cortical structures, accessible to psychophysical learning mechanisms.

On the other hand, recent studies show evidence that echo suppression at least involves higher

auditory centers. Selected examples are:
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One experiment of Liebenthal, [LP97] exhibits a signi�cant and speci�c reduction in binaural

peak amplitude of cortical responses to auditory evoked potentials for the echo-evoked middle-

latency component. A later experiment [LP99] was concerned with position judgment and

auditory-evoked potentials (AEPs) in response to single- and pairs of binaural and monaural

clicks, simulating a source and its echo. Here again, the binaural echo suppression depended

upon echo lag, although less strongly than the psychoacoustic position judgment. With a seem-

ingly wide step they Liebenthal concludes from these results a primary cortical involvement in

echo-lateralization suppression.

Mickey and his colleagues [MM01] studied the responses of cortical neurons in areas A1 and

A2 of anesthetized cats. Single broadband clicks were presented from various frontal locations.

Additionally, paired clicks were presented with various delays and Intensity Di�erences from two

loudspeakers located 50 degrees to the left and right of midline. Units typically responded to

single clicks or paired clicks with a single burst of spikes. At delays of 1-4 ms, unit responses

typically signaled locations near that of the leading source with substantial undershoot - in agree-

ment with localization dominance. A superposed Intensity Di�erence shifted location estimates

toward the more intense source, reaching an asymptote at 15-20 dB.

But taking in account the multi-lateral in�uences to the auditory cortex, the recordings of Lieben-

thal and Mickey rather con�rm the existence of strong inhibitory in�uences somewhere in the

auditory system than prove a active role of the auditory cortex during their generation, as sug-

gested by Liebenthal only.

Although there is no clear message, to what extend the auditory cortex is involved in the generation

of the precedence e�ect, most of the experiments suggest the involvement of a higher auditory

circuit, but not necessarily the auditory cortex. From the current point of view, a likely candidate

for this may bee found in the �rst major auditory center below the auditory cortex - the inferior

colliculus (IC).

Involvement of the Inferior Colliculus

The inferior colliculus (IC) accounts for the �rst auditory center within the brainstem merging

the seemingly separate pathways for IID and ITD evaluation (see section 4.1 The Auditory

Brainstem). Since it is common to all vertebrates able to hear and known to be involved in

binaural auditory processing, many investigations regarding the precedence e�ect focused on

this central part of the auditory system.

For example Yin [Yin94] recorded from single neurons in the the Inferior Colliculus of anesthetized

cat. Click stimuli were delivered under two di�erent situations: over headphones in dichotic

experiments and through two speakers in an anechoic room in free-�eld studies. He found the

cell's responses in the cat's IC suppressed for short Inter Stimulus Time Delays (ISTD) and

the time to reach 50% recovery, ranged from 1 to 100 msec with a median of 20 msec. With

short ISTD's in the summing localization range (about +/- 2 msec) he found cells also to show

responses consistant with the human psychophysical results that the sound source is localized

to a phantom image between the two speakers and toward the leading one. Based on these

consistent �ndings he concluded that the discharge of at least some cells in the IC is related to

the perceived location of the sound source.
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A psychophysical experiment involving brain damaged humans was published by Litovsky, Fligor

and Traino [LFT02] involving a 48 year old man (RJC) with a small traumatic hemorrhage of the

right dorsal midbrain, including the IC. The results suggest that: (1) localizing sounds within a

given hemi�eld relies on the integrity of the contralateral IC, (2) unilateral IC lesion gives the

illusion that sound sources in the 'bad' hemi�eld are displaced towards the 'good' hemi�eld, (3)

the IC mediates aspects of echo suppression, and (4) lesion in the IC does not impede spatial

release from masking in speech intelligibility, possibly due to that function being more heavily

mediated by cortical or lower regions.

Among others, Keller and Takahashi,[KT96] studied the IC of the barn owl. They presented

brief sounds simulating signal and echo under free �eld conditions and recorded extracellularly

from individual space-speci�c neurons within the IC. Space-speci�c neurons responded strongly

to the direct sound, but their response to a simulated echo was suppressed, typically, if the echo

arrived within 5 ms or less of the direct sound. With inter-stimulus delays of less than 10 ms,

the owl consistently turned its head toward the leading speaker. Longer delays elicited head

turns to either speaker with approximately equal frequency and in some cases to both speakers

sequentially.

Results of special interest were observed by Fitzpatrick [FKBT95] from single neurons in the infe-

rior colliculus of the unanesthetized rabbit. Here, monaural and binaural click pairs (conditioner

and probe) where delivered through earphones and a special type of cells (early high) was found,

well responding to echoes (probes) even during conditions when they where NOT localizable.

Hence, localization suppression does not necessarily depend upon excitation suppression it could

also result from the suppression of inhibition and this way, make the echo recognizable but not

localizable.

Further support to this hypothesis is given by experiments of Burger and Pollak [BP01] [PBP+02].

They recorded from single cells in the IC of the free-tailed bat and found that EI neurons in

the inferior colliculus (IC) that are excited by one ear and inhibited by the other can code

interaural intensity disparities (IIDs). Although EI properties of many cells are formed in lower

nuclei and imposed on some IC cells via an excitatory projection, many other EI neurons may be

formed de novo in the IC. By reversibly inactivating the Dorsal Nucleus of the Lateral Lemniscus

(DNLL) they showed that the EI properties of many IC cells are formed de novo via an inhibitory

projection from the DNLL on the opposite side.

They also found that signals excitatory to the IC evoke an inhibition in the opposite DNLL

that persists for tens of milliseconds after the signal has ended. During this period, strongly

suppressed EI cells in the IC are deprived of inhibition from the DNLL, thereby allowing the IC

cell to respond to trailing binaural signals to which it previously responded poorly or not at all.

By relieving inhibition at the IC, it becomes obvious that an initial binaural signal essentially

recon�gures the circuit and thereby allows IC cells to respond to trailing binaural signals that

were inhibited when presented alone.

Thus, DNLL innervation creates a change in responsiveness of some IC cells to binaural signals,

depending on the reception of an earlier sound. The experimental results of Burger and Pollack

suggest that the circuitry linking the DNLL with the opposite central nucleus of the IC is im-

portant for the processing of IIDs that change over time, such as the IIDs generated by moving

stimuli or echoes that emanate from di�erent regions of space.
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Somewhat similar to Fitzpatrick and Burger and Pollak, actual experiments of Litovsky and

Delgutte [LD02] studying the inferior colliculus of cats conclude as well that the inhibitory in-

puts causing suppression in the cats IC may originate in part from subcollicular auditory nuclei.

However, the key message of a comparative experiment between humans and neurons in the IC of

cats, published by Litovsky, Rakerd, Yin and Hartmann in 1997 [LRYH97] is that the precedence

e�ect operates also in the median sagittal plane, where binaural di�erences are virtually absent.

From here it is concluded that precedence is mediated by binaural and spectral localization cues

and a hypothesis is established that models attributing the precedence e�ect entirely to binau-

ral di�erences are no longer viable. From the existence of suppression within the midline they

conclude, that interaural disparity cues are not necessary for neural correlates of the precedence

e�ect to be manifested.

While the experimental results of Litovsky on working echo suppression in the median sagittal

plane are doubtlessly true, their conclusion seems to go too far. As could be demonstrated by

the proposed model architecture, a precedence like e�ect naturally evolves even in the median

sagittal plane without involvement of spectral cues, if the IID sensitivity functions of the left

and right LSO overlap su�ciently (see section 4.4.3 LSO Model).

As a common result of all those experiments on the involvement of the IC during echo suppression

it seems clear that the response properties of speci�c neurons in the inferior colliculus are mediated

during a period of at least 2-20 ms after the lead stimulus, resulting in a speci�cally unsuppressed

reaction to the trailing echoes. The interesting question is now, whether these mediations arrive

from lower auditory nuclei in the superior olivary complex (SOC) or the dorsal ducleus of the

dateral demniscus (DNLL) or they are intrinsically generated within the di�erent substructures

of the IC.

The experiment of Burger and Pollack [BP01] already suggested a signi�cant role of the DNLL

within this circuit with regard to IID's. Therefore some additional experiments concerned with

the functional role of the DNLL will be described in the next paragraph.

Involvement of the DNLL

As described more consistently in section 4.5 Lateral Lemniscus, the DNLL is one of the ma-

jor nuclei within the lateral lemniscus (LL) carrying information from the medial superior olive

(MSO), and the lateral superior olive (LSO) towards the central inferior colliculus. During the

last 10 years there has been a signi�cant amount of work concerned to reveal the physiology and

functionality of the DNLL.

Leading to the hypothesis of Burger and Pollak [BP01] [PBP+02] cited above, an extensive

amount of work has been done by Pollak at al. to study and prove the GABAergic inhibition of IC

Cells by the DNLL [PPWL92],[YPR92], [PP93c], [PP94], [KPP95],[WLP95]. These projections

are described in further detail in section 4.6 The Inferior Colliculus and have proven su�ciency to

signi�cantly modify and sometimes fully suppress the response of speci�c cell groups within the

central IC. Of special interest to many of these experiments was the change in timely response of

newly formed IC-EI cells to lag or echo stimuli. Here it has been shown that GABAergic inhibition
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arising from the DNLL generates some EI properties in the contralateral IC but weakens or even

abolishes responses during a period of up to 20 ms after the lead stimulus. The major role of

DNLL cells to generate this property has been further supported by pharmacological and lesion

experiments of Park [PP93a],[PP93b], Yang [YP97] and Kelly [KLv96],[KL97],[IvK96].

Persistent Inhibition in the DNLL

Another prominent feature of DNLL Cells, called Persistent Inhibition - (PI), has been re-

vealed during follow up experiments by the groups of Pollak in the mustache bat and Kelly

in the rat [YP94a],[YLP96],[Pol97],[YP98],[KK96],[BVdRR98],[KBP99], [BKP00]. During these

independent experiments with varying conditions they found that a substantial portion of DNLL

cells exhibits extended EI properties. Hence, they receive excitatory inputs from the contralat-

eral LSO and inhibitory projections from the ipsilateral counterpart [KBK98]. However, di�erent

from EI Cells within the LSO, they stay persistent inhibited after a �rst stimulus for as long

as 20 ms. This Persistent Inhibition is typically level-dependent and increases in duration with

increasing sound level. According to Bauer [BKP00], the Persistent Inhibition is also sensitive to

the duration of the stimulus, with short (5 ms) tones being less e�ective than longer (> 20 ms)

tones in generating persistent inhibition. By contrast, Yang [YP98] found that stimulus duration

had only little in�uence on the duration of the persistent inhibition. Having in mind the early

psychoacoustic experiments of David and Hanson [DH62] both can be correct since they found

the echo threshold to be short for very short signals and clicks but to stay around 20 ms for

longer signals as well as speech (see �gure 2.7).

The existence of persistent inhibition in DNLL-EI cells has been also con�rmed by the physio-

logical experiments during this study. Here we recorded from the DNLL of the gerbil and where

able to reproduce the general results of some experiments by Pollak and Yang. Methods and

results will be presented in detail in chapter 5 �Experimental Results�.

What remains unclear until now, is the underlying mechanism generating persistent inhibition

of these DNLL cells. Therefore, it is the aim of this study, to provide a valid mechanism for the

generation of Persistent Inhibition within the DNLL and prove its e�ciency to suppress echoes

at the level of the IC. So far, three major hypothesis regarding the mechanisms to generate

persistent inhibition have been formulated:

� Kelly and Kidd [KK00] suggest that NMDA receptors of DNLL cells account for the per-

sistent component of inhibition, while AMPA receptors seem to bee involved with the

�normal� direct inhibition by the ipsilateral SOC. One hypothesis derived from here is that

NMDA receptors might cause extended time constants and therefore generate long lasting

inhibitory potentials.

� Another hypothesis relies on e�erent projections from the IC or the auditory cortex. Al-

though such e�erent in�uences possibly exist, and may cause the adaptive behavior revealed

by the clifton e�ect, it seems unlikely to have them generating such a timely precise and

speci�c behavior, clearly depending on the spatio-temporal structure of the sensory input.
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� A third hypothesis �nally involves strong contralateral inhibition between the two DNLLs

on the left and the right hemisphere. Shown by vanAdel et al. [vAKK99] a disection of

the commissure of probst and therefore a cut of the inhibitory in�uences between the two

DNLL resulted in a much less e�ective reduction of response amplitude after ipsilateral

acoustic stimulation. Responses to both short (+/-1.0 ms) and long(1.0- 30.0 ms) inter-

vals were a�ected. Strong GABAergic projections between left and right DNLL were also

observed by Chen, Kelly and Wu [CKW99] in slices of rat brains and by Zhang [ZLKW98]

in living rat brains. Furthermore, such projections are seen to be part of the Persistent

Inhibition circuit by Yang and Pollack [YP98] [PBP+02].

Based upon the observation of dynamic cell potentials within the model architecture an extended

hypothesis on the generation of Persistent Inhibition within the DLLL has been established dur-

ing this study. It states that: Persistent Inhibition within the DNLL results from the Push-Pull

e�ect of either relatively weak contralateral excitation by the opposite LSO or strong twofold in-

hibition by the ipsilateral LSO and the contralateral DNLL.

inhibitory excitatory
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Figure 2.8: Push-Pull e�ect on DNLL - EI cells generating Persistent Inhibition

left panel: Inhibitory Push of the left DNLL cells toward maximum hyperpolarization by inhibitory

inputs from the right DNLL and the left LSO/MSO in response to a lead stimulus from the left hemisphere

- note that no excitation is present

right panel: Excitatory Pull of the left DNLL cells toward the �ring threshold by the right LSO during

a lag stimulus from the right hemisphere

As shown in the left panel of Figure 2.8, in case of an ipsilateral leading stimulus, the soma

potential of left DNLL cells with EI properties is strongly hyperpolarized and pushed toward low

soma potentials due to GABAergic inhibition from the opposite DNLL and glycinergic inhibition

from the ipsilateral LSO. Di�erent from the conditions in the LSO and the IC, at this time no

competing excitatory input to the DNLL is active. The time needed to repolarize back to the

resting potential, therefore only depends on the intrinsic membrane and channel properties of

the DNLL cells.
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If a trailing sound arrives within that time frame from a di�erent direction, as shown in the right

panel of �gure 2.8, the soma potential will be pulled toward the �ring threshold. But assuming a

relative weak excitation compared to the achieved level of hyperpolarization this will just shorten

the time needed to repolarize the cell but will not cause immediate �ring as expected without a

inhibitory lead signal. Simulations led to persistent inhibition between 10-20 ms depending on

the achieved hyperpolarization during the lead stimulus and the intensity of the lag stimulus.

Since the level of hyperpolarization depends on the number of inhibitory impulses (i.e. IPSP's)

received during the lead stimulus, hyperpolarization will be stronger if the lead was loud, had a

steep onset, or lasted longer. However, physiological hyperpolarization has an upper limit around

-75 mV. If this is reached, the soma potential will stay there and not decrease further. Therefore,

persistent inhibition has an upper limit and will not further increase in case of an ongoing or very

intense lead stimulus. Depending on the relation between maximum hyperpolarization and the

strength and number of excitatory impulses (EPSP's) during the lag stimulus, typical periods of

persistent inhibition have been found to range between 10 and 20 ms. As discussed in section

5.2 �Psychoacoustic Experiments�, the properties of this mechanism correlate well with many of

the psychoacoustic experiments cited above with regard to inter stimulus delay (ISD) as well as

inter stimulus intensity di�erence (ISID).

Since this hypothesis somewhat extends the �rst and third hypothesis mentioned above, it incor-

porates current experimental knowledge, while providing a plausible and simulative supported

explanation for the observed Persistent Inhibition of DNLL - EI cells. Overall it supports a ma-

jor tendency in the literature to assign a substantial part of the circuits causing the precedence

e�ect to the inhibitory projections of the DNLL toward the central IC.

Involvement of Lower Auditory Nuclei

Of course, there have been also experiments concluding an involvement of lower auditory nuclei

like the cochlear nucleus (CN) and the superior olivary complex (SOC) during echo suppression.

By example, Kaltenbach [KMF+93] found a speci�c forward masking of cells within the dorsal

cochlear nucleus (DCN) and discussed a possible role of this e�ect during echo suppression and

Grothe [GN00] mentioned a possible role of inhibitory e�ects in the medial superior olive (MSO)

during echo suppression.

However, the point of view taken in this study is that those nuclei are largely concerned with the

generation of time precise and speci�c spatially arranged excitation pattern, necessary to enable

the DNLL push-pull e�ect introduced above as well as a correct spatio temporal processing

within the IC and the auditory cortex. These are speci�cally:

1. The decoding of source locations within the left and right hemisphere into spatially sepa-

rated �ring pattern of left and right nuclei by evaluating IID's and ITD's within both the

LSO and the MSO.

2. The encoding of absolute intensities (SPL) by the �ring rate and the number of frequency

channels involved.
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3. The encoding of onset steepness by dynamic �ring pattern, exhibiting intense spike bursts

of many frequency channels in case of steep onsets and phase locked or chopper responses

for slow raising tones.

4. The encoding and enhancement of spectral and modulation cues including their delivery

to higher auditory centers.

The speci�c nature of cell responses within the auditory nerve and the nuclei of the CN and

the SOC will be subject to the next chapters and shall not be elaborated beyond the general

expectations listed above at this point.

Finally, only a last general observation of Fitzpatrick [FKK+99] shall be mentioned. His group

recorded excitation pattern to paired clicks with varying interstimulus intervals, from several

structures of the ascending auditory system in unanesthetized cats including the auditory nerve,

the antero-ventral cochlear nucleus, the superior olivary complex, the inferior colliculus and the

primary auditory cortex. Their main �nding was a progressive increase in the duration of the

suppressive e�ect of the leading sound on the response to the lagging sound. In neurons of

the auditory nerve, the cochlear nucleus, and the superior olivary complex, 50% recovery of the

response to the echo sound occurred, on average, for intervals of approximately 2 ms. In the

inferior colliculus, 50% recovery occurred at an average separation of approximately 10 ms, and

in the auditory cortex at approximately 20 ms. However, these are very top level observation not

taking in account the speci�c nature and complex arrangement in most of these structures and

can only be seen as a general rule that signi�cant suppression of echoes occurs only at higher

centers of auditory processing. i.e. all of the echo information is preserved during the sensation

and �rst decoding of auditory scenes.

Summary

Intensive studies within the last 60 year have revealed that,

� Interaural time di�erences (ITD's) and interaural intensity di�erences (IID's) are the major

cues for auditory sound localization in the azimuthal plane.

� Echoes are natural phenomena in closed acoustical environments, caused by sound re�ec-

tions of dense surfaces. They arrive shortly after the original sound with a variety of delays

and from di�erent directions.

� The perception of echoes is totally suppressed during the echo suppression period and their

directional information is further suppressed during the period of discrimination suppres-

sion.

� Echo suppression is stronger for loud signals with steep onsets and longer duration. Echoes

louder than the signal can shorten the suppression period and overcome suppression in rare

cases.

� Early echoes are stronger suppressed than later ones.

� Echoes are also suppressed when the sound originates from neither one of the listeners

auditory hemispheres and no interaural disparities are present.
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� Echo suppression can be built up by conditioning stimuli and disrupted by sudden modi-

�cations of the frequency spectrum and/or the interaural cues - clifton e�ect.

� Information on echoes is present even if their direction is not perceived

� A substantial part of echo suppression might result from disabling the directional sensitivity

of speci�c EI cells in the central inferior colliculus normally inhibited by the DNLL.

� The timely exact dis-inhibition of speci�c IC Cells can result from the persistent inhibition

of DNLL cells following a lead sound.

� Persistent inhibition in the DNLL might be caused by a speci�c push-pull e�ect of strong

doubled inhibitory and weaker excitatory projections from the LSO on both hemispheres

and the contralateral DNLL.

In accordance with most of the psychoacoustic and physiological experiments cited above the

proposed model realizes echo suppression at the level of the LSO - DNLL - IC projection. It

essentially exhibits the following features:

1. Echo suppression under dichotic as well as real world free �eld conditions

2. Intensity dependency - stronger echo suppression for lead signals with high intensities.

Weaker suppression of very intense echoes.

3. ISD dependency - less e�ective echo suppression as the inter stimulus delay (ISD) between

signal and echo increases.

4. Duration dependency - longer echo suppression for longer durations of the lead signal with

upper limits around 20 ms

5. E�ective echo suppression if the sound originates from the midline of the listener.

6. Preservation of echo information during suppression of directional information.



Chapter 3

The Neural Base Library

As mentioned in section 1.2.2, a major advantage of the Spike Interaction Model (SIM) proposed

in this study lies within its modular structure based upon the basic neural elements of a Neural

Base Library (NBL) and ready for graphical programming as well as silicon implementation.

The base elements contained in this library are shown in �gure 3.1 and will be introduced step

by step during this chapter. At the end of the chapter, some general considerations and sim-

ulation conventions will be introduced in order to ease the understanding of simulation results

and parameters, shown during the subsequent introduction of the model architecture in chapter 4.
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Figure 3.1: Neural Base Library - Overview
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The upper panel of the Neural Base Library, shown in �gure 3.1, displays the neural base ele-

ments themself, while the lower panel contains the di�erent cell types derived from those base

elements and applied in the proposed model architecture.

The neural base elements are grouped into four types: Sensors, Synapses, Cells and Connections.

Each library element is represented by a single instance, visible as a graphical symbol, and con-

tains two layers - a structural and a parametric layer. The structural layer de�nes the internal

structure of each element common to all instances. Hence, whenever the structure of a library

element is modi�ed these changes become e�ective in all instances and derived elements within

the model. This object oriented approach is very helpful in case of large models and enables the

experimenter to modify for example the behavior of all dynamic IF neurons or of all DNLL cells

by only a single modi�cation of the library element.

On the contrary, the parametric layer is speci�c to each instance of the library element and

enables the experimenter to set speci�c parameters to each cell or synapse or to a group of them

contained in a subsystem as described later. Additionally, the parametric layer of all cell models

contains a number of internal parameters possible to display through the separate �Internals�

port. They can be chosen individually for each cell in order to access them during and after

simulation. Figure 3.2 displays the structural and parametric layer of the library element �IF

Neuron� for example.
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Figure 3.2: left panel - structural layer of the Neual Base Library element IF Neuron

right panel - parametric layer of the IF Neuron Base Element.

During the next subsections, the neural base elements, relevant to this model, will be introduced

in detail. However, learning base elements have not been employed here and the reader might

refer to other publications of the author like [ZITP97].

For the matter of understanding, we will start with synaptic elements and connections before

introducing the basic cell models and the speci�c sensory elements.



52 CHAPTER 3. THE NEURAL BASE LIBRARY

3.1 Synapses

Within Spike Interaction Models and any other networks of Integrate and Fire neurons, the

major task of synapses is, to generate graded and time continuous postsynaptic potentials (PSP)

in response to presynaptic spikes arriving from the sending neuron. The speci�c shape of these

PSP-functions g(t) is essential to the performance of the whole network and di�ers with regard

to 3 parameters:

� Rise time tD- time needed to depolarize up to the maximum potential

� Maximum Potential w - maximal depolarization reached during one PSP - often referred

to as synaptic weight

� Decay Time tR - time needed to repolarize back to the resting potential

Furthermore, all three parameters are modi�ed by dynamic processes in case of �dynamic synapses�

and/or adaptive processes in case of �learning synapses�.

3.1.1 Static Synapse

Here we will start with the simple static synapse, generating identical PSP in response to each

spike of the sending neuron. The structural and parametric layer of the NBL element �Static

Synapse� are shown in �gure 3.3.

Figure 3.3: left Panel - structural layer of the neural base library element static synapse

right Panel - parametric layer of the static synapse base element.

The structural layer obviously contains only two elements, the synaptic transfer function g(t),

modeling the processes within the synaptic gap, and a switch to invert the synaptic response in

case of inhibitory synapses. This results in the fairly simple transfer function:

xi(t) = yj(t) � g(t)� inh(3.1)

with inh = 1 for excitatory synapses, and inh = �1 for inhibitory synapses and � representing

the convolution between the arriving presynaptic spike yj(t) and the synaptic gap transfer func-

tion g(t).

On the parametric level, the element contains tree parameters responsible to de�ne the shape of

the postsynaptic potential. Since this shape is very critical to the function of the entire network

considerable e�ort has been taken, to design a model, �exible to incorporate the dynamic prop-

erties of the underlying complex electrical and chemical processes.
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If a spike of the sending neuron reaches the presynaptic terminal, a speci�c transmitter substance

is released into the synaptic gap, which in turn activates a number of voltage and chemical gated

ion channels at the postsynaptic terminal. The resulting ion transfer, especially the In�ux of

Na+ ions, causes the postsynaptic membrane potential to raise. This process shall be named

Depolarization. On the other hand, as soon as the membrane potential leaves it's resting value,

an active ion transport is enabled, seeking to reestablish the resting state - this process shall be

referred to as Repolarization. Since both processes counteract each other, their speci�c time con-

stants and e�ciencies will de�ne the parameters of the resulting PSP at each synapse. However,

this view onto Depolarization and Repolarization is still a summary on many separate processes

on the level of Na+, K+, and Cl- ions and many di�erent types of transmitters and channels.

A fairly realistic synaptic model therefore needs to make all three PSP parameters independent

and separately controllable.

A common technical model of the postsynaptic membrane potential is a capacitor element. The

exponential charge function of such a capacitor with capacitance C is known as:

V (t) = V0 +
1

C

Z
Idt(3.2)

and in the Laplace Domain this refers to a pT1 Element marked by the equation:

G(s) =
K

1 + sT
(3.3)

However, the usage of capacitors or pT1 Elements as synaptic models has three major drawbacks

observable in �gure 3.4.
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Figure 3.4: Response of a pT1 element with � = 2ms and K = 1 to a presynaptic spike of 1 ms duration

1. Depolarization and Repolarization share the same time constant. Therefore rise time,

maximum potential and decay time are not independently controllable.

2. The Depolarization process ends at the end of the presynaptic spike and here the maximum

potential is reached. Hence, the physiological signi�cant synaptic delay of 1-2 ms cannot

be modeled and the maximum potential depends on the spike duration.

3. The response function is discontinuous causing discontinuities in case of spatio-temporal

integration.
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To overcome these limitations, Depolarization and Repolarization have been developed into sep-

arate models in the Laplace domain and rejoined to derive a more �exible synaptic transfer

function g(t).

Depolarization

Using the equivalent circuit diagram of �gure 3.5, the membrane capacitance Cm is accompanied

by a depolarization conductance gd resulting in an charge current Id trough both elements. Here

the capacitance Cm accompanied by the conductance gd can be best described in the Laplace

domain by an Integrative Delay Element of the ITn type. By the way, already Hodgkin and

Huxley [HH52] suggested the usage of Tn Elements to model the membrane conductance. So the

the IT1 process:

GD(s) =
KD

s(1 + sTD)
(3.4)

has been employed to model the Depolarization (or charge) process. In the time domain the

impulse response of this process this would refer to:

g(t) = L�1
�
1 �

KD

s(1 + sTD)

�
= KD � (1� e�t=�D ) with �D = Cm=gd(3.5)

Vm

Cm

gd

gr

Id Ir

Figure 3.5: Equivalent circuit diagram for the postsynaptic membrane

Repolarization

To describe the outward �ow of positive ions it is assumed that a discharge �ow through the same

membrane capacitance is modulated by the number of active ion pumps which in turn depends

on the potential di�erence between actual membrane potential and resting potential. By usage

of the same Equivalent Circuit Diagram (�gure 3.5), the repolarization conductance gr regulates

the repolarization current Ir trough the same membrane conductance Cm, leading to a similar

Laplace Element described by:

GR(s) =
KR

s(1 + sTR)
(3.6)

The impulse response in the time domain will as well be de�ned by the repolarization time

constant �R and the e�ciency constant K:

g(t) = L�1
�
1 �

KR

s(1 + sTR)

�
= KR � (1� e�t=�R) with �R = Cm=gr(3.7)
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Combination

Since the postsynaptic membrane potential after a single excitatory presynaptic spike is always

depolarized and returns to the resting state after a limited amount of time, it can bee assumed

that:

� The E�ciencies of the depolarization and the repolarization process are equal, leading to

a complete abolishment of both e�ects after a certain amount of time. (KR = KD).

� The time constant of the repolarization process is alway larger than that of the depolar-

ization process (�R > �D)

In the Laplace domain the combination of the two processes under these assumptions becomes

a simple subtraction resulting in a third order transfer element of the PIDT2 type as shown in

equation 3.8

G(s) = GD(s)�GR(s) =
K

s(1 + sTD)
�

K

s(1 + sTR)

=
K(1 + sTR)�K(1 + sTD)

s(1 + sTD)(1 + sTR)
=

Ks(TR � TD)

s(1 + sTD)(1 + sTR)
(3.8)

G(s) =
Ks(TR � TD)

TDTRs3 + (TD + TR)s2 + s
(3.9)

After reformatting the denominator, equation 3.9 is derived as the Laplace domain equivalent

of a third order di�erential equation. The spike response of such an element is shown in �gure 3.6.
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Figure 3.6: Spike response of a PIDT2 Element as di�erence of two separate processes with the

time constants �D = 2ms; �R = 6ms and a joined e�ciency of K = 1

To further simplify the synaptic simulation, canceling of s leads to a fairly simple PT2 element

with identical response behavior but only a second order di�erential equation to be solved during

simulation.

G(s) =
K(TR � TD)

(1 + sTD)(1 + sTR)

G(s) =
K(TR � TD)

TDTRs2 + (TD + TR)s+ 1
(3.10)

As can be seen in �gure 3.6, the PSP function reaches it's maximum 2ms AFTER the end of the

presynaptic spike and returns to the resting potential 5� �R = 30ms after the presynaptic spike.
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This way, synaptic delay as well as physiological causality is reproduced and the discontinuity

of the time course is removed. Furthermore, depolarization is much faster than repolarization

indicating the possibility to control both processes seperately.

The question is now, if the maximum potential can be controlled independently in this model.

To achieve a control parameter for the maximum potential, we go back to the time domain and

subtract the depolarization and repolarization process to:

g(t) = K(1� e�t=�D )�K(1� e�t=�R)

= K(e�t=�R � e�t=�D )(3.11)

The resulting synaptic transfer function is commonly known as �-function and frequently used

in advanced integrate and �re networks. To �nd the maximum value of the �-function it's �rst

derivative is set to zero resulting in equation 3.12 to de�ne the point in time, when g(t) reaches

its maximum.

g0(t) = K(�
1

�R
e�t=�R +

1

�D
e�t=�D )

0 = K(�
1

�R
e�t=�R +

1

�D
e�t=�D )

0 = �
1

�R
e
�

t
�R

+ t
�D +

1

�D

0 = �
1

�R
e
t
�R��D
�R�D +

1

�D
�R
�D

= e
t
�R��D
�R�D

ln(
�R
�D

) = t(
�R � �D
�R�D

)

tmax =
�R�D

�R � �D
� ln(

�R
�D

)(3.12)

Using this equation, the library element tells the experimenter the absolute rise time tD for

any parameter set chosen (see �gure 3.7). Since the absolute value of g(t) at t = tmax shall

be independently controllable accounting for the synaptic e�ciency w, we will use equation 3.12

within equation 3.11 and derive the following relationship to calculate K with regard to a speci�c

target value of w.

w = g(tmax) = K(e
�

�D�R
�R(�R��D)

�ln(
�R
�D

)
� e

�
�D�R

�D(�R��D)
�ln(

�R
�D

)
)

w

K
=

�
e
ln(

�R
�D

)
�� �D

�R��D �
�
e
ln(

�R
�D

)
�� �R

�R��D

w

K
=

�
�R
�D

�
�

�D
�R��D

�

�
�R
�D

�
�

�R
�R��D

K =
w�

�R
�D

�
�

�D
�R��D �

�
�R
�D

�
�

�R
�R��D

(3.13)

Using this relationship to calculate the simulation parameter K in the background during the

Initialization Phase of the Model, the Experimenter simply de�nes w and derives the exact max-

imum potential regardless of the time constants chosen.
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Figure 3.7 displays the independence of the three parameters. In panel A, maximum value has

been kept constant and only �D has been varied between 1 and 5 ms. As can be observed, all tree

response functions reach the same maximum and disappear after 50 ms but their rise time can

be controlled independently. Similar in Panel B the three response functions reach their maxi-

mum at the same time and vanish at the same point in time but exhibit signi�cantly di�erent

maximum potentials w. Finally in Panel C, �R is the only parameter changed, while the other

two are kept constant. Here the same Maximum is reached after the same time but decay time

varies signi�cantly.
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Figure 3.7:

panel A - independent variation of Rise Time

panel B - independent variation of Maximum Potential

panel C - independent variation of Decay Time

Since the PT2 transfer function obviously ful�lls the requirements formulated above, it has been

employed to realize the synaptic gap model in the static synapse element. Out of the di�erent

options to simulate transfer functions within the SIMULINK environment, the standard block

Transfer Fcn in the Laplace domain has been chosen and con�gured as shown in �gure 3.8.

Figure 3.8: Transfer function in the Laplace domain employed to model the synaptic gap

During initialization, a speci�c mask calculates the parameters (K, td and tr) and displays the

general shape as well as the key values within the icon as shown in �gure 3.3. Since this proce-

dure happens only once during initialization, it will not in�uence simulation time but help the

experimenter to visually evaluate the parameter sets chosen.

So far, the synaptic response has been considered exclusively under the rare case of a singular

spike. But natural cells and neural networks nearly always emit a number of spikes at speci�c

places and speci�c points in time. A very important question during the modeling of synapses is

therefore the temporal integration in case of several spikes arriving at the presynaptic terminal.

In �gure 3.9, the simple case is shown, when the synapse is excited by a spike chain of equal
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distances. Here it can be seen that the membrane potential reaches a dynamic equilibrium after

a number of spike responses adding to each other. In case of the static synapse the value of the

equilibrium directly depends upon the spike rate (250 Hz in Panel A-C and 125 Hz in Panel D-F)

and the three parameters of the PSP shape (varied within the vertical referring panels).
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Figure 3.9:

Synaptic response to a spike frequency of 250 Hz with:

panel A - �D varying between 1 ms (red) and 5 ms (cyan)

panel B - w varying between 0.2 ms (red) and 0.8 ms (cyan)

panel C - �R varying between 5 ms (green) and 15 ms (cyan)

Synaptic response to a spike frequency of 125 Hz with:

panel D - �D varying between 1 ms (red) and 5 ms (cyan),

panel E - w varying between 0.2 ms (red) and 0.8 ms (cyan),

panel F - �R varying between 5 ms (green) and 15 ms (cyan).

Despite the di�erent dependencies displayed in Figure 3.9, the major feature, also visible there,

is the integrative nature of the PT2 model. As observable, a subsequent PSP adds exactly to the

level, which the sum of the previous PSP has reached at the time of the new spike. Therefore

much higher membrane potentials are reached than a single PSP could produce. However, the

possible membrane depolarization (or hyperpolarization in case of inhibitory synapses) is not

unlimited. To include this natural limitation the library element �Dynamic Synapse� has been

developed and will be introduced in the next subsection.
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3.1.2 Dynamic Synapse

As can be seen at the structural level of the NBL element �Dynamic Synapse�, shown in �gure

3.10, the basic transfer function g(t) here is identical to the static model. But additional consid-

erations have led to a subsequent channel function c(t) modeling the percentage of blocked ion

channels after each spike.

Figure 3.10:

left panel - structural layer of the neural base library element dynamic synapse

right panel - parametric layer of the dynamic synapse base element.

The assumption is, that each time a transmitter is released into the synaptic gap, a certain per-

centage of the available ion channels is activated, whereas their absolute number refers directly

to the maximum postsynaptic potential generated. Directly after the spike, those channels are

blocked and cannot be activated during a certain amount of time. Therefore, the percentage of

blocked channels per spike as well as the time constants of channel blocking and channel reacti-

vation are the new channel dynamic parameters added at the parametric level shown in the right

panel of �gure 3.10.

The functional result is that after the �rst spike, all channels are ready for activation and the

PSP will take on the shape de�ned by g(t). But after a number of spikes arriving within a short

time frame, a high percentage of channels is already blocked and only few can still be activated

resulting in a much lower maximum value of the PSP. In order to prevent this mechanism to

fully block all channels, a limiter has been introduced to model. Du to the fact that the number

of active channels will never become zero or negative, the experimenter is enabled to de�ne a

percentage of never blocked channels. At the parametric level this parameter is de�nable at the

bottom of the mask.

To model the new function c(t) of the dynamic synapses, the same PT2 model as used for the

synaptic gap has been employed once more. The argumentation behind is that the blocking and

reactivation processes of the ion channels are very similar to the depolarization and repolarization

of the membrane, since:

� both consist of competing processes canceling each other after a certain amount of time,

� both depend on the gaps between single presynaptic spikes - i.e. the spike frequency,

� both have di�erent time constants for their sub-processes,
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Considering the displayed structure of the dynamic synapse element show above, the transfer

function of the element can be written as:

xi(t) = f[1� yj(t) � c(t)] � yj(t)g � g(t) � inh(3.14)

As can be imagined, the di�erential equation describing this function is already quite complex,

but the object based approach of the NBL enables the experimenter to modify functions like this

with very simple graphical changes. In case of the dynamic synapse, this would be surely possi-

ble by introducing separate models for ion and channel types. However, the dynamic properties

shown below, proved su�cient for the model developed during this study and since the synaptic

model usually has very many instances any additional computational e�ort in�uences to overall

simulation time.

In order to display the dynamic response properties of dynamic synapses �gure 3.11 displays their

response under several signi�cant conditions. Here, the parameters of the model element have

been set to the following values: w = 0:8, �D = 2ms, �R = 6ms, % of blocked channels/spike =

5% , �blocking = 10ms, �reactivating = 70ms and % of never blocked channels = 10%.
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Figure 3.11:

panel A - dynamic response to a spike frequency of 12.5 Hz

panel B - synaptic response to a spike frequency of 50 Hz

panel C - dynamic response to a spike frequency of 100 Hz

In panel A the special case is shown, when the distance of the arriving spikes exceeds the reac-

tivation time constant, hence all ion channels are again available and the PSP response to each

spike is uniform.

If the distance between subsequent spikes decreases, as shown panel B, the response to the second

spike is already diminished due to the limited channels available. Since the Spike distance of

20ms still exceeds the repolarization time constant �R there is no temporal integration and the

membrane potential does not rise above the maximum value of a single PSP.

However, in panel C, both time constants are under-run and the natural behavior of dynamic

synapses becomes prominent. During the �rst three spikes, the membrane potential is temporal

integrated and rises above the maximum value of g(t), but soon thereafter, much of the chan-

nels are blocked and the integrated individual responses to each spike are signi�cant smaller,

resulting in a dynamic equilibrium far below the one observed in case of the static synapse. If

one now imagines that this synapse projects its membrane potential trough the dendritic tree

toward the receiving neuron, a basic feature of cell responses throughout the nervous systems
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can be explained. This means that most neurons respond to the onset of new signals or changing

signal parameters with a burst of spikes (phasic response) and return to a much lower �ring rate

if the signal remains stable (tonic response). The dynamic character of synaptic transmission

might be one of the major reasons for this and should not be neglected by dynamic neural models.

In �gure 3.11 the dynamic response to a absolutely invariant signal leads at least under the

conditions of panel C to a membrane potential changing signi�cantly over time. In this case,

only the spike frequency has been modi�ed to display this feature but the parameters of channel

dynamic enable the experimenter also to de�ne these properties. The in�uence of each parameter

is shown in �gure 3.12. For clarity of the display, the presynaptic spikes are not shown but they

were kept at a constant frequency of 200 Hz.
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Figure 3.12:

In�uence of the di�erent parameters of dynamic synapses on their response pattern to a pulse frequency

of 100 Hz panel A - parameter % of blocked channels - values of 5% (blue), 10%(green) and 15% (red),

panel B - parameter �blocking - values of 10 ms (blue), 20 ms (green) and 30 ms (red),

panel C - parameter �reactivation - values of 40 ms (blue), 60 (green) and 80 ms (red),

panel D - parameter % of never blocked channels - values of 50% (blue), 25% (green) and 0% (red)

As can be seen in panel A, the more channels are blocked after each spike, the lower is the value

of the dynamic equilibrium. The in�uence of the two time constants, varied in panel B and C, is

less signi�cant but strongly in�uences the upper limit of the inter-spike-distance when the �rst
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decay in the dynamic response happens (as shown in panel A of �gure 3.11). A strong in�uence

is observable when varying the percentage of never blocked channels. Here in the extreme case

of 0% after roughly 100 ms the synapse doesn't react anymore, despite continuing presynaptic

spikes, and will only restart after a signi�cant gap.

Dynamic synapses are very helpful elements to duplicate the inherent dynamics of synaptic trans-

mission but should be used with care. Due to their dynamic response properties they will alter

the spike time as well as the �ring rate of the receiving neuron compared to the sending neuron.

Since at many stages of the auditory brainstem a precise spike timing and the preservation of

phase locking is essential to decode interaural disparities, dynamic synapses have been used in

the proposed architecture exclusively at the level of the inferior colliculus.

3.2 Interneural Connections

This second group of base elements is concerned to model the connections between the synapses

and the cell body of the receiving neural cell - i.e. the dendritic tree - and to model the connec-

tions between the soma of a sending cell and the synapses it projects to - i.e. the axon.

As commonly known, the major di�erence between both structures is that the dendritic prop-

agation uses graded potentials overlapping in time and space and containing a huge structural

variety. By contrast axonal structures have less branches and propagate actively reproduced

Action Potentials (AP) traveling along the axon with nearly identical shape.

3.2.1 Dendritic Model

In order to model dendritic processing two elements have been added to the Neural Base Li-

brary. First, and most importantly, the membrane model and secondly the dendritic leakage

model. Both elements are shown in a typical setup in �gure 3.13.

dendritic
membrane

dendritic
leakage

cell
membrane

basal synapse

apical synapse2

apical synapse1

IF Neuron

Figure 3.13: Simple model of a dendritic tree containing the library elements membrane and dendritic

leakage

Although the membrane element is a very simple element, with no parameters and a simple sum-

ming structure, it's function is very important, since it realizes the spatial integration within the

dendritic tree. The reason behind is that any neuron contains many synapses, receiving postsy-

naptic potentials from many di�erent cells and nuclei. While every synapse performs a temporal
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integration on its own, the resulting soma potential strongly depends on the interaction between

the PSPs generated by the di�erent synapses. Here, the membrane element integrates the EPSP

and IPSP of all those synapses within the branches of the dendritic tree (dendritic membrane)

as well as at the soma (cell membrane). Mathematically it is a simple linear summing element.

The dendritic leakage element is a bit more advanced and models the leakage current �owing

through the dendritic membrane, diminishing the e�ect of apical synapses (synapses relatively

far from the soma) compared to basal synapses (synapses close to the cell body). It's structural

and parameter level are shown in �gure 3.14.
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Figure 3.14:

left panel - structural layer of the neural base library element dendritic leakage

right panel - parametric layer of the dendritic leakage base element.

The basic structural element of this model is a leaking conductance (1�G) accessible from the

outside and de�ning the percentage by which the postsynaptic potentials of apical synapses are

diminished by the time they arrive at the site of the cell body.

Based upon these two dendritic elements, a huge variety of spatio-temporal dynamics within the

dendrite can be generated. To give at least a rough impression, �gure 3.15 provides a simple

example, employing the dendritic structure shown in �gure 3.13.

Here, panel A displays the spatial integration of two temporally integrated postsynaptic poten-

tials generated by di�erent synapses receiving input from di�erent cells. Panel B shows the e�ect

of the dendritic leakage element - here set to 20% leakage current. And panel C �nally shows the

resulting complex dynamic potential after integrating the IPSP of the basal inhibitory synapse.

3.2.2 Axonal Model

It has been mentioned before that axonal transmission di�ers from dendritic transmission by the

use of active Action Potentials (AP). At every node of Ranvier, a complex mechanism of ion

channels and pumps generates an AP with nearly identical shape. Since the axon is covered by

Myelin in between the node of Ranvier, the AP seems to jump from one node to the next along

the axon. This very rapid and nearly loss-free transmission process is used by the nervous system

to cross even large distances between di�erent brain areals but also between sensors, actors and

nerve cells throughout the body.
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Figure 3.15:

panel A - spatial integration of two PSP (blue and green) at the dendritic membrane, red = resulting

potential

panel B - dendritic leakage between apical dendrite (green) and basal dendrite (red) = potential at soma

panel C - spatial integration (red) between apical EPSP's (green) and basal IPSP (blue)

In order to model axonal transmission, AP-pulses generated by the cell models propagate along

the lines of the model and reach one ore more synapses without loss. However, there is a timing

issue. Even the natural rapid transmission will need a certain amount of time to cross larger

distances, for example between the superior olivary complex and the inferior colliculus. The base

element �Axonal Delay� therefore introduces a speci�c time delay to model the time a AP needs

to reach it's target. This parameter is accessible from the parametric layer and can be set to

any value between 10�s and several ms. Typical axonal delays in the auditory brainstem range

from 10 to 200 �s.

Under natural conditions, a single axon makes many contacts with dendritic synapses of di�erent

cells and at di�erent distances from its site of origin. To simplify the model structure, the base

element �Delay Line� has been created by combining three axonal delays into one simulation

block. The resulting internal structure is shown in Figure 3.16. The only parameter of both

axonal elements is the unit delay, identically applying to each axonal delay block.
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Figure 3.16:

left panel - structural layer of the neural base library element delayline

right panel - parametric layer of the delayline and axonal dely base elements.

The principal e�ect of axonal delays is displayed in �gure 3.17. Here it becomes observable that

a single action potential emitted from the sending neuron reaches its targets at di�erent points

in time - in this case after 2, 4 and 6 ms.
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Figure 3.17: delayed arrival of an Action Potential after passing a delay line of three units

Finally, there shall be a word with regard to dendritic delays. In principle, dendritic delays are

as well possible as axonal ones and the axonal delay block can also be used to introduce delays

into the graded dendritic propagation. However, the e�ect will be the same, if the AP (at the

presynaptic side of the synapse) is postponed or if the PSP (on the postsynaptic side of the

synapse) is delayed. By convention, in this model architecture delays have always been applied

to the axonal (or presynaptic) terminal. But this is only by convention and does not limit the

experimenter to use the axonal delay block to model speci�c dendritic delays. It is capable not

only to delay pulses but also graded potentials.

3.3 Cell Models

Out of the several cell models contained in the Neural Base Library only the non-learning IF

Neuron and dynamic IF Neuron including their extended versions will be introduced here. For

the learning models one might again refer to other publications like [ZITP97],[ZIT97].

3.3.1 IF Neuron

The general principle of Integrate and Fire (IF)-Neurons has been introduced already during

chapter 1 of this thesis. It's basic character is the spatio-temporal integration of graded potentials

resulting in the emittance of a uniform pulse in case of exceeding a de�ned �ring threshold. This

simple principle with some additional features is realized within the model of the �IF Neuron�

displayed in �gure 3.18.

Refractory
 Period

y

Integrate and Fire Neuron 

x

1

Axoninternal noise block
during

AP

tres

Soma
Potential

−1

50

>=

Axon
Hillock

        w = 0.6
       tmax = 1
       tend= 51

After Hyperpolarization

AP 
duration

1

Dendrite

Figure 3.18: left Panel - structural layer of the neural base library element IF Neuron

right Panel - parametric layer of the IF Neuron base element.
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As can bee seen in the upper left corner of the IF Neuron structure, the summation of the di�erent

dendritic PSP xi(t), directly feeds into the �rst major element of the model structure - the soma

potential. It represents the membrane potential of the neuron's cell body. Besides the spatio-

temporal summation of the external dendritic potentials, two internal potentials add to the value

of the soma potential resulting in the following equation:

s(t) =
nX
i=1

xi(t) + "(t)� ahp(t� tf )(3.15)

First, there is a internal noise term "(t), representing the fact that cell potentials undergo statis-

tical changes and are not fully deterministic. The noise term represents this natural phenomena

and can be set at the parametric level from outside. Internal noise is especially critical for

networks with adapting (learning) behavior. For most cells of the proposed architecture, noise

variance has been set to very small values like 0:00001 in order to achieve a fairly deterministic

cell response. However, statistical e�ects can be used when increasing this variable.

The second internal potential ahp(t) adding with negative sign to the soma potential is the so

called After Hyperpolarization Potential (AHP). The AHP, already known from the Spike Re-

sponse Models of Gerstner [GV94] [GK02] and van Hemmen [VGH+90] [VDC02], models the

membrane dynamic directly after a spike has been emitted by the cell. Here, the term (t � tf )

describes the time passed since the last �ring time (tf ) of the neuron. It is the very nature of the

ionic currents involved in the generation of Action Potentials that after each AP the membrane of

the entire cell is shortly hyperpolarized below the resting value at �55mV and recovers with time

constants between 100�s and 10ms. To model the AHP, again the PT2 element, known from

the static synapse, has been employed but only the maximum value w and the repolarization

time constant �R have been made accessible in the parametric layer. The rise time of the AHP

Element is always set to 100�s. The functional e�ect of the AHP is that during the AHP period

the cell potential is internally diminished causing a decreased �ring probability. In other words,

more synaptic current is necessary to make the cell �re again shortly after it has generated an

AP. The e�ects of all three parts on the soma potential are displayed in principle in �gure 3.19,

where the time course of PSP's is overlapped by some internal noise and the e�ect of an AHP

resulting from a previous spike.
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Figure 3.19: Soma potential (red) as linear summation of PSP's (blue), internal noise (varaince =

0.0002) and AHP e�ects (green).
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The second major element of the IF Neuron structure is the threshold function modeling the

processes at the axon hillock of the nerve cell. As can be observed in �gure 3.20, the soma

potential is here compared to a threshold value. The reason behind is that the active process of

AP generation is triggered if the soma potential within the cell exceeds a certain value, usually

referred to as �ring threshold. If this value is exceeded only for a very short time, a self inducing

process will generate an Action Potential of uniform shape in all cases. To ensure this determin-

istic nature of AP generation, beside the comparative element described as axon hillock, another

element named block during AP is added to the model. Accompanied by a delay element (set to

10�s) to prevent an algebraic loop, this AP block ensures that the threshold is always exceeded

during the duration of one AP and the AP pulse is not cut of, even when the calculated noisy

soma potential falls below the threshold.
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Figure 3.20: As result of a presynaptic potential (blue) the IF Neuron generates a uniform spike (ma-

genta) if the soma potential (red) exceeds the threshold (cyan) and is followed by an absolute (yellow)

and relative (green) refractory period.

Due to the nature of AP generation, every pulse needs to have the same duration as well as the

same height. To ensure identical height, a uniform pulse height of 1 (= 100mV ) has been chosen

and is realized by the hillock comparator, as it returns boolean values of 0 or 1. To ensure a

uniform pulse width, the AP blocking element prevents the pulse from cutting of early and the

AP duration element ensures a cut of after exactly 100�s (1 model time step). The realization is

again a simple delay element set to 100�s accompanied by a high gain value named Refractory

Period. Each time the soma potential exceeds threshold, the AP duration element will hold the

output high for 100�s and will afterwards assure that the threshold is lifted to a very high value,

causing the hillock element to immediately return to 0 and to end the AP pulse. By this feed

back loop, a uniform width of every AP is assured. However, the refractory period element has

also a physiological correlate. Directly after the emittance of an AP, every cell is fully blocked

and cannot �re for about as long as the AP lasted. This period is often referred to as absolute

refractory period, while the AHP period in this case marks the relative refractory period. Since

these terms are often mentioned but have been hardly assessed in a quantitative way, a value of

100�s for the absolute refractory period has been chosen. Depending on the AHP parameters,

time constants of up to 10ms for the relative refractory period, have been used for the cell models

of the architecture proposed in this study.
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Finally, there is a fourth element adding to the threshold value, used for comparison at the axon

hillock. It is simply named threshold and marks the internal threshold potential at which the

AP generation process is triggered. It is freely de�nable at the parametric layer and is a simple

constant in case of the non-dynamic IF neuron.

Having described the speci�c elements of the IF Neuron model, it's overall transfer function can

be written as:

y(t) = �(s(t); tres(t)); with s(t) =

nX
i=1

xi(t) + "(t)� ahp(t� tf )(3.16)

tres(t) = tres+ ref(t)� block(t)

Here �(s; tres) describes the discontinuous threshold function returning 1 for s >= tres and 0

for any other case, s(t) represents the soma potential and has been already described as summa-

tion of dendritic PSP's - x(t), the internal noise - "(t) and the after-hyperpolarization - ahp(t).

tres(t) describes the comparative threshold value, containing the threshold constant - tres, the

refractory period ref(t) (which is 50 for tf =< t =< tf + 100�s and 0 elsewhere) and the

blocking function block(t) (with block(t) = �1 for tf =< t < tf + 10�s).

As shown in �gure 3.2, the principle parameters like threshold constant (tres), noise variance ("),

AHP maximum and decay time constant (ahp) are de�nable for each cell from the parametric

level. Beside these parameters, the parametric level allows the experimenter to access the time

course of di�erent internal cell parameters via the �internals� port of the IF neuron base element.

They can be selected by speci�c check boxes on the parametric level and are than propagated

and selected via the internal structural elements shown at the bottom of the block structure.

If all boxes are checked, one can watch them during simulation on a scope-display element pro-

vided by the SIMULINK standard library. A typical example is shown in �gure 3.21.
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Figure 3.21: internal cell parameters of an IF neuron receiving EPSP from a single synapse:

blue-presynaptic spikes, green- resulting dendritic potential, red- soma potential including noise and

after hyperpolarization, cyan- internal �ring threshold, magenta - emitted action potentials

Here, the presynaptic spike is additionally displayed (blue) to show the causality of the dendritic

potential (green) resulting in this case from a single synapse. As can be seen, the soma potential
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after the �rst spike, does not reach the internal �ring threshold and no AP is emitted. Hence,

the soma potential follows the dendritic potential with some noise. After the second presynaptic

spike, the temporal integration of PSP's reaches the �ring threshold and an AP is generated

about 2ms after the presynaptic spike. This AP, in turn generates an After-Hyperpolarization,

diminishing the soma potential for a certain period. In this case, the third presynaptic spike

arrives after the AHP is vanished and the cell �res again. Since the soma potential, at this time,

was already closer to threshold due to further temporal PSP integration, the temporal delay

between presynaptic spike and the AP spike emitted shortens to 1ms. However, the AP spike

will always result from the PSP and therefore follow the presynaptic spike with some delay, even

if the threshold would be lowered further. I.e. the causality and internal delay of cellular spike

transmission is guaranteed under any condition.

3.3.2 Extended IF Neuron

A special version of the IF neuron is represented by the Base Element Extended IF Neuron. As

shown in �gure 3.22, it duplicates the IF neuron but includes a single synaptic transmission

model at the dendritic entrance.
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Figure 3.22: left panel - structural layer of the neural base library element Extended IF Neuron

right panel - parametric layer of the Extended IF Neuron base element.

This element is particularly helpful if all synapses, projecting toward a speci�c neuron, can be

assumed to act identical or if a one to one connection is likely. In this case, the number of

necessary simulation elements can be signi�cantly reduced if the synaptic transfer function is

included in the cell model and the presynaptic spikes are feeded directly into the cell model.

Although somewhat un-physiological, its e�ect will be identical to several separate but identical

synapses projecting their PSP toward this cell. Logically, the synaptic transmission parameters

synaptic weight w, �D and �R are now part of the cells parametric layer and can be set from

here identical for all virtually assumed feeding synapses. However, special attention should be

drawn to the fact that the extended IF Neuron element does not allow the construction of

compartmental dendritic models (like apical or basal synapses) and prevents the experimenter

from using di�erent PSP shapes and/or dynamics. However, at some stages of the proposed

model direct one-to-one connections have been established using this element.
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3.3.3 Dynamic IF Neuron

For the simple case of a single synaptic input, the IF Neuron model described above, has proven

to be fairly su�cient. However, this is rarely the case. In real biological systems, most cells re-

ceive quite di�erent synaptic inputs. If many PSP's are integrated in the soma potential, the cell

reaches it's maximum �ring rate very fast, limited only by the absolute and relative refractory

periods (see �gure 3.24 Panel A).

Since this is not the physiological response of a nerve cell, another cell model has been developed

and named �Dynamic IF Neuron�. Under similar assumptions as in the case of dynamic synapses,

an additional �lter element has been added to this structure, modeling the limited resources and

�ring capabilities of a natural neuron.
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Figure 3.23: left panel - structural layer of the neural base library element Dynamic IF Neuron

right panel - parametric layer of the Dynamic IF Neuron base element.

Enhanced in �gure 3.23 this additional element is positioned within the feedback loop of the

threshold function and is triggered by every AP emitted. This results in an adaptive threshold

represented by the term res(t� tf ) in the threshold function of equation 3.17 now written as:

y(t) = �(s(t); tres(t)); with s(t) =

nX
i=1

xi(t) + "(t)� ahp(t� tf )(3.17)

tres(t) = tres+ ref(t)� block(t) + res(t� tf )

The parameters of this PT2 element are controllable from the parametric level and contain again

the maximum value max the resource-blocking -time-constant �auf and the resource-decay-time-

constant �ab. Through these parameters, the experimenter can now control which maximum

�ring rate is reached after which time. By modi�cation of the resource parameters, the cell's

response to an identical activation pattern can be modi�ed between a strictly onset response (see

�gure 3.24 - panel D), where only a single burst is emitted at the onset of the signal, and from

there continuously across Pauser response (panel C) and Primary response (panel B) toward the

Chopper response, shown in panel E. These response types will be introduced in more detail in

the next chapter and shall only be mentioned by example at this point.

The dynamic model behind the resource element, is fairly simple and goes back to that channel
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Figure 3.24:

panel A - Response of the static IF Neuron to high multi-synaptic excitation for reference, blue - dendritic

potential; green - soma potential; red - internal �ring threshold; cyan - emitted AP-spikes

panel B - Primary-like response of a dynamic IF neuron to the same input with dynamic parameters set

to max = 0:1; tau� auf = 30; tau� ab = 100

panel C - Pauser response of the dynamic IF neuron to the same input with dynamic parameters set to

max = 0:15; tau� auf = 50; tau� ab = 100

panel D - Onset response of the dynamic IF neuron to the same input with dynamic parameters set to

max = 0:2; tau� auf = 100; tau� ab = 200

panel E - Chopper response of the dynamic IF neuron to the same input with dynamic parameters set

to max = 0:5; tau� auf = 1; tau� ab = 40

resource theory. The more often a speci�c cell has already �red within a given time frame,

the more ion channels are blocked and cannot be activated until after their recovery period

is over. The resulting e�ect is that after every AP, the threshold to be exceeded in order to

generate another AP is lifted by a small amount. During the �rst ms this will not in�uence

the �ring behavior much, but as the emitted AP's become more dense, the threshold value will

signi�cantly increase and slow down the persistent �ring rate. As can be seen in panel D of

�gure 3.24, it reaches a high level equilibrium, where the �ring rate depends mainly on the

resource-reactivation-time-constant �ab.

The dynamic IF neuron has been used in the proposed architecture, to model the speci�c cells

at the lateral superior olive (LSO) as well as within the dorsal nucleus of the lateral lemniscus

(DNLL) and the inferior colliculus (IC). The referring cell types in the Derived Elements section of

the Neural Base Library have been derived from this base element with their dynamic parameters

set to speci�c values as displayed in the next chapter.
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3.3.4 Extended Dynamic IF Neuron

Last but not least, the fourth non-learning cell model shall be introduced here. As one might

imagine it combines the extended IF neuron with the dynamic one and is therefore called �Ex-

tended Dynamic IF neuron�. It's structure and internal equations are identical to the dynamic

IF Neuron except that a synaptic transmission model is again added at the dendritic entrance.

The reasons are mainly of computational nature and similar to those, mentioned in case of the

extended IF neuron. The internal structure and parametric level shown in �gure 3.25, might

therefore not surprise.
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Figure 3.25:

left panel - structural layer of the neural base library element Extended Dynamic IF Neuron

right panel - parametric layer of the Extended Dynamic IF Neuron base element.

This base element was especially used to derive the three cochlear nucleus (CN) cell types of the

derived elements section. Primary-, Copper- as well as Onset-Cells are necessarily of dynamic

nature and since the model assumes a direct one-to-one feeding of the CN cells by the auditory

nerve �bers, the single synapses have been included into the cell model to clarify the model

structure and decrease the computational e�ort.
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3.4 Sensors

The fourth and last group of neural base elements shall be mentioned only brie�y at this point,

since the motivation behind them as well as their detailed internal structure will be discussed

during the introduction of the inner ear model at the next chapter. However, the structural

and parametric levels of the two auditory sensory elements used in this architecture shall be

introduced here for reasons of completeness.

3.4.1 Cochlea

The �Cochlea� base element realizes a speci�c �lter cascade of 2'nd order �lters designed to model

16 di�erent locations along the basilar membrane. Since the cochlea as a whole as well as the

elongation of the basilar membrane is a purely mechanical mechanism, there is no neural corre-

late to this element. However, a detailed and timely exact model of this mechanical structure

is essential to decode the frequency parameters as well as interaural disparities of the acoustical

signal arriving at the two ears.

To realize this �lter cascade the Cochlea base element makes use of a speci�c type of MATLAB

function optimized to use with MATLAB/SIMULINK called s-function. Following a prede�ned

I/O syntax, s-functions can contain any type of mathematical functions written in MATLAB

code. The s-function used here is called �tcasc and can bee seen at the parametric level dis-

played in �gure 3.26. The second parameter of the s-function is a variable named �t16441, which

contains the 5 �lter coe�cients for each of the 16 frequency �lters used in this model.

Cochlea Model

1

Out

fltcasc

s−function

1

In

Figure 3.26: left panel - structural layer of the neural base library element Cochlea

right panel - parametric layer of the Cochlea base element.

The �tcasc s-function in principal could load any �lter �le and therefore realize any number of

�lters. In this model 16 �lters for each hemisphere have been chosen, to achieve a su�cient fre-

quency resolution, while not running into computational problems due to the increasing number

of cells and synapses, in case of more frequency channels.

Due to some hidden calculation and loading processes happening during the model initialization

phase in the background, the experimenter will not need to care for the s-function nor the �lter

�le. The only prerequisite is that both �les reside in the NBL folder included in the MATLAB

path, as mentioned above. Noticeable at this point is the fact that one should name the s-

functions di�erently if the Cochlea element is used more than once. Unfortunately, the object

oriented library approach does not hold for s-functions so far and therefore, the separate instances

have to be created by hand. This is fairly simple by saving them with another �le-name and

changing the function-name in the �rst line of the code.



74 CHAPTER 3. THE NEURAL BASE LIBRARY

3.4.2 Hair Ganglion

The last base library element to be introduced here is the �Hair Ganglion� model. Its task is,

to model the �rst stage of auditory coding, when the mechanical de�ection of the inner hair

cells, generate oscillatory cell potentials for each frequency channel. Their amplitude, phase and

frequency are coded by the AP-spikes of the ganglion cells, generated by this model element.

To model this coding procedure, a library element, very similar to the static IF neuron, is em-

ployed. It represents mainly the ganglion cell, emitting the �rst spikes of the auditory system

and feeding them into the auditory nerve �bers. Structure and parameters of the hair-ganglion

model are again shown in �gure 3.27
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Figure 3.27:

left panel - structural layer of the neural base library element Hair Ganglion Complex

right panel - parametric layer of the Hair-Ganglion base element.

The essential di�erence to a normal IF neuron is here that there is no dendritic input to that

ganglion cell. Instead it receives sinusoidal hair cell potentials, moving the ganglion soma po-

tential between de- and hyperpolarization back and forth. Each time the cell is depolarized,

a number of spikes, depending on the amplitude of hair elongation and the frequency of this

channel is generated by this model. Since the typically low �ring threshold is reached at exactly

the same cycle time of each sine wave, this coding mechanism, realizes phase locking up to 2kHz

as well as the encoding of interaural time di�erences (ITD's). The upper limit for phase locking

at 2kHz is given by the positive cycle time of 250�s for that frequency, which is just su�cient

to generate a single spike per cycle.

To achieve more than one spike per cycle, the hair-ganglion Model has typically short AHP time

constants, resulting in a high �ring rate during the positive cycle. However, the number of spikes

per cycle and therefore the amplitude coding depth achievable with one hair-ganglion Model is

limited to 8-10 spikes in case of the 500Hz channel (cycle time of 2 ms) and decreases with

increasing channel frequency. To reduce this limitation and re�ect the one to many connectivity

of hair cells, 3 ganglion cells with di�erent �ring thresholds have been assigned to each frequency

channel and combined within the derived Base Library element Inner Hair Cell Complex shown

in �gure 3.28.
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Figure 3.28:

left Panel - structural layer of the neural base library element Inner Hair Cell Complex

right Panel - parametric layer of the Inner Hair Cell Complex.

As can bee seen in �gure 3.28 right panel, the parameters are here to be set for 3 Hair - Ganglion

models in one mask, whereas the �ring thresholds vary between 0.1 (10 mV) and 1 (100mV). A

more detailed evaluation of the Hair Cell Ganglion coding principle and the e�ect of the tripple

cell approach will be provided in subsection 4.2.3�Hair Ganglion Model�.

Having now introduced the essential elements of the Neural Base Library, the next section pro-

vides some general simulation parameters and conventions used for this speci�c model.
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3.5 Simulation Conventions

The MATLAB /SIMULINK environment used for the simulation of the proposed model architec-

ture allows the user to simulate dynamic models under a variety of di�erent conditions. These

conditions are accessible via the Simulation / Parameters menu at the top of the simulation

environment. After opening this menu a three rider panel, shown in �gure 3.29 becomes visible.

Figure 3.29: left panel - parameters of the Solver rider

middle panel - parameters of the Workspace I/O rider

right panel - parameters of the Diagnostics rider

The most important of these riders is the one named Solver. At it's top, the experimenter can

choose the start and stop time for simulation. These numbers refer to the Simulation-Time-

Step (STS) of the SIMULINK System, which is identical with the model clock and is used

to display the time course within the display elements. In order to interpret the simulation

results, the experimenter must set a convention for the time represented by 1 Simulation Time

Step. Throughout this model 1 STS = 100 �s. Using this convention, a single spike of 100�s

duration for example, lasts exactly one simulation time step and a 1 second Signal is simulated

after 10000 STS. It is important to notice that all time constants need to be set using this time

measure. For instance to realize a time constant of 5ms the referring parameter needs to be set

to 50 = 50 � 100�s = 5ms.

The Start Time parameter is usually set to zero, whereas the Stop Time has to be selected

carefully to cover the essential parts of the signal provided. A special batch routine named

�SIMULATE.M� has been designed, to determine the signal length up front and set the Stop

Time parameter automatically.

The second part of the Solver-Rider contains the Solver Options. Here, the experimenter can

determine, which method is used, to solve the di�erential equations during simulation. The

principle solver type can be chosen between variable step size and �xed step size. In general,

the variable step size will lead to more accurate results since the step width is always optimized

with regard to the variance of the simulated time courses. However, in case of large models, with

many variables simulated at the same time, the optimal step size becomes always very small and

the overall simulation time increases signi�cantly.

Therefore, a �xed Calculation Time Step of 0.1 STS has been chosen for this model. This

means that the value of all internal states and variables are calculated every 0.1 STS, i.e. every

10 �s. If, for instance, the �ring threshold of a cell model is now exceeded and has not been above
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threshold 10�s before, a spike will be emitted immediately, although the next full STS is not

yet reached. This way, the proposed model architecture realizes a time resolution of constantly

10�s at all levels.

Finally the experimenter has to chose a Solver Method. The list of options is shown in �gure

3.29-left panel and contains all typical solver methods including a discrete one in the beginning.

In general, the Neural Base Library elements can be used with any continuous or discrete solver

method but it is suggested, to use a continuous method, since the many continuous values will

otherwise be discretized and this will cause di�erent timings and changes in the dynamic prop-

erties. Out of the continuous solver methods, the Euler Method has been chosen for this model,

since it could prove su�cient accuracy while realizing a quite fast and e�ective mechanism. The

Output Options at the bottom of this rider can be neglected for this model.

The second rider named Workspace I/O enables the user, to save and load results at the begin-

ning and the end of the simulation. If one checks the Input- check box, input parameters are

loaded directly from the MATLAB workspace and must be contained in the [t,u] variable pair.

This option should not be used if possible. To work around, the �load from �le� block in the

model architecture allows to load input variables of any type from .mat �les containing the time

in the �rst row and any number of input sequences in the rows 2� n.

Somewhat similar to understand are the output variables Time, States and Output. Although

they can be renamed after checking the referring box, they should not be used, if a standard

Scope display element already displays the parameter to be stored. Every Scope element con-

tains a �Settings� rider, where a speci�c workspace variable can be de�ned the systems saves its

simulation results into. The MATLAB command �SAVE� without any syntax will then store all

workspace variables into a �le, where they remain accessible for later evaluation. To automate

this procedure the batch routines �SIMLUATE� and �EXPERIMENT� have been designed and

included in the MATLAB path.

A sometimes useful tool of the second rider is contained in the States section. Since SIMULINK

internally uses a number of internal states xn to represent all simulated parameters, these states

can be saved at the end of the simulation and loaded at another point in time. As long as the

model structure remains absolutely identical, the loading of former saved states causes the model

to continue the simulation exactly at the same point it stopped before. This is especially helpful,

if simulations need to be interrupted, in order not to lose the achieved simulation results. The

name of the state variables can be chosen with no signi�cant limitation.

The third rider Diagnostics, shall be mentioned here only shortly. If the consistency check is

on, MATLAB will provide a list of warnings on the MATLAB Workspace, reminding the user

on open outputs, inputs and algebraic loops (i.e. the feed back de�nition of a variable by itself

without time delay). However, model errors like algebraic loops will be always displayed in the

workspace and prevent the model from running. In order to prevent the user from a long list of

warnings at the start of every simulation due to not connected �Internals� ports of currently not

watched cells, the consistency check has been disabled for this model by default.
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To summarize the main conventions and parameters of this model, these are:

� 1 Simulation Time Step (STS) refers to 100�s is used to display the models output and

shall be used to de�ne all time constants,

� 1 Calculation Time Step (CTS) is 10 times shorter at 10�s and is used to de�ne the time

resolution of the model calculations,

� this model should be simulated using the Euler Method and a �xed step size of 0.1 de�ning

the relationship between STS and CTS,

� simulations can be interrupted if the state variables are saved after simulation end and

loaded to the identical model later on,

� simulation results should be saved using the storage options of all display elements and/or

the special batch routines �SIMULATE� and �EXPERIMENT�.
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3.6 Neural Simulation Systems

Before entering the model architecture itself, which is exclusively composed of NBL elements, a

short overview on other existing neural network simulation systems will try to answer the ques-

tion why we had to develop our own environment for simulation of neurons instead using one of

the numerous tools in reach of today's neural computation engineers.

By today the number of biologists and bio-engineers striving to validate and evaluate their ex-

perimental by realistic models of neurons has signi�cantly increased, and rapidly developing

computing power of conventional computers has enabled far more detailed simulation methods

than 10 or 20 years ago.

However, the full complexity of dynamic multidimensional information processing in natural

neural networks is still not accessible and will remain so due to the general limitations of the

conventional computing paradigm discussed in section 1.2.2 and 6.3 of this thesis. Therefore,

one of the major reasons to develop our own simulation system was, to �nd a simulation system

which combines three seemingly contradictory features:

1. Including the necessary level of detail to duplicate dynamic properties of neural systems

at the level of synapses and cells - enabling the direct comparison of simulation results to

recordings from physiological experiments.

2. Using the available power of today's conventional computers and professional software

systems to ensure fast performance, graphical interaction and their usage without detailed

programming abilities.

3. Ensuring scalability to model entire neural systems (like the auditory brain stem) by en-

abling a fully parallel implementation as special analog-digital hardware.

To the knowledge of the author, none of the numerous neural simulation systems available in

the late 90'th of the 20'th century was able to combine these features. To support this hypoth-

esis some major neural simulation systems will be shortly introduced at this point. For a more

comprehensive overview on neural simulation systems, one might refer to http://www.hirnfor-

schung.net/cneuro/.

The several simulation systems listed there can be generally divided into two types: First, the

biological driven simulation systems and second the functional driven simulation systems.

A typical example of biological driven simulation systems is the SNNAP system provided

by the department of Neurobiology and Anatomy at the University of Texas Health Science

Center. It exhibits a very high accuracy of cell modeling including Hodgkin-Huxley models, ion

channel properties and synaptic transmission details. However, a general draw back of biological

simulation systems is that this detailed modeling results in a large number of parameters, most of

time not accessible even to the biologist, facing the user with many parameters of great impact to

the overall function which have to be guessed or extracted from not always comparable sources in
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literature. Additionally, their ability to model detailed compartmental neural connections is paid

for by a limited network size. Designed for small networks of 3-10 cells SNNAP can now simulate

up to 10000 neurons in the batch mode, but in this case it is far from real time performance

and no more of value to technical applications. This holds as well for other advanced biological

simulation systems like NEURON provided by Michael Hines and John W. Moore at the De-

partment of Neurobiology at the Duke University, MCELL provided by T.M. Bartol from the

Salk Institute and J.R. Stiles from Pittsburg Supercomputing Centre, CATACOMB provided

by Mike Hasselmo from Boston University or the GEPASI biochemical kinetic simulator from

the Virginia Bioinformatics Institute.

All of those biological simulation systems lack the ability to be transferred into electronic cir-

cuitry, opening the door to truly parallel computing and technical applicability.

The probably most advanced functional simulation system based on Integrate and Fire Neu-

rons is the GENESIS tool developed at the California Institute of Technology. The earliest

GENESIS simulations were biologically realistic large-scale simulations of entire cortical net-

works (Wilson and Bower, 1992). On the other Hand, the De Schutter and Bower cerebellar

Purkinje cell model in 1994 is a typical example of a large detailed single-cell model, with 4550

compartments and 8021 ionic conductances. GENESIS is now often being used for large systems-

level models of cerebellar pathways (Stricanne, Morissette and Bower, 1998), and at the other

extreme, is increasingly used to relate cellular and network properties to biochemical signaling

pathways (Bhalla and Iyengar, 1999).

Originally, GENESIS war purely based on a UNIX scripting language, demanding quite some

training of the user, to set up and simulate neural networks. Although, the graphical Interface

XODUS has been added in between, its graphical programming capabilities are still limited from

the perspective of a biological researcher. Another reason, not to use this system for the purpose

of this thesis was the fact that the broad area of application has added a signi�cant amount of

complexity to the system increasing the amount of computational overhead signi�cantly. This

has somewhat changed since libraries of entire cell models and synapses (similar to the NBL)

have been added during the last years but at the time, this thesis was started, the amount of

con�guration work necessary to set up small networks and display intrinsic parameters has been

quite extensive. Finally, also GENSIS is not concerned with parallel computing and entirely

relies on dynamic simulations on conventional computing architectures. However, to the believe

of the author, only truly parallel and distributed computing in specialized silicon will enable the

technical usage of detailed neural cell models.

Other even more functional oriented simulation systems include the NEOSIM simulator from

the University of Edinburgh, the statistical Neural Network Simulators ADALINE, BPN,

HOPEFIELD, BAM, BOLTZMANN, CPN, SOM and ART1 provided by K. Kutza at

http://www.geocities.com/CapeCanaveral/1624/ and the NEURON simulator developed by M.

Hines and T. Carnevale at Yale University together with J.W.Moore at Duke University. Those

simulators are rather purely concerned to simulate functional aspects of neural cell systems.

Therefore they lack the necessary detail to compare their results to physiological recordings and

explain neuro-biological experiments.
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Last but not least, the development of the Neural Base Library, introduced in this chapter,

was driven by a long track of positive experience with the MATLAB simulation environment,

providing a huge and simple to access variety of algorithmic signal processing functionalities

including the advanced dynamic simulation system (SIMULINK) with many prede�ned library

and display elements and highly developed graphical programming cababilities. The MATLAB

Inc. support furthermore ensures continuing portability to all kinds of operating systems and

hardware con�gurations as well as increasing portability onto specialized DSP hardware (i.e. by

dSPACE Converters).

In conclusion, non of the available neural simulation systems available during the late 90'th could

combine the three aspects mentioned above and the author decided to develop an own library based

on the well established MATLAB system.

Based on the elements of this Neural Base Library, the next chapter will describe the developed

model architecture of the auditory brainstem, which contains models of several auditory nodes

and their connectivity. It is exclusively composed of NBL elements.



Chapter 4

Model Architecture and Physiological

Correlates

This chapter will now introduce the neural model architecture in parallel with some essential

aspects of the referring physiological structures. It starts with a overview of the major nuclei and

their connectivity within the auditory brainstem. Afterwards, the �ve model stages ascending

from the inner ear toward the inferior colliculus and their physiological counterparts will be

described in detail including the internal model structure and the simulation parameters used.

4.1 The Auditory Brainstem - Overview and Connectivity

Based on much more accurate and detailed recording and modeling methods during the last

�ve decades, neuroscience has gathered a signi�cant increase of knowledge on the microscopic

structure, the connectivity and the functionality of auditory nuclei within the brainstem and

higher auditory centers. Although the principles of hearing are still not fully understood, it

becomes evident that sonic events, in the way they are visible on oscilloscopes after microphone

recording, are never projected directly to the auditory cortex. What is processed there, is a

variety of auditory features extracted from the physical phenomena of sound within the auditory

brainstem. Human hearing experience, i.e. the impression of a continuous acoustic environ-

ment consisting of tones, sounds, speech, music, noise or silence, �nally relies on the combination

of those features extracted, coded and pre-processed within the auditory centers of the brainstem.

Di�erent from the visual system, the auditory path (displayed in principle in �gure 4.1) branches

directly after entering the brainstem into separate pathways crossing the two hemispheres several

times and reconnecting �rst time in the inferior colliculus. In between, numerous excitatory and

inhibitory interconnections as well as a huge variety of dynamic cell response properties have

been detected. Quite well established is the view onto two separate pathways for the decoding

of interaural time di�erences - referred to as the Timing Pathway and the decoding of interaural

intensity di�erences - called Intensity Pathway.

The Timing Pathway mainly emerges bilateral from the ventral cochlear nucleus (VCN) and

includes the medial superior olive (MSO) as well as inhibitory projections of the MNTB MNTB

- Medial Nucleus of the Trapezoid Body - a small structure in the superior olive transforming

excitatory inputs from the contralateral hemisphere into inhibitory signals to the ipsilateral LSO

82
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Figure 4.1: Ascending auditory pathways

und MSO and LNTB within the superior olivar complex (SOC). While most of the ascending

�bers of the Timing Pathway approach the IC, at least some branch into the DNLL generating

very similar responses of MSO Cells and speci�c DNLL cells of the EE type.

The Intensity Pathway originates also in the Ventral Part of the Cochlear Nucleus (VCN)

and projects ipsilateral to the LSO as another speci�c sub-nucleus of the SOC. The same LSO

receives inhibitory inputs from the contralateral VCN via the ipsilateral MNTB. From the LSO,

a�erent projections cross again and excite the contralateral IC as well as the contralateral DNLL.

Additional inhibitory projections have been found to approach the ipsilateral DNLL.

As mentioned before, there is convincing evidence for e�cient mechanisms to suppress echoes

based on the interaction within the Intensity Pathway including additional bilateral inhibition at

the site of the DNLL. Therefore, the speci�c projections of the Intensity Pathway towards and

away from the DNLL will be modeled here in detail. At this point it must be mentioned that

many auditory perceptual and associative tasks are assigned to the auditory midbrain as well as

to thalamic and cortical structures displayed in principle in Figure 4.1. However, those will not

be subject to this model.

The quite complex connectivity of auditory centers within the brainstem is displayed with greater

detail in �gure 4.2. Throughout this chapter this seemingly confusing network will be revealed

and step by step evaluated resulting in a fairly simple principle to localize sounds and suppress

their echoes. Since most of the excitatory as well as inhibitory projections are known to cross

between the two hemispheres, information contained within binaural disparities becomes decoded

mainly in the di�erent nuclei of the SOC and interact already at the level of the DNLL.



84 CHAPTER 4. MODEL ARCHITECTURE

Figure 4.2: Overview of the main nuclei of the auditory brainstem and their connectivity

AN- Auditory Nerve, VCN- Ventral Cochlear Nucleus, DCN- Dorsal Cochlear Nucleus, SOC-

Superior Olivary Complex,MSO- Medial Superior Olive, LSO- Lateral Superior Olive, MNTB-

Medial Nucleus of the Trapezoid Body, LNTB- Lateral Nucleus of the Trapezoid Body, DNLL-

Dorsal Nucleus of the Lateral Lemniscus, ICc- central Inferior Colliculus, ICx- external Inferior

Colliculus.

As can be observed, most of the ascending projections within the auditory brainstem are of

excitatory, glutamatic nature. However, recent experiments have revealed that timely exact

and e�cient inhibitory glycinergic and GABAergic projections within the brainstem, account

for a substantial part of the pre-processing carried out in the SOC, the DNLL and the IC.

Although the connectivity pattern of �gure 4.2 seems quite complex, it does not claim to cover

all of the existing projections. In fact, it is a rather limited limited view onto those nuclei and

connections, relevant to sound source localization and echo suppression based upon interaural

intensity di�erences.

The general architecture of the model developed to simulate the intrinsic dynamics and func-

tionality of the di�erent nuclei shown above consists of �ve major stages visualized in �gure 4.3.

The �rst stage is concerned with the realistic frequency decomposition and neural coding in the

inner ear and the projections from the cochlear hair cells to the ganglion cells of the auditory

nerve. The second stage models the onset detection and generation of dynamic spike pattern

at the level of the cochlear nucleus (AVCN). The following third stage models the azimuthal

detection of sound source locations based on the evaluation of interaural intensity di�erences
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within the LSO nuclei. They project to a fourth stage modeling the echo suppression based on

persistent inhibition caused by interactions between the left and right DNLL. Finally, the �fth

stage accounts for the correct detection of sound source locations even under echoic conditions

and contains an arti�cial directional sensor despite the models of the left and right IC cells.

Figure 4.3: Five stage principle architecture of the auditory brain stem model

In order to reveal the modus operandi under di�erent dynamic conditions as well as to achieve a

functional model, all of the connections shown in �gure 4.2 have been included in the functional

SIMULINK model shown �gure 4.4.
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As visible, the model architecture contains separate structures for all stages of processing and

each of the two hemispheres. The architecture starts with a bilateral model of the inner ear

including mechanical transduction in the cochlea (light blue) and neural coding by inner hair

cell - ganglion complex (cyan).

It is followed by the �rst center of auditory information processing - the cochlear nucleus (CN)

represented in green color only by its antero ventral part (AVCN). From here, the green connec-

tions transfer the excitation pattern toward the contralateral central inferior colliculus (at the

top of the �gure), and toward the ipsilateral LSO (connections at the bottom). Furthermore,

inhibitory projections toward the LSO are realized by the light green structures representing the

left and right MNTB.

Feeded from both AVCN and MNTB, the blue nuclei refer to the LSO and their connections.

They send contralateral excitatory projections toward the DNLL (rising triangles in red color),

whereas ipsilateral projections toward the DNLL are of inhibitory nature (falling red triangles).

Additionally, excitatory projections toward the contralateral IC are shown by the blue lines

approaching the top of the model.

The next stage is marked by the red structures of the DNLL model. As can be seen, beside

the contralateral inhibitory projections toward the contralateral IC, there are weak (small tri-

angles) inhibitory in�uences of the ipsilateral IC and strong inhibitory projections toward the

contralateral DNLL.

Finally, at the top of the model, the orange structures contain the cell models of the speci�c IC

cells relevant to this study, receiving input from the contralateral CN, the contralateral LSO and

bilaterally from both hemispheres of the DNLL.

At the top of the model, an arti�cial structure is shown in black, to generate a directional signal,

able to guide a technical system like the motor of a robot head. At the bottom, blue �lled

elements are used to feed the model either with arti�cial sinusoidal signals, generated by the

binaural sinus generator, or recorded �les from free �eld or real world experiments.

The following sections will now describe the internal structure, as well as the dynamic parameters

and physiological correlates for each of the nuclei, shown in �gure 4.4. Since all of these nuclei are

based upon the elements of the neural base library (NBL) (see chapter 3) the description will be

limited to the functional level, taking in account that all employed elements have been introduced

on the structural, parametric and dynamic level during the last chapter. Last but not least, it

shall be mentioned that the architecture shown above, is a one to one view onto the computational

model, as it is visible to the experimenter and can be run by MATLAB/SIMULINK.
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4.2 Stage 1 - The Human Ear

4.2.1 Outer, Middle and Inner Ear - Physiological Aspects

Di�erent from the visual system, acoustical signals undergo a number of physical modulations

and transformations before they become coded into auditory action potentials. Since the pri-

mary sensory range of the auditory system is limited to two 1-dimensional time series at the left

and the right ear, the reconstruction of a 3-dimensional auditory space depends on the intrinsic

parameters of the time series, like frequency, amplitude, phase, AM modulation and FM modula-

tion. The task of the auditory sensors at the inner ear is, to transform these physical parameters

as exactly as possible into speci�c �ring pattern of the acoustical nerve and to separate them

step by step from a purely temporal code into a spatio-temporal representation with distributed

�ring pattern.

Outer and Middle Ear

Hearing doesn't start in the inner ear. It is the shape of our body, our head and of the outer ear

which generate speci�c modulations, important to discriminate sounds in the vertical plane as

well as to distinguish between front and rear sounds. Furthermore, the middle ear, containing the

tymphanic membrane and the three bones, malleus, incus and stapes, enables the tremendous

dynamic hearing range by selective attenuation and the transformation of air pressure waves into

micro-mechanic �uid waves within the cochlea. As shown in �gure 4.5, beside the bony spiral of

the cochlea, the inner ear contains the semicircular ducts of the balance system and the VIII. or

Acoustical Nerve.

Figure 4.5: Schematic drawing of the essential parts of the human ear according to [DMS01]S.360

All structures of the outer and middle ear are interesting objects of auditory science by them self,

but have been excluded from that model, since its aim is currently limited to sound localization
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within the horizontal plane under normal condition with no extreme dynamic sound properties.

However, further models might add at least some of the modulation properties assigned to the

outer and middle ear and extend the application range of this architecture.

Inner Ear

The entire primary coding mechanism is to be found within the spiral shaped bony cochlea of

the inner ear. Here mother nature has combined micro-mechanical as well as electrical principles

in an amazing manner to achieve a very e�cient coding system. The general principle of this

system is shown in �gure 4.6.

Figure 4.6: Simpli�ed (straightened) display of the cochlea and its basilar membrane in motion

As shown above, the mechanical oscillations of the stapes are transmitted into �uid oscillations

at the oval window at the basal end of the �uid �lled Cochlea. From here, a traveling wave prop-

agates along the cochlea toward the apex, or the Helikotrema at the inner end of the Cochlea.

The necessary pressure equalization happens at the round window at the opposite side of the

basal Cochlea end. This traveling wave also moves the cochlear divider including the Organ of

Corti, shown in �gure 4.7, as the organ of auditory coding.

The cross section of the cochlea, shown in �gure 4.7 panel A, clari�es the position of the organ

of corti within the scala media bordering the scala tymphani. Panel B has magni�ed the organ

of corti and shows it's essential parts. The basilar membrane including 3 rows of outer hair cells

(OHC) and 1 row of inner hair cells (IHC), and the tectorial membrane lying above with the

ends of the hairs attached to it.

As the traveling wave now moves along the cochlea, it realizes the �rst stage of decoding and

creates one of the major decoding principles of the auditory system - the tonotopy. Since the

basilar membrane is narrow and sti� near the oval window and becomes more broader and more

�exible toward the apex, its resonance frequencies changes from high frequencies, near the oval

window, toward low frequencies, near the apex. Based on these mechanical properties, a sound

of a speci�c frequency will cause the basilar membrane to resonate at a speci�c location along

the cochlea as shown in �gure 4.6.
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Figure 4.7: Structure and essential parts of the organ of corti by permission of [KSJ91]

1-11 cell types of the basilar membrane with outer hair cells (5), inner hair cells (10), tectorial membrane

(12) and ganglion cells (13/14)

The spectral components of a speci�c sound are this way spatially decoded covering a range

of 50 Hz (near the helikotrema) up to 20 kHz (near the oval window). This spatially ordered

representation of frequency components is called Tonotopy and holds for many auditory regions

up to the primary auditory cortex.

However, the louder a sound, the more energy will be transferred into the cochlea and the move-

ment of the basilar membrane will not just increase in amplitude but also in the overall portion

being set in motion, i.e. a very loud sound will move nearly all parts of the cochlea beginning

from the base and reaching the helikotrema after some cochlear time-lag. On the other hand, a

gentle sound will cause the cochlea to move only at a very speci�c location.

If one now takes a look at a speci�c location along the cochlea, the mechano-electrical transduc-

tion principle becomes visible as displayed in �gure 4.8.
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Figure 4.8: Mechano-electrical transduction by de�ection of hair cell Sterocilia as a result of the oscil-

lation of the basilar membrane

As the basilar membrane including their hair cells is moved by the traveling wave, the hairs

(stereocilia) become periodically bent from one side to the other, since their ends are �xated

within the tectorial membrane. This de�ection of hairs, exactly follows the the time course of

the membrane oscillations at this speci�c point, i.e. the time course of the speci�c resonance

frequency component called best matching frequency (BMF) or characteristic frequency (CF) of

that location. Due to the di�erent length of the inner hair cell - stereocilia, their bending results

in an opening and closing of ion channels as shown in principle in �gure 4.9 panel A.
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Figure 4.9:

panel A - periodic depolarization and hyperpolarization of hair cells by the de�ection of stereocilia.

panel B - recruiting of adjacent cells to code higher SPL's.

If a inner hair cell becomes depolarized by an in�ux of positive ions during the bending of hairs

to the right, transmitter is released at the numerous somatic terminals of spiral ganglion cells.

This way the oscillating inner hair cell potential is directly transferred to about 30 di�erent

ganglion cells. However, every ganglion cell is only excited by one inner hair cell. This excitation

leads to a change of the ganglion's �ring rate, depending on the current cycle of movement at a

speci�c cochlea position. In fact, the ganglion cell will only �re during the positive (depolarizing)

part of the oscillation cycle. Panel B of �gure 4.9 shows another important coding scheme. As

the SPL (and therefore the de�ection of stereocilia) increases, a single ganglion cell might reach

its maximum �ring rate. In this case, the rate code is accompanied by a place code. Adjacent

ganglion cells, which receive their input from the same hair cell, become recruited and start �ring

at higher depolarization values (i.e. �ring thresholds).
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Finally, the 30 to 50 thousand axons of the spiral ganglion cells make up the acoustical nerve

(AN). It leaves the inner ear toward the cochlear nucleus and carries all of the acoustical infor-

mation now coded as auditory action potentials. In principle, the frequency components of each

sound are coded by place (tonotopy) in the di�erent �bers of the acoustical nerve, the phase of

each component is coded in the timing of spikes within that speci�c �ber and the amplitude of

that component is coded in the number of spikes per cycle as well as the number of AN �bers

(ganglion cells) being recruited. The coding of AM (amplitude modulation) and FM (frequency

modulation) will be demonstrated in the next section using the developed model of the inner

ear.

While the inner hair cells nearly exclusively excite the a�erent �bers of the acoustical nerve, the

circumstances for the outer hair cells are quite opposite. Only about 10% of the sensoric �bers

originate from those cells despite their relatively large number placed in 3 parallel rows. Most of

the outer hair cells are innervated by e�erent �bers, reaching the inner ear from higher auditory

centers. Furthermore, it has been shown that outer hair cells can actively contract or elongate

their hairs. This leads to the very likely, but not yet proven assumption that Outer Hair Cells

are mainly involved with the location speci�c modulation of the �exibility between basilar and

tectorial membrane and therefore, the active modulation of sensory information by the higher

auditory system.

The tonotopic organization principle is very prominent within the acoustical nerve. However, a

single AN - �ber does not only respond to its best-matching-, or characteristic frequency. As can

be observed in �gure 4.10, their sensitivity to other frequencies can be described by asymmetric

tuning curves, which remind on the traveling wave, moving from high to low frequencies. These

tuning curves have been measured for many species and shall be displayed by example for the

acoustical nerve of the Chincilla.

Figure 4.10: Tuning Curves of six di�erent nerve �bers originating from di�erent inner hair cells along

the cochlea of the Chincilla after Ruggero [Rug92]

Beside the di�erent characteristic frequencies and the tonotopic organization of the acoustical

nerve, �gure 4.10 also shows the asymmetric nature of the tuning curves preferring the lower

neighboring frequencies against the higher ones. These tuning curves will be fairly well resembled

by the frequency response of the �lters, employed to model the cochlea and introduced during

the next subsection.
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4.2.2 Cochlea Model

In order to model the micro-mechanic principles of the inner ear, a simple but adequate method

is needed to perform the main task of the basilar membrane - the frequency decomposition of

sound. But this natural frequency decomposition has to ful�ll at least four requirements:

1. A logarithmic frequency resolution between 50 Hz and 20 kHz needs to be combined with

a time resolution below the range of milliseconds.

2. The time course of every frequency component, needs to be exactly preserved with regard

to amplitude and phase.

3. All frequency components need to be available at every point in time and

4. the frequency response of each channel needs to reassemble the asymmetric tuning curves

of �gure 4.10 including the time lag of the traveling wave.

The classical engineering method to perform a frequency decomposition is the Fourier Trans-

formation and it's realization as Fast Fourier Transformation (FFT). However, it will, like all

windows based methods, clearly fail to ful�ll criteria 1. As long as a window of de�ned length

is necessary for calculation, the inherent dilemma between frequency and time resolution will

be prominent and will either cover the full range of frequencies or achieve the necessary time

resolution of less than 1ms, but never both. Also criteria 4 is not acomplishable by Fourier

algorithms and criteria 2 can only be ful�lled by using the complex numbered Fourier spectrum,

which is causing problems during later processing.

A second method to model the Cochlea has been evaluated during former work of the author

[Zah96] and is based on Adaptive Resonance (AR) and Moving Average (MA) �lters. Here digital

�lters adjust their �lter parameters by feed back adaptation to the inherent frequency spectrum

of the signal, this way excluding transient and variant noise components. Although those AR,

MA or ARMA models ful�ll the criteria 3 and 4 quite well and reach a better time resolution

than FFT methods, their speed of adaptation is not fast enough to mirror signal components in

the range of �s. Furthermore, they have problems to preserve phase di�erences as low as 10�s

containing interaural time di�erence (ITD) information, essential for the auditory system.

A common method to model the cochlea by today, are separate, parallel digital �lters with free

de�nable frequency characteristics. The resonance-frequencies of those �lters can bee separately

de�ned and also positioned on a logarithmic scale (criteria 1a). Their time resolution depends on

the �lter order but reaches in case of 2'nd order �lters and sampling frequencies of 44kHz down

to 5�s. This proves su�cient as time resolution for the cochlear mechanism (criteria 1b). Since

every �lter generates a separate time series, referring to a speci�c position along the cochlea,

amplitude and phase of that speci�c CF are correctly preserved and represented in the time

domain (criteria 2). Every �lter generates an output value for every sampling point in time,

therefore all frequency components are available at any point in time (criteria 3). Finally, the

reassembling of tuning curves (4'th criteria) is fairly well, but not fully ful�lled. Of course, the

frequency characteristic of every �lter can be designed to be asymmetric preferring the lower
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neighbors as shown in �gure 4.10. However, they will all react at the same time and therefore

miss the time-lag e�ect of the traveling wave within the cochlea.

This has led the author, to replace the parallel �lters by a Cascade of All Pole Gammatone

Filters (APGT). These are special Gammatone Filters (GTF), with all zeros removed, and

only one complex pair of poles resulting in the laplace transfer function

H(s) =
K

[(s� p)(s� p�)]N
(4.1)

Here, the s-plane pole position is given by the complex number p and its conjungate p�. K is the

constant to adjust the unit gain to 1 (H(0) = 1). And N marks the order of the �lter, set to 2

for this model.

In the cartesian parameterization of complex pole positions p = �b + j!r the APGF can be

written as:

H(s) =
b2 + !2r

[(s+ b)2 + !2r ]
N

(4.2)

Due to their frequency characteristic shown in �gure 4.11, APGT Filters are especially suitable

to model the asymmetric tuning curves of the auditory nerve �bers. As displayed, the removal

of zeros removes the tail-gain scatter and sets the tail gain to zero instead of signi�cant dumping

as normally perceived in case of GTF and Di�erentiated All Pole Gammatone Filters (DAPGF).

Figure 4.11: Comparison of GTF, AGTF and DAPGF for two di�erent real parts of the pole location b

The zero tail gain of the APGT assures that the sound in this frequency range is not modulated

when the signal passes the �lter and therefore a cascade of those �lters will, like in the cochlea,

select only speci�c frequency components for resonance (for example at b = !r=2) and cut of

the signal afterwards. In fact the APGT realizes a combination of a second order lowpass �lter

with cuto� frequency just above CF and a second order bandpass �lter function as a resonator

for the frequency band around the CF. Therefore, if the signal moves trough a cascade starting

with high resonance frequencies, the highest frequencies will resonate at the �rst �lter and will

then be cuto� as the sound moves on to the next one. For a more detailed description one might

refer to a detailed report on these �lters of Koehler [Koe98].

The APGT �lters have been �rst mentioned by Flanagan [Fla60] to be helpful models for the

basilar membrane. However, they only became a modeling standard based upon publications by
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Richard F.(Dick) Lyon [LM88],[Lyo97] and the development and public distribution of simulation

code within Malcom Slaney's �Auditory Toolbox� [Sla93]. Since then, they are often referred to

as Lyon Filters as well.

For this model, the speci�c �lter cascade shown in �gure 4.12 has been designed and used

throughout the experiments.
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Figure 4.12: Frequency response of the 16 �lters of the cochlear cascade with characteristic frequencies

(CF) reaching on a logarithmic scale from 180 Hz to 5050 Hz.

The upper limit of 5050 Hz has been chosen, due to the fact that the sounds presented to the

model have been recorded with a sampling frequency of 11025 kHz. According to the Nyquist

criteria this results in a maximum sampled frequency of 5050 Hz. 180 Hz, as the lower boarder,

results from the logarithmic positioning of the computationally desired 16 �lters along the fre-

quency range. If one interprets the resonance frequencies of the Lyon �lters as characteristic

frequencies of the auditory nerve �bers, shown in �gure 4.10 on page 92, the similarity of the

model to the natural system becomes obvious.

Another way to interpret the validity of that cochlea model is to look at it's responses to di�erent

simple and complex sounds as shown in �gure 4.13.

As can be observed in �gure 4.13 panel A-C, the �lter with the closest CF always reacts best,

but on the low frequency side there are quite some neighboring cells animated as well. This

emulates the traveling wave within the cochlea fairly well, since the low frequencies also react

with the typical cochlear time lag seen in the studies of natural cochleas.

Panels D to F impressively point out, how the cochlea codes modulation frequencies of the AM

(Amplitude Modulation) or FM (Frequency Modulation) type. While the AMmodulation, shown

in panel D leads to rhythmic oscillation of all channel amplitudes, the modulation of the signal

onto an 5 kHz FM carrier results in a second local elongation maximum at the �rst Harmonic

(around 2 kHz). Finally panel F shows that this cochlea model proves capable even to code

signals with contain both frequency and amplitude modulations. Although the pattern looks

already complicated, it obviously contains all necessary components needed to decode the sound

modulation and characteristics at higher auditory centers.
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Figure 4.13:

Panel A - model response to a 300 Hz pure sinus, Panel B - model response to a 1000 Hz pure sinus,

Panel C - model response to a 2000 Hz pure sinus, Panel D - model response to a 1000 Hz pure sinus,

AM modulated with 100 Hz, Panel E - model response to a 1000 Hz pure sinus, FM modulated to a

carrier of 5000 Hz, Panel F - model response to a 1000 Hz pure sinus, FM modulated to a carrier of

5000 Hz, and AM modulated with 100 Hz.

To summarize, the complicated mechanical properties of the Inner Ear cochlea have been modeled

by two instances of All Pole Gamma Tone Filter Cascades with 16 logarithmic positioned �lters

on each site. They are accessible via the two model elements �Left Cochlea� and �Right Cochlea�,

shown in the �gure 4.14, and mark the �rst stage of the proposed architecture.

4.2.3 Hair-Ganglion Model

As can be seen in �gure 4.14, the �rst stage of the architecture, modeling the inner ear, contains

two elements for each hemisphere. Beside the left and right cochlea �lter cascades represented by

the cochlea library elements, there is another block on each side named hair-cell-ganglion complex.
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Figure 4.14: First stage of the model architecture, containing two instances of the 16 channel Cochlea

�lter cascades and two instances of the left and right hair-cell-ganglion complex
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It has been described in subsection 4.2.1 that the true transduction of mechanical waves into

electrical action potentials happens within the hair cell - ganglion complex. During this task,

the function of the inner hair cells (IHC) is, to transform mechanical oscillations into electrical

potentials and the task of the ganglion cells is, to generate the adequate chains of action potentials

coding the parameters of those oscillations.

If one assumes that every hair cell potential resembles the sinusoidal movement of the basilar

membrane at the speci�c location of that hair cell, the �lter output, modeling this movement,

can be seen as the inner hair cell potential. Additionally, it has been mentioned that due to

the many hair cells along the cochlea, a nearly continuous solution of the frequency spectrum

is achieved, which can be only roughly represented by the 16 frequency channels of the cochlea

model. However, each of the �lters represents it's channel fairly well. And since the hair cell -

ganglion connection is a direct one, the �lter output will not only be interpreted as the hair cell

potential but also account for the input potential of the ganglion cells as described during the

introduction of the hair cell ganglion model in chapter 3.

The speci�city of the two hair cell ganglion complexes, shown in cyan color in �gure 4.14 is, that

within that structure, three ganglion cells are feeded by the same hair cell, i.e. the same �lter

channel. Each of these ganglion cells has a di�erent �ring threshold and therefore, the extended

coding range, shown in �gure 4.15, is achieved. This additional place code principle enables the

model to e�ciently and continuously code the entire dynamic hearing range within each of the

16 frequency channels.
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Figure 4.15: upper panel - oscillating input potential with increasing intensity from 0 to 120 dB, lower

panel - response of the 3 Ganglion Cells assigned to that frequency channel; blue cell with lowest �ring

threshold, red - Ganglion Cell with highest �ring theshold.

Beside the intensity coding shown, in �gure 4.15, the spike chains of the ganglion cells also need

to preserve the phase information of all frequency components. It's realization is another exam-

ple of the simple but very e�ective natural auditory coding system. As shown, in �gure 4.16,

the interaural phase di�erence of an AM modulated sound arriving �rst at the left and later at

the right ear, is well preserved in the spiking pattern of the referring frequency channels at the

left and right inner ear. Since the �rst spike of each wave is always emitted at the same point of

the phase cycle, the ganglion cells realize a phase locking up to the 5 kHz channel frequency in

the model and about 1 kHz in nature. Above that phase locking limit, the cell will still always

�re at the same point of the cycle but will leave out some of them, using again a population
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code to reach a stable phase coding. Because population codes are always hard to simulate, they

have been worked around, by cells with very short AHP periods, capable to spike with a 5 kHz

frequency - as the highest frequency detected in this model.
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Figure 4.16: Coding of Interaural Phase Di�erences and Phase Locking during spike generation in the

Hair-Ganglion Complex

As the amplitude of the hair cell potential is raised, of course the point of �ring moves slightly

toward earlier cycle times but since this e�ect is equal at both sites it will not in�uence interaural

time delay coding. However, it will generate a phase coding of amplitudes called latency coding,

where higher amplitudes cause earlier spikes and lower ones cause later spiking. This method of

phase related intensity coding accompanies the intensity coding shown above and supports the

decoding in the SOC, as described later. In general, the accuracy of phase coding goes down to

about 4�s in nature 1 and can be followed down to 10�s by this model. The reasons for that is

the Computation Time Step (CTS) already discussed.
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Figure 4.17: Inner Structure of the IHC-Ganglion Complex

1according to the newest results of J. Blauert mentioned by Alan Palmer from MRC Institute of Hearing,

Nothingham during a talk at the M. Planck Institute of Neurobiology, Munich on January 13'th 2003
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Overall, each IHC-Ganglion Complex model contains 3� 16 = 48 ganglion cells, resulting in 96

ganglion cells for both hemispheres. Since every cell receives exactly one input from one hair cell

this would have led to 96 separate synapses to be modeled. But since the result of this synaptic

transmission is assumed to be a simple transfer of the hair cell potential to the soma of the

ganglion cells it has been not separately modeled at this stage and the �lter output is directly

used as soma potential of the ganglion cells. The internal structure of the hair-cell-ganglion

complex therefore is fairly simple as displayed in �gure 4.17.

The output of the hair-cell-ganglion model within the 16 separate channels on each hemisphere,

can be seen as the activity of the acoustical nerve �bers. Their �ring pattern in response to a

sinusoidal sound of 1 kHz moving from the left to the right side of the listener is shown in �gure

4.18 including the sound itself and the movements of the basilar membrane.
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Figure 4.18: lower panels - sound signals presented to the model at the left and right ear

middle panels - resulting hair cell potentials along the left and right cochlea

upper panels - sounds coded into spike chains of the left and right acoustical nerve

As the sound source moves from the left to the right side, the SPL on the left ear decreases

from 50 to 30 dB while the SPL on the right side increases accordingly - this way switching the

interaural intensity di�erence from +20 to -20 dB with respect to the left side. Additionally, the

Interaural Time Delay between left and right sound moves from +200�s (left sound leading) to

�200�s right sound leading. This cannot be observed by the eye but becomes clearly vissible

after zooming into the simulation result, possible for the experimenter at any point in time.

It can be observed that the higher the SPL of that pure tone, the larger is the amplitude response

of the speci�c �lter with the best matching characteristic frequency - here the one at 980 Hz

in cyan color. Furthermore, as the SPL increases, not only the two neighboring �lters (red and

magenta) start moving but also the green and the blue channel becomes recruited in case of 50
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dB SPL. This additional channel recruiting results from the asymmetric tuning curves which in

turn results from the mechanical properties of the basilar membrane and marks an additional

way to code the SPL (and IID).

Finally, the �ring pattern of the acoustical nerves (shown in the upper panels of �gure 4.18)

displays the phase locking as well as the intensity coding by �ring rate, as described before.

The intensity coding, caused by recruiting of additional ganglion cells, is not observable in this

schematic diagram, since only one (the middle) �ber of each channel is shown here for clari�ca-

tion. It has been displayed in �gure 4.15.

After the detailed introduction of the �rst model stage, we will now turn to the next model stage

containing the cells and interconnections of the cochlear nucleus.
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4.3 Stage 2 - The Cochlear Nucleus

The cochlear nucleus (CN) is the �rst processing center of the auditory system. All acoustical

nerve �bers end here. At the CN, the �ring pattern of the nerve �bers is �rst time analyzed

and several monaural features become extracted in the di�erent regions of the cochlear nucleus.

The characteristic features to be extracted are, however, limited to monaural cues, since due to

the purely ipsilateral input to each of the CN's there is no contralateral information available at

this stage of processing. In section 4.1 it has been shown that the timing pathway as well as the

intensity pathway originate in the ventral part of the cochlear nucleus, but there are also direct

projections, toward the inferior colliculus from the cochlear nucleus. To prepare the raw infor-

mation, arriving from the auditory nerve for further processing within these di�erent pathways

and centers, the secondary auditory neurons of the CN exhibit speci�c response properties and

form complex receptive �elds (mainly in the dorsal part), contributing to the necessary feature

extraction. Because this model is currently limited, to the evaluation of interaural intensity dif-

ferences (IID) only those regions in the AVCN, where the intensity pathway originates have been

modeled here. However, during the time course of this work, several models for onset detection,

modulation frequency extraction and spectral solution enhancement have been developed by the

author and are available upon request.

4.3.1 CN - Physiological Aspects

Within the Cochlear Nucleus, a number of sub areals can be distinguished, based upon di�erent

cell types with characteristic �ring pattern. An overview on the physiological subdivisions and

their typical cell types is shown in �gure 4.19.

Figure 4.19: Cell types and response properties in the CN after Rouiller [Rou97] pg.17/18.

As can be seen, the eight main cell types of the CN in vertebrates are: fusiforme, octopus,

globular, stellate, bushy, small, giant and granular cells. Bushy cells are the main population

within the antero ventral cochlear nucleus (AVCN) while stellate and globular cells populate the

postero ventral cochlear nucleus (PVCN). The octopus cells form a separate region within the

PVCN close to the DCN. The DCN itsself is populated by small and giant cells in the central

region and granular cells in the external layers. Finally, the fusiform cell types have been found

to link the central DCN to the external DCN.
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But the physiological forms of those cell types are not directly linked to their response proper-

ties. The post stimulus time histograms (PSTH) 2 displayed in �gure 4.20 show quite di�erent

response types for the di�erent regions of the CN.

Figure 4.20: post-stimulus-time-histograms of typical excitation pattern in the CN in response to a 25

ms tone burst. For comparison the response in the acoustical nerve (AN) is shown in the center

Typical response types in the AVCN are: A-primary like, B-phase locked, C-sustained chopper, D-onset

chopper, E-pure onset. The PVCN and DCN cells exhibit: F-pauser, G-bildup, H-sustained chopper,

I-onset sustained and J-onset transient responses. (by permission of [RA97] pg.131).

The main response type employed in this model is the primary like response of the bushy cells

in the AVCN. Therefore it shall be described here with some detail:

The name primary like is derived from the fact that those cells respond very similar to the

primary auditory nerve cells. That means, they exhibit a short phase of intense (phasic) �ring

during the onset of a sound, which is followed by a less intense (tonic) �ring behavior as long as

the signal remains stable and is statistically invariant. If the signal changes, the �ring is again

intensi�ed. This response type is also called phasic-tonic response and within the CN it is found

nearly exclusively in the AVCN. Some of the cells exhibit a short (1ms) gap (a notch) after the

phasic burst in case of high SPL intensities. Primary like and primary like notch are the typical

responses of the bushy cells.

The dorsal part of the CN, as seen above, contains more complex and chopper like response

pattern. It is assumed that this is the location, where monaural spectral cues and modulation

frequency decomposition happen to be initially performed. Most of it's projections reach the

inferior colliculus directly, but since spectral and AM/FM cues are not subject to this study, the

DCN is not part of that model.

2spike timing in response to a short stimuli, recorded from a cell assembly during several trials - sometimes

referred to as peri stimulus time histogram
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4.3.2 AVCN Model

As mentioned, only the antero ventral part of the cochlear nucleus has been included in the

model architecture. Shown in �gure 4.21 the second model stage containing the left and the

right AVCN is directly feeded by the �bers of the acoustical nerve.
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Figure 4.21: Structure of the �rst and second model stage including the left and right AVCN

The cells of the AVCN, exhibit a primary like response, which is achieved by employment of dy-

namic IF Neurons with a speci�c parameter set for the resource consumption element. (Threshold

= 30 mV, Noise Variance = 0.0001, �ahp = 300 �s, ahp-max = 100 mV, Resource consumption:

max = 0.2, �auf = 1 ms, �ab = 5 ms). However, at the level of the AVCN, another task has to

be performed in the model which is, the three separate channels of the ganglion cells, coding the

intensity of each frequency channel, need to be recombined without loosing their e�ects. This

is done by a membrane element, performing the spatial integration of the three separate �bers.

A set of synapses is employed, to realize an equally weighted spatio-temporal integration of all

PSP, generated by the spikes of the auditory nerve. To simplify computation, these synapses are

included into the cell model, in fact an �Extended Dynamic IF Neuron� is employed at this stage

and the membrane element is positioned within the hair cell complex as shown in �gure 3.28.

Therefore the AVCN model itself contains only 16 instances of the extended dynamic IF neuron

as shown in �gure 4.22.
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Figure 4.22: Internal structure of the AVCN model containing a separate bushy cell for each channel
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The response of the AVCN model to the known sound, representing a sound source moving from

the left to the right hemisphere, is shown in �gure 4.23.
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Figure 4.23: lower panels - sound signals presented to the model simulating a sound source moving

continuously from the left hemisphere (left louder than right channel) to the right hemisphere (right

louder than left channel) upper panels - spike pattern of the left and right AVCN model

As can be observed, the primary like response becomes only visible at the beginning of the signal,

when all channels �re more intense during the �rst 4 ms. During the rest of the time course

changes appear to be continuously and will not cause another phasic response. To illustrate the

models capability more clearly, another example has been chosen and displayed in �gure 4.24,

where the sound signal consists of 3 parts with IID's switching stepwise in between.
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Figure 4.24: lower panels - sound signals presented to the model representing three sound source

locations: far right of the midline, at the midline and far left of the midline. upper panels - spike

pattern of the left and right AVCN model

At the left panels, one can now clearly identify the intense �ring during the �rst 3-4 ms after

the start of each new signal phase. Interestingly, the same change causes a �notch� at the right

side, where the SPL has been decreased. This way the di�erence between the two hemispheres

is even enhanced indicating the direction of the sudden changes more clearly.

Overall the simple dynamic principle of the primary like responses at the second model stage will

be very useful to reproduce some speci�c properties of the precedence e�ect at later stages.
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4.4 Stage 3 - The Superior Olivary Complex

The superior olivary complex (SOC) describes a cluster of auditory nodes in the lower brain

stem perceiving its a�erent inputs bilaterally from the ventral cochlear nuclei and it's e�erent

projections mainly from the inferior colliculus.

In contrast to the CN, the SOC is the �rst auditory processing region, where binaural cues

become available and are processed. This connectivity predestinates the SOC to extract basic

binaural cues like interaural intensity di�erences (IID) and interaural time di�erences (ITD).

The localization task of the SOC has been con�rmed by studies where the SOC has been selec-

tively damaged, which demonstrated, that it is essential during the localization of sound sources.

However, at this stage the localization task seems to be limited to detection of sound source

directions in the azimuthal plane, rather than their exact localization in space (which would

include the spherical space and the sound source distance).

As shown in Figure 4.25, the SOC contains 3 major nodes, the lateral superior olive (LSO), the

medial superior olive (MSO) and the medial nucleus of the trapezoid body (MNTB). Further

identi�ed but less investigated regions are the lateral nucleus of the trapezoid body (LNTB) -not

shown- and the several superior periolivary nuclei (SPN, MVPO, LVPO and DPO).

Figure 4.25: Cytological structure of the SOC in the rat, displaying the folded LSO, the drop shaped

MSO, the MNTB with large cells and synapses as well as several SPN (by permission of C. Kapfer)

Since only the LSO and the MNTB are involved with the IID processing, this work will focus

exclusively on these two parts of the SOC.
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4.4.1 Lateral Superior Olive - Physiological Aspects

The LSO is one of the two nodes in the SOC, which are assumed to be responsible for the de-

tection of sound source directions. In mammals it often exhibits a two folded shape, with strict

tonotopic organization.

Its mainly fusiform cells are bipolar with dendrites expanding orthogonal to the tonotopic axis.

About 3 quarters of the LSO cells are bipolar principle cells. The rest has been identi�ed as mul-

tipolar cells, marginal cells, small cells and class V cells[HS86]. The main response type of LSO

cells is most of the time chopper like and nearly independent of the sharply tuned characteristic

frequencies.

Most of the LSO cells form the so called EI units, resulting from excitatory and inhibitory inputs

generated by the two hemispheres. They receive their excitatory input directly from the bushy

cells of the ipsilaterally AVCN. Their inhibitory inputs originate in the contralateral AVCN but

cross the ipsilaterally MNTB before entering the LSO. The full overlapping of both for each

frequency, results in interference phenomena of IPSP's and EPSP's and the typical response of

EI units being sensitive to binaural intensity di�erences of speci�c frequency components. For

example, a sound arriving from the left hemisphere will be more intense at the left ear than at

the right ear. Therefore, excitation in the left LSO is stronger and arrives slightly earlier than

inhibition, while excitation in the right LSO is weaker and arrives a bit later than inhibition -

consequently only the left LSO will �re in this case. As the intensity di�erence increases, the

�ring rate will also increase, indicating the angle to the left hemi�eld. From here it could be

concluded that if the sound arrives from the midline, excitation and inhibition to both LSO

would just cancel each other out and both would remain silent. However, this is not the case,

since excitation slightly exceeds inhibition and in case of a midline sound source location, both

LSO will exhibit equal but some �ring. If the sound source moves to the right hemisphere, the

right LSO will increase �ring, while the left one will �nally stops to do so.

Most of the LSO-EI units are tuned to middle and higher frequencies, suggesting an important

role during high frequency sound source localization, when the capabilities of localization by

interaural time di�erence detection become limited. However, LSO neurons also react to ITD's.

This is for one thing caused by the latency coding described in section 4.2.3 and is also due to the

fact, that an early excitation cannot be fully removed by a late inhibition in the EI units. Both

e�ects cause the LSO-EI cells, to exhibit at least some activity, as the ITD's become large enough.

LSO neurons project in strictly tonotopic manner directly to the inferior colliculus but send

also strong excitatory projections to the contralateral DNLL and inhibitory projections to the

ipsilateral DNLL [HA97]S.201 �.[YLP96]. Those will be described in more detail during the next

section.

Overall, LSO neurons are the main sites of the IID based sound source localization in the higher

frequency range but also contribute to ITD based source localization over the whole frequency

range. They are well developed in nearly all species but especially pronounced in species with a

high frequency hearing range [HA97] S.205, [GZ96] S.737.
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4.4.2 Medial Nucleus of the Trapezoid Body - Physiological Aspects

The MNTB is a relative small node within the SOC. It's cells receive their a�erent inputs from

the globular bushy cells of the contralateral AVCN and exhibit a precise tonotopy with low

CF's in the lateral and high CF's in the medial regions. The main cell type of the MNTB are

the principal cells exhibiting a simple, primary like response pattern. The MNTB cells project

with strong inhibitory glycinergic synapses to the LSO and the MSO. This way, the MNTB

realizes a temporally precise contralateral inhibition, essential to form the EI units of the LSO.

The synapses within the MNTB are especially large and of fast and very e�ective nature. It

can be assumed that they convert the arriving excitatory signals within only 100-200 �s into

inhibitory ones. Beside the formation of EI Units in the LSO it has been revealed by Grothe

et al. [GS93][BBM+02][KSSG02] that inhibitory inputs from the MNTB to the MSO play a

critical role during ITD detection within the MSO. Here, the traditional model of Je�ress [Jef48]

has been questioned, because the entire principle of ITD detection obviously depends on these

inhibitory MNTB inputs and goes far beyond the well known delay line model. However, one

of the major task of the MNTB cells still seems to be to provide a fast and e�cient inhibitory

input to the contralateral SOC.

4.4.3 LSO and MNTB Model

The third model stage, shown in �gure 4.26, now adds the two LSO models to the architecture

including the light green structures, representing the MNTB of both sides.
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Figure 4.26: Model architecture containing the �rst 3 model stages including the LSO and MNTB

As can be seen, the dark green connections connect the AVCN ipsilaterally to the LSO cell mem-

brane via the excitatory (raising triangle) dark green synapses. From the contralateral side the

inhibitory (falling triangle) light green synapses represent the MNTB and project also to that

membrane, where the IPSP - EPSP interference will happen. Each symbol contains an array

of 16 synapses for each frequency channel, but set to identical parameters. These are for the

excitatory projections: synaptic weight = 0:24mV , �d = 0:2ms and �r = 5ms. The inhibitory

MNTB synapses are set to synaptic weight = 0:2mV , �d = 0:2ms and �r = 5ms. Here, the

slightly more e�cient excitation becomes visible in order to assure an LSO response for sounds

originating from the midline.
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The response of this LSO model to the sound source moving from the left to the right is again

displayed in �gure 4.27. Here, it can be observed that the two LSO responses counteract each

other. After the initial phasic response, clearly indicating a sound arriving from the left hemi-

�eld, the �ring intensity of the left LSO gradually decreases, while the response of the right LSO

gradually increases as the sound moves towards the right. At the 25ms point, the sound orrig-

inates from the midline and both LSO models act about equal. Particularly at the right LSO,

the angle coding can be perceived very clearly. The further right the sound source is positioned,

the higher is the spike intensity and the more frequency channels are recruited.
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Figure 4.27: lower panels - sound signals presented to the model at the left and right ear

upper panels - spike pattern of the left and right LSO model

Beginning from the level of the LSO, the model contains two more display elements for each

stage. These are visible in �gure 4.26 as gray rectangles named �LSO sum� and �LSO internals�.

Their output is shown in �gure 4.28.
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Figure 4.28: upper panels - internal parameters - soma potential and �ring threshold of the dynamic

LSO cells representing the best matching frequency channel 13 of the left and right hemisphere

lower panels - spike count of the left and right LSO, summed over all frequency channels for each

Simulation Time Step (STS)
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Here, the lower panels show the LSO sum of both sides, where the single spikes of all channels

are summed at each simulation point, resulting in a PSTH like impression of the �ring intensity.

The upper panels display the time course of the soma potential (ochre) and �ring threshold

(black) of two corresponding LSO cells, representing the best matching frequency (BMF) chan-

nel of both sides.

In conclusion, the LSO model accounts for the decoding of IID's and based on this, the pure sound

source localization in the azimuthal plane. However, there is no echo suppression at this stage

and the LSO will detect every echo as a new sound arriving from a di�erent direction. In order

to overcome these limitations, a model of the DNLL is added in the next section.
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4.5 Stage 4 - The Lateral Lemniscus

The lateral lemniscus (LL) has become subject to intensive studies just very recently. For a

long time its role in auditory processing was unclear and remains a mystery to some extended

even today. One of the commonly agreed roles of the lateral lemniscus is to transfer auditory

information from the CN and the SOC toward the IC. However, intensive studies during the

80'th and 90'th of the last century revealed that there are obviously signi�cant processing areas

within the this auditory structure. The lateral lemniscus consists of three sub-nuclei shown in

�gure 4.29, the dorsal nucleus of the lateral lemniscus (DNLL), the intermediate nucleus of the

lateral lemniscus (INLL) and the ventral nucleus of the lateral lemniscus (VNLL).

Figure 4.29: Structure of the lateral lemniscus containing a dorsal part (DNLL), an intermediate part

(INLL) and a ventral part (VNLL)

However, most studies have only found a ventral (VNLL) part and a dorsal (DNLL) part. The

third, intermediate cell group has been identi�ed so far only by some studies in the cat, rabbit

and bat. Presently, there is still very little data on humans, [Moo87] but it has been found that

the VNLL is poorly, while the DNLL is well developed in humans.

The VNLL and INLL shall be mentioned here only brie�y. In cats and rodents the VNLL is

usually recognized as a single group of cells with mixed characteristics. However, in bats a

lateral and a medial region can be distinguished, with columns of spherical cells in the lateral

part, and multipolar and round cells in the medial part. The main response type of the VNLL is

again primary like. It's tonotopic organization has been found to be 3-dimensional with multiple

clusters throughout the dorsoventral extent of the VCLL. The shape, size, and location of the

clusters suggest an interdigitation of clusters assigned to di�erent frequency-band representations.

However, at the same time an overall mediolateral distribution gradient was observed, with high

frequencies represented medially and lower frequencies more laterally [MLB+98].
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As shown in �gure 4.29, the VNLL receives it's major inputs from the contralateral VCN, with a

much smaller projection from the ipsilateral cochlear nucleus restricted to a relative small region

within the VNLL. In the cat and the gerbil, VNLL neurons are known to send large diameter

axons to the IC.

The INLL, in the cat, is composed of sparsely distributed multipolar cells and clusters of hor-

izontal cells among the �bers of the lateral lemniscus [GBHM81]. The cells of the INLL are

reported to have little similarity to those of the DNLL or VNLL and display mostly chopper

like response properties. They receive their major inputs from the contralateral CN and LSO.

In addition, ipsilateral input is received from the LSO and the MSO. The INLL also receives

substantial input from the MNTB [GBHM81].

So far, little is known about the functional roles of the VNLL and the INLL and since they don't

seem to be involved in the echo suppression task, they have not been modeled in this architecture.

4.5.1 Dorsal Nucleus of the Lateral Lemniscus - Physiological Aspects

The dorsal nucleus of the lateral lemniscus (DNLL) has been studied more intensely during the

last years and is now believed to play a crucial role during echo suppression. It is therefore

introduced with greater detail, including some physiological experiments.

The DNLL is composed of neurons distributed among the �bers of the lateral lemniscus just

ventral and caudal to the IC. Regarding it's tonotopic organization, quite di�erent results have

been obtained by di�erent experimenters. While Aitkin [AAB70][AIW84] saw a clear tonotopic

organization, with dorsal neurons most sensitive to low frequencies and more ventral cells sensitive

to higher frequencies in the cat, Yang [YLP96] found two subdivisions of the DNLL of the

mustache bat, where the frequency representation in the posterior division was from about 15 to

120 kHz, whereas in the anterior division it was only up to 62 kHz. Bajo [BVdRR98] found a loose

tonotopic organization in the rat, displaying a concentric pattern with high BF units located in

the most dorsal and ventral parts of the DNLL and lower BF units in the middle part of the

nucleus. More recently, Bajo [BMM+99] suggested a laminar organization with rostrocaudally

oriented lamina representing a speci�c BMF and resembling a �attened tube. He found the

low frequency lamina located in the dorsolateral corner of the DNLL and the high frequency

regions at the ventromedial surface of the DNLL. During the recordings of this study in the

gerbils DNLL, a laminar structure, with low frequencies in the external and high frequencies in

the central regions seemed to be present.

Whatever is the right hypothesis, it seem clear that there is a tonotopic organization of the

DNLL, which has been also incorporated into the model by the separate projection of each

frequency channel originating from the lower nuclei.

The current opinion on DNLL cell response types is also diverse. Markovitz [MP93]found 58%

of DNLL neurons to exhibit a chopping pattern evoked by contralateral stimulation and distin-

guished EI cells with largely chopper response from EE cells, exhibiting more often primary like

or primary like-with-notch response types. Furthermore, he found that the sustained responses

of EE units to contralateral stimulation di�ers dramatically from their onset responses to ipsilat-

eral stimulation. He concludes that the DNLL contains a heterogeneous population of neurons

based on physiological responses to pure tones.
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Yang [YP97] found 55% of the DNLL neurons to react with sustained responses (throughout

the signal duration) and 45% onset neurons, (responding only at the beginning of the signal).

Sustained and onset neurons responded di�erently to amplitude modulated signals. Signal in-

tensities a�ected the phase-locking of sustained and onset neurons di�erently. Sustained neurons

exhibited tight phase-locking only at low intensities, 10-30 dB above threshold. Onset neurons,

in contrast, maintained strong phase-locking, even at relatively high intensities.

Similarly Kelly [KBK98] found three response categories within the DNLL: onset (57%), sus-

tained (21 %) and onset-pause-sustained (22%). Most DNLL neurons �red multiple action po-

tentials to a single click at the contralateral ear and the majority (77%) of DNLL neurons showed

a monotonic increase in the number of spikes elicited by contralateral tone pulses of increasing

SPL.

Based on these �ndings and observations in the Gerbils DNLL, the DNLL model cells have been

tuned to exhibit a chopper like sustained response, ignoring the large portion of the pure onset

cells. The reason for ignoring them is that they will not be able to contribute to a continuous

localization of sound sources after the �rst wave front, which is the goal of this model.

A signi�cant number of experiments during the last decade was also concerned with determining

the percentage of EI units within the DNLL as well as their site of origin. In principle, there

seem to be only two options. Firstly, EI units response properties could be simply transferred

by the excitatory projections reaching the DNLL from the contralateral LSO with own EI units.

Or secondly, EI units in the DNLL could be formed de novo by the interaction of contralateral

excitation and ipsilateral inhibition from the two LSO in conjunction with contralateral inhibition

from the opposite DNLL.

The results of many experiments concerning the creation of EI Units [PPWL92], the role of

the GABAergic contralateral inhibition from the opposite DNLL [IvK96],[CKW99], [vAKK99]

and the general input structure to the DNLL [YP94c],[YP94b], [YP94a],[KLv96] suggest the

following:

EI response properties hold for a substantial part (88% [MP93], 74% [KBK98]), but by far not all

units in the DNLL. In principle, they are simply transferred, via the commissure of probst from

the opposite LSO, but their response properties are modi�ed in the early and ongoing part by

the glycinergic inhibition from the ipsilateral LSO and later by the GAGBergic inhibition from

the contralateral DNLL. Kelly [KK00] suggests that the AMPA receptors contribute selectively

to the initial component of binaural inhibition and the NMDA receptors to a longer lasting

component.

The inhibitory circuitry between the two LSO and the two DNLL nuclei results in the previously

described push-pull e�ect, causing a persistent inhibition of DNLL-EI units in case of preceding

sounds arriving from the ipsilateral hemi�eld. A detailed description of the push pull circuit has

been provided in section 2.3.3. Persistent inhibition in DNLL-EI neurons has been identi�ed by

Yang and Pollack [YP94c] or more recently by Pollak [PBP+02],[Pol02]. A good review on the

current knowledge on the DNLL connectivity and its functional role is provided once more by

[PBK03].
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4.5.2 DNLL Model

The primary task at this stage of the model is to provide a functional and physiological plausible

model for the generation of persistent inhibition e�ects within the DNLL-EI units. It is therefore

restricted to this cell type and again remains with the tonotopic organization seen in the AVCN

and the LSO models.
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Figure 4.30: Model architecture containing the �rst four model stages including the model of the DNLL

Shown in �gure 4.30, the DNLL receives excitatory input via the blue synaptic arrays (raising

triangles) from the contralateral LSO. Glycinergic inhibitory inputs from the ipsilateral LSO,

reach the DNLL cell membrane via the second blue synaptic array (falling triangles). Finally

between the red structures of the DNLL cells contralateral GABAergic inhibitory projections are

represented by the red connections, containing a inhibitory synaptic array on each side.

Both DNLL models are composed of 16 �Dynamic IF Neuron� NBL elements, each tuned to

chopper response by the parameter set: threshold at 5 mV above resting potential (0.05),noise

variance = 0.0001, after hyper polarization - time constant 0.3 ms and maximum 50 mV, re-

source consumption: max = 0.5, �auf = 0.1 ms, �ab = 0.3 ms
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The most important question at this stage is to set the synaptic time constants in a physiological

manner assuring the appropriate persistent inhibition response. According to Jack Kelly (by

e-mail communication), the rise time of GABAergic IPSP within the DNLL ranges between 5

and 7 ms leading to time constant of 1-1.5 ms and the decay time is about 30 - 40 ms, lead-

ing to time constants 6-8 ms. Glycinergic IPSP in the DNLL are usually slightly faster and

have been studied by Wu [Wu98] and Wu and Kelly [WK95]. Their results suggest, but may

not prove, glycinergic IPSP durations of up to 25 ms and much shorter EPSP around 10 ms

which where also less e�cient. Rise time ranges in both cases between 0.5 and 1 ms. The

parameters used in the model are based on these observations: contralateral excitatory LSO

input: synaptic weight:5mV , �d = 0:2ms, �r = 2ms ipsilateral glycinergic LSO input: synap-

tic weight:10mV , �d = 0:1ms, �r = 5ms and contralateral GABAergic DNLL input: synaptic

weight:30mV , �d = 0:2ms, �r = 7ms (see Appendix A for overview on model parameters).

Using this parameter set, the response to the moving stimulus is displayed in �gure 4.31.
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Figure 4.31: lower panels - sound signals presented to the model at the left and right ear

middle panels - spike pattern of the left and right LSO model

upper panels - spike pattern of the left and right DNLL model

As can be seen, the right DNLL, despite his chopper like response, fairly well resembles the spike

pattern of the left LSO as long as the signal arrives from the left hemisphere. However, the left

DNLL does not so with regard to the right LSO. It's response starts about 20ms later than the

one of the right LSO. The reason is - persistent inhibition evoked by the period of ipsilateral

leading sound from the left. Why the response of the left DNLL starts so late becomes evident,

by looking at the internals of the channel 8 neuron of the both DNLL models in �gure 4.32.
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Figure 4.32: left upper panel - soma potential and threshold of the left DNLL cell right upper

panel - soma potential and threshold of the right DNLL cell middle and lower panels - responses of

the LSO and DNLL models respectively

As can be seen, both DNLL cells start at the resting potential. While the right DNLL cell

receives only pulling excitation from the left LSO, it's left counterpart is pushed by inhibitory

input from the left LSO and the right DNLL down to 27mV below resting potential (to about

77mV hyperpolarization). Here, it saturates due to the hyperpolarization limit of that cell. As

the input condition changes gradually to favor the left DNLL, this has �rst to recover from that

strong hyperpolarization and needs until the 40ms point to reach back to its resting potential

and to exceed the �ring threshold.

On the opposite site, the left LSO stops about after 15ms to further excite the right DNLL, and

the DNLL consequently stops �ring, but stays near the resting potential. At the 20ms point

the right LSO starts gradually to �re and to hyperpolarize the right DNLL slightly, this remains

until the 40ms point, when also the left DNLL starts �ring and now strongly inhibits the right

DNLL via it's contralateral inhibition. Now, the right DNLL is pushed downward toward the

�75mV hyperpolarization limit, while the left DNLL has been successfully pulled back and �res.

The push pull e�ect, shown in �gure 4.32, is the key feature to generate persistent inhibition

within the DNLL model and is realized here, by the speci�c connectivity of the DNLL and the

exact timing of excitatory and inhibitory spikes within this part of the model. It will be further

investigated in the next chapter 5 �Experimental Results�.
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4.6 Stage 5 - The Inferior Colliculus

The inferior colliculus (IC) is one of the most interesting and intensively studied areas of the

auditory brainstem. It is the �rst auditory structure where both binaural and monaural cues as

well as the timing and the intensity pathway converge. Regardless of their origin and character,

all auditory signals to the auditory cortex will need to pass the inferior colliculus. Therefore the

IC is one of the most important centers of auditory processing and signal evaluation. Since it is

relatively easy accessible in many animals, a signi�cant number of studies has been performed

concerning its physiological structure and functional role. The evaluation of all those experiments

would lead far beyond the scope of this work and will therefore be limited to those concerning

the in�uence of the DNLL with regard to speci�c cell types within the central inferior colliculus

and their excitatory inputs.

4.6.1 IC - Physiological Aspects

Based on the physiological structure of the IC, it can be divided into two major regions the

central area (ICc) and the external area (ICx) (see �gure 4.2 on page 84). The external area i

sometimes subdivided into a dorsal and the truly central part [MRLB95]. But the main input

is obviously received in the central region of the IC, directly or indirectly from the brain stem

structures at the contralateral side.

The large number of di�erent inputs and di�erent feature representations suggests a quite di-

verse response pattern of the individual IC neurons. In fact, this is the case, when looking at

individual cell responses in the IC. The di�erentiation of response pattern, �rst time introduced

in the CN, reaches a new quality in the IC. Here, chopper type responses with build up and

pauser features, long latencies, nonlinear intensity curves and tuning curves with complicated

receptive �elds have been identi�ed. Variations of all those types are distributed throughout the

IC with seemingly no topological order. It is important to notice that many cells exhibit variable

response properties, depending on the speci�c acoustical scene or even the overall condition of

the organism.

The only organization principle, agreed upon on so far, is the well known tonotopic organization

of frequencies. However, in the IC it is rather a laminar structure with high frequencies repre-

sented more ventromedial and lower frequencies more dorsolateral [KLvAI98].

Despite the isofrequency lamina, a number of other maps have been identi�ed by some experi-

ments, but so far have not been agreed upon by others, using di�erent animals or simply di�erent

experimental setups. These are: sensitivity maps, maps of modulation frequencies, auditory space

maps [ER97],[HA97] and IID maps [PP93b]. Three of them are displayed in �gure 4.33, based

upon the review of Helfert and Ascho� [HA97] in 1997.
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Figure 4.33: Feature maps of the ICc: a) iso-frequency lamina in the IC of mice, b) modulation frequency

map within a frequency lamina in mice c) azimuthal map identi�ed in the cats IC. (from [HA97] pg.287,

293 �).

The a�erent connectivity of the IC is comparably complex, receiving inputs from nearly all re-

gions of the contralateral auditory brainstem. However, the connections of interest to this study

are the well proven contralateral excitation from the AVCN, the driving inputs from the con-

tralateral LSO and, most importantly, the bilateral inhibitory projections from both DNLL.

In the following, some experiments regarding the in�uence of the DNLL to speci�c IC units will

be discussed with greater detail in order to justify the chosen model architecture.

Already in 1993 Park et al.[PP93b] studied the in�uence of GABAergic inhibition from the DNLL

onto EI units in the IC by reversibly blocking GABA with biculline. They identi�ed 70% of the

IC cells to be conventional EI units and found that the collicular map of IID sensitivity is formed

to a substantial degree in the colliculus by GABAergic innervation, which likely originates in the

DNLL. This GABAergic innervation contributes to the establishment of the IID map, in at least

three ways. The �rst way is the creation of the EI properties in some collicular cells through the

convergence of excitatory and GABAergic inhibitory inputs. A second way occurs in other cells

where GABAergic inputs adjust the neuron's sensitivity to IIDs. And a third way occurs in yet

other cells, in which the inhibition produced by inputs from the ipsilateral ear was increased.

Another implication of Parks study is that GABAergic inhibition within the colliculus appears

to create or reinforce binaural facilitation in most collicular EI units. In a subsequent study

[PP94] they added that in IC-EI units, in which the ipsilaterally evoked inhibition was reduced

or abolished by bicuculline, the contralateral DNLL most likely was the source of the inhibition.

At the same time Pollack et al. [PP93c] suggested that GABAergic inhibition acts on collicular

cells in two principal ways. The �rst way, is to modify the e�ects of the excitatory innervation

and thereby shape the response features of collicular neurons. The second way, is to provide a

regulated suppression of evoked activity. They propose that the suppression is situation depen-

dent and may act to enhance the operating range of collicular neurons in situations of particular

importance to the animal, such as during periods of selective attention.
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A �nding of special interest for this study has been published by Kelly and Li in 1997 [KL97].

Here, the inhibitory in�uence of the two DNLL to the rats IC has been separately removed by

disabling �rst the contralateral DNLL and later the ipsilateral one. They found that although

both DNLL projected to the IC [KLvAI98], an injection into the contralateral DNLL greatly

reduced the response suppression produced by stimulation of the ipsilateral ear. Injection into

the ipsilateral DNLL, however, had no e�ect. Injection into the ipsilateral SOC reduced the

amount of binaural suppression, but the e�ect was apparent only in cases with surgical transec-

tion of the contralateral lateral lemniscus at a level below the DNLL. These data support the

conclusion that binaural responses in the rat's ICC are shaped by inhibitory projections from

the contralateral DNLL and contralateral excitatory projections from the LSO and the AVCN.

Klug et al. [KBP99]�nally investigated the timing of excitation and inhibition within IC- EI

units receiving inhibition from the DNLL. In 80% of the cells that were inhibited, the inhibition

by the ipsilateral ear and contralateral excitation were temporally coincident. In many of these

cells, the inhibition suppressed contralateral discharges and thus generated the cell's EI property

in the ICc. Finally, in the majority of cells, the ipsilateral induced inhibition persisted for tens of

milliseconds beyond the duration of the signal that evoked it. Thus inhibition by the ipsilateral

ear has multiple components and one or more of these components are typically evoked in ICc

neurons by sound received at the ipsilateral ear.

Based on these and other studies Pollack summarizes in 1997 [Pol97]:

1. that the DNLL shapes the binaural properties of many inferior collicular neurons,

2. that the inhibitory inputs to the DNLL allows it to act as a switch to the IC that can be

turned on or o� with appropriate acoustic stimulation, and

3. that when two or more stimuli are presented, each from a di�erent region of space, the �rst

stimulus can switch the DNLL to its o� position. The consequence of the initial stimulus is

that stimuli that follow shortly thereafter cannot activate the DNLL, and thus the binaural

properties of those IC cells, which receive inhibition from the DNLL are changed.

The implications of this switching action are that the location of the initial signal is coded appro-

priately, whereas the coding of the location of the signal or signals that follow the initial signal is

smeared, and consequently, those following signals cannot be accurately localized. In short, it is

proposed that the DNLL plays a pivotal role in the way the locations of multiple sound sources

are coded by the auditory system.

Since these experiments clearly support the hypothesis of DNLL cells to generate the EI proper-

ties of at least some cells in the central IC and modulate them in case of preceding sounds, the

model architecture includes the connections mentioned above and models these speci�c IC-EI

cells only.
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4.6.2 IC Model

Adding the �fth stage to the model architecture �nally leads us to the full model shown once

again in �gure 4.34.
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Figure 4.34: Full model architecture containing the �ve model stages including the model of the IC

As can bee seen , the orange IC model stage receives multiple inputs. First of all it is innervated

by the green excitatory projections from the contralateral AVCN via a axonal delay. The reason

for introducing a axonal delay element at this point is that the direct connection from the AVCN

has to cross a signi�cant physiological way through the entire brainstem, while the DNLL inputs

arrive from areas right below the IC. Furthermore, the processing stages at the LSO and the
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DNLL introduce each about 1-2 ms signal delay by the nature of the IF model. Since Klug

[KBP99] found excitation and inhibition to arrive temporally coincident, an axonal delay set to

3 ms in both AVCN inputs, recreates this situation fairly well by compensating for the processing

delays of the LSO and DNLL.

The synaptic properties of the AVCN inputs are seen to be quite e�cient and their parameters

have been set to: synaptic weight = 20 mV, �d = 200 �s,�r = 3 ms. The formerly employed

dendritic decay element has been incorporated into the synaptic array, since at this point we

assume a direct connectivity with no compartmental dendrite involved.

Secondly, the IC model perceives excitatory input from the contralateral LSO via the blue

synapses. Here, the synaptic e�ciency is set to be smaller (synaptic weight = 4 mV, �d =

200 �s, �r = 2 ms) and contains a delay element of 2 ms, re�ecting the shorter distance between

LSO and IC as well as the smaller processing delay, caused only by the DNLL.

Finally, the red synapses realize the GABAergic inhibitory inputs from both DNLL. Although

the DNLL projects bilaterally to the IC model, the �ndings of Kelly [KL97], described above,

clearly revealed the much more critical role of contralateral inhibition compared to the ipsilateral

connections. Modeling this, the e�ciency of the contralateral synapses has been set to high values

of: synaptic weight = 50 mV, �d = 200 �s, �r = 5 ms, while the ipsilateral projections are set

to: synaptic weight = 2 mV, �d = 200 �s, �r = 5 ms. This way, the main inhibitory in�uence

of IC cells by the DNLL occurs contralaterally, as can be observed by the size of the synaptic

triangles in �gure 4.34.

The orange model of IC - EI units in the inferior colliculus only strives to duplicate the proper-

ties of the EI units, created de novo in the IC by DNLL inhibition and AVCN Excitation. This

speci�c model will exhibit the appropriate response with nearly every physiological parameter

set and has been realized by the use of �Dynamic IF Neurons� with chopper response and the

parameters: threshold = 20 mV, noise variance = 0.0001, �ahp = 500 �s, ahpmax = 100 mV and

resource consumption: max = 1, �auf = 300 �s, �ab = 500 �s.

The response of the entire architecture including the IC model to a typical stimulus, also used

during physiological experiments is shown in �gure 4.35.

The example of �gure 4.35 exhibits several aspects of the echo suppression principle realized with

this model.

The sounds presented to the two ears both contain 3 pulses of 5 ms duration each with 10 ms

gaps in between. While the �rst pulse arrives from the left hemisphere (10 dB louder and 200

�s earlier at the left channel), the subsequent two are designed to arrive from the right hemi-

sphere (10 db louder and 200 �s earlier at the right channel). It can be assumed that the �rst

pulse represents the original signal and the later two from the right are echoes of that �rst pulse

normally disturbing the localization. While the �rst pulse arrives within the echo threshold (at

20 ms) and should be suppressed, the second pulse arrives outside and should therefore not be

a�ected.

According to the intensities of the pulses the left and right AVCN model will respond with more

spikes and more channels involved if the sound is louder and vice versa.
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Figure 4.35: bottom panels - 3 sound pulses presented to the model, with switching IID of left 10 dB

to right 10 dB second line panels - responses of the AVCN models reacting with a di�erent number

of spikes and channels according to the intensity di�erences third line panels - responses of the LSO

models discriminating the direction of arrival fourth line panels - responses of the DNLL, where the

second pulse generates no response due to persistent inhibition generated by the �rst pulse top panels

- response pattern of IC model, where the �rst and the last pulse are dedicated to a speci�c hemisphere

but the second one shows up at both IC's and therefore contains no directional information

Based on these di�erences the LSO model can clearly distinguish the direction of arrival and

consequently responds to the left pulse at the left LSO and to the two right pulses at the right

LSO. Note that the response pattern to each of the pulses is fairly similar regardless of the

hemisphere it is arriving from.

This is no more true at the level of the DNLL. Here, the �rst pulse is responded appropriately at

the right DNLL (due to the contralateral excitation), but the second pulse is not responded to at

all! The reason is that the �rst pulse (original sound) generates persistent inhibition within the

left DNLL, and when the �rst echo arrives after 10 ms most channels are still inhibited and there-

fore do not respond. This again changes for the third pulse arriving after 20 ms and therefore

outside the echo threshold. The third pulse is responded at the opposite DNLL, mirroring the

response of the right LSO since the persistent inhibition has disappeared now. In other words,

the DNLL suppresses the echo response as long as it arrives within a time frame of about 20 ms

after the original sound.



122 CHAPTER 4. MODEL ARCHITECTURE

The response of the IC model �nally contains the second pulse response again. This has been

expected, since it is driven by the AVCN responding to all three pulses at both sides. However,

the inhibition applied by the DNLL generates also EI properties here, at least in case of the �rst

and last pulse. During the �rst pulse, the right DNLL inhibits the left IC and this remains silent,

while the right IC is not inhibited and responds to that sound from the left. However, during the

second pulse, the situation is di�erent. Neither one of the DNLL inhibits its target IC cells and

the second pulse generates an equal response in both hemispheres. Hence, The echo is perceived

at the level of the IC, but doesn't carry any directional information any more. Finally, during

the third pulse, the left DNLL inhibits the right IC and the EI properties are seen to be restored

in case of echoes arriving later than the echo threshold.

This mechanism, displayed by the response pattern to this fairly simple dynamic signal, has

proven to be very robust, even for changing model parameters as long as the principles are

maintained and they are not set outside the physiological range. It's functionality is based on

connectivity aspects as well as the exact timing of single spikes. As a whole, it can duplicate

a substantial number of psycho-acoustic experiments, as will be shown in the next chapter,

and seems likely to account for the �rst stage of echo suppression within the natural auditory

system. However, to make this useful for technical applications a technical output element - the

directional sensor - is needed.

4.7 Directional Sensor

The task of this �nal model element, shown at �gure 4.36 is, to generate a continuous signal out

of the spike pattern, capable to function as a control unit for technical systems - for example the

motors of a robot head asked to turn toward the direction of a sound source.

right ICc 
right IC

sum

right IC
internals

right IC

left ICc
left IC
sum1

left IC
internals

left IC

directional
sensor

direction

1:16 1:16

Figure 4.36: Directional sensor - generating the model output

Since this needs to function also in case of strong echoes, only the level of the DNLL or IC can be

used to generate this output. Here, the IC level has been chosen, since at the level of the DNLL,

only directional information is represented, while at the IC the full echo content is present, even

if the directional information is suppressed. Therefore in any case, the IC models are activated

and it is the di�erence in overall activation, caused by the inhibitory in�uence of the DNLL,

which guides the sensation of direction within the output element.
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Figure 4.37: Elements of the directional sensor - generating the directional and the �ltered motor output

The model structure used to generate the directional signal is shown in �gure 4.37. It needs to

perform two tasks: First, it has to integrate all spikes within the di�erent frequency channels.

Second, it has to generate a time continuous dumped signal, out of the discrete spike events.

The structure used to perform these tasks is fairly simple.

It consists of two summing elements - summing the spikes of all frequencies at each hemisphere,

a substractive element - generating the di�erence between the spike counts in both hemispheres

-, an integrator - employing a static synapse model to generate the fairly continuous directional

signal out of the positive and negative pulses and �nally a calibration factor used to calibrate

the model to the speci�c shadowing e�ect between the two microphones of the employed setup.

By selecting a parameter set of weight = 0:4, �d = 500�s and �r = 70ms for the integrator and

a calibration factor of 3.0, a fairly dumped signal is generated indicating sound source locations

in the horizontal plane between -90 degrees left and +90 degrees right. This directional output

signal is capable to follow a moving sound source, but removes statistical variations in the �ring

pattern.

In addition to the directional output, a second output signal - named motor output - is generated

by �ltering the directional output through a �rst order Butterworth low pass �lter with a cut

o� frequency of 1 Hz. It generates a slower reacting but much more smooth output of the

model. The reason behind is that in case of natural sound sources variations of the directional

output are still high and the slight jitter will increase signi�cantly (see section 5.3). In order to

obtain a smooth signal, capable to steer a motor under real world conditions, this �ltered motor

output is generated. The employed SIMULINK standard element �transfer function� is shown in

�gure 4.37 with green color. It generates the appropriate �lter coe�cients and simply �lters the

directional output by technical means. The relationship between directional output and motor

output is shown in �gure 4.38.

It can be observed that the motor output follows the directional output with a delay of about

20 ms. Therefore, the reaction time (minimal time to sense the correct position of a sound

source) increases from 10 to about 30 ms. However, no motor will need to react faster in tur-

ing i.e. a camera toward a sound source and since the motor output moves within that 30 ms

towards the sound source position, it will resemble the moving speed of a natural head fairly well.
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Figure 4.38: Relationship between directional and motor output in reaction to a synthetic sinusoidal

signal arriving with IID= + 10 dB from the right

To demonstrate the sensitivity of the directional output, it's reaction to synthetic sinusoidal

signals with IID's between -25 dB (sound from the left) and +25 dB (sound from the right) is

shown in �gure 4.39.
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Figure 4.39: Output of the directional output element for sinusoidal signals with IID's reaching from

+25dB (signal from the left) to �25dB (signal from the right) in steps of 5dB

Here, it becomes visible that the directional unit proves to be quite sensitive. Already IID's

of 5dB cause the unit to de�ect into one direction, while at 0dB IID (and 0 ITD) there is no

direction sensed (blue line at zero). Please note that the angle shown at the y-axis of this plot is

only an estimate of the true direction, since the relationship between IID and angle depends on

the real sound shadowing properties of the head (see section 2.1 Interaural Disparities). Since

the signals here are of synthetic nature, with no real shadowing involved, the angle here and on

the following �gures is only for orientation, rather than a exact value. (The calibration factor

was set to 2 in order to generate the displayed signals). The slight over-reaction during the �rst

30ms at small IID's, results from the abrupt onset of the synthetic signals, causing initial high

frequency components but will not be present in case of natural signals.
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More interesting than the directional sensitivity at this point, is the ability of the directional

output to suppress echoes arriving within the echo threshold and stick to the direction of the

�rst sound. Therefore, �gure 4.40 shows the directional output in response to a sound signal

containing an echo.
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Figure 4.40: bottom panels - 5ms sound signal with arti�cial echo top panel - output of the directional

unit suppressing the echo

As can be seen, although the signal contains an echo arriving 5ms after the signal has ended from

the opposite hemisphere, the output of the directional unit does not change direction since the

directional information of the echo is suppressed by the persistent inhibition within the DNLL.

Figure 4.41 on the opposite, displays the response under absolute identical conditions, except

that the echo pulse arrives now 20 ms after the signal has ended and cannot be counted as an

echo anymore. Consequently, the directional unit will sense it as a di�erent sound arriving from

a di�erent direction.
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Figure 4.41: bottom panels - 5ms sound signal with two binaural pulses arriving with 20ms distance

top panel - output of the directional unit sensing the second pulse as separate signal

As shown by these two simple examples, the directional output seems capable to sense the direc-

tion of synthetic sound sources while suppressing echoes arriving from di�erent directions within

the time frame of the echo threshold.
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The examples shown so far, employed rather simple and synthetic signals, designed to clarify

the functional principle of this neural architecture for echo suppression during sound source

localization. The next chapter will now describe systematic tests and physiological experiments

carried out to evaluate the general performance of this model and to compare its output with

living neurons in the gerbil.



Chapter 5

Experimental Results

The aim of this chapter is to prove the physiological relevance as well as the practical usefulness

of the introduced architecture by several types of experiments. In the �rst section �Physiological

Experiments�, physiological recordings in the Gerbils DNLL in response to synthetic stimuli will

be compared to the model's output in order to prove it's physiological compliance. The second

section �Psychoacoustic Experiments�, describes a number of simulations replicating psychoa-

coustic e�ects. Finally, the last section �Real World Experiments�, displays the experimental

results of real world experiments using sound stimuli, recorded in normal, and especially rever-

berating environments in order to fortify the usability of this architecture for technical systems

under real world conditions.

5.1 Physiological Experiments

There were two major reasons to carry out a set of physiological experiments during this study:

1. to validate the hypothesis that echo suppression e�ects potentially caused by persistent

inhibition , so far only recorded from bats, are also present in mammals like the Gerbil

2. to validate the model architecture by comparison of living cell spike responses to model

cell spike responses under identical stimuli conditions.

The physiological experiments used a single cell recording technique in the Dorsal Nucleus of the

Lateral Lemniscus (DNLL) of the Mongolian gerbil (meriones unguiculatus). The experimental

method as well as the recording technique will be shortly outlined in the �rst two subsections.

Afterwards, subsection 5.1.3 will display the recorded spike pattern from living cells and compare

them to the obtained spike pattern of simulated cells in the model architecture under identical

stimulus conditions.

Based on two experiments, originally developed by Pollack et al. [Pol97] for recordings in the

DNLL of the mustache bat, it will be shown that persistent inhibition of DNLL-EI cells is most

likely also present in the Gerbil and might be a common feature of mammals. Furthermore,

the similarity between model-cell �ring and living-cell �ring in response to identical stimuli

validates the models relevance, to duplicate and explain persistent inhibitory e�ects in the DNLL

and support the hypothesis of their signi�cant role for echo suppression during sound source

localization.

127
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5.1.1 Experimental Method

Single Cell auditory responses from 27 cells have been recorded in 6 adult gerbils. Out of the 27,

12 cells were found to exhibit stable EI response properties and in 8 of them signi�cant persistent

inhibition e�ects have been recorded.

The animals were anesthetized by an initial injection of 10 ml per 10 g body weight of general

anesthetic solution (20% ketamine, 2,5% rompun and 77,5% NaCl). During surgery and recording

sessions, the drugs were applied continuously by intramuscular injection (0.2 - 0.3 ml/h) until

the animal was �nally sacri�ced by an doses of T61.

As shown in �gure 5.1 middle panel, skin and tissue covering the upper part of the scull was cut

and pulled aside laterally, in order to mount a metal rod onto the frontal part of the scull using

UV sensitive dental-restorative material (Charisma, Heraeus Kulzer, Dormagen, Germany). The

rod was used to �x the gerbils head in a stereotaxic device during recordings.

For electrode penetrations the dermis layers over the os parietale were carefully removed and

a small elliptic opening was cut into the left cranium (left panel of �gure 5.1). After removal

of the dura mater within this opening, access to the brain was given to insert the 1 M
 metal

electrode. During the experiment, 0.8% NaCl Solution was frequently applied to the opening to

prevent the brain from dehydration.

Figure 5.1: Animal recording setup left panel Opening the left cranium of the gerbils skull middle

panel Inserting a metal electrode after stereotaxic �xation by a metal rod right panel Sound attenuated

recording chamber

As shown in the right panel of �gure 5.1, the animal was placed on a heating cushion (39ÆC)

in a sound attenuated recording chamber. The animals position in the recording chamber has

been standardized by stereotaxical landmarks on the surface of the skull (intersections of the

bregmoid and lambdoid sutures with the sagittal suture in horizontal alignment). In order to

properly adjust the electrode position relative to the brainstem, the animal was rotated rostrally

by 60Æ (see gerbil brain atlas [LLV74]). Micro-manipulators were used to position the electrodes

relative to landmarks on the brain surface used as reference point for all electrode penetrations.

Single cell responses were recorded using 1M
 Thungsten insulated metal electrodes (TM33A10KT)

covered by a 10�m glass tube except at the non-insulated top. The electrodes have been inserted

between 1900 and 2500 �mleft and 500 to 900 �m caudal of the intersection between the sagittal

and the bregmiod suture.
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Acoustic stimuli were delivered using a Tucker Davis Technology System III, comprising two 16

bit D/A converters (DA3-2; sampling rate 250 Hz), two anti-aliasing �lters (FT-6; cuto� 100kHz)

and two separate digital channel attenuators (PA4). They were delivered via a headphone bu�er

HB6 (Tucker Davis Technologies System II) and two Beyer dynamic speakers (model DT 900).

The sounds of the left and right channel were dichotically presented to the animal via two 5 mm

diameter probe tubes connecting the speakers directly to both pinae of the gerbil (see �gure 5.1

middle panel). The earphones including the tubes have been calibrated using a 1/4 in microphone

(Reinstorp VtS), a measuring ampli�er(MV 302, Microtech, Gefell, Germany) and a waveform

analyzer (Stanford Research Systems, SR 770 FFT network analyzer).

5.1.2 Recording Procedure

To search for acoustically responsive EI cells in the left DNLL, sinusoidal search stimuli of 100

ms duration and 3 ms rise/ decay time were presented to the right (excitatory) ear contain-

ing frequencies between 200 to 10000 Hz. The recording of action potentials and the stimulus

generation was controlled by the TDT System III (see �gure 5.2 left panel) and a customized

commercial software (Brainware - for sensory Electrophysiology Version 7.0.2 with support for

TDT system - Jan Schnupp, Department of Physiology University of Oxford UK). The electrodes

have been moved by a remote control, using a motorized micromanipulator (Inchworm controller

8200 by Burleigh Instruments) from about 1500 �m depth (with regard to the brains surface)

down to 6500 �m this way crossing the IC �rst and covering most of the DNLL structures found

usually between 4000 and 6000 �m depth.

Figure 5.2: Animal recording system left panel Tucker Davis Technology III system middle panel

Stimuli and recorded spikes as displayed on the oscilloscope right panel Spike counting, evaluation and

storage in the Brainware application

The recorded signals where fed through a 50/60 Hz noise eliminator (Humbug, Quest Scienti�c)

and a 0.7 to 3 kHz band-pass �lter (spike conditioner PC1, TDT System III). During recording,

the stimulus signals and recorded spikes have been displayed on a oscilloscope (see �gure 5.2

middle panel) and digitalized by the two 32 bit A/D converters (AD2-3) of the Tucker Davis III

System. From here, they were sent to a standard PC running the Brainware application (right

panel of �gure 5.2). Only action potentials from single neurons with a Signal to Noise Ratio

(SNR) >5 were counted. Number, timing (relative to stimulus onset), shape and clustering of

action potentials have been displayed and stored using the Brainware application.
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Figure 5.3: Shapes and clustering of recorded action potentials

left panel Shape of action potentials - used to check response consistency

right panel Clustering of AP shapes - neuron where only be used if the 1'st and 2'nd peaks resulted in

a sharp cluster as shown above

The identi�cation of auditory responsive single cells was based on the consistent shape of action

potentials (APs) and the clustering of AP's (shown in �gure 5.3), on the SNR (visually observed

and measured at an oscilloscope) and on a subjective, auditory judgment of the recorded signal

acoustically emitted by the speaker of the TDT System III. Within the 6 animals investigated,

27 contralateral excitable DNLL cells have been identi�ed and recorded from.

To determine the Best Matching Frequency (BMF) and Response Threshold (RT) for each iden-

ti�ed DNLL cell, tuning curves have been measured by varying stimulus frequencies between

-2000 Hz and + 2000 Hz against expected BMF and attenuation between -20 to -80 dB. A typi-

cal example of the recorded cell response is shown in �gure 5.4.

Figure 5.4: Recorded spike rate (circle width, max = 72 spikes/s) from a single DNLL cell to exclusively

contralateral stimulation at varying frequencies and attenuation - revealing a BMF of 3 kHz and a RT of

-60 dB

Here, the circle width represents the number of spikes during 25 presentations of each stimulus,

revealing a Best Matching Frequency (BMF) of 3 kHz and a Response Threshold (RT) of -60

dB for that cell. Additionally, the asymmetric structure of the recorded tuning curves becomes

visible when comparing responses to frequencies below 3 kHz to those above.
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After determination of BMF and RT, the DNLL cells have been tested whether they belong

to the EI type. Hence, if an ipsilateral presented signal is capable to inhibit the response to a

contralateral presented stimulus, then this cell is of EI type. To determine the response type,

the contralateral stimulus has been kept 20 dB above response threshold (i.e. right attenuation

2 was kept at 40 dB due to a response threshold of 20 dB in �gure 5.5). Frequencies where

chosen close to the BMF (i.e around 1300 Hz in �gure 5.5). The ipsilateral attenuation 1 was

varied between -10 and +50 dB with regard to the response threshold (i.e. between 10 and 70 dB

for a response threshold at 20 dB in �gure 5.5). This way, the resulting variations of interaural

intensity di�erences (IID) range between -30 and +30 dB. One example of the recorded single

cell responses is displayed in �gure 5.5.

Figure 5.5: Recorded binaural response (circle width represents spike rate) of a single DNLL cell at

three frequencies around the BMF of 1300 Hz. Contralateral attenuation was �xed to 40 dB and IID's

varied from +30 to -30 dB by changing the ipsilateral attenuation (Atten 1) between 10 and 70 dB)

As can be observed, contralateral stimulation leads to strong responses as long as the ipsilateral

signal is more attenuated than the contralateral one (Atten1 between 70 and 45 dB). If both

attenuations are equal at 40 dB (IID=0), the number of emitted spikes decreases. In case of

negative IID's (ipsilateral stimulus is less attenuated than the contralateral one - Atten1 between

35 and 10 dB), ipsilateral inhibition exceeds contralateral excitation and the spikes nearly vanish.

To distinguish the cells with EI behavior, a general rule was established: If the spike rate

during binaural stimulation with IID's of -30 dB decreased at least by 50%, compared to purely

contralateral stimulation, the cell was counted as EI type and selected for further investigation.

Out of the 27 identi�ed cells, 12 have been of the EI type - a 44% share somewhat below the

observations of Kelly [KBK98], who found 74% of DNLL cells with EI responses. The reason

might be either the small sample size, not claiming general signi�cance, or a generally less

developed EI type in the Mongolian Gerbil compared to the rat's brain Kelly recorded from.

Nevertheless, the observed results suggest that a signi�cant number of the Gerbils DNLL cells

exhibits excitatory/inhibitory binaural response properties.
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5.1.3 Results of the Physiological Experiments

The goal of the physiological experiments performed during this study was to �nd evidence for the

existence of persistent inhibition within the Gerbils DNLL and to compare natural cell responses

to those of the model. In order to achieve this goal, an experiment originally developed by Yang

and Pollak [YP94a] to determine persistent inhibition in the mustache bat, was reproduced and

applied to the gerbil as well as the neural model architecture.

The employed synthetic stimulus was specially designed, to show the inhibitory e�ect immedi-

ately after the end of an inhibitory stimulus - the persistent inhibition. It contained three pulses

of 10 ms duration, consisting of sinusoidal signals at the BMF of the neuron. The left and right

channel have been presented dichotically (separate but at the same time - via headphones) to the

gerbils ears during the experiment and to the two ear models during the model simulation. Out

of the three pulses, only the �rst one was binaural (stimulating both ears), while the second and

third pulse were purely monaural signals, stimulating the contralateral (excitatory) ear only. It is

important to mention that under these conditions, and the accepted assumption of contralateral

excitation and ipsilateral inhibition, only the �rst pulse could cause inhibitory e�ects.

The expected result is that the neurons response to the second and third pulse is identical if there

is no persistent inhibition. If persistent inhibition is present, the response to the second pulse

should be partly or fully suppressed as a result of inhibitory e�ects immediately after the end of

the �rst pulse. Consequently, the response to the second pulse should be strongly suppressed, if

it follows immediately after the �rst pulse. It should be less suppressed as the gap between the

pulses increases and the second pulse moves outside the period of persistent inhibition.

From a perceptual viewpoint, the �rst pulse can been viewed as the acoustic signal and the

second and third one as echoes, arriving within or outside the echo threshold.

The experiment was performed with all of the 12 EI cells, while 4 cells did not show signi�cant

suppression to the second pulse, the other 8 gave quite clear and similar results. The obtained

response of such a single cell in the Gerbils left DNLL - with BMF at 3 kHz and Response

Threshold at 40 dB - is shown in �gure 5.6. During the experiment, the IID of the �rst pulse has

been varied between -20dB (inhibitory signal 20 dB louder than excitatory signal) and +20 dB

(excitatory signal 20 dB louder than inhibitory signal). The experiment has been replicated 100

times in random order under identical conditions and the spike response times have been slotted

into 1 ms slots for displaying reasons only.

Each of the blue columns in �gure 5.6 displays the averaged number of spikes recorded during

100 iterations and therefore the spiking probability during this speci�c time slot of 1 ms. Hence,

the sum over all columns within one stimulus pulse could be calculated to determine the response

probability of that speci�c cell to a speci�c pulse.

The green areas represent the excitatory stimulus pulses (at the right ear) in duration (10 ms for

each pulse) and intensity (40 dB for each pulse). The red areas on the other hand represent the

inhibitory stimulus (at the left ear) in the same manner applied with varying intensities between

panel A, B and C.

Finally, the yellow areas mark the expected e�ect of persistent inhibition assuming decay time

constants of 20 ms. In should be noted that while the red, green and blue areas represent real

presented or obtained values, the yellow areas have been added only as an explanation and do

not represent recorded signals.
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Figure 5.6: Recorded spikes from a single DNLL cell to a binaural leading pulse with IID's varying from

+20 (panel A) to -20 dB (panel C) followed by two contralateral pulses at 40 dB after a gap of 10 ms

Shown in Panel A, the response to the three pulses is nearly identical, if the �rst binaural

pulse is excitatory in nature - the excitatory signal at the right ear is signi�cantly louder than

the inhibitory signal at the left ear. The slightly stronger response to the �rst pulse has been

perceived in all experiments with pulse gaps below 30 ms and seems to result from intrinsic

recovery parameters of the living neuron.

Panel B displays the response of the same cell to the same signal, except that the �rst pulse

exhibits a IID of 0 dB - the excitatory signal at the right ear and the inhibitory signal at the

left ear have an identical SPL of 40dB. It can be observed that the cells response to the �rst

pulse is diminished but not fully suppressed. The response to the second pulse is only slightly

diminished possibly due to the assumed persistent inhibition indicated by the yellow area.

The reaction to a leading inhibitory pulse is displayed in Panel C. Due to a 20 dB louder signal

at the left ear compared to the right ear, the neuron's response to the �rst pulse is almost

completely suppressed. But more interestingly, although there is no inhibitory stimulus during

the second pulse, the response is still strongly suppressed and signi�cantly delayed (no onset

spikes to the second pulse). The only explanation for this phenomena seems to be a persistent

inhibition, resulting from the �rst pulse lasting more than 10 ms after its end and in�uencing

the response to the second pulse. Finally, the response to third pulse is nearly identical to panel

A indicating that the cell is responding normally if the persistent inhibitory e�ect has vanished.
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Overall this experiment shows the existence of inhibitory e�ects in the DNLL cells of the Gerbil,

10 ms after the end of the inhibitory stimulus and therefore indicates the existence of persistent

inhibition in the Gerbil.

To validate the model architecture, the same stimulus has been presented to the model after

converting it from a .wav to a .mat �le. The stimulus was presented 100 times to the model and

the spike times of the corresponding BMF channel (channel 11) have been counted and slotted

in the same way as the biological recordings. The obtained results are displayed in �gure 5.7.

Figure 5.7: Simulated spike response of a single DNLL cell model (channel 11 - within the left DNLL

of the model architecture) to a binaural leading pulse with IID's varying from +20 (panel A)to -20 dB

(panel C) followed by two contralateral pulses at 40 dB after gaps of 10 ms

Despite some scaling di�erences the principally identical response of the model and the cell are

clearly to observe. Analog to the cell response, the model response to the three pulses is nearly

identically after an excitatory leading pulse in Panel A. In case of identically excitatory and

inhibitory sound pressure levels during the �rst pulse (Panel B), there are only a few spikes

in reaction to the �rst pulse and the response to the second one is slightly diminished. Most

importantly, after an inhibitory leading pulse in Panel C, the response to the second pulse is

strongly diminished by persistent inhibition, while the third one is not much a�ected.

The overall higher spike rate of the model compared to the living cell is most likely due to the

more deterministic and responsive �ring behavior of the cell model, resulting from it's simulation

on a digital CPU. Nevertheless, statistical �ring behavior, changing the response pattern between

the di�erent runs of the same model with the same signal has been achieved by increasing the



5.1. PHYSIOLOGICAL EXPERIMENTS 135

noise term of the DNLL models from 0.00001 to 0.002. This causes visible variations of the

�ring times during the three pulses but cannot completely override the concentration of most

spikes in speci�c slots separated by the after hyperpolarization time constants of 2 ms. As can

be observed in Panel C, the deterministic response character vanishes as the inhibitory in�uence

increases and will be no more perceivable in case of complex dynamic inputs.

Despite these small limitations this experiment proves that the designed model architecture can

duplicate the spiking behavior of living cells in the Gerbils DNLL and can be seen as a valid model

of this speci�c subset of the auditory brainstem.

In order to determine the duration of persistent inhibition in the Gerbils DNLL and its

correct modeling, another set of experiments developed by Pollak et al.[YP94a] has been carried

out at both, the Gerbil and the model. Here, the IID of the �rst pulse has been kept stable at

-20 dB but the distance (gap) between the pulses has been varied between 5 and 30 ms. This

way, the duration of persistent inhibition can be determined by the amount of suppression to

the second pulse as it moves away from the �rst pulse.

Figure 5.8: Recorded spike response of a single DNLL cell to a binaural leading pulse with IID's of -20

dB followed by two monaural contralateral pulses of 40 dB with varying gaps between 5 and 30 ms
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As can be observed in �gure 5.8, the in�uence of the yellow shaded persistent inhibition may

last much longer than 30 ms after the end of the �rst pulse (as indicated by the yellow shading).

However, its suppressing in�uence to the second pulse ends around 30 ms after the end of the

signal and is comparable to those observed by Pollak et al. As shown later, the suppressive e�ect

of persistent inhibition depends as well on the IID (strenght of inhibition) of the �rst pulse as

on the intensity of the following pulses but might be limited to a maximum around 30 - 40 ms

according to the model.

If the pulses follow each other with short distances of 5 ms, as shown in Panel A of �gure 5.8,

persistent inhibition will not only completely suppress the neurons response to the second pulse,

but it will also signi�cantly diminish the third pulse response. This suggests that the inhibitory

in�uence is still e�ective during the third pulse 20-30 ms after the end of the �rst pulse.

As the gap increases to 10 ms (Panel B), the second pulse causes only some response, but the

cell responds quite normally to the third pulse. Note that the overall low response rates in both

cases may result from the overall short duration of the pulse train and the intrinsic properties of

a single cell, thus preventing it from such fast reactions. Nevertheless, an assembly of neurons as

usually acting to perform the same task in the brain, might be quite more reactive and exhibit

a constant behavior.

As the gap further increases towards 20 ms (Panel C), the response to the second pulse is still

somewhat suppressed compared to the third pulse. However, the cell responds normally to the

third pulse - by now outside the reach of the assumed persistent inhibition.

Finally, a gap of 30 ms between the pulses, as shown in Panel D, results in nearly equal responses

to the second and the third pulse and supports the observation that after 30 ms, persistent inhi-

bition has decreased too much, to further suppress the cells response to an excitatory stimulus

of 40 dB. However, a less intense stimulus might still be suppressed. The intensity-dependency

of echo suppression has been investigated more systematically during the psycho-acoustical ex-

periments in the next section.

Overall, the experimental results obtained by Pollak et al. during single DNLL cell recordings

in the mustache bat have been supported by recordings in the Gerbil, suggesting a persistent in-

hibition of DNLL cells with suppressive e�ects lasting more than 20 ms after the ending of an

inhibitory stimulus. This might therefore be a general feature in mammals and �ts well to the

psycho-acoustically obtained echo thresholds.

Beside the approval of this hypothesis, the aim of this experiment was to show that the designed

model architecture also duplicates the duration e�ect and therefore might be a valid model to

suggest further behavioral aspects of DNLL cells under di�erent dynamic stimulus conditions.

In order to test the model, again the stimuli used with the animal have been applied to the

models input and the simulations have been repeated under the same conditions as in the �rst

experiment. The recorded spikes in response to the di�erent stimuli are displayed in �gure 5.9.

It becomes visible in �gure 5.9 that the overall responsiveness of the model cell is somewhat

higher than the responsiveness of the living cell. Nevertheless, the model �ts well to the overall

activity of the DNLL cell assembly, involved in the echo suppression task and clearly exhibits

similar spike timing as the single living cell.
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Figure 5.9: Simulated spike response of a single DNLL cell model to a binaural leading pulse with IID's

of -20 dB followed by two contralateral pulses at 40 dB after gaps between 5 and 30 ms

By evaluating the observed spike pattern of Panel A, the strong suppressive in�uence of the �rst

inhibitory pulse to the second pulse 5-15 ms, after the end of the �rst pulse, is clearly visible.

Furthermore, the inhibitory in�uence on the third pulse 20-30 ms after the end of the signal is

visible by a 30% decrease of spike rate.

As the gap between the pulses increases further, a similar behavior as in the recording experi-

ment, is achieved. While a gap of 10 ms still results in strong suppression of the second pulse,

this gradually disappears as the gap raises above 20 ms. In the bottom panel D, responses to

the second and third pulse are no more in�uenced by the leading signal. Please note that this is

shown for identical signals in terms of intensities and frequencies. The picture can be di�erent, if

for example the �echo� pulses have lower or higher intensities than the �signal� pulse or vice versa.
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5.1.4 Summary

First of all, the results of the two physiological experiments have validated the hypothesis of per-

sistent inhibition as a feature of speci�c cells in the Gerbil's DNLL and support the hypothesis

of persistent inhibition as a general feature of mammals. Nevertheless, the statistical signi�cance

of 8 cells is fairly small and might need to be extended by further recordings and di�erent ex-

perimental setups. Since the aim of this thesis was to �nd a valid model, capable to explain,

duplicate and predict the speci�c response of DNLL cells to acoustical echoes, experimental ef-

forts have not been extended at this point, but will be continued in the future, based on speci�c

stimuli conditions with model-predicted response pattern.

Second, the biological relevance of the model architecture has been validated by a direct compar-

ison of spike pattern between the biology and the model. The model might now be employed by

biological experimenters to predict and explain living cell responses under speci�c conditions (i.e.

a moving sound source), based on the models output. This way, compliance to natural e�ects, as

well as the level of detail in the model, could be improved and further increase its value for the

exploration of neural cell functions in the auditory brain stem. The value to the neuromorphic

engineer arrives from the opposite site. As the employed dynamic structures obviously proved

their capability to duplicate a dynamic biological cell behavior, they can now be used as building

blocks for technical models, aiming to replicate other e�ects of biological information processing.

This way they could help to achieve technical systems, capable to cope with real world tasks,

currently restricted to living neural systems.
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5.2 Psycho-Acoustic Simulations

While the physiological experiments of the �rst section have been concerned with the recording

and duplication of single cell spike responses at the microscopic level, the psycho-acoustic simu-

lations of this section focus on the duplication of more macroscopic perceptual e�ects, revealed

by the psychoacoustic experiments introduced in section 2.3.2. Based on a number of controlled

acoustic stimulations, psycho-acoustic experiments explore speci�c perceptual e�ects, like the

precedence e�ect and the echo-threshold, resulting from the complex interaction of auditory in-

formation within the entire auditory brainstem and cortex. In this thesis the aim was to test,

if the developed model of the auditory brain stem can duplicate some of those psycho-acoustic

e�ects during simulation of typical experimental setups and stimuli.

Several hypothesis on the role of persistent inhibition and the interaction between the Lateral

Superior Olive (LSO), the Dorsal Nucleus of the Lateral Lemniscus (DNLL) and Inferior Col-

liculus (IC) have been discussed in section 2.3.2. In summary, 6 psycho-acoustically perceived

features of echo suppression at the level of LSO-DNLL-IC interaction have been identi�ed in

section 2.3.2. These are:

1. Echo suppression is present under dichotic as well as real world free �eld conditions.

2. Intensity dependency - lead signals with high intensities cause stronger echo suppression.

Very intense echoes are less suppressed.

3. ISD dependency - the Inter Stimulus Delay (ISD) between signal and echo determines the

perception of echo direction.

4. Duration dependency - Longer durations of the lead signal cause longer echo suppression

with upper limits around 20 ms.

5. E�ective echo suppression occurs also if the sound originates from the midline of the audi-

tory �eld.

6. Echo information is preserved even during suppression of directional information.

The aim of this section is to prove that the designed model architecture is capable to duplicate

these e�ects at the macroscopic level, based on the detailed biological principles and internal

connectivity described in chapter 4. Therefore, only the model output (directional sensor),

the presented stimuli and in some cases the summed �ring pattern at the IC will be shown,

representing the outside view onto the model. Nevertheless, for all experiments, every single cell

model and its intrinsic parameters, like dendritic potential, soma potential and �ring threshold,

were simulated and could be displayed if needed to elucidate the macroscopic e�ects. The

employed model was exactly the same as during the �rst (physiological) set of experiments.

Since it is impossible to duplicate all of the speci�c psycho-acoustical experiments of the last

60 years, the examples in this section will focus on principle e�ects rather than duplicate the

conditions of speci�c experiments. The stimuli used will be as simple as possible and will vary

only in one parameter in order to explain the di�erent features step by step.

The following subsections will describe the stimuli and experimental setups, as well as the macro-

scopic results, of a number of di�erent experiments, designed to prove the capability of the

designed neural architecture to model the features 1 to 6 listed above.
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5.2.1 Feature 1: Echo Suppression under dichotic and free �eld conditions

The stimuli of this section are still of synthetic nature, hence they are designed at the computer

rather than being recorded from real world sound sources. In contrast to section 5.1, they are

entirely based on natural signals, instead of pure sine waves. The base for all of them was a

recorded human male voice, vocalizing the letter �aaa� over a period of 400 ms. This signal

was recorded by a Sennheisser microphone K6 and pre-ampli�ed by a Toshiba SY-C12 ampli�er

before being digitalized by a Cirrus Logic Crystal Audio Codec Sound Card and recorded by the

Cool Edit Pro V1.0 Sound Software. The recorded waveform is shown in �gure 5.10. Based on

this recording (and subsets of it) a number of stimuli were designed and presented under dichotic

as well as free �eld conditions.
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Figure 5.10: Waveform of a recorded human male voice intonating the vocal a

For free �eld experiments, two pulses of 20 ms length and equal intensity were selected from the

recorded sound and send to two Altec-Lensing speakers. While the �rst pulse was send exclu-

sively to the right speaker, the second pulse was only send to the left speaker, resulting in two

pulses switching from the right speaker position to the left speaker position.

Figure 5.11: Experimental setup for the recording of free �eld signals using a Teddy with an ear base

of 20 cm and two microphones (right panel) positioned in front of two speakers at angles of +-25 degrees

and a distance of 1 m (left panel)

The experimental setup itself is shown in �gure 5.11 and was composed of a Teddy with a head

base (ear distance) of 20 cm - similar to the base of a human head. Since the head of the Teddy

creates a fairly natural acoustic shadow (see section 2.1), the sound was perceived louder at the

right ear if originating from the right speaker and louder at the left ear if originating from the

left speaker. Both speakers have been positioned at an angle of 25 degree right and left from
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the midplane at a distance of about 1 m from the Teddy. This way, the experimental setup

resembles the conditions of a human listener perceiving a lead signal from the right followed by

an echo from the left. The ears of the Teddy have be equipped with two Sennheiser K6 capacitor

microphones (see �gure 5.11 - right panel). Therefore, the perceived sound could be recorded

using the Toshiba SY-C12 stereo pre-ampli�er and the Cool Edit Pro Software in recording mode.

While the designed stimulus (containing a 20 ms pulse followed by an echo from the opposite

direction) was played by the speakers, the microphone signals where recorded simultaneously,

digitally stored and later on presented to the left and right input of the model. The two recorded

microphone signals are displayed in the upper right panels of �gure 5.12 and clearly exhibit the

expected IID's of about 10 dB generated under free �eld conditions.

In case of dichotic experiments, the left and right signal were directly designed based upon short

pulses of 20 ms duration out of the vocal record in �gure 5.10. Here, the IID of -10 dB for the

�rst pulse and +10 dB for the second pulse were generated by digital scaling of the waveform.

(see �gure 5.12 upper left panels ). The signals designed this way, were directly fed into the left

and right ear model, similar to a presentation over ear phones.
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Figure 5.12: Directional sensation under dichotic and free �eld conditions

upper left panel - left dichotic stimulus middle left panel - right dichotic stimulus

upper right panel - left free �eld stimulus middle right panel - right free �eld stimulus

lower left panel - directional output of the model in response to the dichotic stimuli above

lower right panel - directional output of the model in response to the free �eld stimuli above

At the lower panels of �gure 5.12 the directional model output is shown in response to the signals

above. Despite the di�erent waveforms of the synthetic signals (left panels) and the free �eld

recorded signals (right pannels), the similar IID's result in both cases in a very similar sensation

of direction. The �rst pulse is perceived to arrive from 25 degrees right (+25) and the second

one is perceived to originate from 25 degrees left (-25). It becomes obvious here, that directional

sensation is working under dichotic as well as free �eld conditions. In this case there is no echo

suppression, since both pulses are perceived as separate signals, di�erent in direction. This is

correct, because the delay between the two pulses is 40 ms and therefore the second pulse occurs

outside the echo threshold. The continuous output signal is generated by the integrative com-

ponent of the directional output element, as described in section 4.7.
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Under the conditions of �gure 5.13 this has been changed. Here, the inter pulse distance has

been shortened to 1 ms and therefore, the second pulse (echo) occurs 1-21 ms after the end of the

�rst pulse (signal), hence, inside the echo threshold. While the upper and middle panels again

exhibit the according left and right acoustic stimuli, the directional output at the lower panels

now only senses one direction - the one of the �rst pulse. Here, the directional information of

the second pulse (the echo) is suppressed, although there are cells within the IC model reacting

to this pulse, as will be shown later in this section. Comparing the left and the right panel of

�gure 5.13 it becomes visible that echo suppression not only works under dichotic conditions but

is also e�ective if the signal is recorded in the free �eld with natural IID's.
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Figure 5.13: Echo suppression under dichotic and free �eld conditions

upper left panel - left dichotic stimulus middle left panel - right dichotic stimulus

upper right panel - left free �eld stimulus middle right panel - right free �eld stimulus

lower left panel - directional output of the model in response to the dichotic stimuli above

lower right panel - directional output of the model in response to the free �eld stimuli above

By these simple experiments, 3 important features of the model architecture have been shown:

1. The model can correctly sense the direction of a signal if it arrives outside the period of

echo suppression (echo threshold) and would therefore be perceived by a human listener as

a separate sound arriving from a di�erent direction,

2. the model can suppress the directional information of the same signal if it arrives within

the period of echo suppression and the human listener would then only perceive one signal

arriving from the direction of the �rst sound, and

3. the model can suppress echoes with �designed� directional information and dichotic pre-

sentation as well as echoes with �real� directional information, recorded under free �eld

conditions.

Additionally, the directional output of the model has been empirically tested by the experimenter

and was found to be in compliance with the normal listeners perception.
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5.2.2 Feature 2: Intensity dependence of echo suppression

5.2.2.1 Dependency on signal intensity

To test the compliance of the model with the psycho-acoustically proven dependency of echo

suppression on the intensity of the signal, similar stimuli were employed. They also consisted of

two 20 ms subsets of the recorded waveform and were digitally designed to exhibit an IID of +10

dB for the �rst pulse and -10 dB for the second pulse. The silent gap between the two pulses

was kept constant at 10 ms, making the �echo� appearing 30 ms after the signal - just partly

within the echo threshold. The two signal channels shown at the left panels of �gure 5.14 have

been presented to the model under dichotic conditions only.

The varied parameter in this �rst set of experiments is the absolute intensity of the signal (�rst

pulse). This varied between 80 dB (40 db louder than the echo) and 20 dB (20 dB less intense

than the echo). Since the IID of the signal was always kept at +10 dB, the directional perception

should not be a�ected, while the amount of suppression imposed on the echo should be much

larger in case of a loud signal (80 dB) than in case of a muted signal (20 dB). The presented

stimuli and the model output for selected signal intensities are displayed in �gure 5.14.

As can be seen at the top row of panels, a very intense signal will suppress the directional sen-

sation of the echo, even if the echo lasts as long as 40 ms after the start of the signal. As the

signal intensity decreases (second and third row of panels), the directional output more and more

senses a second signal from the opposite direction. If the intensities of signal and echo are equal

- as in the third row of panels - the echo is already sensed, partly as a separate signal due to

the fact that it lasts longer than the echo threshold of 30 ms. If the signal is less intense than

the echo - a rather unusual situation under natural conditions shown in the bottom panels - the

echo becomes perceivable as originating from a di�erent direction. Interestingly, even if the echo

is as much as 20 dB louder than the signal (bottom panels) there is still some suppression to the

echo response, preventing the output from reaching the expected -25 degree position.

From another point of view, the obtained results can be interpreted as a shortening of the echo

threshold from more than 30 ms in case of the very intense signal to less than 10 ms in case

of the very weak signal. This coincides with the �ndings of Damaske [Dam71], who used noise

burst of 10 ms duration and obtained very similar echo threshold variations (see page 37).

It should be noted that the general delay of 5 ms, visible between input and output of the model,

is caused by the transmission delays of the several stages of neurons and resembles fairly well

the psycho-acoustically and physiologically reaction delay, between cells in the inner ear and the

inferior coliculus (IC).

Overall, the experimental results shown in �gure 5.14 display the principle capability of the model

to resemble the psycho-acoustical phenomena of echo suppression dependency on the absolute in-

tensity of the signal.
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Figure 5.14: Echo suppression dependency on signal intensity - LEFT PANELS: presented stimuli:

right signal (cyan color) always 10 dB louder than left signal (black color) - echoes arrive 10 ms after the

signals end with intensities of 40 dB and IID's of +10dB RIGHT PANELS: model output in response

to the signals displayed at the left. Top row - signal intensity 80 dB - 40 dB more intense than echo

Second row - signal intensity 60 dB - 20 dB more intense than echo Third row - signal intensity 40

dB - equally intense as echo Bottom row - signal intensity 20 dB - 20 dB less intense than echo

5.2.2.2 Dependency on echo intensity

Having shown the dependency of echo suppression on signal intensities, the next set of experi-

ments is concerned with the compliance of the model with the psycho-acoustically determined

dependency on echo intensities. To test this dependency, similar stimuli have been em-

ployed. Once more they consisted of two 20 ms voice pulses with IID of +10 dB for the �rst

pulse (signal) and -10 dB for the second pulse (echo). The silent gap in between the pulses was

also kept at 10 ms, making the echo appear partly within the �normal� echo threshold of 30 ms.

The varied parameter in this set of experiments was the absolute intensity of the echo. Here,

it has been changed between 90 dB (40 db more intense than the signal) and 10 dB (40 dB

less intense than the signal). Since the IID of signal and echo has always been kept at +10

dB / -10 dB, the directional sensation should not be a�ected. However, the echo suppression

should be much larger in case of a muted echo (10 dB) than in case of an intens echo (90 dB).

The presented stimuli and the directional output of the model for selected echo intensities are

displayed in �gure 5.15.
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Figure 5.15: Echo suppression dependency on echo intensity - LEFT PANELS: presented stimuli: signals

(�rst pulses) with IID's of +10dB and 50 dB SPL - echoes (second pulses) with IID's of -10dB with right

(cyan) channels always 10 dB louder than left (black) channels. Echoes arrive always 10 ms after the

signals end with intensities between 90 dB (top panel) and 10 dB (bottom panel), decreasing in steps of

20 dB RIGHT PANELS: model output in response to the stimuli shown at the left

By evaluating the models output it becomes clear that the e�ect of an intense echo is just

opposite to the one of an intense signal. In case of a very intense echo (top panel), persistent

inhibition, caused by the signal, is not strong enough to prevent the system from sensing it's

direction and perceiving it as a separate acoustic event. As the echo intensity decreases - from

top to bottom - the models response is more and more suppressed, resulting in a completely

suppressed directional information at echo intensities of 10 dB in the bottom panel of �gure

5.15. This behavior can again be interpreted as a change of echo threshold from less than 10 ms

at the top to more than 30 ms at the bottom, depending on echo intensity. The results comply

with the main �ndings of Lochner and Burger [LB58] using 25 dB speech signals as discussed at

page 36.

Overall, the results of the two sets of experiments shown in �gure 5.14 and 5.15 display the

capability of the model, resembling the dependency of echo suppression on the absolute intensity

of the signal as well as the echo.
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5.2.3 Feature 3: Dependency of echo suppression on Inter Stimulus Delay

The most prominent feature of echo suppression is its dependency on the distance between signal

and echo, described as inter stimulus delay (ISD). The perceptual e�ects that were replicated

here, have been introduced in section 2.3 and summarized in table 2.1. Depending on the inter

stimulus delay, three e�ects named Summing Localization, Echo Suppression (Precedence E�ect)

and Discrimination Suppression have been identi�ed by many psycho-acoustical experiments.

This subsection explains the results of three sets of experiments, displaying the capability of the

model to replicate these e�ects.

5.2.3.1 Summing Localization

It has been mentioned in section 2.3 that at ISD's of 0 ms between two identical stimuli arriv-

ing from di�erent directions, they are perceived to origin from one common source at a virtual

location just in the middle between the two sources. This well known stereo e�ect is caused

by summing localization. The models capability to duplicate this psycho-acoustic e�ect will be

shown by the �rst set of experiments. It has also been mentioned, that as the ISD increases

from 0 up to 1 or 2 ms, the direction of the virtual sound source is perceived to move toward the

direction of the leading source. It will be shown here that the model is capable to sense ISD's

as low as 50 �s and indicates a small move of the virtual sound source away from the midline

toward the location of the leading source.
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Figure 5.16: Summing localization - dependency on inter stimulus delay

LEFT PANEL: sensation of virtual sound source locations - moving from the midline at ISD = 0 ms

towards the real location of the leading source at ISD=2 ms

RIGHT PANEL: sensation of virtual sound sources works in both direction

Figure 5.16 shows the model output for ISD's ranging between 0 an +2 ms in the left panel and

-0.05 ms to +0.05 in the right panel. The employed stimuli were taken out of the same subsets

of the recorded human voice, as during the previous experiments. The di�erence is here that

the two pulses are no more separated in time, but only in space. Hence, the IID of one pulse

has been kept at +10 dB, simulating a source about 25 degrees to the right and the IID of the

second pulse has been kept at -10 dB, indicating the according source at the left hemisphere.

During the design of the left and the right stimulus, both pulses have been added to each other

with speci�c, but very short delays (ISD's). This way, the physical summing e�ect of two sounds

originating from di�erent directions in space was generated in a controlled manner. The resulting

left and right signals last only 20 ms if overlapping with no delay (ISD=0), or 20.05 ms at ISD

= 50 �s for example. Logically, at ISD=0, there will be no intensity di�erence if two identical

signals with IID of +10 and -10 dB are added without time lag. The listener as well as the model

perceives the virtual source right in the middle at 0 degree (red line at �gure 5.16).
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In case of an ISD = +50 �s, the duration of the left and right stimulus are again equal, but the

intensity di�erence will be + 10 dB for the �rst 50 �s, 0 dB for the main part of the signal and

-10 dB for the last 50 �s of the stimulus. Nevertheless, this short lead IID will cause the listener

to perceive the sound to originate slightly from the right as does the model (green line at �gure

5.16).

As the ISD increases further, the model senses the direction of the entire sound more and more

towards the location of the leading signal. Finally, at ISD's of 2 ms, it senses the correct location

of the leading source as the direction of the entire sound, even if the lagging part originates from

the opposite direction. This value �ts fairly well with the psycho-acoustically determined lower

boundary of the precedence e�ect, or upper boundary of the summing localization e�ect.

In conclusion, the model architecture is capable to replicate the stereo e�ect, although it was

originally designed to duplicate the precedence e�ect, evaluated in the next subsection.

5.2.3.2 Precedence E�ect

During the second set of experiments, the ISD has been further increased, while all other signal

features and the design method have been kept the same. The simulated result is that for ISD's

between 2 an 20 ms the entire signal is continuously sensed as originating from 25 degree right

(the location of the leading sound source). The stimuli as well as the results of these experiments

are shown in �gure 5.17.

Visible in �gure 5.17 are two psychoacoustic phenomena. First, as long as signal and echo overlap

in time, the absolute intensity of the stimuli increases for the period of overlapping and causes

the listener to perceive a louder signal, as usually experienced in well designed arenas or theaters

(see upper three panels). However, this does not in�uence the correct sensation of direction.

Second, although being more intense and generated from two di�erent sources in space, the

signal is still sensed to origin from only one direction - the one of the leading sound source. The

directional information of the echo is completely suppressed, even if it is fully separated in time

as shown in the bottom panel (ISD = 20 ms).

The situation displayed in �gure 5.17 assumes an echo (lagging pulse) with equal intensities as

the signal (70dB). This is a rather unusual situation in normal live and somewhat represents a

worst case scebario. Under natural conditions, echoes will normally be less intense than signals

and will cause the echo threshold to increase - extending the upper boundary of the precedence

e�ect. This principle e�ect, discussed in section 5.2.2 has been tested for the entire set of signals

in �gure 5.17 - the upper boundary of the precedence e�ect was found to extend up to 30 ms if

echoes are 20 dB less intense than signals and even up to 40 ms in case of very weak echoes with

absolute intensities, 50 dB lower than the signal.

In general, the model proves its capability to duplicate the precedence e�ect, by suppressing the

directional information of echoes with ISD's between 2 and 20 ms.
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Figure 5.17: Echo suppression dependency on inter stimulus delays (ISD) increasing form 2 ms at the

upper panel to 20 ms at the bottom panel LEFT PANELS: presented stimuli: right (cyan) and left (black)

channels have been designed by summation of a 20 ms lead signal with IID of +10dB (from the right)

and a legging echo with IID on -10 dB (from the left) both with constant intensities of 70 dB RIGHT

PANELS: model output in response to the stimuli shown left

However, in nature there is no abrupt end to this e�ect. As the ISD increases further, the direc-

tion of the echo appears to be sensed more correctly the larger the inter stimulus delay becomes.

As can been observed in �gure 5.18, the e�ect totally disappears (in the worst case condition of

equally intense echoes) only at ISD's around 40 ms. Figure 5.18 displays the directional sensation

of echoes with ISD's between 20 and 50 ms, enhancing the e�ects of echo suppression during

the transition between full directional suppression (top panel) and full sensation of echo location

(bottom panel).

In conclusion, the model is capable to realize the psycho-acoustical precedence e�ect at Inter

Stimulus Delays between 2 and 20 ms and to sense the correct location of the echo (as a separate

acoustical event) at ISD's above 30 ms.
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Figure 5.18: Echo suppression dependency on inter stimulus delays (ISD) between 20 ms (top panel)

and 50 ms (bottom panel) LEFT PANELS: presented stimuli right (cyan) and left (black) channels have

been designed by summation of a 20 ms lead signal with IID of +10dB (from the right) and a legging

echo with IID of -10 dB (from the left) both with constant intensities of 70 dB RIGHT PANELS:

model output in response to the stimuli at the left

5.2.3.3 Discrimination suppression

As mentioned in section 2.3, the precedence e�ect can be divided into two parts. First, the Period

of Complete Echo Suppression - where only one (joined) sonic event is perceived to originate only

from the location of the lead signal - and second, the Period of Discrimination Suppression -

where two separate sonic events are perceived but only seem to originate from the location of

the lead signal.

The second period is the one of interest in this subsection. Since the output of the model repre-

sents the directional sensation only, a more detailed view on the activity within the models of the

left and right inferior colliculus might help to determine, under what ISD conditions two separate

spike pattern are transferred to the higher auditory centers. Because the model can track the

activity of single cells during any simulation, the summed activity of all frequency sensitive cells

in the right and left IC has been chosen to represent the spatio-temporal pattern of the left and

right IC model. It is obtained by simply summing the spikes of all 16 frequency channels at

every point in time (time resolution = 10 �s). The obtained results for ISD's between 0 and 40

dB are displayed in the left panels of �gure 5.19. The right panels show again the directional

output of the model.
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Figure 5.19: Discrimination suppression depending on inter stuimuls delays between 0 ms and 40 ms

LEFT PANELS: spike activity in the right IC model (green) and the left IC model (magenta)

RIGHT PANELS: model output in response to the signals

By looking at the spike pattern in the left panels it is easy to observe that at very small ISDs, the

�ring pattern of the right IC (green) as a reaction to an echo arriving from the left hemisphere

almost completely coincides with the �ring of the left IC (magenta) caused by the signal from the

right. At ISD=0 (upper panel) even the �ring intensity matches, since neither one of the IC's is

inhibited. This is caused by the fact that the two signals at the right and left ear sum to exactly

the same signal and, therefore, do not contain any directional information capable to excite the

DNLL. At small ISD's (i.e. 1 ms in the second panel) the right IC is signi�cantly inhibited by

an active left DNLL and its �ring intensity decreases. However, since both �ring pattern still

coincide nearly completely, this will prevent any higher auditory centers from the distinction of

two separate events - the animal or human will only perceive one (joined) sonic event from the

direction of the lead signal. This is obviously true during the entire summing localization period

and beyond up to an ISD of 15 ms.
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If the inter stimulus delay reaches about 15 ms, the right and left �ring pattern is nearly separated

in time. Now, the higher centers will �rst be excited by the left IC and only later by the right

one. This may cause the brain to perceive two separate sonic events. However, since the right

DNLL does not �re (caused by persistent inhibition) the left IC is not inhibited during the second

(echo) part of the signal and therefore continues to �re. Consequently, no directional information

is sensed and the brain perceives the two sonic events to arrive from the direction of the signal

only. This situation respresents the discrimination suppression e�ect. Especially the 4'th and

5'th row of panels in �gure 5.19 (ISD between 15 and 20 ms) display the ability of the model to

sense two separate sonic events, but only one direction.

As the ISD increases further and above the echo threshold, the �ring of the left IC during the

second part of the signal increases more and more and �nally completely suppressed at ISD=40

ms (bottom panel). Now, the �ring pattern in response to the two sonic events are not only

separated in time but also equal in intensity. Therefore, they are perceived as two separate sonic

events arriving from two di�erent directions.

The general hypothesis is that the timing of the response pattern to the same signal in the

left and right IC causes the perception of sonic events, while the intensity di�erence of those

�ring pattern (modulated by persistently inhibited DNLL cells) accounts for the perception of

di�erent directions. Since the timing strictly follows the acoustical pattern and the intensity is

inversely modulated by the DNLL, directional perception is generally longer suppressed than the

perception of sonic events.

Although the nature of sonic events perception is not discovered by now, the hypothesis stated

above might be valid for further evaluation based on the model architecture as well as de�ned

physiological or psycho-acoustical experiments at the living brain.

Summarizing this subsection on ISD dependency of directional perception, it can be stated that:

� The model architecture is capable of duplicating the summing localization e�ect of directional

perception at ISD's between 0 and 2 ms

� The model architecture can duplicate and explain the major features of the precedence e�ect

by suppressing directional information of echoes arriving 2 to 30 ms after the signal.

� Based on the interpretation of the intrinsic �ring pattern in the IC model, a hypothesis on

the distinction between complete echo suppression and discrimination suppression has been

formulated.

Since the aim of this subsection is to test speci�c psycho-acoustical features, only synthetic

signals, with de�ned features, have been employed to generate the displayed outputs. However,

similar experiments have also been carried out, based on free �eld recordings, and in principle

these have not generated any di�erent results.

5.2.4 Feature 4: Longer signals cause longer echo suppression with limits

around 20 ms

The feature to be investigated here is the dependency of echo suppression on the duration of

the signal. Based on the summary of many psycho-acoustical experiments concerned that topic

Blauert's textbook [Bla74] at pg.184 states that:
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� the shortest echo thresholds are observable around 2 ms for short clicks of 1-5 ms duration

and

� for longer, slow raising speech signals, the echo threshold increases and remains relative

constant around 20 ms

The evaluation of the model architecture in this section will, therefore, be limited to these two

landmarks, accepting that many other experiments would be necessary to prove a general com-

pliance of the model's behavior with nature.

To evaluate the signal duration dependency of echo suppression, a set of special stimuli has been

designed. Once more, they consisted of a leading signal and a lagging echo represented by subsets

of the recorded male voice with signal IID's of +10 dB (25 degree right) and echo IID's of -10dB

(25 degree left). In order to visualize the duration of echo suppression, this time the echo lasted

much longer than under normal conditions and always continued till the end of the simulated

100 ms period. Furthermore, the echo always started right at the end of the signal, hence, the

ISD has always been identical to the signal length. These somewhat arti�cial conditions, have

been chosen to enhance the persistent inhibition of the echo after the signal ended and no further

inhibitory stimulus was present.

In order to determine the duration of the echo suppression period, the end of the signal was used

as starting point and the �break through� point of the echo was used as end point of this period.

The �break through� point was de�ned as that point in time, when the long lasting echo was �rst

time sensed - i.e. the directional sensor identi�ed an acoustic event from the opposite (negative)

site. However, as can been seen in �gure 5.20, if the echo is sensed for the �rst time, the correct

echo location is not yet identi�ed and the sensor may need an additional time frame of 15 - 20

ms to reach the correct direction. Since the mentioned psycho-acoustical experiments de�ne the

echo threshold as the point in time, when the echo is sensed for the �rst time, regardless whether

it is perceived at the correct position, the zero crossing of the directional model output was used

to determine the end of the echo suppression period during these experiments.

To enhance the visibility of the suppression period this time the stimulus as well as the direc-

tional output were combined in one drawing. To make the stimuli visible in this drawing, they

have been scaled by the factor 10 for display reasons only. Furthermore the intrinsic delay of 5

ms between model input and output was compensated by a delay of 5 ms applied to the stimuli.

Under these conditions, �gure 5.20 presents the achieved results for signal durations between 0.5

and 50 ms.

As can be observed in the left panels of �gure 5.20, for short signals (clicks) with durations

up to 5 ms the echo threshold signi�cantly shortens below 20 ms. However, even at clicks of

only 0.5 ms length it never reaches the 2 ms mentioned by Blauert and stays around 5-6 ms.

The most likely reason for this it the lack of volatility in the directional output element. As

described in section 4.7, this element does not model a biological structure, but has been de-

signed to generate a technical signal, usable to control motors etc. In order to achieve a stable

signal the pulsing spikes have been smoothed by a PT2 element with decay times of 70 ms.
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Figure 5.20: Echo suppression dependency on signal duration

LEFT PANELS: signal durations between 0.5 and 5 ms cause echo thresholds below 20 ms

RIGHT PANELS: echo thresholds remain constant at 20 ms for signal durations above 10 ms

This generates a fairly smooth output signal but limits the volatility of the output and, there-

fore, the minimal echo threshold. However, a slightly increased echo threshold for very short

clicks will not limit the applicability of the designed architecture to technical systems - it might

even enhance its value, since for short clicks, the aim is rather to suppress than to sense the echo.

The right panel of �gure 5.20 shows that for longer speech signals - remember that the stimuli

were designed out of a recorded human voice - the echo threshold remains at 20 ms and does not

increase as the signal duration increases above 20 ms. The explanation for this phenomena is

easy to observe when investigating the internal potentials of DNLL cells causing echo suppres-

sion based on persistent inhibition. Figure 5.21 exhibits the internals of a single cell in the right

DNLL (channel 11 with BMF at 1.3 kHz).
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Figure 5.21: Persistent inhibition dependency on signal duration

LEFT PANEL: soma potential (red line) of a single cell in the right DNLL in response to a signal of 20

ms duration followed by a long lasting echo

RIGHT PANEL: soma potential (red line) of a single cell in the right DNLL in response to a signal of 50

ms duration followed by a long lasting echo

It is clearly to observe that this cell is hyperpolarized during the signal part of the stimuli. This

is due to the fact that a signal arriving from the right causes the right LSO as well as the left

DNLL to �re and both inhibit the right DNLL. During the �rst 20 ms of the signal, hyperpo-

larization is still increasing, until it reaches it's maximum level of possible hyperpolarization at

-77 mV and remains at this level regardless how long the signal lasts. If the signal ends, the

cell potential returns to its -50 mV resting potential. The time needed for this depends on the

decay time constant � = 7ms (see section 4.5 - DNLL Model) as well as the hyperpolarization

level reached at this point in time. Since the reached level is equal for 20 ms signals as well as

50 ms signals, the time needed to return is also equal and the �ring threshold of that cell will

be reached with the same time lag (period of persistent inhibition) in both cases. If the DNLL

cells start to �re after this period of about 20 ms it immediately inhibits the referring cell in the

left IC and prevents it from further �ring. Finally, the macroscopic result is that the the right

(un-inhibited) IC keeps �ring, while the left one stops to do so. Consequently only at this time

the directional sensor moves toward the direction of the echo source.

This brief excursion into the details of single cell potentials explains not only the independence

of echo threshold from signal durations above 20 ms but also the shortening of this threshold if

the signal duration is below 20 ms. This situation is shown in �gure 5.22.
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Figure 5.22: Persistent inhibition dependency on signal duration in case of short pulses LEFT PANEL:

soma potential (red line) of a single cell in the right DNLL in response to a pulse of 1 ms duration followed

by a long lasting echo RIGHT PANEL: soma potential (red line) of a single cell in the right DNLL in

response to a pulse of 5 ms duration followed by a long lasting echo



5.2. PSYCHO-ACOUSTIC SIMULATIONS 155

It can be seen in the left panel of �gure 5.22 that in case of a 1 ms pulse, the cell is hyperpolarized

only by a little and quickly returns to its resting potential. It starts to �re already 4 ms after the

signals end and the mechanism described above is activated. As the signal duration increases to

5 ms - shown in the right panel - the cell gets mre hyperpolarized and it takes as long as 15 ms

after the signals end until the cell starts to �re. Since the saturation level on -77 mV hasn't been

reached yet, the period of persistent inhibition still remains below 20 ms.

This simple biological principle causes the entire system to exhibit so many of the psycho-

acoustically determined features and accounts for the underlying mechanism, realizing the echo

suppression in this model.

To summarize this set of experiments it can be stated that:

� The �rst statement of Blauert is only partly ful�lled by this model, since echo threshold

shortens in case of short clicks of 1-5 ms duration, but the shortest observable echo thresh-

olds stays around 5-6 rather than 2 ms.

� The second statement of Blauert is completely ful�lled by the model, since for longer speech

signals the echo threshold increases and remains stable around 20 ms.

Of course, this short set of experiments cannot claim to prove a general ability of the model to

duplicate all of the psycho-acoustical duration dependency e�ects of echo suppression. However,

for the aim of this study, the number of experiments to investigate this dependency have been

limited, as it is not critical for the application of the model to robots or other technical systems

for echo suppression during sound source localization.

5.2.5 Feature 5: Echo suppression in case of sounds from the midline

It has been argued by Litovsky [Lit97] that the suppression of echoes evoked by signals arriving

from the midline of the listener depends on spectral cues rather than binaural cues (see page

44). The reasoning behind is that in case of midline signals there are no binaural cues to be

detected within that signal, so the LSO as well as the MSO will not become activated and can

not contribute to the suppression of echoes arriving several milliseconds later from left or right

directions. The experiments performed in this subsection, will display why this is not covering

the whole story, and why signals without binaural cues can suppress echoes as well.

In order to explain the capability of the model architecture to suppress echoes in case of sounds

originating from the midline, the reaction of the several model stages to a pure sound without

echo is shown in �gure 5.23.

If the sound arrives from the midline it can be assumed that it contains identical waveforms and

timing at the left and the right ear. Therefore, an identical 50 ms subset of the well known voice

sound has been presented to both ear models.Although the two sounds do not contain binaural

cues they activate both cochlear nuclei (not shown) and both LSO models (4.row) in an identical

manner. While the EI cells of the LSO usually react distinctively to sounds arriving from the

left or right hemisphere (see section 4.4.3), they both will exhibit some activation in case of a

midline sound, since ipsilateral excitation slightly exceeds contralateral inhibition. The result is
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Figure 5.23: Model activity in response to a signal arriving from the midline - bottom to top:

1. row: left and right stimuli - identical in case of midline sounds

2. row: spike pattern of the left and right LSO - due to stronger excitation than inhibition

3. row: hyperpolarized soma potential of corresponding left and right DNLL cells (channel 11)

4. row: silent reaction of the left and the right DNLL - due to hyperpolarization

5. row: identical spike pattern of the left and right IC - no inhibition is present

top panel: directional model output - indicating a midline sound

that although no binaural cues exist, there is a slight activation of nearly all frequency channels

in both LSO models. This activation causes a hyperpolarization of the subsequent DNLL cells

(see 3.row and 4.row in �gure 5.23). Since their ipsilateral excitation is less e�ective than their

contralateral inhibition (see section 4.5.2), the DNLL cells become slightly hyperpolarized down

to about - 60 mV as shown in �gure 5.23 - 3.row of panels.

It has been perceived by Litovsky et al. that neither one of the cats DNLL's responded to a

sound from the midline. This also holds for the model as shown in the 4.row of panels in �gure

5.23. From that perception they concluded that the DNLL can't be involved in echo suppression

in case of midline signals. However, what can't be seen during pure spike recordings is, if the

cells are hyperpolarized as hypothetically concluded from the model architecture. To prove this

hypothesis it would be a helpful experiment to record the soma potential rather than the spike

response of DNLL cells under the condition of identical left-right stimulation.
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If this hypothesis is true, the hyperpolarized DNLL cells are prevented from �ring and will not

inhibit either one of the IC cells. Consequently, they both will react in the same way, as shown

in detail at the 5. row of panels in �gure 5.23. The top panel displays that the directional model

output will sense the correct midline position of the sound, despite heavy activation of both IC

models.

Figure 5.23 introduced the basic case of a single voice signal from the midline. What happens if

this midline sound generates an echo with Inter Stimulus Delay of 20 ms is shown in �gure 5.24.
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Figure 5.24: Activity within the model in response to a midline signal, followed by an echo from the

right after 20 ms - BOTTOM PANELS: left and right stimuli - identical during the signal and with an

IID of +10 dB during the echo part 2.ROW: spike pattern of the left and the right LSO 3.ROW: soma

potential of corresponding left and right single DNLL cells (channel 11) 4.ROW: spike pattern of left and

right DNLL with persistent inhibition of the right DNLL 5.ROW: spike pattern of left and the right IC,

inhibited during the very end of the stimulus TOP PANEL: directional model output

The main di�erence between �gure 5.23 and �gure 5.24 is the fact that only the �rst 20 ms of

the stimulus arrive from the midline (are identical), the second part in �gure 5.24 represents an

echo arriving form 25 degrees right and therefore contains an IID of +10 dB.
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The reaction of the di�erent model stages in �gure 5.24 clearly exhibits, how and why the

directional information of the echo is mainly suppressed and an echo is only sensed at the very

end of the stimulus. During the �rst 20 ms of the stimulus everything is identical to the situation

of �gure 5.23. But when the echo arrives after 20 ms, DNLL cells at both hemispheres are

hyperpolarized to about -60 mV. Since the echo part contains binaural information, the left LSO

reacts much stronger that the right LSO indicating a sound arriving from the right. However,

the right DNLL cells, supposed to �re, are hyperpolarized and need more than 15 ms to return

to its resting potential. Only at the very end of the stimulus the soma potential of the DNLL cell

has overcome hyperpolarization, caused by the initial midline signal and starts to �re. Looking

at the entire structure, only some frequency channels start to �re. As expected, the left DNLL

cells are further hyperpolarized down to the maximum level of -77 mV.

The result of this persistent inhibition of DNLL cells is visible in the reaction of the IC models

(5.row of panels in �gure 5.24). Here, the spikes of the left IC are not diminished up to the 40

ms point. It is only at the very end (outside the echo threshold), when the number of spikes in

the left IC decreases compared to that of the right IC. Therefore, the directional sensor moves

slightly toward the right direction, but suppresses the directional information of the echo as long

as 15 ms after the signal has ended (equal to an ISD of 35 ms).

This interim situation, just exceeding the echo threshold, has been chosen to exhibit the principle

of echo suppression in case of signals arriving form the midline. To test the general ability of the

model to completely suppress the directional information of echoes caused by sounds from the

midline, the experiments of subsection 5.2.3 have been repeated with signals of IID = 0 (arriving

from the midline) and echoes with IID = +10 dB for increasing ISD's between 1 and 40 ms. The

results are displayed in �gure 5.25.

As can been seen for echoes arriving up to 15 ms after the midline signal (top 3 rows of panels)

the directional information of the echo is completely suppressed. At ISD's between 20 and 35 ms

(4. and 5. row of panels) the echo is sensed to arrive from the right but not yet at the correct

location. Only at ISD's of 40 ms the echo is sensed as a separate signal from its correct location

(25 degree right).

This set of experiments clearly shows that echo suppression is also possible for sound signals

arriving from the midline of the listener. The internal model parameters shown in �gures 5.23

and 5.24 explain the reason and the underlying hypothesis of hyperpolarized DNLL cells due to

non-symmetric EI units at the level of the LSO.

However, comparing the results of �gure 5.25 to the ones of �gure 5.16 at page 146 it becomes

clear that echo suppression in response to sound from the midline is somewhat less e�ective than

if the signal arrives from the opposite direction. While the echo threshold for sounds from the

midline ranges between 15 and 20 ms, the one simulated in �gure 5.16 was determined between

20 and 25 ms.

This is due to the fact that stand alone inhibition (only by the ipsilateral LSO) will not cause

the DNLL cell to hyperpolarize as strong as if both, the ipsilateral LSO and the contralateral
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Figure 5.25: Echo suppression by signals from the midline for varying ISD's between 1 and 40 ms LEFT

PANELS: left and right stimuli resulting form the overlap of a 20 ms midline signal with an echo from

the left RIGHT PANELS: reactions of the directional model output in response to the stimuli at the left

DNLL inhibit the cell. Of course, for technical applications the synaptic parameters could be

changed setting the relation between the two components to any number, but for the purpose of

this study, biological relevance has been kept in mind and the parameters have been chosen not

to hyperpolarize any cell stronger than by 27 mV (down to a soma potential of -77 mV).

In conclusion, the suppression of echoes caused by sounds from the midline of the listener is

possible and can be explained by binaural interactions within a model of the auditory brainstem.

It's e�ectiveness is slightly less than in the case of signals arriving from either one of the left or

right hemispheres.
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5.2.6 Preservation of spectral information during echo supression

The last psycho-acoustical feature investigated in this section is whether the model is capable

to preserve the spectral information of echoes, while their directional information is completely

suppressed.

It has been observed by the experiments of Fitzpatrick et al. [FKBT95] that speci�c (early

high) IC cells in the rabbit responded to echoes, although they where not perceivable as separate

acoustic events. These experiments as well as the fact that echoes are used to determine the

distance of the source and the shape of the room, even if they are not perceived as separate

sounds lead to the assumption that the echo information still causes appropriate responses in

the IC, while their directional information is suppressed.

In order to test this feature, a somewhat arti�cial stimulus has been created and presented

directly to the model input. It consisted of the usual 20 ms subset of the recorded human male

voice with an IID of +10 dB but an arti�cial echo, consisting of a muted pure sinus of 1.3 kHz

with IID of -10dB. The presented stimuli are displayed in �gure 5.26 lower panels.

Since the spectral information of the relatively weak echo is totally di�erent from the signal, the

spectral information of that echo should be possible to identify in the spike pattern of the IC,

while the directional output does not sense it. As can be seen in �gure 5.26 both is true.
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Figure 5.26: Preservation of spectral information during suppression of echo direction TOP PANEL:

directional output - suppressing directional echo information MIDDLE PANELS: spike pattern of the left

and right IC model - clearly showing the echo response BOTTOM PANELS: left and right stimuli

As observable the speci�c spike pattern, generated by the sinusoidal echo is clearly visible in

both IC models during the second part of the signal, even if the directional output completely

suppresses the directional information of that echo.

This e�ect has been tested with several other stimuli as well and clearly proved the capability of

the model, to preserve spectral information of echoes during the suppression of their directional

information.
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Summary

The psycho-acoustical experiments presented in this section proved the hypothesis that the de-

signed neural architecture for echo suppression during sound source localization is capable of

modeling the 6 psycho-acoustical e�ects mentioned at the beginning of this section.

By modeling a speci�c subset of cell connectivity and dynamic behavior, the designed architecture

cannot only duplicate these proven psycho-acoustical e�ects, but can also explain some of them

based on hypothesis derived from the evaluation of intrinsic cell parameters during the processing

of dynamic signals.

However, the current model will not at all cover the whole phenomena of echo perception. Im-

portant features like the evaluation of the reverberation radius or spectral modi�cations between

signal and echo have not been taken into account yet. On the other hand, the promising results

with regard to:

� Echo suppression under free �eld conditions

� Intensity dependent echo suppression

� Inter Stimulus Delay dependency of echo suppression and summing localization

� Duration dependency of echo suppression

� Echo suppression in response to midline sounds and

� Preservation of spectral information during echo suppression

suggest that further extension based on models of additional biological features and structures

will be able to extend its ability into the sensation of spatial e�ects, as well as the usage of

spectral cues.

For the purpose of an application to mobile robots these features might be of additional value,

but have been out of scope in this thesis.
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5.3 Real World Experiments

While the �rst and second section of this chapter were concerned with the duplication of phys-

iological spike pattern and psycho-acoustical e�ects, this last section will test the ability of the

model to cope with the real world. Therefore, the signals are no longer synthetic waveforms

based on sinus waves or modi�ed recordings. Instead here, we used purely real world signals,

recorded under normal and especially reverberating conditions and presented them directly to

the models input with no more pre-processing than a simple A/D conversion (by a Cirrus Logic

Crystal Audio Codec Sound Card) and a linear scaling of amplitude to levels between 0 and 2

mV.

For the set of real world experiments three types of signals have been employed in two di�erent

environments. They where recorded up front and digitally stored as .wav �les in order to become

repeatable. The three types are displayed in �gure 5.27 and contain increasingly complex sounds.

0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [ms]

10 ms natural click

0 50 100 150 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [ms]

100 ms continuous vocal aaa

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [ms]

1s speech signal   Here I am  

Figure 5.27: Pre-recorded signals used for real world experiments

upper panel signal 1 - short natural click generated by a �nger snip

middle panel signal 2 - continuing voice signal singing the vocal �aaa�

lower panel signal 3 - dynamic speech signal speaking the words �Here I am�

The �rst signal (shown in the upper panel) is a natural click of only 10 ms length, generated by

a �nger snip and will be used to test the models ability to sense the direction of click like sonic

events. The second signal (middle panel) contains a human male voice singing continuously the

vocal �aaa� for about 100 ms. (Since this type of continuous signals has also been employed to

track moving sound sources, another recording of the same type lasting for more than 1 s has

been stored.) The third signal (lower panel) contained the words �Here I am� representing a

highly dynamic speech signal of about 1 s duration.
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These 3 types of signals have been send to a single Altec-Lensing speaker positioned about 1.5 m

in front of a Teddy with a head base (ear distance) of nearly 20 cm - similar to the base of a hu-

man head. As already described, the head of the Teddy creates a fairly natural acoustic shadow

(IID) and interaural time delay (ITD), as introduced in section 2.1 Interaural Disparities. The

ears of the Teddy have been equipped with two Sennheiser K6 capacitor microphones, recording

the real world sound while the signal was played by the speaker. By the help of an Toshiba

SY-C12 stereo pre-ampli�er, a Cirrus Logic Crystal Audio Codec Sound Card and the Cool Edit

Pro stereo recording software, both channels have been digitalized and stored simultaneously.

Later on, the recorded stereo .wav �les have been converted into a MATLAB readable format

and presented to the left and right input of the model.

Figure 5.28: Experimental setup for the recording of real world signals, using a Teddy with an ear base

of 20 cm and two microphones in front of a single speaker at about 1.5 m distance.

left panel o�ce environment with normal echoic conditions

right panel tailed bathroom environment with highly reverberating - worst case - conditions

This experimental setup was used in two di�erent environments:

A normal environement - a small o�ce room (lab) - something a robot would have to deal

with under real world conditions

B worst case environment - a tiled bath room with strong echoes - a worst case condition for

technical systems

To evaluate the performance of the model under normal real world and worst case conditions,

the signal was always presented from 7 di�erent directions with regard to the Teddy. As can bee

seen in �gure 5.28, the Teddy was turned from the left to the right in steps of approximately

30 degrees covering angles of right 90, right 60, right 30, 0 (midline), left 30, left 60 and left

90 degrees with regard to the stable sound source. Since the angel was determined by a simple

mechanic measurement, it had a accuracy of about 10 degrees. The Teddy was repositioned

during all experiments, as a mobile robot would do in the real world during the localization of

sound sources.
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To test the opposite, the Teddy was kept stable at the midline position and the sound source

was moved, playing either signal 2 (the continuing tone) or signal 3 (the speech). This way the

ability of the model to track a moving sound source, or a moving speaker was tested.

In order to achieve a stable output signal, capable to steer for example a motor, for all real

world experiments the motor output of the model was used instead of the directional output in

the previous section. As one might remember from section 4.7 Directional Sensor, it �lters the

directional output through a �rst order Butterworth Low Pass �lter with a cut o� frequency of

1 Hz, generating a slower reacting but smooth output of the model.

Furthermore the directional output element has been tuned to the speci�c conditions of the ex-

perimental setup by setting the integration time of the directional sensor to 4 ms, its weight to

0.1 and the calibration factor to 3.0. This must be re-calibrated if used with a di�erent system,

based on the speci�c shadowing e�ect between the two microphones (ears). Here, it has been

calibrated to the shadowing of the Teddy-head and the employed Sennheisser microphones.

The following subsections will now display and discuss the obtained results for 5 di�erent exper-

iments in the two di�erent environments. These experiments will test the following features:

1. Position of a click

2. Position of a continuing voice

3. Position of a speaker

4. Tracking of a moving continuing voice

5. Tracking of a moving speaker
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5.3.1 Position of a click

The �rst set of experiments used the natural click signal to determine the capability of the

model to detect click positions relative to the ear base. Therefore, the recorded �nger snip was

played by the speaker and the stimuli were recorded from the two ears (microphones). After

normalization the recorded stimuli have been presented to the models input. This procedure was

repeated under normal condition - in the o�ce - and worst case conditions - in the bathroom.

The recorded wave forms (stimuli) in response to the natural click are displayed in �gure 5.29.
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Figure 5.29: Recorded waveforms in response to a natural click under normal (left panel) and worst

case (right panel) conditions

The left panel of �gure 5.29 shows the recorded waveforms under real world conditions and

displays the echoic �tail� caused by echoes, arriving up to 60 ms after the signal has ended. The

recording was obtained in the o�ce environment shown in �gure 5.28 and displays the physical

existence of echoes (during the tail of the click) which are not perceived by a human listener.

The speci�c feature of a small tailed bathroom (worst case environment) is that it generates

strong echoes which return for several times from di�erent directions with respect to the Teddy´s

ear base. Since these echoes are of high intensity, they are clearly perceivable by humans (i.e

during listening to the recordings), but do not disable the human ability to detect and hold the

correct sound source location.

Recording the sound arriving at the two ears, under worst case conditions leads to the waveform

displayed in the right panel of �gure 5.29. It can be observed that the echo is much stronger, not

only because the amplitude of the echoic tail is largely increased, but also because it lasts much

longer, well beyond the 100 ms displayed here. These high amplitudes are obviously caused by

many strong echoes arriving from the di�erent walls overlapping in time and space, and generate

a quite high degree of de-synchronization after the original signal has ended.

The question to be answered in this section is the following: Is the developed model of the

auditory brainstem capable, to suppress the directional information of these echoes, as humans

can do, and technical system need to do?

Looking at the �ring pattern within the di�erent model stages in case of a sound source position 60
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degrees left from the midline provides the answer. The two recorded stimuli and the coincident

�ring pattern of both LSO, DNLL and IC models as well as the model outputs are therefore

displayed in �gure 5.30 under normal conditions (left panels) and worst case conditions (right

panels).

To ease the interpretation of the intrinsic �ring pattern, a speci�c display type has been chosen

and was kept stable throughout this section. It shows the number of coincident spikes at each

point in time (time resolution 10�s) for each of the model stages (i.e LSO stage - blue panel,

DNLL stage - green panel and IC stage - magenta panel). Herein, the right model (i.e the right

LSO) is displayed in the upper part of each panel and the corresponding left model (i.e. the

left LSO) can be directly compared by displaying it in the lower part of each panel. The left

column of panels always represents the normal environment and the right column exhibits the

model reactions in the worst case environment. Since this method of display has been kept stable

throughout all of the real word experiments, the models reactions become comparable between

the left and right hemisphere, the di�erent environments and the di�erent signal types.
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Figure 5.30: model response to a natural click from 60 degrees left recorded under real world conditions.

left panels normal conditions right panels worst case conditions bottom to top left (cyan) and right

(black) stimuli; LSO response; DNLL response; IC response; blue-directional sensor, red-motor output
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The waveform of the two recorded ear stimuli at the bottom of �gure 5.30 enhance that during the

click under both conditions, the left (black) stimulus exceeds the right (cyan) stimulus intensity.

However, during the tail caused by the echoes only, the right intensity sometimes exceeds the

one of the left signal. Clearly, there is an echo arriving from the right. (Please note the di�erent

time scale of the left and right column, enhancing the far longer echoic tail in the worst case

environment.)

Consequently, the �ring intensity in the left LSO (lower part of the blue panels) initially exceeds

the one of the right LSO (upper part of the blue panels), but as the echoes arrive, conditions

sometimes become reversed. Without echo suppression, the output would move towards the

positions of the di�erent echoes as intensities switch back and forth.

Why this does not happen is displayed in the green DNLL panels. During the initial part,

the right DNLL �res due to the contralateral excitation it receives from the left LSO. Without

persistent inhibition, the left DNLL would do the same in case of an echo from the right. However,

it does not react at all under normal conditions (left green panel) and only by a few late spikes

under worst case conditions (right green panel). The reason is the persistent inhibition of the

left DNLL, caused by the strong initial �ring of the right DNLL and the left LSO - which have

pushed it towards hyperpolarization and it has not yet recovered when the echo arrives.

The di�erent �ring behavior of the DNLL in turn in�uence the IC cells shown in the magenta

panels of �gure 5.30. Since they receive inhibitory inputs from the contralateral DNLL, only the

right IC �res during the initial part of the signal. As can be well observed in the left magenta

panel, the �ring of the left IC is initially strongly suppressed and only returns along the echoic

tail to normal �ring behavior. Meanwhile, the right IC continues to �re all the way to the end

without suppression. Caused by the DNLL, the di�erence in �ring intensity between the left and

right IC model remains clearly in favor of the right IC until the signals amplitude has vanished.

Consequently, the directional sensor as well as the motor signal (shown in the top panel) are not

in�uenced by any echo direction and only sense the sound source location. It can be seen that

in case of short clicks under normal conditions (upper left panel), the model can correctly sense

the sound source location and ignore echoes arriving after the signal has ended.

Comparing the signals and model reactions between the left (normal) and right (worst case) sides

of �gure 5.30 it becomes clear that not only the echoic tail extends under worst case conditions

but also the right DNLL �res much longer, causing the directional output of the model to return

much more slowly to the zero position as in the normal environment (please note the di�erent

time scales).

The natural click in the worst case environment obviously generated a higher and longer lasting

spike intensity (coincident spikes per time step - summed over all frequency channels) than the

same signal under normal conditions. However, the principle remains the same. The strong

excitation of the right DNLL (green panel) at the beginning and during the following sections of

excitation causes the left DNLL to stay silent for nearly the entire course of the sonic event and

the right IC never becomes inhibited.

For technical systems, based on pure wave form evaluations the correct position of the sound

source in the worst case environment would only be detectable during the �rst 50 ms - later
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on their output would move away from the source position towards the di�erent echo locations.

The right panels of �gure 5.30 however, clari�es that echo suppression in this biological inspired

model works even under worst case conditions and enables the system to sense the sound source

location not only correctly during the �rst 50 ms, but it also keeps fairly stable during the tailing

part of the signal. Fairly stable in this case means it does not change hemisphere at all and jitter

does not exceed �10 degrees.

Since �gure 5.30 displayed the model behavior only in case of a sound source positioned 60

degrees left of the Teddy, �gure 5.31 now shows the directional output for all 7 sounds source

positions varying from right 90 to left 90 degrees. The left panel of that �gure displays the motor

output after presenting the click in the normal environment and the right panel does the same

for the worst case environment.
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Figure 5.31: Model Output in response to a natural click of a single sound source recorded under normal

and worst case conditions. left panel normal environment right panel worst case environment

As expected, under normal conditions, the short click is fairly well localized if the Teddy turned

left (right position of the sound source - upper part of �gure 5.31-left) as well as if he turned

right (left position of the sound source - lower part of �gure 5.31-left).

As can be observed in the right panel of that �gure, this holds for the worst case conditions as

well. Although, the tail is much longer and the information therein is only generated by echoes,

the motor output returns to zero without changing hemispheres. Of course, it's course is not

as smooth as in the left (normal) panel, but the accuracy of detection is not the task , when

the signal is already gone. The task here is, not to get disturbed by the strong echoes and this

clearly works well.

Overall, the model proves capable of detecting the horizontal direction of a short acoustic event

under normal as well as worst case echoic conditions.

In case of such click like acoustic events, most of the echo arrives after the signal has ended.

However, clicks are rather seldom signal types in real life. A more interesting question is therefore,

whether the system can sense the correct location of continuing sound sources, when the echo

directly overlaps with the signal. This has been tested in the next subsection.
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5.3.2 Position of a continuing voice

During the second set of experiments, a 100 ms continuing voice signal has been played by the

sound source and the resulting stimuli were recorded and presented to the model in the same

way as before. Figure 5.32 displays the waveforms of the recorded stimuli.
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Figure 5.32: Recorded waveforms of a continuing voice arriving from 60 degrees left under normal (left

panel) and worst case (right panel) conditions

The left panel shows that under normal conditions, the signal arrives fairly stable at the two

ears with some high frequency components added. It is only after the signals end, that the

overlapping echoes result in a change of direction and the intensity of the right (cyan) channel

exceeds the one of the left (black) channel for about 20 ms.

This is di�erent in the right panel, visualizing the waveforms recorded under worst case con-

ditions. Here, the whole acoustic event not only lasts about 100 ms longer, it is also strongly

ampli�ed with increasing amplitude during the signal part (10-110 ms). At several points in

time, during and after the signal (i.e. at 50, 120, 160, >200 ms), the echoes cause the intensity

relationship between right (cyan) and left (black) channel to change in favor of the cyan one,

indicating an echo arriving from the right hemisphere.

Due to the echo suppressing capabilities of the model, both signals are perceived in much the

same way by the motor output of the model. It's reaction as well as the �ring pattern within

the model are shown in �gure 5.33. Please note that the right panels display a time frame of 250

ms while the left panels contain only 150 ms.

From the �ring pattern of the LSO (blue panels), it can been seen that the increased intensities

under worst case conditions (right panel) not only cause higher activations in the LSO but also

prevent the LSO from a correct sensation of sound source location, immediately after the signals

onset. While the intensity di�erence under normal conditions (left blue panel) is clearly in favor

of the left LSO, there is no clear message to be obtained from the LSO under the worst case

conditions (right blue panel) - in fact the system would fail to respond correctly based on the

LSO activation.
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Figure 5.33: Stimuli, intrinsic spike pattern and model output in response to a continuous tone of a

single sound source recorded under normal real world conditions. left panels normal conditions right

panels worst case conditions

However, the behavior of the DNLL (green panels) during the �rst 150 ms is fairly similar under

both conditions. This is due to the mentioned hyperpolarization e�ect, which prevents the left

DNLL form �ring after it has become initially inhibited by the signals onset. Only during the

echoic tail (150-250 ms) the left DNLL can gain power under worst case conditions and starts

to �re. However, since the signals amplitude during that part is low, the resulting movement of

the motor output is only towards zero, as it would anyway since the signal has ended.

Based on the �ring of the right DNLL, only the left IC becomes inhibited, as displayed at the

magenta panels. And although the entire IC is activated under worst case conditions much higher

than under normal conditions, the di�erence between left and right IC activation is quite similar

and remains stable throughout the signal.

Consequently, the sensed sound source location, shown in the upper panels of �gure 5.33, is

identical under both conditions and does not change as long as the signal lasts. This is an

important observation, since it proves that despite strong echoes, this architecture can not only

sense the correct location of short clicks and during the signal onset, it also features a stable

behavior during a continuing voice signal under normal and worst case conditions.
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Since �gure 5.33 contains only a single sound source location, at 60 degrees left of the Teddy,

the capabilities of the model were also tested for all of the other directions. The obtained motor

outputs are displayed in �gure 5.34.
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Figure 5.34: Motor Output in response to a continuous tone of a single sound source presented under

normal (left panel) and worst case (right panel) conditions from 7 di�erent directions with regard to the

acoustic base

There are two facts to be observed from �gure 5.34. First, the location of the sound source is

sensed correctly under both conditions and not lost, even during the echoic tail of the signal.

Second, it is sensed more slowly under the normal condition displayed in the left panel, than

under worst case conditions in the right panel. The second observation is partly caused by the

di�erent time scales of both panels but is also real and originates from the slower and weaker

onset of the perceived acoustic event under normal than under worst case conditions.

Furthermore, during the long signal tail in the right panel, there is some movement of the

directional sensor indicating the fact that the stimuli is now entirely composed of echoes arriving

from all kinds of directions and therefore slightly in�uencing the directional sensation.

However, this set of experiments clearly exhibits and explains the capability of the model, to

correctly sense the position of continuing sound sources in the horizontal plane under normal as

well as worst case real world conditions.
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5.3.3 Position of a speaker

Finally, the third and most complex type of signals has been employed to test the ability of the

model to localize dynamic speech signals. Here, the set of experiments was repeated using a male

voice speaking the words �Here I am� - displayed by the loudspeaker. The recorded waveforms

under normal and worst case conditions are displayed in �gure 5.35.
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Figure 5.35: Recorded waveforms resulting from a continuing voice from 60 degrees left under normal

(left panel) and worst case (right panel) conditions

These waveforms display the strong ampli�cation and disturbance by the echoes in the worst case

environment. It is also to observe that these strong echoes more or less �ll the gap between the

words �Here� and �I am� originally well to perceive in the signal at �gure 5.27 and still observable

under the normal conditions in the left panel of �gure 5.35. The question is again, if the model

is able to sense the correct sound source location under these much more complex conditions.

Figure 5.36 displays the internal reactions of the model in response to the speech signal presented

under normal conditions (left panels) and worst case conditions (right panels).

Again, the �ring pattern under normal conditions (left panels) clearly indicate that already the

LSO senses a signal from the left during the �rst as well as the second part of this short sentence.

The gap in between is clearly perceived and the output sensor (shown at the top) returns to zero

position, since activation vanishes during that period. The left DNLL is completely inhibited,

during both parts of the signal, and the right DNLL constantly �res. Consequently, only the

left IC is inhibited, while the right one responds directly to the stimuli. The speakers position is

sensed correctly and not much jitter is seen in the output element.

Under the worst case conditions (right panels), this task is much harder. As can be seen, the LSO

models respond nearly equally during both parts of the signal, changing their preference several

times between right and left positions. Furthermore, the gap between the words is nearly gone

and �lled with echoes from all over the place. However, the DNLL even under these extreme

conditions stays fairly stable. As can been seen in the green (right) panel, it is the right DNLL

who clearly succeeds its left counterpart. Even if the reaction is not as strong as under normal

conditions it is by far su�cient to generate the expected intensity di�erence in the �ring of the
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Figure 5.36: Stimuli, intrinsic spike pattern and model output in response to a speech signal from a

single sound source 60 degrees left of the listener - recorded under normal (left panels) and worst case

(right panels) conditions.

right and left IC and the appropriate output of the directional sensor. Although, the directional

output raises very fast (and somewhat overshoots) the smoothed motor output moves to the

correct position. Since there is no real gap in the recorded waveforms it does not return to zero

in between, but it still indicates the existence of two words by moving signi�cantly toward the

zero line. Overall, the system can even cope with dynamic signals under worst case conditions.

If this holds for all directions was tested by turning the Teddy in the previously described manner

and obtaining the motor signals displayed in �gure 5.37.

The left panel of that �gure displays a very convincing result with regard to the models capability

to localize the position of a speaker in the horizontal plane under normal conditions. At this

point one should remember that this is not an anechoic or free �eld condition and echoes are

present here too. However the location of the speaker is sensed correctly during both parts of

the sentence and the motor output could be used to turn towards a speaker as well as towards

a continuing voice, as shown in the previous subsection.
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Figure 5.37: Motor Output in response to a speech signal from a single sound source presented under

normal (left panel) and worst case (right panel) conditions from 7 di�erent directions with regard to the

acoustic base

Looking at the right panel of �gure 5.37 this holds in principle for the worst case conditions as

well. However, the accuracy now becomes limited as the sensor overshoots slightly in case of a

signal arriving from right 90 degrees and failed to sense the second part correctly if the signal

arrived from right 60 degrees. However, these limitations might be caused by principle problems

and can well be due to incorrect conditions during recording (with regard to the 90 degrees)

and/or a recording problem in case of the right 60 experiment.

However, being aware of these minor failures it seems fair to state that the model is capable

of detecting the correct position of a speaker with acceptable accuracy even under worst case

conditions and can be used to detect the position of a speaker with regard to a technical system.
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5.3.4 Tracking of a moving continuing voice

The localization of sound sources, tested in the �rst three sets of real world experiments, is a

common task in real live, but is not the only one. Despite the initial localization, the tracking of

sound sources marks an important strength of the auditory system. The aim of this subsection,

therefore, was to test the ability of the model architecture to track a continuing sound source as

it moves its position in the horizontal plane.

In contrast to the localization experiments now the Teddy was kept stable but the speaker, play-

ing a continuing voice, was moved manually in a nearly continuous manner from the left to the

right and back again. The experiment was then repeated the other way around. The recorded

waveforms for the left-right-left (LRL) experiment are shown in �gure 5.38.
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Figure 5.38: Recorded waveforms resulting from a continuing sound source moving from left to right

and back to left position under normal (left panel) and worst case (right panel) conditions

As can been seen in the left panel, within only 3.5 seconds the sound source moved from the the

left position (black left stimulus is louder) acorss a right position during the middle part of the

waveform (cyan right stimulus more intense) back to the left side. Since this has been carried

out by simply walking the speaker around the Teddy, the distance to the two ears changed,

and obviously shortened - causing an increase in absolute intensity. Since interaural intensity

di�erences are quite clearly to perceive, it is expected that the model will be able to track the

sound source under these conditions.

The bathroom recording, displayed in the right panel, looks much less convincing. Obviously,

the strong echoes triple the overall intensity and diminish the visually perceptible IID to a great

extend. It should be noticed that the moving speed is slowed down here by half - so the exper-

iments lasts 7 instead of 3.5 s. Overall, the detailed structure of the signal has become quite

complex and disturbed (IID's switch between left and right preferences) and it is only the general

time course, indicating a higher intensity of the black channel, at the beginning and the end.

The question here is, whether the system, acting on a �s time scale, will be able to extract this

general time course and track the moving sound source.
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Figure 5.39: Stimuli, intrinsic spike pattern and model output in response to a moving continuous voice

signal from a single sound source recorded under real world conditions. left panels normal conditions;

right panels worst case conditions

The now well known display of the intrinsic model responses is very clear for the moving sound

source under normal conditions, as displayed in the left panels of �gure 5.39. Since the intensity

di�erence is already sensed correctly at the LSO level, the DNLL exhibits a very clear response,

causing a smooth and stable reaction at the IC and the motor output. Although, this result

was expected, it proves an important feature of the developed architecture - the ability to track

sound sources under normal real world conditions - and makes it quite suitable for use in technical

applications.

And it clearly works under worst case conditions as well - right panels of �gure 5.39 - even

if the job is much harder. As expected from the waveform, the LSO model extracts the IID

only during the �rst left and right positions (up to about 4000 ms). During the last part no

speci�c directional information is perceived by the LSO. And the DNLL encounters problems

as well, but manages it by an overall higher right than left �ring intensity also during the last

part of the signal. Let's have a more detailed look at the signal subset between 4000 and 5000

ms. At the 4200 ms point, the sound source position has turned back to the left hemisphere
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�rst time, hence the left (black) intensity exceeds the right (cyan) intensity �rst time, after a

period of opposite conditions. It takes up to the 4400 point untill the DNLL rewards this change

of conditions and clearly indicates a left position. However, about 200 ms later a strong echo

arrives from the right, turning physical conditions again upside down. But since the DNLL

features persistent inhibition, it does not reward this with the strong change of intensities as

the LSO does. Although, the right DNLL cannot fully suppress left response, this is at least

diminished, resulting in a fairly equal �ring intensity of both DNLL hemispheres and causes a

nearly identical �ring pattern at the IC level. This in turn creates only a dip in the delayed

reaction of the motor output. It can bee seen that this very strong echo has not been suppressed

completely but its in�uence has become diminished so that the overall sensation is not disrupted.

This example shows that the tracking of sound sources under these worst case condition is not a

mission impossible for the model and although the directional output exhibits a high level of jit-

ter, the motor output extracts the time course of the sound source movement fairly correctly and

smooth. This �ts very well with the human perception, when listening to the recorded signals

over a head-set. The �rst impression of the author was: - there is a whole mess of sound from

all over creating a voluminant but unspeci�c impression. However, after the signal ended, there

was a intrinsic perception of some movement from left to right - obviously at a much higher level

of abstraction as during listening to the signals recorded under normal conditions. It was not

expected, but a positive surprise that the model generated the same type of sensational output

- unspeci�c in detail, but correct on the general level of movement.
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Figure 5.40: Motor output in response to a continuing voice moving left-right-left (upper panels) and

right-left-right (lower panels) under normal (left panels) and worst case conditions (right panels)

Looking at the general level motor output only, the picture becomes more clear and proves the

usability of the model to track moving sound sources under normal conditions (Left panels of

�gure 5.40) and worst case conditions (right panels of �gure 5.40). The lower two panels are not

just mirrored displays - they indeed exhibit the results of separate experiments, when the sound

source moved along the right-left-right track. The fact, that the LRL sensation under worst case

condition reaches only 75 to 80 degeeres instead of the expected 90 degrees can well be caused by

the experimental conditions, since the lower panel shows that also under worst case conditions

the 90 degrees can be sensed correctly.

Overall it can be stated that the bio-inspired model is capable of tracking moving continuing sound

sources well under normal and fairly su�cient under worst case conditions.



178 CHAPTER 5. EXPERIMENTAL RESULTS

5.3.5 Tracking of a moving speaker

The logical question arriving from the experiments discussed above is, whether the model can

also track dynamic sound sources like speakers, as they move their positions in the horizontal

plane. Figure 5.41 displays the recordings generated by such a moving speaker moving from the

right to the left within only one second - obviously a running man.
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Figure 5.41: Recorded waveforms resulting from a speaker moving from the right to the left under

normal (left panel) and worst case (right panel) conditions

Within the waveforms, displayed in �gure 5.41 the three syllables of the spoken sentence �Here

I am� can be clearly distinguished even if the gap between the �rst part �Here� and the second

part �I am� is much less clear under the worst case conditions, displayed in the right panel. In

general the experimenter tried, to speak the �rst syllable �Here� at a position right from the

midline, the second �I� about at midline position and the third one �am� at a left position.

What happened within the model is again displayed in �gure 5.42 for the normal conditions on

the left and the worst case conditions on the right.

In both cases it is clear that LSO as well as DNLL sense the �rst Syllable from the right. There

are some echoes visible between 200 and 300 ms at the spiking pattern of the left LSO, which

become totally suppressed at the DNLL level under normal conditions and mainly suppressed

under worst case conditions. During the signals gap (between 300 and 500 ms) the directional

sensor moves towards zero under normal conditions, since there is only few activation at all.

In the worst case environment the echoes cause higher amplitudes which already indicate the

ongoing movement of the sound toward the left and cause the sensor to move towards the left.

However, this might also be caused by a faster movement during the experiment, since the moving

speed was not controlled and depended on the speci�c situation.

This might also have caused the fact that under normal conditions the second syllable is correctly

sensed at the midline, while the left panels of �gure 5.42 show that the intensity di�erence shifts

towards the left side indicating a speaker position at the left hemisphere. In this case it remains

unclear, if the observed e�ect is caused by echoes, or the faster movement and the experiment

will be further investigated in the future.
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Figure 5.42: Stimuli, intrinsic spike pattern and model output in response to a moving speaker recorded

at real world conditions. left panels normal conditions; right panels worst case conditions

However, the �nal part of the sentence is clearly sensed at the right hemisphere in both environ-

ments, as could be expected by visual evaluation of the stimuli displayed in the bottom panels

of �gure 5.42. The tracking of that very fast moving speaker has therefore be seen as successful,

since the system under both conditions clearly indicates a sound source moving from the right

to the left hemisphere.

Finally, this experiment was repeated for the opposite direction in both environments. Since this

was done by separate experiments, moving speed may have been di�erent again. An overview of

the motor outputs obtained from all four experiments is displayed in �gure 5.43.

Two statements can be derived from that overview. First, the tracking of moving speakers works

correctly under normal real world conditions in both directions - as can be seen in the left panels

of �gure 5.42. Second, the tracking of moving speakers in a worst case environment works as

well in both directions, but the sensation of the speakers position is in�uenced by echoes during

speech gaps with no active signal.

Based on these results it can be stated that the model is capable of tracking moving dynamic and

speech signals best, if they contain only small or no gaps. However, under the normal conditions

a technical system would have to cope with tracking works very stable even during gaps.
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Figure 5.43: Motor output in response to a speaker moving from the right to the left (upper panels)

and from the left to the right (lower panels) under normal (left panels) and worst case (right panels)

conditions

In summary of that entire section on real world experiments, the bio-inspired model proved it's

ability to localize and track sound sources in the horizontal plane, regardless of their acoustical

structure. It delivers stable results under normal conditions, i.e. in o�ce rooms, �oors and large

halls. Under the worst case conditions of small rooms with extremely intense echoes it looses

some of it's accuracy, but is still functional.

Summary

More than 100 experiments have been performed and discussed to test the 3 general expectations

to the developed neural architecture for echo suppression during sound source localization. Their

results support the following statements:

� Persistent inhibition is present in the Gerbils DNLL and a possible general feature of

mammals.

� The spike pattern of living single cells in the gerbils DNLL can be duplicated by the models

of single cells in the developed architecture.

� The model is capable to duplicate 6 major psycho-acoustical features and help to explain

their root causes.

� The model is capable to localize and track static and dynamic sound sources under real

world conditions and delivers stable output signals, usable to control technical systems.

These general statements have been tested under speci�cally designed as well as selected real

world conditions. However, even the more than hundred experiments are not su�cient to prove

general compliance to the biological system. It is therefore intended to extend the experimental

investigation of the model's behavior, as suggested at several points during this chapter.

On the other hand, the obtained results have been convincing and justify the claim made in

the introduction of this thesis that detailed models of biological structures can contribute to the

understanding of biology as well as ful�ll practical tasks under real world conditions in a robust

and stable manner.



Chapter 6

Discussion

As shown in the previous chapter, the proposed model architecture proved capable of duplicat-

ing physiologically recorded spike pattern as well as psychoacoustic phenomena and is able to

suppress echoes of real world signals. However, since echo suppression is a common problem

to technical systems, a variety of di�erent models have been designed to make it accessible to

man made machines. To prove the novelty and speci�c value of the proposed architecture, some

of them will be introduced and comparably discussed during the �rst two sections of this chapter.

Here, the �rst section deals with neural based echo suppression - covering those models, at-

tempting to duplicate the functions of auditory nuclei or employing arti�cial neural networks to

suppress acoustical echoes. The second section introduces some modeling principles for technical

echo suppression - employing algorithmic time or frequency domain methods, to separate and/or

suppress acoustical echoes.

The �nal section of this chapter contains a brief discussion of the AVLSI implementation approach

pursued during this study, aiming to provide building blocks for Spike Interaction Models (SIM)

in mixed analog-digital silicon technology. It provides a short overview of the current state of

AVLSI implementation.

6.1 Neural based Echo Suppression

As mentioned in the introduction of this chapter, this section attempts to compare the devel-

oped model for echo suppression during sound source localization to other neural models for echo

suppression and sound source localization. Hereby, the �rst subsection deals with those models

that attempt to duplicate the functions of biological auditory structures and nuclei. By contrast

the second subsection focuses on models involving arti�cial neural networks to localize sound

sources and to suppress acoustical echoes.

181
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6.1.1 Models of auditory nuclei

Out of the huge number of models for sound source localization and echo suppression, only a

few research groups approach the problem based on models of the auditory brainstem. Here,

the modeled structures and nuclei vary from auditory nerve �bers up to the cells of the inferior

colliculus. Since some of the models share essential features with the proposed architecture, they

will be shortly introduced and compared at this point. However so far, no publication has been

found to share the principle, level of detail and methods of the proposed model architecture,

suggesting a truly novel approach.

Blum and Reed Model of DNLL cells

Obviously the most similar model to the one proposed in this thesis has been published by Jacob

J. Blum and M.Reed at the Duke University, Durham USA [RB99][BR00]. The most prominent

similarities are the following:

� it models the cell response of single DNLL cells to binaural stimuli, based on the hypothesis

of Markovitz, Pollak and Yang [MP94][Pol97][YP97]

� it models the inhibitory and excitatory projections between AVCN, MSO, LSO driving the

DNLL cell response

� it employs models of single synapses and neurons with internal time delays of 1 ms

This way Blum et al. could reproduce many of the perceived �ring pattern of single cells in the

DNLL like pauser, temporal inhibition and temporal dynamics of EI and EE cells. However, there

are some essential di�erences making this model less suited to solve the technical task of echo

suppression as well as the task of biological relevant modeling than the proposed architecture.

These are:

1. It employs a fairly simple cell model, simulating only time continuous �ring rates per

second, no single spike events, and no dynamic postsynaptic responses.

2. Each auditory structure is represented by just one cell, representing only one frequency

channel and therefore loosing the spectral coding of intensities.

3. The contralateral inhibition between left and right DNLL is divided between two di�erent

cells within the DNLL and, therefore, the entire model will act very di�erently under

dynamic conditions.

4. The model lacks any ear model and it therefore cannot directly process sound waves - it

rather needs to be fed with arti�cially designed spike rates, and �nally,

5. the Blum model has not been designed and employed to perform echo suppression and it

lacks any model of the inferior colliculus or higher structures.

Obviously, the models of Blum et al. can suit the needs of physiologists well up to a certain level

of detail - although lacking the time course of internal cell potentials - but they cannot bridge

the gap between biological relevant modeling and applicability to technical systems - since they

were never confronted with real world tasks.
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Cai Model of MSO-IC cells

Another model, which now includes the discharge properties of IC cells, was published by Cai and

his colleagues at the Boston University in 1998 [CCC98]. This model attempts to simulate the

di�erent �ring pattern of IC cells but does not include a DNLL model and it is rather concerned

with the general localization task within the MSO - IC projection than the suppression of echoes.

Similar to the architecture proposed here, it models the internal cell potential by Hodgkin -

Huxley type equations and resembles the time course of excitation and inhibition with a high

time resolution. For that reason it seems one of the very valuable biological modeling approaches

for sound source localization even if it is probably not capable to realize e�ective echo suppression.

The most signi�cant di�erence between Cai and the proposed model architecture lies within

the fact that Cai exclusively employs interaural time di�erences (ITD's) and does not rely on

interaural intensity di�erences (IID's) at all. The problem of a purely ITD and therefore low

frequency driven attempt has been encountered by several groups, including the author [ZITP97]

and arrives from the fact that under highly reverberating conditions, the timely relationship

between the left and right channel becomes disturbed and fails to perform immediately after the

onset period of natural sounds.

Overall, the models of Cai et al. are well suited to resemble physiological cell functions even in

detail, but may fail to perform the entire task of echo suppression under real world conditions,

due to the limited subset of auditory nuclei incorporated.

Leibold Model of MSO cells

Another localization model based on single cell responses and synaptic plasticity in the MSO has

been published by Leibold [Lei02]. He uses a Spike Response Model (see page 16) to compare the

traditional place coding model of Je�ress [Jef48] with a modern rate coding model of McAlpine

and Grothe [MP02] [GN00]. As discussed in the �rst chapter, Spike Response Models (SRM)

are very close to the applied Spike Interaction Models (SIM) and therefore, the level of detail in

Leibolds model is close to the one of the proposed architecture.

However, there are three major di�erences between the two models. First, the focus of Leibolds

model is on ITD evaluation in the MSO, and the focus in this study is on IID evaluation in

the LSO. Second, Leibolds study concentrates on the comparison of principles than the techni-

cal applicability and is not concerned with computational or implementation tasks at all. And

third, the Leibold model concentrates on the pure localization task and does not deal with echo

suppression at all.

Horiuchi Model of LSO cells

By contrast, the model of Horiuchi and Hynna [Hor01] clearly attempts a technical solution

by realizing the azimuthal localization mechanism of the Big Brown Bat as spike based VLSI

model. Similar to the proposed architecture it uses interaural intensity di�erences as neural cues

for sound source localization and models the responses of LSO cells at the level of cell potentials

in order to guide the auditory attention of an autonomous robot. However, it does not include a

DNLL or IC model and is also more focused on the general localization task than the suppression

of echoes.

While the features of Horiuchi's silicon neuron will be discussed during a separate dedicated

section, it shall be mentioned here that the entire model seeks to reassemble the localization
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mechanism of bats and therefore operates in the ultrasonic frequency range around 40 kHz. This

and the lack of auditory structures above the level of the LSO limit it's applicability to room

echoes generated by human voice signals. The model of Horiuchi realizes just another biological

motivated principle, exclusively used by bats, to localize objects rather than sound sources.

Although di�erent in principle and not concerned with echo suppression in the sense of this

study, this model is a very valuable step towards biological relevant technical modeling. Espe-

cially, since VLSI implementation assures a fully parallel and on-line performance and marks a

signi�cant step toward successful neuromorphic engineering.

Auditory Nerve Models of Colburn

Already in the 70'th of the last century Colburn et al. started to investigate the �ring pat-

tern in the auditory nerve (AN). Several publications concerning the theory of binaural hearing

[Col70],[Col73],[CE76],[CL78] not only investigated the localization of sound sources based on

timing di�erences between the left and right AN, but also employed a detailed computational

model of the �ring pattern within the left and right Auditory Nerve [CE76],[HCC01] to investi-

gate the rate-place code important e.g. for source localization at higher frequencies.

Similar to the proposed model of this thesis, they found both, the spike timing as well as the

number of frequency channels to carry signi�cant information about the horizontal azimuth

of sound sources. However, echo suppression, in their view, results from adaptive mechanism

within the inner ear and auditory nerve and has been modeled, without being in special focus

of their studies. While adaptive e�ects throughout the entire auditory brain stem cannot be

denied, there seems to be no su�cient evidence to view them as the general mechanism for echo

suppression. To the believe of the author, adaptive mechanisms play a mayor role for adaptive

perceptual e�ects like the Clifton e�ect (see page 39), but thus cannot realize the entire task of

echo suppression during sound source localization.

Although, Colburn et al. only model the very early stages of the auditory system (inner ear and

acoustical nerve), their models are essential to understand the principles and importance of au-

ditory coding and support the hypothesis of this thesis that spike time and place in the auditory

nerve are essential for understanding and modeling higher auditory functions, like sound source

localization and echo suppression.

Cochlear Model of Schwartz

The last model to be discussed during this section is the one of Schwartz et al. [SHP99]. Al-

though, it does not model auditory cells it can be counted as a biological model, since it attempts

to realize echo suppression by the help of the gamma �lters modeling the inner ear.

The underlying assumption is that the rate of change during the onset part of a sound event

determines the precedence e�ect. Therefore, the adaptive gamma �lters, used in this study,

enhance the onset part of a speech signals and suppress the ongoing components, this way

increasing the initial rate of change during the onset compared to the ongoing part of acoustic

signals. Since this study employs complex speech signals, instead of synthetic clicks, it's relevance

to this discussion is given by the fact that it seeks to suppress echoes of natural speech signals

under real world conditions based on a biological motivated adaptive model of the inner ear.
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However, neither the sound source localization task nor the role of higher nuclei in the auditory

brain stem are subject to that model and while it successfully suppresses speech components,

after the onset period, it might still not be able to correctly sense the direction of speech signals

under echoic conditions.

To summarize this subsection it can be stated that only few models use the biological auditory

brainstem as guideline to model echo suppression during sound source localization. The only one

concerned with the role of the DNLL during this task is the one of Blum et.al which does not

show (and seek) technical applicability. Based on the available information it therefore seems

valid, to see the proposed model of this study as the �rst to combine detailed modeling of auditory

nuclei up to the DNLL-IC level with technical applicability of echo suppression to mobile robots

and other technical systems. The signi�cance of the sound localization task under reverberating

conditions has just lately been con�rmed by the european presentation of the HONDA humaniod

robot ASIMO, which also depends on this ability to direct �rst attention towards his user.

6.1.2 Models using Arti�cial Neural Networks (ANN)

Arti�cial Neural Networks (ANN) in the sense of the statistical modeling approach, as discussed

in section 1.2.1Neural Network Modeling Approaches, have proven their ability to handle statis-

tical high dimensional problems successfully.

From an outside point of view the task of sound source localization can be seen as a mapping of

the timing and intensity di�erences between the two sound channels toward an azimuthal -and

possibly spherical- vector, pointing towards the sound source location. Hereby, the Head Related

Transfer Functions (HRTF) and ear properties cause intensity and timing di�erences varying be-

tween frequency components and from system to system. If these variations are overlapped by

echoes in a closed acoustic environments the mapping between input (binaural cues) and output

(directional vector) becomes indeed a statistical, multi-dimensional problem.

Taking this perspective, some research groups attempt to solve the problem of echo suppression

during sound source localization by the adaptive �learning� behavior of arti�cial neural networks.

Two, more recent models of this kind shall be discussed within this subsection. At the end, an-

other type of ANN applications, concerned with the solution of the �cocktail party e�ect� will

be mentioned and introduced by a recent example.

MLP Model of Arslan

A recent ANN model for sound source localization has been published by Arslan et al. [AS00] at

the University of Texas. The core of this model is a Multi Layer Perceptron (MLP), operating in

the feed forward mode. It is feeded by feature vectors containing the maximal responding com-

ponents of an estimated instantaneous cross power spectrum between adjacent pairs of sensors

from a 4 microphone array.

Tested with narrow band sounds (tones) and broadband sounds (speech) the model reaches a

localization accuracy in the horizontal plane of 3.5 degrees for near as well as distant sound

sources, hence independent of the absolute sound pressure.
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However, these results have been achieved after training the MLP for a de�ned position within a

speci�c acoustical environment. With high probability, a new training session would be required

if the experimental setup is moved to another location within the room or if the acoustic prop-

erties of the environment changes e.g., by opening or closing of window curtains. This limits

its applicability to static systems in static environments and prevents its successful operation at

mobile systems like robots. Although, the model claims to work in real time mode, the required

up front training session, somehow undermines this statement.

In summary, the MLP approach might be well suited to suppress echoes during sound source

localization under static conditions, but since the MLP, even after extensive training, represents

only a speci�c solution to the high dimensional statistical problem, the achieved higher accuracy

is abrogated by its limited mobility.

RBF-Fuzzy-Backpropagation Models of Nandy

The attempt of the neural network models published by Nandy [NA96],[NA01] is to extract

interaural intensity di�erences (IID) from head-related transfer functions (HRTF) in the form of

spectral cues to localize broadband high-frequency auditory stimuli, in azimuth and elevation.

The spectral cues are assigned to speci�c locations using a novel discriminative matching measure

(DMM), de�ned to characterize IID spectral matching.

The employed arti�cial neural network consists of two-dimensional Gaussians (Radial Bases Func-

tions - RBF) which act as membership functions for the fuzzy set. The Error back-propagation

algorithm is used to train the network to correlate input patterns (spectral IID's) to the desired

output patterns (sound locations). The fuzzy outputs were used to estimate the location of the

source by detecting Gaussians, using the max-energy paradigm. Hereby, the use of training data

with additive noise provided good robustness to input errors.

The model shows that HRTF-based spectral IID pattern can provide su�cient information for ex-

tracting localization cues using a connectionist paradigm. Successful recognition in the presence

of additive noise in the inputs indicates that the computational framework of this model is robust

to errors made in estimating the IID patterns. The localization errors for such noisy patterns at

various elevations and azimuths are compared and found to be within limits of localization blurs

observed in humans.

In a later work [NA01], Nandy considers several solutions to the matching problem from a neural

signal processing viewpoint. He compares correlation based approaches with DMM optimization

approach and with a non-linear approach based on the error back-propagation algorithm. All

three models have been implemented by neural networks and experiments showed that the back-

propagation based neural network yields the best results in terms of DMM both for narrow-band

and broad band excitation. The back-propagation neural network was also superior in matching

noisy HRTF ratio vectors.

Similar to the proposed model of this thesis, Nandy uses frequency speci�c interaural intensity

di�erences as binaural cues for sound source localization. However, his network also requires

extensive training under speci�c static acoustical conditions and will not be able to perform

under constantly changing real world conditions. Since echo responses will signi�cantly change

after dislocating the system or changing the environment, the fuzzy-adapted DMM - direction

correlation, might no longer �t with the new situation and might lead to mis-judgements of
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sound source location. While an ongoing adaptation of fuzzy sets might help to overcome this

problem, its success is limited by the supervised learning principle of the error back propagation

method. Therefore separate training for each location will be required and prevent the model

from application to mobile systems.

Both, the model of Nandy and the one of Arslan are typical examples of the input-output mapping

approach described above. Since both employ Arti�cial Neural Networks (ANN) to relate complex

feature vectors, depending on the physics of the acoustical environment, to speci�c sound source

locations, they su�er from the same problem. If the physical environment changes for whatever

reason, the employed back-propagation algorithm requires new training, even if the generalization

capabilities of ANN are successful under noisy and low SPL conditions. General changes in the

input - output relationship cannot be adapted by those ANN without separate new training and

therefore limit the performance of those models to acoustically stable environments and physically

static positions.

In distinction, the proposed architecture described in chapter 4, is purely feed forward and exclu-

sively relies on feature processing instead of an adaptation to speci�c relationships. Therefore,

it is not confronted with the need to adapt to changing relationships caused by changing physical

conditions and is not limited in mobility and applicability to mobile systems.

A completely di�erent approach is pursued by the many researchers attempting to model the

�cocktail party e�ect�. Their major goal is the separation of a single sound source out of a com-

plex mixture of sounds - as humans do when listening to a single speaker at a cocktail party.

While this goal is not identical with the sound source localization task, many models use binau-

ral cues and arti�cial neural networks to distinguish between the overlapping frequencies of the

di�erent sources.

The cocktail party problem is traditionally treated as blind source separation problem with many

techniques o�ered to handle the separation. Some of the most prominent solutions include the

information maximization approach of Bell and Sejnowski [BS95], and the Independent Compo-

nent Analysis Networks (ICA) examined for example by Comon [Com94], Amari, Cichocki and

Yang [ACY96] and Oja and Karhunen [OK95]. A typical attempt to solve the cocktail party

problem, based on binaural cues, has been undertaken by Girolami [Gir98] employing an anti-

hebbian Maximum Likelihood Estimator (MLE). His model shall represent this speci�c class of

models at this point.

Ani-Hebbian MLE Model of Girolami

Based on comparative experiments under various echoic and unechoic conditions and the early

�ndings of Kaiser and David [KD60] Girolami believes that interaural correlation might be the

driving mechanism behind binaural unmasking. Similar to the proposed architecture of this the-

sis he therefore assumed that contralateral in�uence between the binaural channels are necessary

to perform e�ective echo cancellation and source separation under echoic conditions. Like many

other researchers, he employs a recurrent network structure (shown in �gure 6.1) as base for an

adaptive algorithm to separate blind sources of convolutive mixtures.
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Figure 6.1: Recurrent binaural �lter network

The adaptive coe�cients of this arti�cial neural network are determined by an Maximum Like-

lihood Estimator (MLE), identifying the optimal non-linear term, required to fully utilize the

information conveyed by the statistics of naturally occurring speech. The Anti-Hebbian adapta-

tion mechanism used within the MLE reduces the redundancy within the model parameters.

While the experimental results achieved by Girolami under controlled (synthetic) conditions

where quite impressive (SNR improvement of 34dB for the target speech), he described his

results, under real world conditions (only 5 dB SNR improvement) as disappointing. One of

the reasons he identi�es is the fact that even the MLE approach assumes the convolution of the

independent source signals with a linear model of the transmitting medium represented by a

linear causal �lter of in�nite length. Since real world acoustic transfer functions do not ful�ll

this requirement, he suggests the use of Bayesian methods but also emphasizes the need for

biologically and physiologically inspired models.

Di�erent from the ANN models of Arslan and Nandy, Girolami does not attempt to �learn� a

speci�c input-output relationship. Instead, similar to the proposed architecture, his recurrent

network operates purely feed forward. However, the macroscopic adaptation of contralateral

�lter parameters, in order to model the complex interactions between the left and right percep-

tive channel, is obviously not su�cient to duplicate biological e�ects in the auditory brainstem.

By selecting highly speci�c �lters, modeling the inverse transfer function of the environment, it

essentially lacks the ability to adapt to changing environments and acoustical conditions.

Representing just one example of the many ANN models developed to perform sound source sep-

aration based on binaural processing, this model displays the limitations of ANN quite clearly.

While they are optimally suited to extract complex inverse models from statistical signals, they

lack the natural ability to cope with dynamically changing environments, as present most of time

in the real world.

Summarizing this subsection on arti�cial neural networks it can be stated that ANN are able to

perform sound source localization as well as echo/noise suppression fairly well under static con-

ditions. However, tracking a moving sound source or locating a source under changing positions

of the perceptive system (as has been shown to work with the proposed biological motivated archi-

tecture) remains problematic due to the limited ability of ANN to represent continuously changing

transfer functions, within their weights and elements.
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6.2 Technical Echo Suppression

As mentioned in the introduction of this chapter, this section will provide a short overview

on established technical methods for echo suppression and/or sound source localization and

comparably discuss advantages and limitations of the proposed neural architecture.

Since the majority of current technical models follows the adaptive �lter approach, this principle

will be in focus of the �rst subsection. The second subsection introduces some other important

modeling approaches and compares them to the one chosen in this thesis.

6.2.1 Adaptive Filtering models

During the last 15 years the most common technical application of echo suppression has been the

transmission of voice signals via telephone lines. Therefore, the vast majority of echo cancellation

model has been concerned with that topic.

The �rst problem to be solved in the context of voice transmission via telephone lines is the

one of suppressing echoes between the near and the far end of the transmission line generated

within the wire. Starting out with simple adaptive �ltering in the frequency domain in the early

90'th (e.g.[AAS92],[PGT94]), techniques have been improved employing a variety of adaptive

�ltering techniques in the frequency and time domain to suppress echoes in the single channel

case. By today, the well established standard techniques are based on LMS (Least Mean Square)

adaptive �lter algorithms proving successfully since the type of echoes in concern are not due

to room acoustics and therefore do not depend on speaker position. Due to the static nature

of the echo generating transfer function within telephone lines, fast adapting �lters can easily

extract the inverse transmission model and suppress this type of echoes. Although concerned

with echo suppression, these models are not at all concerned with sound source localization in

reverberating rooms (a single speaker directly talks into a microphone) and shall not be further

investigated at this point. The interested reader might refer by example to Kwan [Kwa02], Chin

[CFB01], Sugiyama [SJH01] or Haddad [HK00] for further insights.

A more complex echo suppression problem arrives with the duplex transmission of stereo sig-

nals as typically asked for in today's telephone-conferencing systems. Stereophonic acoustic echo

cancellation (SAEC) is more di�cult to solve, because of the necessity to uniquely identify two

acoustic paths, which becomes problematic since the two excitation signals are highly correlated.

The fundamental problems of SAEC are well described for example by Eneroth [EGGB01] and

arise also from a coupling between loudspeakers and microphones of teleconferencing systems.

But again, this type of decoupling and echo suppression is not concerned with the sound source

localization, the model of this thesis is useful for, and therefore won't be subject of an intensive

discussions. Recent publications covering stereophonic acoustic echo cancellation are found i.e.

by Gansler [GB00][GB02], Tangsangiumvisai [TCC99] and Benesty [BG99].

A similar but even more complex problem marks the cancellation of echoes during the usage of

hands-free telephony equipment. Here, beside the decoupling between loudspeakers and micro-

phone the task is the suppression of echoes resulting from residual (room) acoustics. But the

focus here is again on echo cancellation rather than on sound source localization.
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One approach to solve the coupling between microphone and loudspeaker has been published

by Hansler [HS00] and Bouquin-Jeannes [BJF01]. Both use the speech signal at the near end

(opposite to the hands-free equipment) as a shadow �lter to the signal received from the far end

(hands-free equipment). While Hansler et al. perform a correlation analysis in order to suppress

the microphone induced echo components, Bouquin-Jeannes and his colleagues employs a speech

detector to stop the adaptation of the far end adaptive �lter during speech submission. This

way he assures that the adaptive �lter only models the echo components generated by the room

acoustics at the far end of the system which are assumed to be stable, when separated from the

microphone induced dynamics. Basically, the far end system is assessed through the power of

the residual echo.

Probably, the most modern �ltering approach to deal with hands-free telephony problems has

been undertaken by the research groups of Enzner [EMV02] and Gustavson [GMJV02]. They

both employ post�lters, based on the residual echo power spectral density.

Enzner investigated several techniques to estimate the power spectral density of residual echoes,

�nally identifying a partitioned block-adaptive estimation technique as the most successful in

strongly reverberant and noisy acoustic environments. Frequency-domain adaptive �lter (FDAF)

have been used simultaneously for residual echo power estimation and tracking of the echo path

impulse response. In this way, the FDAF and the post�lter concept supplement each other in a

true synergy with low complexity.

The post�lter of Gustafsson applies the spectral weighting technique and attenuates both the

background noise and the residual echo. Two weighting rules for the post�lter are discussed. The

�rst is a conventional one, known from noise reduction, which is extended to attenuate residual

echo as well as noise. The second is a psychoacoustically motivated weighting rule. Both rules

were evaluated and compared by instrumental and auditive tests. They succeed about equally

well in attenuating the noise and the residual echo. In listening tests, however, the psychoa-

coustically motivated weighting rule is mostly preferred since it leads to more natural near end

speech and to less annoying residual noise.

However both, the shadow �lters of Hansler and Bouquin-Jeannes as well as the post�lters of En-

zner and Gustafson rely on the underlying assumption of a stable residual echo transfer function

- generating the echo at the site of the hands-free telephone - and being adapted by sub-band

adaptive echo compensation �lters. This assumption holds for a stable speaker-phone relation-

ship fairly well but is lost during conditions, when speakers at di�erent positions with regard

to the microphones are present or the recording system itself moves its position within the

room (as in case of mobile systems). In this case, sound source detection will become a separate

task (as in today's video conference systems) which is not solvable by means of adaptive �ltering.

To summarize, in sight of the author, none of the numerous adaptive �ltering models attempts do

deal with the localization problem as a prerequisite for speaker identi�cation in video conferenc-

ing systems, and the presented architecture might add a useful additional tool to the established

techniques for echo suppression during voice transmission based on adaptive �ltering.
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6.2.2 Other technical models

Beside the adaptive �ltering, �ve other principle approaches have been identi�ed in the �eld of

technical echo suppression and shall be shortly mentioned during this subsection.

Caotic Coding models of Elmirghani and Muller

First of all, a purely technical but smart approach for echo cancellation during telephone trans-

mission is used by Elmirghani [EMC94] and Muller [ME99]. They apply a chaotic-based modula-

tion regime based on logistic mapping to the speech signal. This way the Power Spectral Density

(PSD) of the speech signal is whitened and becomes much better distinguishable by dynamic

deconvolution algorithms (DBD) as introduced by Muller or even classical echo canceling as

employed by Elirghani. Applying the caotic modulation technique they achieved improvements

of about 25 dB after 1000-2000 iterations. Although this is impressive results, the caotic coding

method is not at all driven by physiological �ndings and while it proves helpful for the speci�c

task of echo suppression it might prevent the system from further capabilities like sound source

localization or speech interpretation.

Microphone array models of Kuo and Dahl

Another purely technical driven coding technique has been employed by Kuo [KP94],[KHP95]

and Dahl [DC99]. The Kuo model relays on the fact that each acoustic echo cancellation micro-

phone unit consists of two closely spaced directional microphones pointing in opposite directions

and therefore a much lower order adaptive �lter is required than in traditional echo cancella-

tion systems. Dahl also uses more than two self calibrating microphone units but doesn't reveal

the mechanism behind. Both models basically assign the echo suppression task to the receptor

(microphone) using more than two of them and a subtraction of correlated signals as the cue

for decomposition of echoes and noise from the target signal. While this is a technically useful

method, it doesn't seem to overcome the limitations of sensor driven approaches, who cancel out

rather than ignore echo information, resulting in a lack of ability to use the echo information for

estimations of room acoustics (i.e. source distances) or the switch of attention from one source

to another (i.e. as during the cocktail party e�ect).

Impulsive Transformation method of Suzuki

In 1999, Suzuki et al. published a paper [SOKM99] where they propose a coding of acoustical sig-

nals into impulsive signals. They claim that by conversion to an impulsive signal, the overlap in

time between the interference signal pulse and the desired signal pulse is minimized, which helps

to secure the interference signal suppression performance of the traditional adaptive �lter. Since

performance has so far only be demonstrated by computer simulations, it needs to be proven

that this assumption also holds under real world conditions. Nevertheless, the discretisation in

time, which is the underlying principle of Suzukis method, can be seen as a common feature

between the spike based approach of the model designed in this thesis and Suzukis model. Since

he still employes adaptive �lters, as the main device for echo cancellation, timely discretisation

in Suzukis model is rather seen as a signal enhancement method than as an underlying coding

principle. Therefore, while the applied coding might be similar, the general principle remains

di�erent from the one proposed for the model of this thesis.
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Binaural room modeling of Blauert

An important modeling approach to be mentioned during this section is the 3 phase inverse

room modeling, proposed by Blauert et al. already in 1992 [BBL92]. It's three phases consists

of a "sound"-speci�cation phase, a design phase and a work-plan phase. Binaural recording,

reproduction and room simulation techniques are used throughout the three phases allowing

for subjective/objective speci�cation and surveillance of the design goals. The binaural room

simulation techniques include physical scale models and computer models of di�erent complexity.

The modules of the model are: outer-, middle- and inner-ear simulation, binaural processors,

and a �nal evaluation stage. Using this model, various phenomena of sound localization and

spatial hearing, such as lateralization, multiple-image phenomena, summing localization, the

precedence e�ect, and auditory spaciousness can be simulated. Finally, an interesting application

of Binaural Technology is presented, namely, a Cocktail-Party-Processor. This processor uses

the predescribed binaural model to estimate signal parameters of a desired signal which may

be distored by any type of interfering signals. In using this strategy the system is able to even

separate the signals of competitive speakers.

Although not based on single cell models, the modules of the Blauert model are very similar to

the proposed architecture. Based on binaural ear models he evaluates binaural cues expressed

in time and intensity di�erences between corresponding frequency channels. But the general

approach here is quite di�erent. Since Blauert attempts to build a speci�c inverse model of a

speci�c room - later employed to achieve speci�c design goals - his model will always �t to a

speci�c acoustical environment and the designer will need to step trough the three phases again

if the system needs to act in a new environment. While the Blauert model is perfect for the

purpose it has been set up for, it cannot be employed for the goal of mobile sound source local-

ization under echoic conditions, the proposed architecture of this thesis seeks a solution for.

Directional estimation models of Chiucchi and Yensen

Finally, the technical models getting closest to the proposed biologically motivated architecture

are the ones of Chiucchi [CP01] and Yensen [YGL01]. Since both of them are designed to cope

with multiple participant, full-duplex hands-free telephone and video conferencing tasks, they

are confronted with microphone speaker coupling, residual echoes as well as cocktail party-like

selection tasks. The idea behind their method is, that the desired sound component can be

distinguished from echoes and noise by it's Direction Of Arrival (DOA). If this DOA is correctly

estimated, only those components featuring the appropriate Interaural Time Delay are selected

from the mixture at the far end, transmitted by a single channel and arti�cially redesigned as

stereo signal by an active beamformer at the near end. The result is a �selective listening� to a

desired sound source marked by a speci�c direction of arrival with regard to the stereophonic far

end recording system.

While there is de�nitely no monaural transmission and arti�cial redesign of interaural features

in the auditory system, the principle of sound source separation based on speci�c interaural cues

might well �t to the principles of physiological sound source selection performed in the Thalamus

and higher auditory centers.

However, the problem of this method will be exactly the one, being addressed by the proposed

model - the secure determination of the direction of arrival. The algorithm employed for this

task at the Chiucchi model is fairly basic and exclusively relies on a ITD (or Time Delay of
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Arrival - TDOA) estimation, performed by an algorithmic cross phase spectrum estimation.

In case of reverberating rooms this method of TDOA estimation will be confronted with all

the limitations previously shown for purely ITD sensitive methods which are: Detection of

wrong directions after the onset phase due to disturbances by echoes from other directions, non

deterministic outputs at higher frequencies since several maxima occur due to wavelength smaller

than interaural distances, and the inability to track moving sound sources due to on overlap in

time of components arriving from di�erent directions.

While the general principle of Chiucchi and Yensen is seen as the way to go forward in modeling

sound source separation based on physiological models, the speci�c problem of echo suppression

during sound source localization has not yet been solved by these models. Therefore the proposed

principle of this thesis might add signi�cant performance if applied to the DOA stages of the

Chiucchi and Yensen model architecture.

Summarizing this section on technical modeling of echo suppression and sound source localization

it can be said that the many echo cancellation models, based on adaptive �ltering, mostly address

electrical echoes within the wire and coupling echoes caused by the speaker - microphone inter-

action at the far end of the transmission system. The few �ltering models dealing with residual

echoes caused by the acoustical environment rely on the extraction of speci�c inverse acoustic

response functions, which will not remain stable under mobile conditions.

The di�erent technical solutions, brie�y discussed in the last subsection apply computational

e�cient and partly physiologically plausible principles for echo suppression, but the only one

concerned with the localization of sound sources employs a very basic mechanism, probably not

capable of dealing with natural reverberating conditions.

Therefore, even with respect to technical modeling, the proposed architecture pursues a novel ap-

proach to an important problem and might enhance the performance of video conferencing systems

as well as enable the sound source location in mobile technical systems.
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6.3 Silicon Implementability

As mentioned in the introduction of this thesis, a major limitation of physiologically motivated

Spike Interaction Models (SIM) arises from their computational expensivnes if simulated on

purely digital and sequential von Neumann computing architectures.

This limitation can be turned into an advantage if the engineer attempts to build them into silicon

technology. Due to the purely structural coding without any need for algorithmic calculations,

as well as due to the very limited variety of necessary base elements, SIM are perfectly suited

for analog-digital silicon implementation, this way opening the entire world of truly parallel and

on-line processing regardless of the level of model complexity.

Since this fact was in focus of the DFG Graduiertenkolleg �Automatisierung des Entwurfs analog-

digitaler Strukturen am Beispiel Neuronaler Netze� funding this thesis until 1998, some of the

base elements introduced in chapter 3 have been designed, implemented and tested as paced

analog circuitry. This work has been done and published in close cooperation with Richard Izak,

Karten Trott and Uwe Markl at the department of Microelectronic Circuits and Systems at the

Technical University of Ilmenau [IZTP97], [ITZM97], [ITZ97], [IZ97], [IZ97], [ZITP97], [ZIT97],

[Zah96], [MZ96].

This chapter will brie�y describe the design principles applied and the preliminary results

achieved until the end of DFG support to this thesis in 1998. For further results one might

refer to later publications by R.Izak and K.Trott.

According to the available technology to the Graduiertenkolleg at the late 90'th we used a

2.4 �m analog CMOS technology for implementation of single neurons, single synapses and

a �rst test-chip containing an array of 34 neurons and 102 synapses. Turning toward analog

implementations one has to be aware of the inaccuracy and stability problems of such systems.

In addition, the general robust nature of the information processing in spike based systems, we

used two asynchronous clocks of 1 MHz to prevent the system from oscillations and to ensure a

time resolution of 1�s for spike emission and coincidence detection.

The following subsections will now describe the implemented silicon neuron, the implemented

silicon synapse and the test chip, designed to perform a fully parallel sound source localization,

based on spiking neurons and synapses, realizing the traditional Je�erson model of ITD evalua-

tion in the MSO. Finally, the last section will mention some other neuromorphic approaches to

VLSI implementations of spiking neurons and provide a short outlook with regard to the imple-

mentability of the proposed architecture for echo suppression during sound source localization.

6.3.1 Silicon Neuron

One of our goals was to �nd a neural cell model usable at di�erent stages of the system just by

tuning of a few electronic parameters. Therefore, we included only the essential functional blocks

of Integrate and Fire neurons according to the Base Library element �extended IF neuron� as

introduced in section 3.3.2. This was extended by a �ring history block, generating the dendritic

potential as a prerequisite for Hebbian learning at the site of learning synapses, and achieved

the �learning extended IF Neuron� element of the Neural Base Library. The block structure of

the silicon neuron is shown in �gure 6.2 and contains �ve blocks, representing functional circuitry.
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Figure 6.2: Block structure of the silicon neuron

Each neuron receives spatially added current pulses from a�liated synapses placed in the column

above. The analog amplitude of each synaptic current depends on the stored weight and extends

up to�15�A. A spatio-temporal summation of all incoming current pulses is realized by charging

the Soma Potential Capacitor (SPC) Element Z. A discharging resistor in parallel with the 5pF

capacitor Z approximates the time course of postsynaptic potentials (PSP) as �-function with a

repolarizing phase of 30�s and a resting potential of 0V . The neural activity A at the output of

the neuron is the result of the comparison between the soma potential and the threshold. The

subsampling of the incoming current pulses by Clock2 (1 MHz, pulse width 500 ns) leads to

a reduced charge period of the capacitor, extending its functional dynamic range and reducing

stabilization errors at the beginning of the �s interval.

If the capacitor voltage Z exceeds threshold, the employed rail-to-rail comparator generates only

a trigger point for the inner activity Ai. To prevent the immediate return due to the refractory

process (AHP), Ai is stored in an edge triggered dynamic short term memory (STM), realized as

gate-capacitance bu�er. The binary activity A at the output of the neuron arises synchronous

to the next L-H edge of Clock1 (see �gure 6.3).

Each activity pulse is followed by a refractory period. When A turns to high, the AHP capacitor

is charged and the threshold is lifted to Vdd. Therefore, the output of the comparator will return

to low. This is functionally equivalent to the decrease of soma potential in biological neurons

and the simulation block. The AHP potential returns to resting potential in a 2 stage process

combining a de�ned absolute refractory period with an exponential decrease during the relative

period.

The History (H) circuit is included to model the �ring history of the neuron, which is propagated

as dendritic potential Hd back to the site of those synapses, referring to the input of that neuron.

During the activity pulse, the H capacitor is charged rapidly. Afterwards it is discharged with a

time constant of 30�s similar to the Z capacitor. This decay time constant can be changed via

modi�cation of the employed discharge resistor. History potentials range from 2:5 to a maximum

of 5V .
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Figure 6.3 shows the designed mixed analog-digital circuit at the left panel and the simulated

circuit behavior after stimulation with a constant chain of presynaptic pulses at the right panel.

Figure 6.3: left panel: analog-digital circuitry of the silicon neuron

right panel: circuitry simulation results after stimulation with presynaptic excitatory pulses

As can be seen in the right panel of �gure 6.3, summation over time is achieved by simply adding

charge to the postsynaptic resistor-capacitor (RC) element, which results in a natural saturation,

identical to the SIMULINK model.

The parametric values of the extended IF Neuron Base element: threshold, ahp(tau and max) as

well as the postsynaptic potential parameters psp(tau-depolarization, tau-repolarization) can be

tuned by simply changing the values of the associated RC elements without any need to modify

the circuitry its self. This way, the designed extended IF Neuron can be employed at any stage

and for any function of the proposed architecture even if the history output is not needed.

Finally, the technologically implementable layout, shown in �gure 6.4, has been generated out of

the the circuitry using a specially designed CADENCE-based analog-digital layout generator.

Figure 6.4: Implementable layout for the Silicon Neuron
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6.3.2 Silicon Synapse

In general, the task of a silicon synapse is the weighted transmission of presynaptic voltage pulses

into postsynaptic current levels within the dendritic tree. Since the Silicon Neuron has been im-

plemented as extended IF Neuron, including the postsynaptic transfer function, it would have

been su�cient for the implementation of the proposed architecture to implement the synaptic

element as basic synapse, i.e. as a simple weighted transmission of the arriving voltage pulse

into a dendritic current pulse. The necessary circuitry to perform this task is a simple Voltage-

Current (U/I) converter as shown in �gure 6.5.

Figure 6.5: left panel: analog circuitry of the voltage-current converter

right panel: transfer function of the voltage-current converter

As can be seen, the nearly linear transfer function assures that positive (excitatory) voltage

pulses become converted into inward �owing (charging) currents and negative (inhibitory) volt-

age pulses result in outward �owing (discharging) currents. This way, excitatory as well as

inhibitory synapses become available, depending on the voltage of the arriving pulses. Note

that, since neurons always emit positive voltage pulses (action potentials), a inhibitory synapse

contains an inverted U/I converter enabling the discharge of the referring PSP- R/C element by

an outward current �ow.

Since the original purpose of the silicon synapse has been the implementation of adaptive (learn-

ing) synapses, referring to the NBL element �TOP-learning synapse�, the design asked not only

for the storage, but also for a continuous modi�cation of the speci�c weight value following a

purely local Hebbian learning rule.

In this case, the synaptic weight is stored locally, as a voltage across a 5 pF poly capacitance

and the weight modi�cation is realized by charging or discharging currents depending on the

potential di�erence between the local postsynaptic potential H and the back propagated den-

dritic potential Hd of the receiving neuron. Enhanced in Fig.6.6 the weight will increase if the

receiving neuron spikes shortly after the arrival of an excitatory pulse and will decrease if the

neuron spikes outside the shaded learning window just after the arrival of a postsynaptic spike.

This principle was �rst proposed by Gerstner [GV94] for learning in the dynamic associative

memory and successfully simulated by the SIMULINK base library element.
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Figure 6.6: Principle of the Hebbian type Timing Of Potential (TOP) learning

The resulting more complex synapse is implemented by four compartments shown in �gure 6.7.

Besides the described U/I converter and the weight-storage capacitor it contains a weight-update

element consisting of an analog multiplier, coupled to a charge pump responsible to modify

the charge of the weight capacitor depending on the di�erence between the local postsynaptic

potential H and the local presynaptic potential Hd. For a detailed description of the circuit's

functionality the reader should refer to Izak et al.[ITZM97].

The long term storage, as well as the accurate modi�cation of synaptic weights, mark a speci�c

problem in analog hardware since leakage and discharge will cause the charge of the capacitor to

disappear over time. To overcome these limitations, a refresh circuitry, as shown in �gure 6.8, is

introduced as the 4. compartment of the silicon synapse.
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Figure 6.7: Building blocks of the TOP Learning silicon synapse

Observable in �gure 6.7, the weight capacitor is charged or discharged by a charge pump depend-

ing on the multiplication of dendritic- and postsynaptic potential. Thereby, the applied Gilbert

multiplier joins both history potentials with a linearity of 0:6% at 1� 1V inputs. The disadvan-

tage of its dynamic range in the order of mV has been compensated with a higher comparator

sensitivity at the subsequent charge pump, based on the idea of Morie [MA94].

The necessary accuracy level for weight storage and modi�cation has been de�ned to 8 bit (20

mV accordingly). To achieve this high level of accuracy, the idea of Vittoz et al.[VOM91] to use

a ramp reference voltage has been adapted. Here, a speci�c reference voltage increases continu-

ously from 0 to 5 V during 256 �s and then starts over again. By continuously comparing the

voltage across the weight capacitor with this reference, charge leakages as small as 10 mV can

be detected and if the reference exceeds the actual capacitor voltage, the weight is carried along
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with the reference until the next reset pulse occurs. Using a 1 MHz reset clock and a 256 �s

refresh cycle, the achieved accuracy ful�lls the 20 mV constraint. Principle and circuitry of the

employed refresh method are displayed in �gure 6.8.
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Figure 6.8: Implemented synaptic weight refresh principle as proposed by Vittoz et al.

Applying this principle and realizing all four compartments of the silicon synapse, the entire

analog- digital circuitry of a TOP learning silicon synapse is displayed in �gure 6.9 left panel.

But since this circuitry has not only been simulated but also physically implemented via the

Euro-chip program, the weight modi�cation curve shown in the right panel of �gure 6.9 contains

both, results from circuitry simulations and measured results from physical silicon.

Figure 6.9: left panel: analog-digital circuitry of the silicon synapse

right panel: simulated and measured synaptic weight modi�cation during learning

The implemented 2.4 �m layout generated by the developed CADENCE design generator can

be seen in �gure 6.10.

6.3.3 Chip design

Neural hardware design can be divided into all purpose and full custom design chips. To achieve

the advantages of full custom design (more detailed modeling, optimal area utilization, etc.) by

reducing the overwhelming design expense, the automation of layout generation has been the

goal of the e�orts in the Graduiertenkolleg. Based on a library of neural elements (cell types,

synapses, delay units and others), the design generator developed by Trott and Izak is embed-

ded in a CADENCE environment and produces layouts for di�erent net sizes and connectivity
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Figure 6.10: Implemented layout of the silicon synapse

structures. The general order of placement so far implemented is a matrix, placing a column

of input-synapses above each neuron and enabling a full connectivity based on matrix wiring as

shown in �gure 6.11 left panel. If more synapses are needed in case of fully interconnected larger

networks, an array of cascadable chips is generated, consisting of combined neuron-synapse chips

and pure synaptic arrays as displayed in the right panel of �gure 6.11. This enables the realiza-

tion of a wide variety of network topologies, ranging from fully connected toward multi-layer or

locally connected architectures.
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Figure 6.11: left panel: Matrix of neurons with synaptic input colums placed on one chip

right panel: Chip cascade combining neurons and pure synaptic arrays

Using the 2.4 �m CMOS technology at least 10 Neurons with 100 synapses can be placed on a

single chip of 50 mm2 area. However, today's technology in the range of nm allows more than

100 fully connected neurons to be placed onto a single waver. For even larger nets, the generator

produces partitioned layouts for multi chip modules. Designed by the team of the Graduiertenkol-

leg, the generator (�gure 6.12) includes optimization rules for wire transfer and routing. This

way a wide range of networks and functionality becomes accessible to the inexperienced designer.

A typical example of the resulting neuromorphic chip design, realizing a coincidence based sound

source localization by evaluation of interaural time di�erences, according to the traditional Jef-

ferson model, is displayed in �gure 6.13. Here, the left panels enhances the desired functionality

and the right one displays the obtained implementable layout.
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Figure 6.12: User Interface of the Design generator under development
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Figure 6.13: left panel: Je�erson model sound source localization via spike coincidence detection

right panel: Automatically generated chip layout to realize the functionality fully parallel

These simulations and �rst implementations of silicon neural elements support our postulate

that the combination of analog and digital circuit design is especially well suited to unfold the

full power of neural networks. The fully parallel spatio-temporal nature of biological information

processing and its simple but often repeated calculations demand a large number of distributed

simple processors for high speed and accurate computing. At the same time, customized hardware

design becomes crucial to the power of applications since neural functionality is mainly based on

speci�c connectivity. So far, three critical elements, an IF neuron with refractory behavior and

dendritic potentials, a locally learning synapse, and an optimized connection scheme have been

developed. Further elements for axonal delays, non learning synapses and speci�c hair cells are

under consideration.

6.3.4 Implementability of the proposed architecture

As shown by the two examples above it is obviously possible to implement the elements of the

neural base library presented in chapter 3 with a�ordable e�ort into specialized silicon. Applying

the idea of automated layout generation by a simple to use layout generator to translate the

parameters of simulation models into speci�c electronics elements, the creation of special purpose

neural processors becomes available to the designer, after successful simulation and evaluation

of SIM models based on the SIMULINK environment.
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Although a complete neural object library is not yet available, major elements as the IF neuron

and a synaptic transmission have been designed and tested. Furthermore proven silicon models

of the Lyon cochlear �lters have meanwhile been designed and implemented at Bell Labs [SL98]

and the swiss center of electronics and microtechnology S.A, [FVV97]. Other research groups

like the one of Timmer Horiuchi [Hor01] at the University of Maryland or Andre von Schaik

at the University of Sidney [vS01b], [vS01a] successfully developed single spiking neurons as

well as di�erent types of synapses and synaptic connections. Their recent work builds on the

pioneering work of Carver Mead, John Lazzaro and Christoph Koch at the California Institute

of Technology, Eric Vittoz at the EPFL and Terry Sejnowski at the Salk Institute. Horiuchi even

implemented the already discussed model of sound source localization based on IID evaluation

at the level of the LSO [Hor01].

Hence, specialized neuromorphic silicon is no longer a vision, it becomes reality and will be avail-

able to the scienti�c community and commercial applications before the end of this decade. As

postulated by Watson in 1997 in his book �Neuromorphic engineering - Why can't a computer

be more like a brain� [Wat97]. This might change our perception on the term �computer� from

a standardized digital computing machine to specialized processors employing a completely dif-

ferent and much more brain like scheme of information procession, superior to digital computing

in many instances.

With regard to the here proposed neural architecture for echo suppression during sound source

localization, there is no doubt that today's technology is ready to implement it into silicon.

Based on the currently available technology and the own designs, tests and implementations

it should be possible, to implement all simulated structures into three chips representing the

hair cell - AVCN level, the SOC level (with LSO and possible MSO models) and the DNLL-IC

level. Since the neurons, synapses and connectivities are essentially the same at all levels, the

chip design should be fairly straight forward with only some modi�cation of cell parameters at

each level. If coupled to a silicon cochlea, already donated to the Ilmenau Graduiertenkolleg by

Andreas Andreou from the sensory communication and microsystems laboratory in Baltimore,

all simulated building blocks of the proposed architecture seem to be implementable. However,

this work has not yet been done and will require further investigations and practical problems

will have to be solved. At this point, it can only be viewed as a promising outlook, worth to be

pursued, not only for the implementation of the speci�c architecture proposed in this thesis, but

also as a possible way forward to make biological principles of information processing available

to man made machines, capable to interact with humans in the real world environment.



Chapter 7

Summary and Outlook

7.1 Summary

In the Introduction of this thesis, three sources of motivation were mentioned. First, the aim

to provide a technically feasible and biological plausible model to suppress echoes during man

machine interactions. Second, the aim to provide an easy to use modeling system to simulate the

dynamics of neurons as spike interaction systems. And third, the aim to provide a physiological

plausible explanation for persistent inhibition of neurons within the DNLL. In summary, it can

be claimed, that all three aims have been achieved.

As discussed in Section 4, 5.3 and 6 of this thesis, the developed model proves capable of sup-

pressing strong echoes during localization tasks in normal and highly reverberating environments.

At the same time it is able to deal with real world signals and �st steps have been taken to en-

able real time performance based on fully parallel silicon implementation. It will, therefore, help

technical systems, like robots, to reliably localize their users. This way, it will be able to apply

biological principles to technical systems during man-machine interactions.

As described in chapter 3, a fairly detailed multi purpose simulation system has been designed,

satisfying the �ve reasons to use spike interaction models given in chapter 1. The designed neural

base library proved capable of modeling neural structures without demanding extended program-

ming skills but with su�cient detail to assure comparability with physiological experiments. The

dynamic elements of the developed neural base library realize a new type of IF neurons contain-

ing dynamic transfer functions and enabling the design of spike interaction models as logical

extension of the current spike response models.

And �nally, the neurophysiological hypothesis of chapter 2 declaring an internal push-pull e�ect

as a reason for persistent inhibition in the DNLL has been supported by the physiological ex-

periments of section 5.1. This was achieved by con�rming the existence of persistent inhibitory

e�ects in the Gerbils DNLL. Detailed compliance between the simulated model cells, and the

animal experiments suggest, that strong hyperpolarization within the DNLL cells is indeed one

of the reasons for their persistent inhibition.

Since the aim of this thesis was to provide a comprehensive view from neurophysiology via

psychoacoustic and computational modeling toward neuromorphic implementation it has been

limited to the narrow �eld of echo suppression during sound source localization. However, the

applied principles of research and modeling might enable further studies of adjacent �elds in

auditory processing and help tommorrows engineers and biologists to understand and implement

the principles of biological information processing.

203
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7.2 Outlook

This thesis has been an interdisciplinary study and does not claim comprehensiveness nor com-

pleteness of the performed investigations. It rather contains proof of concept to �ve essential

areas:

1. the investigation of single neuron dynamic response pattern in the DNLL of the Mongolian

Gerbil

2. the development of a multi purpose simulation system for spike interaction models

3. the realization of a biologically realistic computational model of speci�c nuclei in the au-

ditory brainstem

4. the application of a biological motivated system for echo suppression during sound source

localization to technical systems

5. the implementation of spiking neural networks by specialized analog-digital silicon hard-

ware

In all of these areas further investigations are necessary and planed for the upcoming years. A

general outlook on the planned activities shall be given within this last chapter. It will address

the �ve areas of investigation separately and conclude with a general outlook towards the future

of neuromorphic modeling.

1. Investigation of single neurons within the DNLL

The neurophysiological investigations performed during this study should be continued to further

provide the major source for generating ideas and hypothesis for biologically realistic modeling

of neural networks usable for veri�cation, forecasting and technical application of biological

principles.

For the speci�c task of investigating the biological correlates of the psycho-acoustical precedence

e�ect, it is �rst of all planed to continue the electro-physiological experiments within the gerbils

DNLL. Here, more cells exhibiting long lasting inhibitory e�ects need to be found in order to

increase the statistical signi�cance of this study and to obtain quantitative measures.

Furthermore, di�erent types of experiments are planed on these cells, including the investigation

of in�uences to the inhibitory e�ect by the absolute sound pressure level, the duration of the lead

and the lag signal as well as the spectrum and the intrinsic dynamic of the stimuli. Finally, this

study needs to be extended to the low frequency range, asking whether the perceived persistent

inhibition e�ects are limited to a speci�c type of high frequency EI cells or if they represent a

common feature of the DNLL.

Secondly, a new type of experiments within the gerbils DNLL is planed to prove the push-pull

hypothesis of this thesis. Using patch clamp techniques to directly access the time course of

soma potentials within the neuron it should be possible to gain direct access to the hypothetical

concept of persistent hyperpolarization.
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And �nally it will be necessary to further investigate the way of neural information towards and

from the DNLL, by performing anatomical studies based on antero- and/or retrograde markers

and by selectively blocking of GABA and/or glycine.

Since the inferior colliculus is probably the major site, echo suppression is carried out, it should

also be subject to further investigations as already started by the groups of Pollack, Litovsky and

Kelly among others. Here, a closer cooperation is intended in order verify one of the numerous

current hypotheses on echo suppression in the auditory brainstem.

In summary, the physiological experiments need to be continued to further support and prove the

hypothesis and �ndings of this thesis and to extend the model beyond the speci�c high frequency

cells within the DNLL.

2. Further development of the simulation system

The neural base library introduced in chapter 3 is already capable of building more complex and

adaptive models of neural systems not only within the auditory brain stem. However, it is still

in it's infancy and needs to be grown into an professional and generally applicable simulation

system.

To approach this goal, three major steps are planed for the near future. First, to add more

detailed elements, capable to model ionic currents and cell potentials in a more realistic way

(somewhat similar to the GENESIS level of detail). Second, to further develope the dynamic

and adaptive properties of the current elements and to test them by inclusion into biological

motivated models (i.e. for the Cli�ton e�ect). And third, to document and publish the NBL

in a professional way to ensure easy accessibility and usage by the community of biologists and

biological modelers.

Some of these tasks have already been started by documenting the library elements and making

it publicly available within the Intranet of the Max Planck Insitute of Neurobiology. Further

plans include public accessibility via the Internet and further collaborations with biological sci-

entists and engineers. First steps have already been made by establishing a loose cooperation

with David Mc Alpines Lab at the University College in London and some researches using the

alpha version of this simulation system at the Max Plack Institute of Neurobiology in Munich.

In summary, the task is to establish the NBL as a common modeling tool among biologists and

neuromorphic engineers.

3. Realization of a biologically realistic model of the auditory brainstem

Another plan to further develop the current model has also been started. This is to extend the

model by the missing nuclei and connections of the MSO (and the LNTB) in order to achieve a

more complete model of the auditory brainstem.

Early simulations of the MSO suggest that the Grothe model of fast inhibition as a major

principle to achieve a rate coding of ITD's rather than the traditional place code in the MSO

is well possible to be included and leads to a similar representation of azimuthal direction in
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the LSO and the MSO. The modeling of their interaction and combined in�uence on the DNLL

promises to lead to very interesting insights and hypotheses on the general representation of

azimuthal sound source position as well as on their in�uence on the dynamic �ring pattern in

the DNLL and the IC.

A more long term plan is to include adaptive features into the brainstem model in order to

investigate the principles of early sound suppression and the Cli�ton e�ect.

Finally, it should be possible to use this model for the evaluation of intrinsic echo parameters

like intensity, delay, duration and reverberation radius. With only a few modi�cations it should

then be capable of adding the sensation of sound source distances to the current azimuthal in-

formation combining them to a system, able to detect real sound source positions.

In summary, it seems realistic to extend the current model of the auditory brainstem by further

essential features and enhance its validation and prediction capabilities beyond the level of IID

processing.

4. Application to technical systems

One of the major motivations for this study has been derived from the inability of the mobile

robot system PERSES to consistently locate a user in reverberating environments. Since the

real world experiments carried out during this study suggest a robust capability of the model to

solve this task, it is a major goal for the near future to apply this model to the robot system and

test it in the even more complex environment of a department store.

To achieve this goal, real time performance is necessary and will be strived for by using the C-code

generation options of SIMULINK. Additionally, the available dSPACE DSP will be employed, to

take on a major part of the computing power in demand of the current model. And �nally, an

optimization and pruning of the intrinsic structures and parameters will be performed in order

to limit the number of calculations, necessary to locate a sound source under echoic conditions.

However, besides the application on mobile robots, further areas of application have been iden-

ti�ed. One is the application on video conference camera systems, in order to make them direct

their objectives towards the current speaker within reverberating conference rooms. Another is

the pre-processing of speech signals in order to enhance the correct identi�cation rate of speech

identi�ers.

In summary, the model shall be computationally speeded up in order to take on speci�c tasks

during man-machine interactions in real-world environments.

5. Silicon Implementation

The sample implementations shown in this thesis are still far from commercial usage, but they

prove the concept of silicon implementability for IF-neurons and even for adaptive dynamic

features of living cells and synapses.

The direction of future research in the �eld of analog-digital implementation of cell models is

clear and promises a truly parallel processing with a tremendous power to solve man-machine
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interaction problems as well as adaptation problems in real-world environments.

The next step will be the revised implementation of the IF-Neuron, of the static synapse and of

small networks based on these two elements. As soon as the basic elements become electronically

available, today's advanced micro- and nano-technology combined with the developed layout

generator will enable even the un-experienced scientist to design their own circuits and to include

them into larger technical environments.

Existing contacts with the groups of van Schaik and Andreou [vS01b] [vS01a] are planed to be

reactivated in order to speed up the progress in this area and achieve the �nal goal of truly

neuromorphic engineering.

The silicon implementation of the developed neural elements still demands a signi�cant amount

of work but promises powerful solutions.

Conclusion

The number and variety of plans and activities mentioned above clearly shows that neuromorphic

engineering depends on true interdisciplinary team work which is rather a vision then a reality

by today. However, this thesis want's to add a small piece of evidence that this way is a possible

and promising approach of computational neuroscience. Once the existing gulces are bridged, it

is the believe of the author that computational neuroscience will not only extend the capabilities

of today's computers but also alter their general paradigm of information processing during

man-machine interactions.
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Index

AHP- After Hyperpolarization - a short pe-

riod of hyperpolarization immediately

after the neuron has generated an

action potential. It starts a high lev-

els and decreases over time with de-

cay time constant between 1 and 20

ms, 98

BINAURAL - scheme of sound presentation,

where both ears receive a sound at

the same time, 132

BMF - Best matching frequency - the fre-

quency a speci�c auditory neuron re-

sponds to with the highest �ring rate,

132

CONTRALATERAL - the opposite side of

the brain, 83

CORTEX - folded surface of the brain con-

taining several layers of highly de-

veloped and strongly connected neu-

rons realizing higher brain functions

like association, memory and gener-

ation of hypothesis, 83

DICHOTIC - scheme of sound presentation,

where the two ears receive separate

signals via headphones - here the phys-

ical cues of sound source locations

can be removed or generated syn-

thetically, 132

DNLL - Dorsal Nucelus of the Lateral Lem-

niscus - dorsal part of the lateral

lemniscus as small part of the au-

ditory brainstem possibly contribut-

ing to the suppression of echo direc-

tions, 83

DORSAL - direction toward the back of an

animal with regard to the spinal cord

in distinction to VENTRAL toward

the abdomen of the animal, 82

EE CELLS - Auditory cells receiving excita-

tory inputs from both hemispheres

of the auditory brain, 83

EI CELLS - Auditory cells receiving exci-

tatory inputs from one hemispheres

and inhibitory inputs from the other

one, 83

EI units - Excitatory - inhibitory cells receiv-

ing excitatory inputs from one hemi-

sphere and inhibitory inputs from

the opposite hemisphere. This way

they perform a type of natural dif-

ferentiation between the two hemi-

spheres., 106

FREE FIELD - scheme of sound presenta-

tion, where the two ears receive a

sound originating from a single dis-

tant source containing all natural cues

of sound source location, 132

Hemorrhage - a bleeding in the brain partly

disabling the functionality of brain

structures, 43

IPSILATERAL - the same side of the brain,

83

LNTB - Lateral Nucleus of the Trapezoid

Body - a small auditory nucleus of

the superior olive transforming ex-

citatory inputs from the ipsilateral

hemisphere into inhibitory signals to

the MSO and LSO at the same side

of the brain, 83

LSO - Lateral Superior Olive - the lateral

nucleus of the superior olive as the

228
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second stage of processing in the au-

ditory brainstem. It receives excita-

tory inputs from the ipsilateral ears

and inhibitory inputs from the con-

tralateral ear. The LSO is seen to

decode Interaural Intensity di�erences

by the help of EI Cells., 82

MONAURAL - scheme of sound presenta-

tion, where only one ear receives the

sound signal, 132

MSO - Medial Superior Olive - the medial

nucleus of the superior olive as the

second stage of processing in the au-

ditory brainstem. It receives excita-

tory inputs from both ears via the

cochlear nucleus and decodes inter-

aural time di�erences by coincidence

detection of spikes from the left and

the right hemisphpere., 82

PERESES - PERsonal SErvice System - mo-

bile robot operating in a department

store, 9

SIM - Spike Interaction Model - new model-

ing approach for dynamic properties

of neural cell models, 9

THALAMUS - major region of the midbrain

believed to function as gate keeper

to the cortex, 83

VCN - Ventral Cochlear Nucleus - the ven-

tral part of the cochlear nucleus as

the �rst center of auditory process-

ing receiving direct inputs from the

auditory nerve, 82

VENTRAL - direction toward the abdomen

of an animal with respect to the spinal

cord in distinction to DORSAL to-

ward the back of the animal, 82



Theses

on the Dissertation of Thomas P. Zahn

Neural Architecture for Echo Suppression during Sound Source

Localization based on Spiking Neural Cell Models

1. Biological principles of echo suppression can be applied to technical systems in order to

achieve stable localization and tracking of static and dynamic sound sources in reverberat-

ing rooms.

2. The speci�cally developed model of the auditory brain stem is capable of suppressing

the direction of echoes during sound source localization tasks in real world and especially

reverberating environments.

3. Spatio-temporal interaction of single excitatory and inhibitory spikes is the main informa-

tion parameter in the auditory system

4. Spike Interaction Models (SIM), modeling the time course of intrinsic cell parameters and

communication exclusively via spatio-temporal spike pattern, are able duplicate the precise

�ring pattern of auditory neurons.

5. Persistent inhibition in speci�c high frequency neurons of the Dorsal Nucleus of the Lateral

Lemniscus (DNLL), is caused by strong and fast hyperpolarization combined with weaker

and slower depolarization due the push-pull e�ect in the auditory brainstem.

6. Persistent inhibition in the DNLL contributes to the generation of the psycho-acoustic

precedence e�ect in the Inferior Colliculus (IC) and higher auditory centers.

7. Persistent Inhibition exists in the DNLL of the Mongolian Gerbil and is a common feature

of vertebrates.

8. The elements of the developed Neural Base Library (NBL) based on the dynamic simulation

system MATLAB/SIMULINK are capable to su�ciently model the �ring behavior of living

neurons including the persistent inhibition e�ect.

9. The Elements of the NBL can be implemented as analog-digital circuits in silicon hardware

and realize large neural networks, operating in real time mode fully in parallel

10. Biological information processing demands a new pardigm of computation using the dimen-

sions of space, time and the dynamics of analog potentials as major parameters of data

processing.


