20 research outputs found

    TDRSS telecommunications study. Phase 1: Final report

    Get PDF
    A parametric analysis of the telecommunications support capability of the Tracking and Data Relay Satellite System (TDRSS) was performed. Emphasis was placed on maximizing support capability provided to the user while minimizing impact on the user spacecraft. This study evaluates the present TDRSS configuration as presented in the TDRSS Definition Phase Study Report, December 1973 to determine potential changes for improving the overall performance. In addition, it provides specifications of the user transponder equipment to be used in the TDRSS

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    An analysis of the fundamental constraints on low cost passive radio-frequency identification system design

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 110-115).Passive radio frequency identification (RFID) systems provide an automatic means to inexpensively, accurately, and flexibly capture information. In combination with the Internet, which allows immediate accessibility and delivery of information, passive RFID systems will allow for increased productivities and efficiencies in every segment of the global supply chain. However, the necessary widespread adoption can only be achieved through improvements in performance - including range, speed, integrity, and compatibility - and in particular, decreases in cost. Designers of systems and standards must fully understand and optimize based on the fundamental constraints on passive RFID systems, which include electromagnetics, communications, regulations, and the limits of physical implementation. In this thesis, I present and analyze these fundamental constraints and their associated trade-offs in view of the important application and configuration dependant specifications.by Tom Ahlkvist Scharfeld.S.M

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Optical quantum random number generation: applications of single-photon event timing

    Get PDF
    This dissertation is the result of research which, although electrical and computer engineering in nature, also aims to improve the performance of many systems in the field of quantum information. For example, random number generators are used in almost all areas of science, and the initial portion of this work details the theory, design, and characterization of two photon-arrival-time quantum random number generators (QRNGs). After the QRNGs were completed, it was realized that their performance was severely limited both by the maximum detection rate of the single-photon detectors used, and the precision at which the arrival times could be resolved. The single-photon detectors used for both QRNGs are single-photon avalanche photodiodes (SPADs), devices which when operated below their breakdown voltage can create a macroscopic amount of current (an avalanche) in response to a single incident photon. Some of this charge can become trapped in defects or impurities; if this trapped charge is released when the SPAD is active, a secondary ‘false’ detection event, or ‘afterpulse’ can occur. To lower the afterpulse probability to reasonable levels (< 1%), we attempted to reduce the amount of avalanche charge by halting its growth promptly with high-speed electronics, so that defects have a lower probability of becoming populated in the first place. Initial results show reductions in afterpulse probability by up to a factor of 12, corresponding to a ~20% decrease in dead time, a value that could be improved further. We developed an FPGA-based time-to-digital converter system for use specifically with SPADs, achieving a time-bin resolution of 100 ps, with lower dead time and higher maximum detection rate than all currently available detection systems. This further allowed for the creation of a new higher-order SPAD characterization technique, which was identified previously unknown subtleties to SPAD operation. Finally, we developed an ultra-low-latency QRNG, which was used in one of the recent loophole-free demonstrations of quantum nonlocality. The final latency was below 2.5 ns, to our knowledge the lowest latency QRNG to date. Of special interest, however, is our subsequent exploration into the characterization of its bit-probability drift using atomic clock stability techniques. By employing the Allan deviation and implementing precision feedback, the additional frequency drift caused by environmental fluctuations is reduced such that the resulting bit stream can pass cryptographic random number tests for sample sizes up to 5 Gb. This system is currently intended for the NIST random-number beacon, a world-wide trusted source of random bits

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    The Telecommunications and Data Acquisition Report

    Get PDF
    Deep Space Network advanced systems, very large scale integration architecture for decoders, radar interface and control units, microwave time delays, microwave antenna holography, and a radio frequency interference survey are among the topics discussed

    Implementation of a VLC HDTV Distribution System for Consumer Premises

    Get PDF
    A unidirectional, visible light communication (VLC) system intended for the distribution of Digital Video Broadcasting (DVB), high-definition television (HDTV) content to DVB compatible TVs within consumer premises is presented. The system receives off-air HDTV content through a consumer grade DVB-T/T2 terrestrial set-top-box (STB) and re-encodes its Moving Picture Experts Group (MPEG) transport stream (TS) using a pulse position modulation (PPM) scheme called inversion offset PPM (IOPPM). The re-encoded TS is used to intensity modulate (IM) a blue light-emitting diode (LED) operating at a wavelength of 470 nm. Directed line-of-sight (DLOS) transmission is used over a free-space optical (FSO) channel exhibiting a Gaussian impulse response. A direct-detection (DD) receiver is used to detect the transmitted IOPPM stream, which is then decoded to recover the original MPEG TS. A STB supporting a high-definition multimedia interface (HDMI) is used to decode the MPEG TS and enable connectivity to an HD monitor. The system is presented as a complementary or an alternative distribution system to existing Wi-Fi and power-line technologies. VLC connectivity is promoted as a safer, securer, unlicensed and unregulated approach. The system is intended to enable TV manufacturers to reduce costs by, firstly, relocating the TV’s region specific radio frequency (RF) tuner and demodulator blocks to an external STB capable of supporting DVB reception standards, and, secondly, by eliminating all input and output connectors interfaces from the TV. Given the current trend for consumers to wall-mount TVs, the elimination of all connector interfaces, except the power cable, makes mounting simpler and easier. The operation of the final system was verified using real-world, off-air broadcast DVB-T/T2 channels supporting HDTV content. A serial optical transmission at a frequency of 66 MHz was achieved. The system also achieved 60 Mbit/s, error free transmission over a distance of 1.2 m without using error correction techniques. The methodology used to realise the system was a top-down, modular approach. Results were obtained from electrical modelling, simulation and experimental techniques, and using time-domain and FFT based measurements and analysis. The modular approach was adopted to enable design, development and testing of the subsystems independently of the overall system
    corecore