2,565 research outputs found

    Machine vision for space telerobotics and planetary rovers

    Get PDF
    Machine vision allows a non-contact means of determining the three-dimensional shape of objects in the environment, enabling the control of contact forces when manipulation by a telerobot or traversal by a vehicle is desired. Telerobotic manipulation in Earth orbit requires a system that can recognize known objects in spite of harsh lighting conditions and highly specular or absorptive surfaces. Planetary surface traversal requires a system that can recognize the surface shape and properties of an unknown and arbitrary terrain. Research on these two rather disparate types of vision systems is described

    Computable Rationality, NUTS, and the Nuclear Leviathan

    Get PDF
    This paper explores how the Leviathan that projects power through nuclear arms exercises a unique nuclearized sovereignty. In the case of nuclear superpowers, this sovereignty extends to wielding the power to destroy human civilization as we know it across the globe. Nuclearized sovereignty depends on a hybrid form of power encompassing human decision-makers in a hierarchical chain of command, and all of the technical and computerized functions necessary to maintain command and control at every moment of the sovereign's existence: this sovereign power cannot sleep. This article analyzes how the form of rationality that informs this hybrid exercise of power historically developed to be computable. By definition, computable rationality must be able to function without any intelligible grasp of the context or the comprehensive significance of decision-making outcomes. Thus, maintaining nuclearized sovereignty necessarily must be able to execute momentous life and death decisions without the type of sentience we usually associate with ethical individual and collective decisions

    Bilborough Sixth Form College: report from the Inspectorate (FEFC inspection report; 58/96 and 81/00)

    Get PDF
    Comprises two Further Education Funding Council (FEFC) inspection reports for the periods 1996 and 1999/200

    The Dawn of Fully Automated Contract Drafting: Machine Learning Breathes New Life Into a Decades-Old Promise

    Get PDF
    Technological advances within contract drafting software have seemingly plateaued. Despite the decades-long hopes and promises of many commentators, critics doubt this technology will ever fully automate the drafting process. But, while there has been a lack of innovation in contract drafting software, technological advances have continued to improve contract review and analysis programs. “Machine learning,” the leading innovative force in these areas, has proven incredibly efficient, performing in mere minutes tasks that would otherwise take a team of lawyers tens of hours. Some contract drafting programs have already experimented with machine learning capabilities, and this technology may pave the way for the full automation of contract drafting. Although intellectual property, data access, and ethical obstacles may delay complete integration of machine learning into contract drafting, full automation is likely still viable

    How the Arts Standards Support STEM Concepts: A Journey from STEM to STEAM

    Get PDF
    This issue of the Journal of STEM Arts, Crafts, and Constructions is focused on the effects of integrating arts with STEM areas, an important and widely-considered topic in education today. This editorial provides an overview of the current state of the arts and STEM areas integration paradigm, an analysis of the benefits of the arts integration with the STEM subjects, and an overview of the history of the arts anchor standards. Comparison and connections between the National Arts Core anchor arts standards, the scientific method, engineering design process, and the 5E learning cycle are also illuminated. Summaries of the practical and research articles of this issue, highlighting the arts standards addressed, are included in this editorial

    CRAFTING THE MIND OF PROSOCS AGENTS

    Get PDF
    PROSOCS agents are software agents that are built according to the KGP model of agency. KGP is used as a model for the mind of the agent, so that the agent can act autonomously using a collection of logic theories, providing the mind's reasoning functionalities. The behavior of the agent is controlled by a cycle theory that specifies the agent's preferred patterns of operation. The implementation of the mind's generic functionality in PROSOCS is worked out in such a way so it can be instantiated by the platform for different agents across applications. In this context, the development of a concrete example illustrates how an agent developer might program the generic functionality of the mind for a simple application. 20 2-4 105 131 Cited By :1

    Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond

    Get PDF
    Many biologically significant processes, such as cell differentiation and cell cycle progression, gene transcription and DNA replication, chromosome stability and epigenetic silencing etc. depend on the crucial interactions between cellular proteins and DNA. Chromatin immunoprecipitation (ChIP) is an important experimental technique for studying interactions between specific proteins and DNA in the cell and determining their localization on a specific genomic locus. In recent years, the combination of ChIP with second generation DNA-sequencing technology (ChIP-seq) allows precise genomic functional assay. This review addresses the important applications of ChIP-seq with an emphasis on its role in genome-wide mapping of transcription factor binding sites, the revelation of underlying molecular mechanisms of differential gene regulation that are governed by specific transcription factors, and the identification of epigenetic marks. Furthermore, we also describe the ChIP-seq data analysis workflow and a perspective for the exciting potential advancement of ChIP-seq technology in the future

    Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design.</p> <p>Results</p> <p>RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%.</p> <p>Conclusion</p> <p>To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (<it>ViennaPackage </it>– 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU.</p
    • …
    corecore